第二章飞机的外载荷与设计规范习题答案_飞行器结构设计
飞行器结构设计(打印版)
在弹体坐标系下,由受力平衡和力矩方程得
Ra Rb G cos Ral1 Gl2 cos 0 fRa Fa
两坐标轴方向过载为:
nx ( P Fa) / mg 0 ny ( Ra Rb) / mg 0
可得
nx P / mg 0 fGl2 cos / mg 0l1 ny G cos / mg0
M N Yi Ji Fj
——舱段剖面上的正应力;
M ——由弯矩 M 产生的正应力;
N ——由轴向力 N 产生的正应力;
M ——作用在舱段剖面上的弯矩; N ——作用在舱段剖面上的轴向力;
J i ——减缩剖面的惯性矩;
Yi ——第 i 个元件到减缩剖面中性轴的距离;
F j ——减缩剖面的面积。
可知,从 0 至 90 度,随 增大, nx 变大, n y 变小。 4 波动系数 K:反映当舵面偏角发生变化时,导弹的过载系数变化的程度。 第四次课(教材 23 页-35 页) 1 地空导弹典型弹道上所选的特征点有:最大推力点,导弹进入控制飞行的初始点,机动飞行段的速 压点,机动飞行的终点。 2 压心:作用在物体上空气动力合力的作用点。 3 刚心:一个剖面上,所有作用力的合力,只产生纯弯曲的作用点。 4 设计载荷:使用载荷乘以安全系数。 P des
R ——连接框外径;
q ——连接框的支反剪流。
第八次课(教材 52 页—61 页) 1 梁式翼面结构中,翼梁一般沿翼面最大厚度线布置或沿翼弦的等百分比线布置,翼肋按顺气流方向 排列或沿垂直于翼梁弹性轴方向布置。 2 玻璃钢蜂窝夹层结构中,弹翼主体上蜂窝纵向沿展向排列,翼前后缘蜂窝纵向沿翼弦方向排列。 3 展弦比:展向长/弦向长。 4 翼面的相对厚度:翼面最厚位置厚度/弦长长度。 第九次课(教材 62 页—70 页) 1 普通肋开减轻孔是因为腹板剩余强度一般较大,减轻孔边缘翻边是为提高腹板的抗弯能力。 2 铆缝设计与计算主要是确定铆钉的直径,间距,边距与排距。 第十次课(教材 70 页—76 页) 1 第一强度理论是最大拉应力准则; 第二强度理论是最大伸长线应变准则; 第三强度理论是最大剪应力准则; 第四强度理论是最大形变能准则。 2 夹层结构夹芯参数为格子形状,边长,箔厚与变密度格子。 第十一次课(教材 76 页—84 页) 1 在多榫式接头中,齿中部厚度小于齿厚,是为了减少齿的精加工面,齿外端厚度比齿根略小,装配 时外端起导向作用。 (教材 77 页图 3.44)
第03讲—外 载 荷(1)
26
作 业
《飞行器结构学》
P62
2—3
2—4
2—7
27
第三讲结束
退 出
28
在足至头的方向,忍受的过载的能力最弱。(见下图)
人 员 所 能 承 受 的 过 载 值
24
四、最大使用过载的确定
飞机的过载系数是最重要的原始参数之一,是表征飞机机动
性的重要参数。过载的大小应根据飞机的用途确定。
各国规范都根据本国实际情况对飞机进行分类,并规定其过 载的大小。
飞机分类
全特技类/机动飞机 (歼击机、强击机、教练机等) 半特技类/部分机动飞机 (战术轰炸机、多用途飞机等) 非特技类/非机动飞机 (运输机、预警机等)
Cy—升力线斜率;
—迎角增量; H —飞行高度H上的空气密度;
Y0 —飞机原平飞升力; u —垂直突风速度;
p = G/S —翼载荷;
K —垂直突风衰减系数。当垂直突风来得愈突然(扰动气流 影响区L愈小),V0愈大,K值就愈接近于 1。
在暴风雨中飞行时,u可达40m/s,将产生较大的过载。 除此之外,周期性突风还将引起振动而产生疲劳,同时产
11
7g
三、过载系数的概念
1. 过载系数的定义
飞机所受除重力之外 的外力总和与飞机重力之 比 称为过载系数 (所有表 面力的合力与飞机重量 G 之比),用符号n表示。它 沿飞机主轴的三个分量为 nx、ny、nz (图3-7)。
除重力之外的总外力的 y向 分量(即升力Y )与飞机重 力 G 之比,就是 y 向过载系 数ny,它可能为正,也可能 为负,这取决于该方向的外 力情况。
ny (俄罗斯) nymax
ny (美国) ny=-3~8
6 6 4
飞机结构设计答案
飞机结构设计答案一、填空题(15分)1.目前通常将战斗机分成四代,米格-21是典型的二代机,F-22是四代机的第一个代表机种,我公司正在研制的L15高级教练机为三代机。
2. 飞机结构设计要满足空气动力要求和设计一体化要求,结构完整性要求和最小重量要求,使用维修性要求,工艺性要求,经济性要求。
3. 飞机在飞行过程中,外界作用于飞机的载荷主要有:升力、阻力、发动机推力、重力。
4. Y向载荷系数表示了飞机升力与重力的比值。
L15高级教练机正向设计过载为8,负向设计过载为3。
二、简答题(70分)1.飞机结构的设计思想就其发展过程看,大致可划分为哪5个阶段?答:静强度设计阶段,静强度和刚度设计阶段,强度、刚度、疲劳安全寿命设计阶段,强度、刚度、损伤容限和耐久性设计阶段、结构可靠性设计试用阶段。
2. 使用载荷的定义答:飞机使用中实际可能遇到的最大载荷称为使用载荷。
3. 设计载荷的定义答:为了保证一定的安全裕度,飞机结构通常按能承受高与使用载荷的载荷设计,设计的结构所能承受而不破坏的最大载荷称为设计载荷。
4. 安全系数的定义答:安全系数定义为设计载荷与使用载荷之比。
5. 机身的主要功用?答:主要功用:1 安置空勤组人员、旅客、装载燃油、武器、设备和货物等。
2 把机翼、尾翼、起落架及发动机等连接在一起,形成一架完整的飞机。
6. 机身主要外载荷?答:1 装载加给机身的力 2 其他部件传来的力 3 增压载荷7. 机身结构的典型受力形式有哪三种?答:桁梁式、桁条式、硬壳式三、计算题(15分)已知飞机机翼全翼展长L=9.7m,其最大使用升力Y W=643KN,半机翼的结构重量G W/2=7.7KN,半机翼的升力合力与重心假设展向作用于Z=0.5(L/2)处。
此外机翼上Z=0.6(L/2)处,挂有G B=1KN 的炸弹。
安全系数f=1.5,求:机翼根部Z=0.1(L/2)处的设计弯矩解:M= (0.5Y W- G W/2)×[0.5(L/2)- 0.1(L/2)]- G B×[0.6(L/2)- 0.1(L/2)] =(0.5×643-7.7)×0.4×9.7/2-1×0.5×9.7/2=608.78-2.43=606.35 KN·MMd=f×M=1.5×606.35=909.53 KN·M。
飞机的外载荷
ny
Y0 Y H uv0 1 KC y G 2p
p
G S
3 其他飞行姿态的过载
飞机转动(升降)时的过载(刚体运动分析) ① 运动分析: 旋转+平移 ② 载荷分析:当平尾产生机动载荷时,飞机产生平移与旋转; 该载荷克服了飞机原有的平飞状态,使飞机在上述两个运 动中产生加速度。从动平衡角度,平尾机动载荷与它克服 的惯性力及力矩相平衡。
1 飞机设计规范简介
①
指定设计规范的意义:对飞机设计和研制给出全面要
求的指令性技术文件,是飞机设计员的工作依据.
②
政府与权威研究机构组织制定,也可与设计主管部门
共同制定。
③
设计规范不是统一的,而是针对不同的飞机类型制定
不同的设计规范,因为飞机的任务与技战术要求不同。
④
设计规范与设计手册是飞机设计人员的基本工具。
4 安全系数 i. 安全系数是静强度安全设计的主要解决方法。 使用载荷:飞机在使用中预计各构件可能遇到的最大载荷 设计载荷:使用载荷乘以安全系数安全系数取法 ① 凡在规范中未作特殊说明之处,安全系数均为1.5; ② 当载荷的性质、大小和分布不能准确确定时,安全系数增大 到1.65、2或更大; ③ 对于主要的接头和耳片,由于特殊重要性,在上述安全系数 基础上,尚应乘以附加安全系数1.25 ii. 静强度设计准则:
p
t
1 疲劳载荷 疲劳载荷破坏的一般特点 •多次反复载荷作用下产生的破坏; •低应力脆断; •疲劳破坏对材料特性、构件的形状、尺寸、表面状态、使 用条件、外载环境等都十分敏感; •疲劳破坏具有局部性,而不涉及到整个结构的所有构件。
2 疲劳载荷谱 疲劳载荷是飞机设计中最重要的考虑因素,是定寿的基本 依据。 载荷谱的谱型 1)等幅谱 2)程序块谱 3)飞-续-飞谱(典型任务剖面谱、任务段-任务段谱、 基本机动飞行谱) 载荷的时间历程分类 1)单机载荷时间历程,主要用于单机寿命监控。 2)机群载荷谱(设计使用载荷谱用于新设计飞机的研制 阶段基准使用载荷谱用于该飞机的服役使用寿命)
西工大飞行器结构力学课后答案
西工大飞行器结构力学课后答案第一题根据飞机结构力学的基本原理,飞机的结构力学可以被分解为静力学和动力学两个部分。
静力学是研究在静止或恒定速度下的力学行为,包括计算飞机各个部件的受力和应变情况。
而动力学则是研究在变化速度和加速度下的力学行为,包括计算飞机受到的各种动力荷载和振动情况。
第二题飞机的结构力学分析中,常用的方法包括有限元分析、静力学分析和动力学分析。
有限元分析是一种基于数值计算的方法,可以建立飞机结构的数学模型,并以此模型进行力学分析。
静力学分析是通过平衡方程来计算飞机结构的受力和应变情况,包括应力分析和变形分析。
动力学分析是通过力学方程来计算飞机在动态载荷下的振动响应和疲劳寿命。
第三题飞机的结构力学分析对于设计和制造过程中的决策具有重要意义。
在设计阶段,结构力学分析可以帮助工程师评估不同设计方案的有效性和可行性。
通过分析飞机的受力和应变情况,可以优化设计,并确保飞机在正常工作范围内具有足够的强度和刚度。
在制造阶段,结构力学分析可以帮助工程师确定合适的材料和加工工艺,以确保飞机结构的可靠性和安全性。
通过分析飞机的受力和应变情况,可以预测飞机在使用寿命内的疲劳寿命,并采取相应的措施延长飞机的使用寿命。
此外,结构力学分析还可以应用于飞机维修和事故调查过程中。
通过分析事故飞机的受力和应变情况,可以确定事故原因,并提出相应的维修和改进建议,以减少事故的发生对飞机结构的影响。
第四题对于飞行器结构力学的研究,需要掌握一些基本理论和方法。
首先是静力学的基本原理,包括力的平衡方程、应力和应变的定义和计算方法。
其次是动力学的基本原理,包括力的运动方程、振动的模型和计算方法。
此外,还需要了解一些基本的力学性能指标,如强度和刚度。
在进行结构力学分析时,需要掌握一些基本的计算方法。
常见的方法包括有限元法、解析法和试验法。
有限元法是一种基于数值计算的方法,可以建立飞机结构的数学模型,并以此模型进行力学分析。
解析法则是通过解析计算的方法进行力学分析,主要针对简单和规则的结构。
第2章 飞机载荷
二、飞机过载和过载系数
飞机到达飞行轨迹的最低位置时, 此时,飞机的过载为
2
v ny 1 gr
飞机俯冲拉起时,升力可能大大的超过飞机的重力。飞 机机动动作越剧烈,升力大于重力越多,飞机受力越严 重,机翼翼根部位承受载荷越大。
二、飞机过载和过载系数
水平平面内机动飞行情况下飞机的过载
作水平转弯。 水平方向:升力水平分量=惯性离心力 垂直方向:升力垂直分量=重力
习
题
5.飞机水平转弯时的过载:_____。 A:与转弯半径有关。 B:与转弯速度有关。 C:随转弯坡度增大而减小。 D:随转弯坡度增大而增大。
6.n设计和n使用的实际意义分别是:_____。 A:表明飞机结构承载能力与飞机飞行中的受载限制。 B:表明飞机结构受载能力与飞机飞行中的实际受载大小。 C:表明飞机结构承载余量与飞机飞行中的实际受载大小。 D:表明飞机飞行中的受载能力与飞机结构的实际受载大小。
空间盒式结构
周缘封闭的薄壁梁
三、载荷分类及构件变形
习
题
1.飞机载荷是指:_____。 A:升力。 B:重力和气动力。 C:地面支持力。D:飞机运营时受到的所有外力。
2.飞机在水平面内作等速圆周运动,所受外力为:_____。 A:升力、重力、推力、阻力、向心力。 B:升力、重力、推力、阻力不平衡,合力提供向心力。 C:所受升力随坡度增大而增大。 D:B和C都对。
习
题
8.哪个方向的突风对机体影响最大:_____。 A:水平突风。 B:垂直突风。 C:侧向突风。 9.飞机结构中的空间薄壁结构可以承受何种载荷:_____。 A:集中力。 B:分布力。 C:剪力。 D:空间任意方向力。 10.飞机结构中薄板类构件可以承受的载荷为:_____。 A:集中力。 B:分布力。 C:板平面内的分布力。
飞机结构设计 第2章 飞机的外载荷
n
y
=
P lg P o lg
=
G + N G
y
− Yl
④ 这个过载不允许过大,一般ny=3-4 (因为与飞行 时对结构与人的作用不同) 着陆运动的情况多样,还可能发生nx(前方撞击、 刹车),或nz(侧滑).
两种定义的比较
∑Fy=0 Y + PLd = G + N y
Ny ay Y + PLd ny = = 1+ = 1+ G G g
nyg = ny0 ±Δny = ny0 ± = ny0 ±
a cy (U / V )ρV 2 a cy ΔαρV 2S / 2
G
2G / S
图2.8 垂直突风速度为W时飞机飞行攻角的改变
突风还可能引起振动,特别是在重型飞 机上引起周期性的载荷(甚至共振)。
突风作用时间
h
考虑突风作用时间,引入突风衰减因子K, K<1:
2.1.1 过载的概念 定义:飞机所受除重力之外的表面力总和与 飞机重量之比称为过载系数n,简称 过载。
n = Rf / G
n = nx i + n y j + nz k
n=
2 2 n x + n y + n z2
过载系数可正,可负;与坐标轴方向一致 为正,反之为负 习惯上将过载系数称为过载;平时所说的 过载是指ny,∵一般地nx和nz均很小,且x方 向的强度、刚度一般较好
盘旋倾斜角越大,ny 越大。 当γ=75º~80º时, ny=4~6。 当飞行速度增大时,如仍 需作小半径盘旋,则需要采用 大迎角飞行以产生大的升力, 同时,需要克服升力增加所引 起的阻力增大,还需要大的倾 斜角,以产生作此盘旋所需的 升力的水平分量(向心力)。 很明显,此时将产生相当大的 载荷系数。
第2章 飞机的外载荷
2. 飞机的外载荷飞机结构与强度第二章 飞机的外载荷1/602. 飞机的外载荷飞机结构与强度2.1 飞机结构上的主要载荷 2.2 不同飞行状态下的过载 2.3 其他载荷情况 2.4 疲劳载荷 2.5 飞机设计规范简介2/602. 飞机的外载荷飞机结构与强度2.1 飞机结构上的主要载荷飞机在飞行、起飞、着陆、地面维护等使用过程 中,作用在飞机上的外力称为飞机的外载荷。
(1)飞行时的外载荷。
(2)起飞、着陆时的外载荷。
3/602. 飞机的外载荷 机体坐标系飞机结构与强度yzx4/602. 飞机的外载荷 速度坐标系飞机结构与强度5/602. 飞机的外载荷 载荷分类飞机结构与强度1. 质量力Rm ——飞机的质量和加速度相关的力。
惯性 力:如重力,离心力等。
2. 表面力Rf——物体之间直接接触而产生的力。
例: 升力,空气阻力,发动机推力T,地面支反力。
6/602. 飞机的外载荷飞机结构与强度2.1.1 过载的概念定义:飞机所受除重力之外的表面力总和与飞 机重量之比称为过载系数n,简称过载。
n = Rf / G飞行中:n = ( Ra + P ) / G= ( Ra + P + Pk ) / G着陆(起飞)时: n过载,过载系数,载荷系数7/602. 飞机的外载荷 过载在机体坐标系中的分解飞机结构与强度n = nx i + n y j + nz kn=2 2 n x + n y + n z2zyx8/602. 飞机的外载荷飞机结构与强度过载的符号:正过载,负过载。
与机体坐标 系坐标轴方向一致为正,反之为负;通常过载 系数简称为过载。
通常提到过载是指ny。
nx和nz相对较小;飞机 结构x,z方向的强度、刚度较好;主要校核y方 向的过载。
9/602. 飞机的外载荷飞机结构与强度铅垂平面内飞机曲线运动力学方程(速度坐标系) 平衡方程:P cos(α + ϕ ) − X = G sin θ + maτaτ = dV / dt an = V 2 / RR为飞机运动轨迹的曲率半径Y + P sin(α + ϕ ) = G cos θ + man过载值:1 dV P cos(α + ϕ ) − X = sin θ + ⋅ nx = G g dt Y + P sin(α + ϕ ) 1 V2 ny = = cos θ + ⋅ G g R10/60ga n ga n ga m G mR n n y x f +=+===θθτcos sin //G G G2.2 不同飞行条件下的过载∑F x =0 T =X∑F y =0 Y =G0=−=GX T n x 1==GY n y 0=z n z 匀速水平飞行z等速水平倒飞n=1−yR V g n dtdV g n y x 21cos 1sin ⋅+=⋅+=θθ0=θR V g n y 211max ⋅+=时RV g G N Y 2sin ⋅==γGY =γcos γcos 1==G Y n y 测量n y ,可计算γyn 1cos =γ122−=y cir n g V R 盘旋半径:),,,(/12max max 2maxmax max max p V H c f S G V c GY n y H y y ===ρS G p =z机翼静力加载试验z人体承受过载的能力与过载方向和时间的关系服Military fightersPrimary trainersAdvanced trainersLight planesCargo & passenger transportsHeavy bombersz Different kinds of aircraftsg xn n z y y ε±=0g x n n zx x 20ω±=z Aircraft is Rotating after take offS G V V W c n GS V a c n n n n a y y a y y y y yg /2)/(2/20200ρρ±=Δ±=Δ±=z Gust caused by mountainsKS G WV c n n a y y yg /20ρ±= 水平突风远小于垂直突风,引起的水平方向过载可以忽略不计(不大于1.3-1.5)突风还可能引起振动,特别是在重型飞机上引起周期性的载荷,严重时导致共振。
航天器结构与机构题库及答案
《航天器结构与机构》题库及参考答案1.1什么是航天器结构?主要功能有哪些?指为航天器提供总体构型,为各分系统仪器设备提供支撑,承受和传递载荷,并保持一定刚度和尺寸稳定性的部件或附件的总称。
功能:承受载荷,安装设备,提供构型1.2什么是航天器机构?主要功能有哪些?指使航天器及其部件或附件完成规定动作或运动的机械部件。
功能:连接(压紧),释放,展开,分离,指向,承载1.3目前我国卫星的主结构采用的形式有哪些?中心承力筒结构,杆系结构,箱型板式结构,壳体结构1.4我国返回式航天器的主结构形式是什么?壳体结构:密封舱等舱体结构1.5航天器鉴定试验和验收试验有何不同?鉴定试验是初样阶段,是设计验证的最有效手段,是对设计思想和设计方法的验证验收试验是正样阶段,是对飞行产品的试验1.6什么是航天器的附件结构?特指在空间伸展在航天器本体之外的部件,如太阳翼和可展开天线。
1.7航天器机构与航天器结构的最主要区别是什么?机构指实现动作和运动的部件,结构指提供稳定构型的部件1.8航天器上的一次性机构有哪些?压紧与释放机构,展开机构,连接与分离机构1.9航天器的研制共分为哪几个阶段?可行性论证阶段,方案阶段,初样阶段,正样阶段1.10航天器的初样研制阶段工作重点是什么?通过初样产品的设计、制造和试验,对航天器结构与机构的设计进行全面鉴定,包括:设计对设计要求的符合程度;设计所采用的分析方法和分析结果的正确性;设计所采用的材料工艺的合理性和可行性;设计所需地面试验的合理性和可行性;设计的可靠性和质量保证措施,等等。
2.1 一般说,航天器承受的载荷最严重的时刻是在哪个过程?起飞(最大噪声)和跨音速时(最大气动载荷)2.2 在下面四个环境中,对航天器机构的影响最大的环境是哪个?(1)地面环境;(2)发射环境;(3)空间环境;(4)再入环境。
(2)发射环境2.3 分别简述发射环境和在轨环境对航天器结构与机构的影响。
(1)发射环境:起飞冲击与噪声:排气压力产生瞬态空气压力脉动,噪声诱发火箭和航天器振动。
第三讲飞机的外载荷和设计情况
24
飞机转动时的过载
如果 i 点处物体的重力为Gi ,则质量力为 Gi cos +mi ai (见图38b)。 i 点处的过载 ni 为 z xi z Gi cos m i a i an ni cos ny xi Gi g g g ni 随飞机各处 xi 的不同而不同, xi 有正有负,附加力矩有一 定方向性,因而旋转惯性力及其附加的旋转过载也有正有负。 由上式可以方便地计算某一处局部的过载或外载。
图3-1
Pn
Pm
Pf
此时飞机既有平移运动,又有旋转运动,总的平衡关系为
∑Fx = 0, T - X = max = Nx ∑Fy = 0, Yw - Yt = m ( g+ ay ) = G +Ny
式中 Iz — 飞机绕Z轴的 质量惯性矩 ; z — 飞机绕Z轴的 角加速度; 其它符号见图3-1所示。
q= HV0 2 / 2
22
H uV0 u 1 S H V0 2 KC S y V0 2 2
则飞机平飞时遇突风过载ny 为
ny Y0 Y H uV0 1 KC y G 2p
式中
Cy—升力系数增量;
Cy—升力线斜率; p = G/S —翼载荷;
—迎角增量;
计的一个重要参数。设计时如能正确选取过载的极限,则
既能使飞机满足机动性要求,又能使飞机满足结构的重量 要求。 过载大小要考虑飞行员的承受能力,大过载会使飞行员出 现黑视。
19
四、进入俯冲情况 飞机在此情况下
GV2 Y G cos g r
Y V2 n y cos G gr
图3-4 进入俯冲情况
升力 Y(L) 阻力 X (D)
习题答案--飞行器结构设计第二章
第二章 习题答案2.飞机由垂直俯冲状态退出,沿半径为r 的圆弧进入水平飞行。
若开始退出俯冲的高度H 1=2000 m ,开始转入水平飞行的高度H 2=1000 m ,此时飞行速度v =720 km/h ,(题图2.3),求(1)飞机在2点转入水平飞行时的载荷系数n y ;(2) 如果最大允许载荷系数为n ymax =8,则为保证攻击的突然性,可采用何种量级的大速度或大机动飞行状态?(即若r 不变,V max 可达多少? 如果V 不变,r min 可为多大?解答(1) 08.5)(8.9)36001000720(112122=-⨯⨯+=+==H H gr v G Y n y (2) h km r g n v y /2.94310008.9)18(.).1(max =⨯⨯-=-=m n g v r y 1.583)18(8.9)36001000720()1(22min-⨯⨯=-= 3.某飞机的战术、技术要求中规定:该机应能在高度H =1000m 处,以速度V=520 Km/h 和V ’=625km /h(加力状态)作盘旋半径不小于R =690m 和R ‘=680m(加力 状态)的正规盘旋(题图2.4)。
求(1) 该机的最大盘旋角和盘旋过载系数n y ;(2) 此时机身下方全机重心处挂有炸弹,重G b =300kg ,求此时作用在炸弹钩上的载荷大小及方向(1kgf =9.8N)。
解答: (1)βcos 1==G Y n y ∑=01X rv m Y 2sin =β ①∑=01Y G Y =βcos ②由①与②得085.36908.9)36001000520(22=⨯⨯==grv tg β 04.72=β (非加力) 523.46808.9)36001000625(2=⨯⨯=βtg 5.77=β (加力) 6.4cos 1==βy n (2)F = G b *n y = 300*9.8*4.6 = 13.5KN (Y 正向)6.飞机处于俯冲状态,当它降到H =2000m 时(H ρ=0.103kg /m 3。
飞行器结构设计与优化
飞行器结构设计与优化作为现代航空领域的核心技术之一,飞行器结构设计和优化已成为影响飞行器性能和质量的重要因素。
在飞行器的设计和制造过程中,结构设计和优化涉及到重要的材料、制造工艺和设计参数等方面,其重要性显而易见。
一、飞行器结构设计的原则在飞行器结构设计中,设计原则主要包括受力性、可靠性、轻量化、可制造性和可维护性等多个方面。
在结构设计中,要根据不同部位和不同功能的要求设置不同的设计原则。
例如,机翼和机身整体结构的设计应当考虑到提高飞行器的刚度和强度,而发动机舱的设计则需重点考虑飞行器的耐高温、防火和减重等问题。
在受力性方面,飞行器的结构设计应考虑到各种可能出现的荷载情况,并对不同部位和不同功能的部件进行合理的强度和刚度分配。
在可靠性方面,飞行器的结构设计应考虑到各种可能出现的故障和损耗情况,尽可能避免单点故障和故障的扩展与蔓延。
在轻量化方面,飞行器的结构设计应尽可能减少飞行器的重量,从而提高飞行器的载荷能力和燃油经济性。
在制造方面,飞行器的结构设计应考虑到各种可能出现的制造工艺问题,尽可能降低制造成本。
在维护方面,飞行器的结构设计应考虑到各种不同维护环境,尽可能提高维护效率和疲劳寿命。
二、飞行器结构优化的方法和手段为了在飞行器结构设计中达到最佳的技术和经济效果,飞行器结构优化是必不可少的步骤。
当前飞行器结构优化主要通过有限元分析、优化算法和虚拟样机试验等手段来实现。
有限元分析是一种常用的飞行器结构优化方法,主要用于分析不同荷载条件下飞行器各部位和部件的受力状态和变形情况,进一步优化飞行器的结构,提高飞行器的机械性能和耐久性。
有限元分析是一种非常精准的工具,但需要丰富的理论知识和良好的模型建立能力。
优化算法是另一种常用的飞行器结构优化方法,主要用于寻找最优解,通过数值优化、元启发式算法、人工智能等各种优化手段,提高飞行器的机械性能、重量和生产效率等多个方面。
优化算法具有高效性和可靠性的特点,但需要高超的数学处理能力。
飞行器结构设计第二章新
三、动力载荷综合设计
叠 加 抑 制
四、静动载荷综合设计
卫星、弹头载荷的综合设计
2.6 使用载荷和设计载荷、安全系数
一、什么是“使用载荷” 使用载荷——正常使用状态下,在飞行器或其部件上可能承 受的最大载荷,又称限制载荷(Limit Load)。
注:由设计情况导出的最严重情况下的使用载荷。
N尾 0
M尾 0
五、导弹、火箭的动载荷
自学2.4节。
2.5 飞行器载荷综合设计
一、什么是“载荷综合设计”
原因:飞行器在各种工作环境中某一时刻可能同时会受到静力、动 力和热载荷源的联合作用。各种载荷之间有时有抑制作用,有时某 种载荷对其他载荷又会有激励作用。
载荷综合
内力综合
二、静力载荷综合设计
稳态载荷 热载荷 瞬态载荷 电载荷 磁载荷 物理载荷
2.2 过载系数
一、过载系数的三种定义
过载系数(Overload Coefficient),简称过载。
——为什么引入过载?
定义一:
飞行器所承受的全部表面力的合力与飞行器的瞬时质量在地面上的 称重之比。
F F n
i
i
mg0
G0
要点: 1. 过载是矢量,根据坐标轴的方向决、定正负。 2. 若将飞行器简化为质点,上式给出质心处过载。
三、 “破坏载荷法”——设计方法 设计载荷法或破坏(极限)载荷法——核心思想:飞行器的强 度按设计载荷计算,在设计载荷作用下结构不能破坏。 目的:保证结构在任何情况下可靠承载,具有足够的强度。
Pu Pdes [ ]b d ,max
对比——许用应力法: 在使用载荷下飞行器及其部件不允许产生妨碍正 常工作的永久变形,即
结构总体设计课后习题及答案
第一章—绪论1.简述飞行器结构、结构的含义与功能。
答:飞行器结构是能承受和传递载荷并且保持一定强度、刚度和尺寸稳定性的机械系统的总称;机构是使飞行器及其部件完成规定的动作或运动等特殊功能的机械组件。
结构的功能:(1).将弹上设备和部件牢牢结合在一起构成整体,并提供气动外形;(2).为装载、设备和人员(运载火箭等)提供良好的环境条件;(3).承载全寿命周期的各种载荷,并保证飞行器始终正常工作。
机构的功能:(1).连接、固定与释放功能:如分离机构;(2).运动功能:如折叠展开机构;(3).锁定功能:到位后锁紧,完成结构功能。
2.飞行器结构设计的内容与原始条件有哪些?答:飞行器结构设计是根据设计的原始条件,构思和拟定满足各项基本要求的结构方案,进行全部零、部件的设计、分析、实验,最终提供全套可供生产的图纸和相应技术文件的过程。
飞行器结构设计的内容:(1).飞行器结构布局设计:部位安排、分离面、结构形式选择、受力构件布置;(2).选择结构元件参数:在结构布局的基础上,选择并优化结构元件尺寸和材料;(3).结构细节设计:细节精心设计、开孔、连接、圆角、机械和电气接口、口盖等。
飞行器结构设计的原始条件:(1).结构设计任务的总体设计参数:外形、尺寸、质量特性、内部装载物的相关数据与安装要求等;(2).结构的工作环境及其对结构特性的要求:自然环境、力学环境(载荷大小、性质和在结构上的分布等,以及对结构特性的要求);(3).结构的协调关系以及由此产生的限制要求:外挂、发射装置;(4).飞行器结构的生产条件:产量和生产厂的加工能力、装配能力、工艺水平等。
3.飞行器结构设计的技术要求有哪些?为满足质量特性要求,可采取哪些措施?答:飞行器结构设计的技术要求有6个,如下(1).空气动力学要求—前提性要求:外形准确度要求(同轴度、垂直度、曲线误差、安装角等)、外形的表面质量要求(表面粗糙度、局部凹陷、突出物等)。
(2).结构完整性要求—强度、刚度、可靠性,本质性要求(▲▲):结构设计应保证结构在承受各种规定的载荷和环境条件下,具有足够的强度、不能产生不能容许的残余变形;具有足够的刚度、满足各项结构动力学性能要求,并达到总体规定的可靠度。
飞机结构设计 第2章 飞机的外载荷
2.2.5 非质心处质量的过载
n y = n y 0 ± Δn y = n y 0 ± Δa y / g = n y 0 ± ε z x g nx = nx 0 ± Δnx = nx 0 ± Δax / g = nx 0 ± ϖ x g
2 z
图2.7与飞机质心不重合的各点上的过载
图2.7与飞机质心不重合的各点上的过载
垂直俯冲
T − X − (G − N x ) N x − G = = nx = G G G
特例:自由坠落情况
2.2.3 水平面内的曲线飞行(正常布局)
如知道γ
∑Fn=0
G V 2 ⋅ Y sin γ = N = g R
∑Fv=0
Y cos γ = G
Y 1 ny = = G cos γ
1 如果用过载仪测出ny,也就知道γ,cos γ = ny
⎡ V 2 ⎤2 n y = ⎢1 + ⎥ ⎣ gR ⎦
1
2.2.4 最大过载ny max
n y max
Ymax ρ HV = = c y max 2 G
2 max
1 G/S
1 = f (c y max , H , Vmax , ) p
式中:p=G/S
Cymax 1.2
0.4
M
H
Vmax
V
最大过载nmax的选取与飞机性能、设备 性能和人的生理机能等均有关 nmax愈大,机动性愈好;但nmax增大使 结构受力增大,结构重量也增加,反过来又 影响整个飞机的性能 nmax↑,各种设备的惯性力↑,而很多 设备对惯性力的承受也有限度,∴nmax↑对 设备的要求也相应提高 人对nmax的承受能力也有限
第2章
飞机的外载荷
南京航空航天大学 飞机设计技术研究所
飞行器结构学
飞行器结构学1.安全系数和过载系数的关系?安全系数:f=F d/nG 过载系数:n=R bi/G安全系数随过载系数的增大而减小,反之,随过载系数的减小而增大2.结构设计的基本要求?气动要求、质量要求、使用维护要求、可靠性要求、工艺要求、经济性要求3.翼面的功用:产生升力,平衡飞机或导弹的重力4.主要外载荷?○1空气动力○2翼面结构质量力○3其他部件和外挂物传来的集中力5.翼面主要受力构件和作用?蒙皮:形成流线形的翼面外形桁条:对蒙皮起支撑作用翼梁:缘条承受由弯矩M引起的拉压轴力。
腹板承受剪力Q以及扭矩Mt引起的剪流纵墙:纵墙一般不能承受弯矩,主要用来承受和传递剪力,并与蒙皮以及其他腹板构成闭式,共同承受翼面扭转引起的剪流翼肋:维持翼剖面的形状,并将蒙皮上的局部气动载荷和桁条上的载荷传递给翼梁和蒙皮。
6.翼面的主要结构形式?翼面的主要结构形式是指结构中主承力系统的组成形式,翼面结构典型的受力形式有,蒙皮骨架式、整体壁板式、夹层结构。
7.梁式翼面结构的结构特点、受力特点和优缺点?特点:蒙皮很薄,纵向翼梁很强,纵向长桁较小且弱,有时在与翼肋相交断开,梁缘条的截面面积比长桁的大得多可近似的认为翼面弯矩的绝大部分或全部由梁缘条承担优点:结构比较简单,对接点少连接简单,适宜集中连接缺点:气动性能差,总体受力性能较差,生存性能较低8.单块式翼面结构的结构特点,受力特点和优缺点?单块式翼面结构:蒙皮较薄,与长桁且密,弱梁,翼梁缘条组成可受轴力的壁板承受绝大部分弯矩,纵向长桁布置较低密,长桁截面积与梁的横截面比较接近梁与墙与蒙皮壁板形成封闭盒段,增强翼面结构的扭转刚度优点:蒙皮在气动载荷作用下变形较小,气流质量高,材料想翼剖面外缘分散,抗弯,抗扭刚度与强度均比较高,安全可靠性比梁式结构好缺点:结构比较复杂,大开口后,需加强周围结构以补偿承弯能力,如果加口盖,需要对口盖和口框加强,以保证传力连续。
9.多腹板式翼面结构特点,受力特点和优缺点?多腹板式翼面结构特点:蒙皮厚,无长桁,多腹板,梁弱,解决了高速薄翼型翼面的强度和刚度与结构承重之间的矛盾优点:气动性能好,总体受力性能较强,结构简单,破损安全性好,生存性高缺点:不宜大开口,与机身或弹身连接点多10.什么是传力分析?(弄清楚受力元件在结构中的地位和作用)对结构的各种外载荷通过各种元件逐点、向结构支持基础传递的过程进行分析,了解各主要元件的受力情况及其传力特点11.传力分析的方法主要有?○1弄清结构所收的载荷最后应传向何处○2分清结构主要和次要的受力元件以及主要和次要的受力部分○3弄清各主要元件的连接关系和连接方式,以便正确地确定支持形式和传力方式○4从结构的外载荷作用开始,依次取出各个构件部分或元件为分离体,按它们各自的受力特性合理化简成典型的受力元件○5分析传力必须具备刚度概念12.刚度分配的依据是什么?“刚度是指元件(构件)在载荷作用下抵抗变形的能力”刚度大分配到的载荷大,刚性支持分配到的载荷大,弹性支持分配到载荷小13.板件的主要受力特点?板可以承受垂直于板平面的分布载荷,不适宜承受集中力14.杆件的主要受力特点?杆只能承受和传递沿杆轴方向的集中力和分布力,杆本身受拉能力强,受压易发生局部或总体失稳,承受能力极低15.板杆结构件的主要受力特点?适宜承受横向分布的载荷和板杆平面内的载荷。
飞行器结构设计 第二章
(2)计算载荷系数
ny
Y Y H uv0 0 1 KC y G 2p
p
Note: 若突风不垂直飞机时,应怎样处理?
2019/3/9 21
2.2典型飞行姿态和载荷系数
5、飞机转动(升降)时的过载(刚体运动分析)
2019/3/9
22
2.2典型飞行姿态和载荷系数
① 运动分析: 旋转+平移 ② 载荷分析:当平尾产生机动载荷时,飞机产生平移与旋转;该 载荷克服了飞机原有的平飞状态,使飞机在上述两个运动中产 生加速度。从动平衡角度,平尾机动载荷与它克服的惯性力及 力矩相平衡。
分析该曲线运动中, ① ②
n y max v2 1 gr
的特性:
0o
n y max 与曲线航迹半径成反比,与切线运动速度 的平方成正比,这表明: 若 n y max 一定,v 一定,则运动半径就规定了;太 小,则结构承载发生问题; 若 n y max 一定,v 一定,则速度就要限制。
③ 由此看来,对结构设计是一个重要的无量纲载荷 系数。
2.3 复杂载荷情况
⑤ 地面滑行载荷:指地面滑行飞机颠簸所受到的载荷,与飞 机跑道的质量、飞机的重量等有关; ⑥ 发动机动力装置的热反复载荷; ⑦ 地-空-地循环载荷:飞行地面滑行时的1g载荷变化到空中 飞行的1g载荷,这种均值载荷的变化也是疲劳载荷;
p ⑧ 其他:机翼尾流对尾翼的周期性作用
2019/3/9
动平衡关系:(机体坐标系y向)
,表现了运动的变速特征(曲线运动) 即:
G v2 Y G cos N y G cos g r Y v2 cos G gr
升力等于G乘上一个系数,该系数称为载荷系数。
飞机结构—第二章 飞机的外载荷与设计规范
第二章 飞机的外载荷与设计规范 ——§2 典型飞行姿态和载荷系数
(五)飞机设计时最大载荷系数的选取
1.影响最大载荷系数选取的因素: ① 载荷系数实际反映了飞机的机动性能,从这个意义上来说越 大越好,但对客机或运输机来说没有多大必要; ② 载荷系数又反映了对结构的载荷作用,载荷系数越大,表明 飞机结构的承载越大,要有足够的刚、强度,则结构重量越 大;
过载表、过载曲线(P27)
1-弹簧;2-重块;3-指针;4-阻尼器
第二章 飞机的外载荷与设计规范 ——§2 典型飞行姿态和载荷系数
(二)典型飞行姿态的载荷系数 1.等速直线平飞
1 2 Y G C V S y 2 1 2 T X C V S x 2
例3 飞机在平衡飞行中作跃升机动。已知x1=4m,x2=-6m,La=5m, az=3rad/s2,Iz=10000N· m· s2,求x1和x2 处绕重心旋转载荷系数nyz及 平尾机动载荷Ytm。(书P31)
第二章 飞机的外载荷与设计规范 ——§2 典型飞行姿态和载荷系数
例3 飞机在平衡飞行中作跃升机动。已知x1=4m,x2=-6m,La=5m, az=3rad/s2,Iz=10000N· m· s2,求x1和x2 处绕重心旋转载荷系数nyz及 平尾机动载荷Ytm。
• 管式抗荷服
基本结构是使用拉伸系数小的材料制成的紧身裤,裤子的 两侧,有二个可充气的侧管,此管充气膨胀时,导压带将衣 服面拉紧对肢体加压,此类抗荷服较为复杂。
第二章 飞机的外载荷与设计规范 ——§2 典型飞行姿态和载荷系数
飞机结构
第二章
飞机的外载荷与设计规范
第二章 飞机的外载荷与设计规范
本章主要内容
1. 飞机结构的主要载荷 2. 典型飞行姿态和载荷系数
[物理]飞机结构与系统第二章 飞机外载荷
1-弹簧;2-重块;3-指针;4-阻尼器
典型飞行姿态的载荷系数
1.等速直线平飞
1 2 Y G C V S y 2 1 2 T X C V S x 2
( 1 ) (2)
典型飞行姿态的载荷系数
曲线飞行(机动飞行)
飞机速度的大小和方向改变,航迹为曲线。 垂直平面内: a进入俯冲 b垂直俯冲 c俯冲后拉起
典型飞行姿态的载荷系数
5.等速水平盘旋(重要机动性能指标)
Y 1 ny G cos
坡度:β(盘旋倾斜角)
典型飞行姿态的载荷系数
6.突风载荷
突风:方向、大小变化的不稳定气流 突风载荷:因突风引起的、飞机受到的附加气动力 (飞机可能迅速改变高度) 水平突风/航向突风:(逆风或顺风) 只改变相对速度的大小 垂直突风:(向上或向下)改变相对速度的大小、方向, 导致迎角变化 侧向突风:使飞机侧滑,主要作用在垂尾上产生附加气动力。
水平平面内:
水平等速转弯/盘旋
典型飞行姿态的载荷系数
2.进入俯冲
GV 2 Y Gcos g r
Y V2 ny cos G gr
(视V和r的不同情况,ny可能 为负,为正,或零)
典型飞行姿态的载荷系数
例1 如图所示,飞机进行俯冲,已知此时θ=45º ,r=1000m,测 得飞机的ny=0,求此时飞机的飞行速度。
飞机设计时最大载荷系数的选取
1.影响最大载荷系数选取的因素:
① 载荷系数实际反映了飞机的机动性能,从这个意 义上来说越大越好,但对客机或运输机来说没有 多大必要; ② 载荷系数又反映了对结构的载荷作用,载荷系数 越大,表明飞机结构的承载越大,要有足够的刚、 强度,则结构重量越大; ③ 载荷系数的载荷作用,不仅对结构有作用,而且 对机载设备和乘员有载荷作用,载荷系数越大, 对其影响越大,要视其承受能力而定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章习题答案
2.飞机由垂直俯冲状态退出,沿半径为r的圆弧进入水平飞行。
若开始退出俯
冲的高度H
1=2000 m,开始转入水干飞行的高度H
2
=1000 m,此时飞行速度v=
720 km/h,(题图2.3),求
(1)飞机在2点转入水平飞行时的过载系数n
y
;
(2)如果最大允许过载系数为n
ymax
=8,则为保证攻击的突然性,可采用何种量级的大速度或大机动飞行状态?(即若
r不变,V
max 可达多少? 如果V不变,r
min
可为多大
? 解答
(1)
08
.5
)
(
8.9
)
3600
1000
720
(
1
1
2
1
2
2
=
-
⨯
⨯
+
=
+
=
=
H
H
gr
v
G
Y
n
y
(2)
h
km
r
g
n
v
y
/
2.
943
1000
8.9
)1
8(
.
).1
(
max
=
⨯
⨯
-
=
-
=
m
n
g
v
r
y
1.
583
)1
8(
8.9
)
3600
1000
720
(
)1
(
2
2
min-
⨯
⨯
=
-
=
3.某飞机的战术、技术要求中规定:该机应能在高度H =1000m 处,以速度V=520 Km/h 和V ’=625km /h(加力状态)作盘旋半径不小于R =690m 和R ’=680m(加力 状态)的正规盘旋(题图2.4)。
求
(1) 该机的最大盘旋角和盘旋过载系数n y ;
(2) 此时机身下方全机重心处挂有炸弹,重G b =300kg ,求此时作用在炸弹钩上的载荷大小及方向(1kgf =9.8N)。
解答:
(1)
βcos 1
=
=
G Y n y
∑=01X
r v m Y 2
sin =β ①
∑=01Y
G Y =βcos
②
由
①与②得
085
.3690
8.9)
36001000520(2
2
=⨯⨯
==
gr
v
tg βο04.72=β (非加力)
523
.46808.9)
36001000625(2
=⨯⨯
=βtg ο
5.77=β (加力)
6.4cos 1
==
βy n
(2) r v m
N X 21
=
6.飞机处于俯冲状态,当它降到H =2000m 时(H ρ=0.103kg /m 3。
)遇到上升气
流的作用(题图2.7),求此时飞机的n y 。
已知飞机重量G=5000kg ,机翼面积S=20
m 2
,5.4=α
y C 。
此时的飞行速度V=540 km /h ,航迹半径r=8.00m ,y 轴与铅垂线
夹角=ϕ600,上升气流速度u =10 m /s ,突风缓和因子K=0.88。
解答:
① 0333.03600100054021
1060cos =⨯⨯
=
=⋅v
u tg s ο
<α ο
<91.1=α
② q s KC Y y ⋅⋅=αα
<<=221v s KC y ραα
⋅⋅<
=
2
)36001000540(1035.021203.5791.15.488.0⨯⨯⨯⨯⨯⨯
⨯
=3 0.125 KN
③
gr v G
ma G Y 260cos ==+ο
ο
60cos 2G gr v G Y -==ο
60cos 2G gr v G -
=37
.21050)218008.9)
36001000540(
(32
=⨯⨯-⨯⨯G v
u 。
G
Y
④
77
.1 50
125
.
30
37
.2
-
=
-
-
=
-
-
=
G
G
G
Y
Y
n
y
<
7.飞机以过载n
y
=-3作曲线飞行,同时绕飞机重心以角加速度=
Z
α 3.92rad/
s2转动,转动方向如(题图2.8)所示。
若发动机重量G
E
=1000kg,发动机重心到
全机重心距离l=3m,发动机绕本身重心的质量惯性矩I
Z0
=1200 N·m·s2,求
(1) 发动机重心处过载系数n
yE
(2) 若发动机悬挂在两个接头上,前(主)接头位于发动机重心处,后接头距发动机重心0.8m,求此时发动机作用于机身结构接头上的质量载荷(大小、方向)。
解答:
(1)①
3-
=
=
G
Y
n
yE
②
2.1
8.9
3
92
.3
=
⨯
=
=
=
=
i
i
z
i
i
i
i
i
iy
yY G
x
m
G
a
m
G
N
n
α
③8.1
2.1
3-
=
+
-
=
+
=
yr
ye
yE
n
n
n
(2)M
N
I
M
z
G
Z
G
Z i
v
i
v
⋅
-
=
-
⨯
=
=4704
)
92
.3
(
1200
α
<
N
l
M
N i v G Z5880
8.0
4704
=
=
=
<
重心处(前接头)
L
A
C
N前1
n y E
KN
KN G n N i yE 18108.11-=⨯-=⋅=前
接头作用于发动机的力为y 轴负向 发动机受到的外力向下
后接头 KN N 8.5+=后 (y 轴正向) KN N 88.52-=前
KN N N N 88.2388.51821-=--=+=前前前
以上为发动机接头受的力
发动机作用于机身结构接头上的质量载荷应反向,
即
KN N 88.23=前 向上
KN N 8.5=后 向下
N 前
2
N 后。