给水控制特点

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超临界发电机组以其热能转换效率高、发电煤耗低、环境污染小、蓄热能力小和对电网的尖峰负荷适应能力强等特点而得到广泛应用,已经成为我国火力发电的主力机组。

给水控制作为过热汽温调节的基本手段是超临界直流锅炉有别于亚临界汽包锅炉的显著特征。

1、超临界直流锅炉给水控制的特点
超临界直流锅炉没有汽包,工质通过蒸发受热面过程中全部转换为蒸汽,即循环倍率为1[1],且无固定的饱和蒸汽与过热蒸汽的分界点,整个行程的流动阻力均由给水泵克服。

负荷扰动时,超临界直流炉无汽包,蓄热能力小[2],导致主汽压力变化延迟很小,且幅度较大,但主汽温度变化较小,所以超临界机组较亚临界机组更适合变压运行。

直流锅炉的一次性通过特性使得工质流和能量流相互耦合,从而在各个控制回路,如给水、汽温及负荷控制回路之间存在着很强的非线性耦合[3],机炉之间相互关联性强。

因此变负荷过程中,不能单独改变燃烧率或者给水流量,给水量与燃料量必须以一定的比例协调动作,即在不同的负荷下要保持一定的煤水比。

过热汽温对给水流量和燃料量的扰动具有很大的滞后性,这样就必须有一个信号能够迅速反映出燃料量和给水流量的变化,防止煤水比失调导致机组超温或者主汽温度急剧下降,我们一般选取分离器出口温度或者焓值作为这个表征量。

分离器出口的工质处于微过热状态,在燃料量或给水流量扰动的情况下,微过热汽温变化的滞后性远小于过热汽温。

微过热点前包括有各种类型的受热面,工质在该点前
的焓增占总焓增3/4左右,此比例在燃水比及其他工况发生较大变化时变化并不大。

同时,中间点选在两级减温器之前,基本不受减温水流量变化的影响,即使发生减温水量大幅度变化,按省煤器入口水量=给水泵入口流量-减温水量,中间点送出的调节信号仍保证正确的调节方向。

因此,通过控制微过热点的汽温(或焓值),以间接控制出口汽温,是比较好的一个控制策略。

通过多台机组的实践,我认为微过热蒸汽焓替代该点温度作为燃水比校正是要更好一些,其优点如下:
1)首先我们从焓的定义式[4]来看:
h—焓;
u—工质内能;
p—工质压力;
v—工质比容。

在任一平衡状态下,u、p、v都有一定的值,因而焓h也有一定的值,而与达到这一状态的路径无关。

内能是温度和压力的函数,固焓也可以表示成温度和压力的函数,即h=f(p,T)。

所以用焓“焓增”来分析各受面的吸热分布更为科学;
2)分离器出口焓值对煤水比的变化反映快,可以更好的校正控制系统;
3)焓值代表了过热蒸汽的作功能力,随工况改变焓给定值不但有利于负荷控制,而且也能实现过热汽温粗调。

2 汽水系统的动态特性
超临界直流炉启动直至满负荷过程中要经历湿态-干态、亚临界-超临界运行工况的转换,汽水系统动态特性随负荷变化存在很大的差异,具有很强的非线性和变参数特性。

机组负荷<30%时,超临界锅炉湿态运行,此时锅炉的动态特性类似于汽包锅炉,给水流量的变化主要影响的是汽水分离器液位,而燃料量的变化主要影响汽水分离器出口蒸汽流量和压力。

机组负荷>30%时,超临界锅炉处于干态运行,汽水分离器仅仅是作为蒸汽流动的通道。

系统处于亚临界压力工况时,锅炉的动态特性类似于亚临界直流锅炉,蒸汽的饱和与过热之间并没有一个固定的分界点,给水和燃烧的扰动将导致主蒸汽温度、压力和流量同时变化,各参数相互之间的耦合程度远大于汽包锅炉。

煤水比控制中间点焓(或温度),减温水作为辅助调整措施。

亚临界-超临界转变过程中,由于临界压力工况点附近存在着最大比热容区,工质定压比热容变得很大,工质温度随焓值的变化很不敏感,因此机组亚临界-超临界转变过程中的动态特性差异非常显著。

当系统处于超临界压力工况时,工质的热力学特性较为均匀,锅炉的汽水行程可看作一个单相区,此时其动态特性类似于过热器。

3 超临界机组给水控制策略
3.1 湿态运行工况下的给水控制
直流炉在湿态工况下类似于汽包炉,分离器水位是机组湿态时给水的最终控制目标。

它决定着汽水分离器汽水分离的效果是否良好,控制分离器水位在最佳范围内是锅炉湿态时安全运行的基础。

如果分
离器水位过高,则不能保证汽水分离器能够达到良好的分离效果,很可能造成过热器带水,汽温下跌,甚至汽轮机进水等严重事故。

相反,若分离器水位过低,也是达不到良好的汽水分离效果,可能造成下降管内锅水含汽,影响炉水泵出力,省煤器最小流量可能就得不到保证。

湿态工况下分离器水位控制主要通过给水泵转速、给水泵再循环调整门和给水旁路调整门改变给水流量来实现,当发生汽水膨胀时,由溢流调节阀门辅助控制分离器水位,如果在锅炉热态冲洗时,可以增加溢流调节阀门的偏置加大外排。

一般分离器水容积很小,水位的惯性就很小,为我们的控制提出了更高的要求。

以某电厂超临界机组为例,省煤器、分离器、启动系统与炉膛水冷壁总的水容积为216.57m3,分离器水容积为11.27m3,占总水容积的5.2%,由此可见汽水分离器容积非常小,工质不平衡时分离器水位变化快,溢流调整门为液动门,开关相对快些,基本可以适应分离器快速的水位变化。

湿态工况下,如需提高主汽温度,给水控制需增加给水流量,增加溢流调节阀门的偏置加大外排,并适当增加燃料量,从而增大蒸汽的流量,这种情况下,汽温上升快,而压力则会上升很慢或者下降。

如需提高主汽压力,给水控制措施则与上述方案相反。

由于点火初期水质一般不合格,外排炉水均不回收,所以加大外排增加主汽温度,将造成工质和热量的巨大浪费。

因此,湿态工况时,在维持分离器水位稳定的情况下,主要靠高旁调节主汽压力,适当开大溢流调整门,在压力调节的同时,主汽温度也是稳定上升。

3.2 干态运行工况下的给水控制
机组转干态后,给水控制主要调节煤水比控制中间点的焓值(或温度),最终达到控制主汽温度的目的。

给水控制如图1所示,此控制策略有如下特点:锅炉主控指令信号经动态延时块F(t)后给出省煤器入口给水流量指令的基本值;汽水分离器出口温度是汽水分离器压力的函数,该信号作为给水控制系统的第一级修正,根据机组负荷确定的一级减温器前后温差作为给水控制系统的第二级修正。

因为一减前后温差也间接反映了燃水比的变化,温差偏大,说明中间点的焓值偏高,引入此信号的目的是:将过热器的喷水流量控制在规定范围内,使喷水减温在任何工况下均保持有可调节余地。

有些机组也将过热器的总喷水流量与给水流量的比值作为给水控制系统的第二级修正信号。

图1 给水流量控制系统
在稳定的工况下,煤水比主要受到燃料发热量、给水温度、锅炉受热面结焦情况等因素的影响。

中间点的焓值主要与炉内辐射换热有关,主汽系统一般由顶棚过热器,尾部包墙过热器、屏过和末过组成,故主汽温度呈现出很强的半辐射半对流换热特性。

对于直流锅炉,当煤水比失调时,会严重影响主汽温度。

直流锅炉中主给水流量等于省煤器入口流量和减温水量之和,负荷不变,如果主汽温度升高,减温水量增加,省煤器入口流量会相应地减少,从而加剧了煤水比的失调程度,因此对于直流锅炉,必须用保持燃水比作为维持过热器出口汽温的主要粗调手段,用喷水减温作为细调手
段。

首先我们分析一下负荷稳定的情况下的给水控制。

负荷稳定,则中间点的焓值我们可以认为是一个定值。

如果给水温度下降,为了维持负荷以及中间点的焓值不变,则需增加煤量,煤水比下降,负荷和中间点焓值稳定。

但由于燃料量增加炉内辐射换热增强,炉膛出口温度升高,过热器的辐射换热和对流换热得到加强,主汽温度必然升高,如果不加以控制甚至会出现超温。

此时应该适当减小中间的焓值的设定值。

同样,当燃料的发热量下降时,燃料量会逐渐增加,以维持负荷不变,稳定后主汽温度会上升,所以也应该适当的减小中间点温度的设定值。

锅炉受热面结焦也是同样的给水控制方式。

其次,当负荷发生扰动时,我们以AGC试验为例。

给水流量对中间点的焓值控制比燃料量对其控制要更灵敏一些。

AGC试验升负荷时,首先增加燃料量,为了维持煤水比,如果同时大量增加给水流量,则中间点的焓值会下降很快,从而引起主汽温度的下降,所以水量的增加需有一定的延时,避免主汽温度的大幅度波动。

如果机组发生大的负荷波动,如RB动作,给水的控制动作的方向虽然都是向某一稳定的煤水比而逐渐减少给水量,但区别就是给水量减少的速度。

通过对多台机组的试验,我们发现中间点温度的变化率的变化趋势对给水量变化速度的快慢最为敏感。

所以中间点温度变化率的快慢就应该是给水变化快慢的主要依据,在调节时根据中间点温度的变化快慢来改变给水量变化的快慢。

只要能稳定中间点汽温的波动幅度,主再汽温也就能维持住了。

相关文档
最新文档