认识三角形第二课时导学案
7.4 认识三角形导学案
7.4 认识三角形(1)学习目标1、进一步认识三角形的概念及其基本要素,会用字母表示三角形2、通过实验、操作,理解三角形三边之间的关系3、了解三角形的分类学习重点:认识三角形,会用字母表示三角形;三角形三边之间的关系 学习难点:了解三角形的分类 学习过程:一、情境创设1、出示“帆船”、“金字塔”等含有三角形的图案实物(1)这些图案实物中,有同学们熟悉的图形吗?(2)举出一些生活中常见的某些三角形,并与同学交流 二、探索归纳1、三角形的定义:由3条不在同一直线上的线段,首尾依次相接组成的图形称为三角形如右边的图形就是一个三角形2、三角形的各组成部分 边:组成三角形的三条线段如右所示:线段AB 、AC 、BC 就是三角形的三条边 顶点:三角形任意两边的交点 如右所示:点A 、B 、C 均为三角形的顶点通常情况下,我们用三角形的三个顶点加以一个“△”来表示一个三角形,在表示三角形时,三个字母之间并无顺序关系,如上图中,此三角形可以表示为△ABC ,或△ACB 或△BAC 等等。
内角:三角形两边所夹的角,称为三角形的内角,简称角 例如△ABC 中,∠A ,∠B ,∠C 都是三角形的内角边BC 称为∠A 所对的边,或顶点A 所对的边,边BC 也可以表示为a 那么边AB ,AC 呢?3、三角形的分类 1)按角分2)按边分4、课本P 20 议一议5、数学实验室问:是不是任意三条线段都能够组成三角形?A B C 锐角三角形:三个角都是锐角的三角形直角三角形:有一个角为直角的三角形钝角三角形:有一个角为钝角的三角形 三角形 不等边三角形:三条边均不相等 等腰三角形:有两条边相等的三角形等边三角形:三边均相等的三角形三角形现在我们就来看一看三条线段满足什么条件才能组成一个三角形呢?请学生在课前准备好五条长度分别为3㎝、4㎝、5㎝、6㎝、9㎝的小木棒,现任意取出3根小木棒首尾相接是否都能搭成三角形?在教师的引导下让学生自己归纳总结,最后教师在此基础上补充完整得到:三角形任意两边之和大于第三边6、例题:已知三角形的两边长分别是3和11,且第三边长为偶数,求第三边的长度。
新北师大版七年级数学下《第三章三角形》导学案
教 学 反 思第四章 三角形 4.1 认识三角形(1)学习目标:1、通过观察、想象、推理、交流等活动,发展空间观念、推理能力和有条理地表达能力;2、能证明出“三角形内角和等于180°”,能发现“直角三角形的两个锐角互余”;3、按角将三角形分成三类。
学习重难点:三角形内角和定理推理和应用。
学习设计:(一) 预习准备 (1)预习书62-65页(2)思考①三角形的角之间的关系②三角形的分类 (3)预习作业三角形中角的关系:(1)三角形的三个内角之和是 ;(2)直角三角形的两个锐角 三角形的分类:按角分为三类: 三角形; 三角形和 三角形。
(二) 学习过程例1 证明三角形的内角和为180°例2 在△ABC 中,(1)082,42,C A B ∠=∠=∠则= (2)5,A B C C ∠+∠=∠∠那么=(3)在△ABC 中,C ∠的外角是120°,B ∠的度数是A ∠度数的一半,求△ABC 的三个内角的度数变式训练:在△ABC 中(1)078,25,B A C ∠=∠=∠则= (2)若C ∠=55°,010B A ∠-∠=,那么A ∠= ,B ∠=教 学 反 思例3 已知△ABC 中,::1:2:3A B C ∠∠∠=,试判断此三角形是什么形状?变式训练:已知△ABC 中,090,2,A B B C ∠-∠=∠=∠试判断此三角形是什么形状?例4 如图,在△ABC 中,090ACB ∠=,CD ⊥AB 于点D ,1,2?A B ∠∠∠∠与有何关系与呢例5 如图,已知060,30,20,A B C BOC ∠=∠=∠=∠求的度数。
21DC AOCBA教 学 反 思变式训练:如图在锐角三角形ABC 中,BE 、CD 分别垂直AC 、AB ,若040A ∠=,求BHC ∠的度数。
拓展:1、如图所示,求A B C D E ∠+∠+∠+∠+∠的度数。
2、如图在△ABC 中,已知1,2,,A B ABC ACB ACB ∠=∠∠=∠∠=∠∠求的度数。
《探索三角形相似的条件1》第二课时导学案
《探索三角形相相似的条件1》第二课时导学案【学习目标】1.理解对应角相等、对应边成比例的两个三角形相似。
⒉运用相似三角形的定义进行计算。
⒊了解相似三角形对应线段的比等于相似比。
【重点难点】1.教学重点:运用相似三角形的定义进行计算。
2.教学难点:了解相似三角形对应线段的比等于相似比。
【学法指导】相似三角形是相似多边形的特例,它的对应角相等,对应边成比例。
运用相似三角形计算时,关键是确定对应边和对应角。
【知识链接】 1.填空(1) 相等, 成比例的两个多边形叫做相似多边形.相似多边形 的比叫做相似比. (2)四边形ABCD 相似与四边形A ′B ′C ′D ′,AB=6,BC=8,∠B=50°,A ′B ′=9,则B ′C ′=___ ________ ∠B ′=_ __(3) 和 都相同的两个三角形是全等三角形. 2.选择⑴两个多边形相似的条件是: ( )A: 对应边相等 B: 对应角相等或对应边相等 C: 对应角相等 D: 对应角相等且对应边成比例 ⑵下列结论正确的是 ( )A: 任意的两个等腰直角三角形都相似B: 有一个角对应相等的等腰梯形都相似 C: 任意的两个长方形都相似 D:任意的两个菱形都相似。
【学习过程】⒈自主学习, 潜心思考,完成下面的任务:(1)定义:相似三角形是相似多边形中的一类,因此,相似三角形的定义可仿照相似多边形的定义来归纳: 相等, 成比例的两个三角形叫做相似三角形.(2)表示:如△ABC 与△DEF 相似,记作△ABC △DEF .其中对应顶点要写在 ,如 相对应.(3)相似比: 叫做相似比.如 就是相似比.(4)应用:如果△ABC ∽△DEF ,那么哪些角是对应角?哪些边是对应边?对应角有什么关系?对应边呢?⒉师生互动,激活思维:判断(1)两个全等三角形一定相似吗?为什么?(2)两个直角三角形一定相似吗?两个等腰直角三角形呢?为什么? (3)两个等腰三角形一定相似吗?两个等边三角形呢?为什么?【温馨提示】相似三角形对应边成比例的含义是:两个相似三角形对应边的比相等或一个三角形中两边的比与另一个三角形中对应两边的比相等。
4.7 相似三角形的性质 第二课时导学案
丹东市第二十四中学 4.7 相似三角形的性质 第二课时主备:李春贺 副备:孙芬 曹玉辉 审核: 2014-9-15 一、学习准备: 1.已知△ABC ∽△ADE ,12AD DB =,则△ABC 的BC 边上的高线 与△ADE 的DE 边上高线的比为________;对应中线的比为________; 对应顶角平分线的比为_________;相似比为____________。
2.如果5,(0)7a c e b d f b d f ===++≠,那么a c eb d f++++=_________________ 二、学习目标:1. 掌握三角形相似,则周长的比与相似比,面积的比与相似比的平方之间存在的等量关系;2. 能熟练运用此性质进行计算,并能解决一些实际问题。
3. 学习能力的养成。
三、自学提示: (一)自主学习:如图,若△ABC ∽△A 1B 1C 1,且相似比为3:4,并完成以下问题:1. 求△ABC 的周长与△A 1B 1C 1的周长之比?2. 求△ABC 与△A 1B 1C 1的面积如何表示?它们的比 是多少? 3. 观察1的结果,你能从中发现什么?观察2的结果,你能从中发现什么?4.你的结论是什么? (二)合作探究:1.如图,在△ABC 中,D,E 分别是边AB,AC 上的点,::2:3AD AB AE AC ==,求:ADE BCED S S ∆四边形。
2.如图所示,在△ABC 中,DE ∥BC ,且:1:2,3,ADE BECD S S BC ∆==四边形则DE 的长为_________。
A 11第2题图CBE DA四、学习小结: 五、夯实基础:1.若△ABC ∽△A 1B 1C 1,且AB :A 1B 1=1:2,则它们的周长的比为_________;面积的比为____________;相似比为___________。
2.把一个三角形改成和它相似的三角形,如果面积扩大到原来的100倍,那么边长扩大到原来的_______倍。
12.2三角形全等第二课时导学案
5、课后巩固———(提升自已,让自已与众不同)
1.已知:点A、F、E、C在同一条直线上,AF=CE,BE∥DF,BE=DF.
求证:AB∥CD
2.如图,已知AB=AC,AD=AE,∠1=∠2.
求证:△ABD≌△ACE.
1.如图,已知AD∥BC,AD=CB.求证:△ABC≌△CDA.
(提示:要证明两个三角形全等,已具有两个条件,一是AD=CB(已知),二是___________,还能再找一个条件吗?可以小组交流后再完成)
四、自我反思:———(善于总结是学习的最好方法)
1、本节课你有哪些收获?
2、学习本节内容后你还想继续探究什么内容?
马家砭中学导学稿
二课时)
授课时间
2013-9-18
设计人
HW
课型
新授
班级
八年级
姓名
学习
目标
1.知道三角形全等“边角边”的内容.
2.会运用“SAS”识别三角形全等,为证明线段相等或角相等创造条件.
3.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.
结得出:相等的两个三角形全等(简称“边角边”或“SAS”)
【例2】如课本图11.2-6所示有一池塘,要测池塘两侧A、B的距离,可先在平地上取一个可以直接到达A和B的点,连接AC并延长到D,使AC=CD,连接BC并延长到E,使CE=CB,连接DE,那么量出DE的长就是A、B的距离,为什么?
证明:
3、随堂检测——(秀出最棒的自已!)
(1)在上面的例子中我们已知哪些条件(从三角形的边、角关系作答),得到什么结论?
(2)由(1)中的回答,你能得到什么猜想?
人教版数学四年级下册第五单元《三角形的认识》(第2课时)教案
人教版数学四年级下册第五单元《三角形的认识》(第2课
时)教案
一、教学目标
1.能够认识、描述和绘制不同位置的三角形。
2.能够用图形工具绘制和标出三角形的各边、角。
二、教学重点
1.认识和描述不同位置的三角形。
2.绘制三角形图形并标出各边、角。
三、教学难点
1.区分和描述三角形的不同位置与属性。
2.熟练使用图形工具绘制三角形。
四、教学准备
1.课件:三角形的图片和示例
2.黑板、彩色粉笔
3.学生课桌上的绘图工具
4.学生练习册
五、教学过程
1. 导入新知识
教师在黑板上绘制一个三角形,并引导学生观察,并让学生讨论三角形的特点。
2. 学习新知识
1.介绍不同位置的三角形:等边三角形、等腰三角形等。
2.演示如何绘制不同位置的三角形,并标出各边、角。
3.让学生在练习册上尝试绘制和描述各种三角形。
3. 练习与巩固
让学生进行练习,绘制几个不同位置的三角形,并交流彼此的画法,并纠正错误。
4. 拓展知识
学生可以尝试在其他几何图形中找出三角形,并描述其特点。
5. 课堂小结
教师对本节课所学内容进行小结,并让学生总结三角形的特点和绘制方法。
六、作业布置
布置作业:完成练习册上的练习题,绘制指定的不同位置的三角形。
七、教学反思与改进
教师可以根据学生的表现和理解情况,适时调整教学方法和内容,使学生更好地掌握三角形的基本知识。
以上为本节课的教学内容,希望同学们能够认真学习,掌握相关知识。
新人教版八年级数学上册导学案: 13.3.2等边三角形(第二课时)
新人教版八年级数学上册导学案: 13.3.2等边三角形(第二课时)一、温故互查1.等边三角形有哪些性质?2.如何判定等边三角形?二、设问导读阅读课本P 80-81完成下列问题:1.在课本图13.3-8中,哪些是已知条件?拼出的△ABD 是一个等边三角形吗?说说你的理由.2.①定理:在__________中,如果一个锐角等于30°,那么它所对的______等于_______的一半. ②完成定理的证明过程:已知:在Rt △ABC 中,∠C=90°,∠BAC=30°.求证:________________.AB③将你的证明过程与同学交流并展示.3.思考课本例题5,如图是屋架设计图的一部分,点D 是斜梁AB 的中点,立柱BC 、DE 垂直于横梁AC ,AB=7.4m ,∠A=30°,立柱BC 、D E 要多长?由“∠A=30°”可想到用运所学定理. ∠A 是哪些直角三角形的角?它所对的直角边是什么?D C AE B三、自学检测1.在Rt △DEF 中,∠D=90°,∠E=30°,DF=3cm,则EF=__________.2.在△ABC 中,∠A :∠B :∠C=1:2:3,若AB=a,则BC=3.Rt △ABC 中,∠C =90°,∠B =2∠A ,则∠A =_____,∠B=_____,AB=___BC4.已知如图,△ABC 中,∠ACB=90°,CD 是高,∠A=30°.①求:∠BCD 的度数. ②求证AB=3BD四、巩固训练 1. 等腰三角形中,一腰上的高与底边的夹角为30°,则此三角形中腰与底边的关系( )A.腰大于底边B.腰小于底边C.腰等于底边D.不能确定2.等腰三角形的底角为15°,腰长为2a ,则腰上的高为 。
3.∠C =90°,D 是CA 的延长线上一点,∠BDC =15°,且AD =AB ,则BC= AD.4.如图,一艘轮船以15海里/时的速度由南向北航行,在A 处测得小岛P 在北偏西15°方向上,两小时后,轮船在B 处测得小岛P 在北偏西30°方向上.在小岛周围18海里内有暗礁,若轮船不改变方向仍继续向前航行,问:有无触礁的危险?并说明你的理由.D CB DA C B5.“在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°”这句话正确吗?说说理由。
三角形导学案
课题:11.1.1三角形的边【学习目标】1.认识三角形,•能用符号语言表示三角形,并把三角形分类.2.知道三角形三边不等的关系.3.懂得判断三条线段能否构成一个三角形的方法,•并能用于解决有关的问题【学习重点】知道三角形三边不等关系.【学习难点】判断三条线段能否构成一个三角形的方法.【自主学习】学前准备回忆你所学过或知道的三角形的有关知识。
并写出来。
【合作探究】知识点一:三角形概念及分类1、学生自学课本63-64页探究之前内容,并完成下列问题:(1)三角形概念:由不在同一直线上的三条线段___________________所组成的图形叫做三角形。
如图,线段____、______、______是三角形的边;点A 、B 、C 是三角形的______; _____、 ______、_______是相邻两边组成的角,叫做三角形的内角,简称三角形的角。
图中三角形记作__________。
(2)三角形按角分类可分为_____________、______________、_________________。
(3)三角形按边分类可分为 _____________三角形 _____________——————— _____________(4)如图1,等腰三角形ABC 中,AB=AC,腰是__________,底是_________,顶角指_______,底角指_____________.等边三角形DEF 是特殊的_______三角形,DE=____=_____.图1练习一:1、如图2.下列图形中是三角形的有_______________?AB C图22、图3中有几个三角形?用符号表示这些三角形.知识点二:知道三角形三边的不等关系,并判断三条线段能否构成三角形1、探究:请同学们画一个△ABC,分别量出AB,BC,AC的长,并比较下列各式的大小:AB+BC_____AC AB+ AC _____ BC AC +BC _____ AB从中你可以得出结论:__________________________________________。
2023年苏科版七年级数学下册第七章《认识三角形》导学案1
新苏科版七年级数学下册第七章《认识三角形》导学案教学三维目标知识与技能认识三角形的概念及其基本要素,并能用符号语言表示三角形及其基本要素,理解三角形三边之间的关系.过程与方法能正确区分锐角三角形、直角三角形、钝角三角形,体悟分类的数学思想.情感态度价值观.理解三角形三边之间的关系,并能用于解决相关的问题;提高自主探究的能力,增强学好数学的信心.教学重点三角形的概念及三角形的三边之间的关系的探究与归纳,发展推理能力及表达能力. 教学难点三角形三边关系的应用.教学设计预习作业检查1.预习课本P20到P21,回答下列问题:(1)三角形是由______条不在同一直线上的线段,____________相接组成的图形. (2)三角形的基本元素:三个_______:用大写字母表示.例如:A B C三个_______:用一个大写字母或三个大写字母表示. 例如:∠A,∠ABC三条______ :用两个大写字母或一个小写字母表示. 例如:BC a注意:在表示的时候要注意角与边的对应.∠A←→a边(BC)∠B←→b边(AC)∠C←→c边(AB)(3)以A、B、C为顶点的三角形可以表示为____________________.(4)三角形的分类按角分:按边分:(5)完成P22的做一做:(做在书上)(6)三角形三边之间的关系是:_____________________________________________. (7)下列各组长度的3条线段,不能构成三角形的是()A.3cm 8cm. 10cmB.5cm 4cm 9cmC.4cm 6cm 9cmD.2cm 3cm 4cm(8)一个等腰三角形的两边长分别是6cm和9cm,则它的周长是.教学环节教学活动过程思考与调整活动内容师生行为“15分钟温故、自学、群学”环节1.△ABC是△DEF经过平移得到的,若AD =4cm,则BE = __ cm,CF= __ cm,若M为AB的中点,N为DE的中点,则MN = cm.2.交流完成预习作业3.完成P24的练一练“20分钟展示交流质疑、训练点拨提高”环节1.三角形的分类2.(1)一个等腰三角形的两边分别为3和6,这个三角形的周长是_______________.(2)一个等腰三角形的两角分别为40度和70度,这个三角形的另一个角是__________.3.画一个三角形,量出它的三边长分别是___________________,计算三角形的任意两边之差,并与第三边比较,发现a-b c, c-b a,c-a b. 因此______________________________________.4.有两根长度分别为4cm和7cm的木棒,①用2cm的木棒与它们能摆成三角形吗?为什么?②长度为11cm的木棒呢?③长度为4cm的木棒呢?④什么长度范围的木棒, 能与原来的两根木棒摆成三角形?“10分钟检测、反馈、矫正、小结”环节当堂检测题:1.小晶有两根长度为5cm、8cm的木条,她想钉一个三角形的木框,现在有长度分别为2cm 、3cm、8cm 、15cm的木条供她选择,那她第三根应选择()A.2cmB.3cmC.8cmD.15cm2.等腰三角形的一边长为3㎝,另一边长是5㎝,则它的第三边长为.3.等腰三角形的一边长为2㎝,另一边长是5㎝,则它的第三边长为.4.如图,以∠C为内角的三角形有在这两个三角形中,∠C的对边分别为和5.如图:有A、B、C、D四个村庄,打算公用一个水厂,若要使用的水管最节约,水厂应建在村庄的什么地方?6.已知△ABC中,a=2,b=4,第三边c为偶数,求c的值.7.有长度分别为2cm,3cm,4cm和5cm的小木棒各两根..,任取其中3根,你可以搭出几种不.同.的三角形?课后作业师生反思AB CDABCD····G 321F E D CB A课后作业1、如图,AB ∥CD 。
八年级上数学全册导学案(81页)
第一课时三角形的边一、新课导入1、三角形是我们早已熟悉的图形,你能列举出日常生活中有什么物体是三角形吗?2、对于三角形,你了解了哪些方面的知识?你能画一个三角形吗?二、学习目标1、三角形的三边关系。
2、用三边关系判断三条线段能否组成三角形。
三、研读课本认真阅读课本的内容,完成以下练习。
(一)划出你认为重点的语句。
(二)完成下面练习,并体验知识点的形成过程。
研读一、认真阅读课本(P63至P64“探究”前,时间:5分钟)要求:知道三角形的定义;会用符号表示三角形,了解按边角关系对三角形进行分类。
一边阅读一边完成检测一。
研读二、认真阅读课本( P64“探究”,时间:3分钟)要求:思考“探究”中的问题,理解三角形两边的和大于第三边;游戏:用棍子摆三角形。
检测练习二、6、在三角形ABC中,AB+BC AC AC+BC AB AB+AC BC7、假设一只小虫从点B出发,沿三角形的边爬到点C,有路线。
路线最近,根据是:,于是有:(得出的结论)。
8、下列下列长度的三条线段能否构成三角形,为什么?(1)3、4、8 (2)5、6、11 (3)5、6、10研读三、认真阅读课本认真看课本( P64例题,时间:5分钟)要求:(1)、注意例题的格式和步骤,思考(2)中为什么要分情况讨论。
(2)、对这例题的解法你还有哪些不理解的?(3)、一边阅读例题一边完成检测练习三。
检测练习三、9、一个等腰三角形的周长为28cm.①已知腰长是底边长的3倍,求各边的长;②已知其中一边的长为6cm,求其它两边的长.(要有完整的过程啊!)解:(三)在研读的过程中,你认为有哪些不懂的问题?四、归纳小结(一)这节课我们学到了什么?(二)你认为应该注意什么问题?五、强化训练【A】组1、下列说法正确的是(1)等边三角形是等腰三角形(2)三角形按边分类课分为等腰三角形、等边三角形、不等边三角形(3)三角形的两边之差大于第三边(4)三角形按角分类应分锐角三角形、直角三角形、钝角三角形其中正确的是()A 、1个B 、2个C 、3个D 、4个2、一个不等边三角形有两边分别是3、5另一边可能是( )A 、1B 、2C 、3D 、43、下列长度的各边能组成三角形的是( )A 、3cm 、12cm 、8cmB 、6cm 、8cm 、15cm 、3cm 、5cm D 、6.3cm 、6.3cm 、12cm 【B 】组4、已知等腰三角形的一边长等于4,另一边长等于9,求这个三角形的周长。
1.2直角三角形 第二课时 导学案
1.2 直角三角形(二)一、学习准备:1、如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A处)在她家北偏东60度500m 处,那么水塔所在的位置到公路的距离AB 是____________.1题 2题2、如图,有一个直角三角形纸片,两直角边AC=6cm ,BC=8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,C 与E 重合,求出CD 的长?二、学习目标:1、掌握两直角三角形全等的判定定理。
2、能利用所学定理解决简单的实际问题。
三、学习提示:阅读P18~20完成下列任务: 1,自主探究:做一做,按P19同学所做三角形的关系。
定理: 相等的两个直角三角形全等,简称:2. 合作探究:证明上面的定理:3 AO B东北F度DF 相等,两个滑梯的倾斜角∠B 和∠F 的大小有什么关系?4、练习:1、P20随堂练习1、22、如图,C D ⊥AD ,C B ⊥AB ,AB=AD ,求证:CD=CB 。
四、学习小结:你有哪些收获五、夯实基础:1、下列条件不可以判定两个直角三角形全等的是( )。
A 、两条直角边对应相等 B 、有两条边对应相等C 、一条边和一个锐角对应相等D 、一条边和一个角对应相等。
2、已知∠ABC =∠ADC=90°,E 是AC 上一点,AB=AD ,求证:EB=ED六、能力提升1、如图,在△AFD 和△BCE 中,点A ,E ,F ,C有下面四个论断:(1)AD=CB ;(2)AE=CF ;(3)∠B=∠D=90°;(4)A D ∥BC ;请用其中三个作为条件,余下的一个作为结论,并证明。
作业:P21习题1.6--1、2、3、DC B ACB C。
《三角形的分类》(导学案)四年级下册数学北师大版
四年级数学下册《三角形分类》导学单学习目标:1、经历三角形分类的探索活动,认识直角三角形、锐角三角形、钝角三角形、等腰三角形、等边三角形的特征。
2、通过分类活动,培养观察、比较、操作能力,发展空间观念。
3、发展合作交流的意识,提高倾听能力。
重难点:重点:按角、边给三角形分类。
难点:认识直角三角形、锐角三角形、钝角三角形、等腰三角形、等边三角形的特征。
教具:课件、方格纸、各种形状的三角形学具:方格纸、彩纸、量角器、小剪刀等学生学案教师导案我的学习过程:一、复习旧知1、你知道下面三角形中的各个角分别是什么角吗?2、它们都是三角形,但它们都是同一类三角形吗?二、自主探究、合作交流(一)用学具分一分。
一、复习旧知、引发思考1、师:你知道下面三角形中的各个角分别是什么角吗?(出示三个不同的三角形,师指任意角,生说角的名称)2、它们都是三角形,但它们都是同一类三角形吗?生思考。
3、今天,我们就来给三角形分类(板书课题)。
二、自主探究、合作交流1、认一认,笑笑是这样分的,你知道笑笑这样分的道理吗?得出结论:三角形按()分,可以分成()2、淘气发现下面两个三角形比较特殊,说一说,认一认。
得出结论:三角形按()分,可以分成()三、尝试练习1、独立完成书上23页第1、2、3题。
2、合作完成书上第4题:剪一剪。
(1)独立完成把一张长方形纸片沿图中虚线剪成两个三角形。
剪出的两个三角形是()三角形。
(2)两人合作,在一张长方形纸上剪出一个等腰三角形。
(3)将一张正方形纸沿图中虚线剪成两个三角形。
剪成的两个三角形是()三角形。
1、学生分小组讨论如何给三角形分类。
(1)每组一个学具袋。
要求:先独立思考,再组内交流想法。
(2)合作探究,师巡视。
2、全班交流分类标准。
学生汇报自己的分类标准并动手分一分,演示给全班同学看。
(1)按角分学生汇报后,师演示课件“按角分”,让学生把附页3中的图1所有三角形按角分一分,后集体交流。
(2)按边分师:如果按边的特征进行分类,又应如何分类?让学生把附页3中的图1所有三角形按边分一分,后集体交流。
沙县X中学八年级数学上册第十二章全等三角形12.2全等三角形的判定第2课时边角边导学案新版新人教版3
12.2三角形全等的判定第2课时边角边一、新课导入1.导入课题:上一节课,我们探究了三条边对应相等的两个三角形全等.如果两个三角形有两条边和一个角分别对应相等,这两个三角形会全等吗?——这就是本节课我们要探讨的课题.2.学习目标:(1)能说出“边角边”判定定理.(2)会用“边角边”定理证明两个三角形全等.3.学习重、难点:重点:“边角边”定理及其应用.难点:“边角边”定理的应用.二、分层学习1.自学指导:(1)自学内容:探究有两条边和它们的夹角对应相等的两个三角形是否全等.(2)自学时间:5分钟.(3)自学方法:根据探究提纲进行操作,并观察归纳得出结论.(4)探究提纲:①如果两个三角形有两条边和一个角分别对应相等,有几种可能的情形?②画△ABC和△A′B′C′,使AB=A′B′,BC=B′C′,∠A=∠A′,剪下两个三角形,相互交流一下,看△ABC与△A′B′C′是否一定能重合?不一定③画△ABC和△A′B′C′, 使A′B′=AB,∠A′=∠A,A′C′=AC,剪下△ABC和△A′B′C′,大家试一试,△A′B′C′与△ABC能重合吗?能a.由上面的探究得到判定两个三角形全等的方法是两边和它们的夹角分别相等的两个三角形全等(简写成边角边或SAS).b.将上述结论写成几何语言:∵AB=A′B′,∠BAC=∠B′A′C′,AC=A′C′,∴△ABC≌△A′B′C′(SAS)④寻找题目中的隐含条件.a.如图(a),AB、CD相交于点O,且AO=OB.观察图形,图中已具备的另一个相等的条件是∠AOC=∠BOD;联想SAS公理,只需补充条件OC=OD,则有△AOC≌△BOD.b.如图(b),AB⊥AC,AD⊥AE,AB=AC, AD=AE.能得出△DAC≌△EAB吗?能.∵AB⊥AC,AD⊥AE,∴∠BAC=∠DAE=90°,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠EAB=∠DAC.在△DAC和△EAB中,AC=AB,∠DAC=∠EAB,∴△DAC≌△EAB(SAS)AD=AEc.如图(c),AB=CD,∠ABC=∠DCB,能判定△ABC≌△DCB吗?解:∵AB=CD,∠ABC=∠DCB,BC=CB,∴△ABC≌△DCB(SAS).2.自学:学生结合探究提纲进行探究学习.3.助学:(1)师助生:①明了学情:部分学生在归纳结论上会存在一定的困难,特别是“夹角”的理解及表述上.②差异指导:根据学生学习中存在的问题予以分类指导.(2)生助生:探究提纲中的问题可以由小组合作学习,相互交流帮助寻找出题目条件或隐含条件和说明方式.4.强化:(1)已知两边和夹角,会用尺规作图画三角形.(2)边角边公理内容及几何语言的表达.(3)边角边公理是判定两个三角形全等的第二个方法,现在一共学习了两个判定三角形全等的方法:SSS、SAS,结合条件可以选用这两个判定方法证明三角形全等.(4)强化练习:①下列条件中,能用SAS判定△ABC≌△DEF的条件是(B)A.AB=DE,∠A=∠D,BC=EFB.AB=DE,∠B=∠E,BC=EFC.AB=EF,∠A=∠D,AC=DFD.BC=EF,∠C=∠F,AB=DF②已知△ABC中,AB=BC≠AC,作与△ABC只有一条公共边,且与△ABC全等的三角形,这样的三角形一共能作出7个.1.自学指导:(1)自学内容:教材第38页例2到教材第39页练习前的“思考”.(2)自学时间:10分钟.(3)自学指导:结合自学参考提纲,阅读教材.(4)自学参考提纲:①看懂例题题意,对照定理,在证明过程的后面注上理由.②此题证明△ABC≌△DEC的理论依据是什么?SAS③归纳:线段相等或者角相等,可以通过什么方法得到?证明三角形全等,再根据全等三角形的性质得到.④思考:定理中为什么要强调“夹角”?因为只有满足“两边及夹角”的两个三角形才能全等,否则不一定全等.动手操作:把一长一短的两根木棍的一端固定在一起,摆出△ABC,固定住长木棍,转动短木棍,得到△ABD,这个实验说明了什么?两边相等,夹角不相等的两个三角形不一定全等.2.自学:学生可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:第二层次的学习是教会学生证明角、线段相等的方法是构造全等三角形,学生在初次接触到这种方法,应用起来会比较生疏.②差异指导:a.指导学生构造全等三角形来证明角或者边相等;b.引导学生理解“两边及一角对应相等是不是一定可以得到两个三角形全等?”(2)生助生:小组共同探讨帮助认知例题的证明方法及教材第39页的思考所反映的问题.4.强化:(1)判定两个三角形全等到目前学习的方法有“SSS”、“SAS”,注意没有“SSA”或“ASS”(特殊情形除外).(2)证明三角形全等的方法和步骤.(3)课堂练习:①课本教材第39页练习.练习1:相等,根据边角边定理,△BAD≌△BAC,∴DA=CA.练习2:证明:∵BE=FC,∴BE+EF=FC+EF,即BF=CE,又AB=DC,∠B=∠C,∴△ABF≌DCE,∴∠A=∠D.②如图,在四边形ABCD中,AD∥BC,AD=BC,你能得出AB=CD吗?若能,试说明理由.解:连接AC.∵AD∥BC,∴∠DAC=∠BCA.在△ABC和△CDA中,AD=BC,∠DAC=∠BCA,AC=CA,∴△ABC≌△CDA(SAS).∴AB=CD.三、评价1.学生的自我评价:学生交谈自己的学习收获及学习中的困惑.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、成果及存在的不足进行点评.(2)纸笔评价(课堂评价检测).3.教师的自我评价(教学反思):本节课的引入,可采用探究的方式,引导学生通过操作、观察、探索、交流、发现思索的过程,得出判定三角形全等的“SAS”条件,同时利用一个联系生活实际的问题——测量池塘两端的距离,对得到的知识加以运用,最后再通过实际图形让学生认识到“两边及其中一边的对角对应相等”的条件不能判定两个三角形全等.一、基础巩固(第1、2题每题10分,第3、4题每题20分,共60分)1.下列命题错误的是(D)A.周长相等的两个等边三角形全等B.两条直角边对应相等的两个直角三角形全等C.有两条边对应相等的两个等腰三角形不一定全等D.有两条边和一个角对应相等的两个三角形全等2.如图,AB=AC,若想用“SAS”判定△ABD≌△ACE,则需补充一个条件AD=AE.第2题图第3题图第4题图3.如图,给出5个等量关系:①AD=BC;②AC=BD;③CE=DE;④∠D=∠C;⑤∠DAB=∠CBA.请你以其中两个为条件,另三个中的一个为结论,组成一个正确的命题(用“若……则……”的形式表述)(只需写出一个),并加以证明.解:命题:若AD=BC,∠DAB=∠CBA,则AC=BD.证明如下:在△ABD和△BAC中,AD=BC,∠DAB=∠CBA,AB=BA,∴△ABD≌△BAC(SAS).∴AC=BD.4.如图,点B,E,C,F在同一直线上,AB=DE,∠B=∠DEF,BE=CF.求证:AC=DF.证明:∵BE=CF,∴BE+EC=CF+EC,即BC=EF.在△ABC和△DEF中,AB=DE,∠B=∠DEF,∴△ABC≌△DEF(SAS).∴AC=DF.BC=EF二、综合应用(20分)5.已知:如图AB=AC,AD=AE,∠BAC=∠DAE,求证:△ABD≌△ACE.证明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△ABD和△ACE 中,AB=AC,∠BAD=∠CAE,∴△ABD≌△ACE(SAS),AD=AE,三、拓展延伸(20分)6.小明做了一个如图所示的风筝,测得DE=DF,EH=FH,由此你能推出哪些正确结论?并说明理由.解:结论:(1)DH平分∠EDF和∠EHF.(2)DH垂直平分EF.理由.(1)在△EDH和△FDH中,DE=DF,EH=FH,DH=DH,∴△EDH≌△FDH(SSS).∴∠EDH=∠FDH,∠EHD=∠FHD.即DH平分∠EDF和∠EHF.(2)由(1)知,在△EOD和△FOD中,ED=DF,∠EDO=∠FDO,OD=OD, ∴△EOD≌△FOD(SAS).∴EO=OF,∠EOD=∠FOD=90°,∴DH垂直平分EF.11.2 与三角形有关的角(2)教学目标知识与技能 1.了解三角形的外角;2、探索并了解三角形的一个外角等于与它不相邻的两个内角的和过程与方法 通过小组学习等活动经历得出三角形的外角概念和三角形的外角性质。
第二课时三角形的特征
2、判断下面哪组线段能围成三角形。(单位:厘米) (1) 3、3、3 ( 3 ) 2、2、6 ( ( ) ) (2) (4) 3、4、5 3、3、5 ( ( ) ) 细心读题, 培养良好的 学习态度。
3、有 2 厘米和 5 厘米的小棒各一根,再配一根 8 厘米的小棒能围成三 角形吗? 3 厘米的小棒呢?
4、 四条线段的长分别是 2 厘米、3 厘米、4 厘米、5 厘米,以其中三 条线段为边长可围成( )个三角形。
解东一小 2013-2014 学年下期数学四年级导学案
第二课时《三角形的特征(二)》导学案
本周习惯:大胆交流 课时:一课时 【学习目标】: 1、我能通过实验活动,探索并发现三角形任意两边的和大于第三边。(重点) 3、我能应用发现的结论,来判断指定长度的三条线段,能否组成三角形。(难点) 【学法指导】:结合问题自学课本 82 页例,独立思考完成自主学习及合作探究任务。 【时间预设】:温故知新 2 分钟,学海深究 20 分钟,交流展示 8 分钟,达标检测 10 分钟 家长签名: 学习流程 温故知新 1.说说什么叫三角形以及三角形各部分的名称。 教与学 认真倾听 班级 姓名 编号 C023 审核人:李主任
解东一小 2013-2014 学年下期数学四年级导学案
(4)是不是任何验,你发现三角形的三条边有什么关系?
认真思考
任务二: 要围成三角形必须满足什么条件?举例说明。 大 显 身 手
课本第 65 页的第 5 题。 达 标 检 测 1、我是小法官! 用长度分别为 7 厘米、4 厘米、3 厘米的三根小棒能围成三角形。 因为 7 厘米+4 厘米>3 厘米。( ) 努力协作
课型:新知探究
主备人:范惠
2、说说自行车架、篮球架等为什么要做成三角形的?
《三角形全等 “边角边”》教案、导学案、同步练习
《12.2 第2课时“边角边”》教学设计=CA,连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长就是A、B的距离,为什么?让学生充分思考后,书写推理过程,并说明每一步的依据.(若学生不能顺利得到证明思路,教师也可作如下分析:要想证AB=DE,只需证△ABC≌△DEC△ABC与△DEC全等的条件现有……还需要……)明确证明分别属于两个三角形的线段相等或者角相等的问题,常常通过证明这两个三角形全等来解决.《12.2 第2课时“边角边”》教学设计教学过程设计CBD全等吗?AB DC三、课堂训练1.已知:点D分别是AD,BC的中点,求证:AB∥CDABOCD2.已知:点A、F、E、C在同一条直线上, AF=CE,BE∥DF,BE=DF.求证:△ABE≌△CDF.四、小结归纳1.用“边角边”来判定两个三角形全等;2.用三角形全等来证明线段的相等或角的相等。
五、作业设计1.习题11.2第3、4题;2.下面四个三角形中,全等的两个三角形是( ) A.①与② B.①与③ C.①与④ D.②与③《第2课时 “边角边”》教案3.已知:如图,AB ∥DE ,AB =DE ,且BE =CF ,若∠B =35°,∠A =75°,则∠F =( ) A .70° B .65° C .60° D .55°4.如图,已知,AB =AD ,AC =AE ,∠BAD =∠CAE , 求证:BC =DE5.如图,AC 、BD 交于点O ,且互相平分,则该图中共有几对全等三角形?为什么?学生独自完成证明过程,之后由同学互相释疑解惑。
学生归纳本节内容,归纳已学过的证明三角形全等的方法有哪些?系统归纳本节知识点,提高归纳问题的能力。
总课题全等三角形总课时数第 11 课时课 题 三角形全等判定(SAS ) 主 备 人 课型 新授教学 目标 1.领会“边角边”判定两个三角形的方法.2.经历探究三角形全等的判定方法的过程,学会解决简单的推理问题. 3.培养合情推理能力,感悟三角形全等的应用价值. 教学 重点会用“边角边”证明两个三角形全等.到E ,•使CE=CB ,连接DE ,那么量出DE 的长就是A 、B 的距离,为什么?【教师活动】操作投影仪,显示例2,分析:如果能够证明△ABC ≌△DEC ,就可以得出AB=DE .在△ABC 和△DEC 中,CA=CD ,CB=CE ,如果能得出∠1=∠2,△ABC 和△DEC•就全等了.证明:在△ABC 和△DEC 中 CA=CDCB=CE∴△ABC ≌△DEC (SAS ) ∴AB=DE想一想:∠1=∠2的依据是什么?(对顶角相等)AB=DE 的依据是什么?(全等三角形对应边相等)【学生活动】参与教师的讲例之中,领悟“边角边”证明三角形全等的方法,学会分析推理和规范书写. 【媒体使用】投影显示例2.【教学形式】教师讲例,学生接受式学习但要积极参与.【评析】证明分别属于两个三角形的线段相等或角相等的问题,常常通过证明这两个三角形全等来解决. 三、学以致用【问题探究】(投影显示)我们知道,两边和它们的夹角对应相等的两个三角形全等,由“两边及其中一边的对角对应相等”的条件能判定两个三角形全等吗?为什么?【教师活动】拿出教具进行示范,让学生直观地感受到问题的本质.12CA CDCB CE=∠=∠=操作教具:把一长一短两根细木棍的一端用螺钉铰合在一起,•使长木棍的另一端与射线BC 的端点B 重合,适当调整好长木棍与射线BC 所成的角后,固定住长木棍,把短木棍摆起来,出现一个现象:△ABC 与△ABD 满足两边及其中一边对角相等的条件,但△ABC 与△ABD 不全等.这说明,•有两边和其中一边的对角对应相等的两个三角形不一定全等.【学生活动】观察教师操作教具、发现问题、辨析理解,动手用直尺和圆规实验一次,做法如下:(如图1所示)(1)画∠ABT ;(2)以A 为圆心,以适当长为半径,画弧,交BT 于C 、C ′;(3)•连线AC ,AC ′,△ABC 与△ABC ′不全等.【形成共识】“边边角”不能作为判定两个三角形全等的条件. 【教学形式】观察、操作、感知,互动交流. 四、巩固练习课本P10练习第1、2题. 五、课堂总结1.请你叙述“边角边”定理.2.证明两个三角形全等的思路是:首先分析条件,•观察已经具备了什么条件;然后以已具备的条件为基础根据全等三角形的判定方法,来确定还需要证明哪些边或角对应相等,再设法证明这些边和角相等. 六、布置作业《第2课时“边角边”》教案教学目标1.三角形全等的“边角边”的条件.2.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程.3.掌握三角形全等的“SAS”条件,了解三角形的稳定性.4.能运用“SAS”证明简单的三角形全等问题.教学重点三角形全等的条件.教学难点寻求三角形全等的条件.教学过程一、创设情境,复习提问1.怎样的两个三角形是全等三角形?2.全等三角形的性质?3.指出图中各对全等三角形的对应边和对应角,并说明通过怎样的变换能使它们完全重合:图(1)中:△ABD≌△ACE,AB与AC是对应边;图(2)中:△ABC≌△AED,AD与AC是对应边.4.三角形全等的判定Ⅰ的内容是什么?二、导入新课1.三角形全等的判定(二)(1)全等三角形具有“对应边相等、对应角相等”的性质.那么,怎样才能判定两个三角形全等呢?也就是说,具备什么条件的两个三角形能全等?是否需要已知“三条边相等和三个角对应相等”?现在我们用图形变换的方法研究下面的问题:如图2,AC、BD相交于O,AO、BO、CO、DO的长度如图所标,△ABO和△CDO是否能完全重合呢?不难看出,这两个三角形有三对元素是相等的:AO=CO,∠AOB=∠COD,BO=DO.如果把△OAB绕着O点顺时针方向旋转,因为OA=OC,所以可以使OA与OC重合;又因为∠AOB=∠COD, OB=OD,所以点B与点D重合.这样△ABO与△CDO就完全重合.(此外,还可以图1(1)中的△ACE绕着点A逆时针方向旋转∠CAB的度数,也将与△ABD重合.图1( 2)中的△ABC绕着点A旋转,使AB与AE重合,再把△ADE沿着AE(AB)翻折180°.两个三角形也可重合)由此,我们得到启发:判定两个三角形全等,不需要三条边对应相等和三个角对应相等.而且,从上面的例子可以引起我们猜想:如果两个三角形有两边和它们的夹角对应相等,那么这两个三角形全等.2.上述猜想是否正确呢?不妨按上述条件画图并作如下的实验:(1)读句画图:①画∠DAE=45°,②在AD、AE上分别取 B、C,使 AB=3.1cm, AC=2.8cm.③连结BC,得△ABC.④按上述画法再画一个△A'B'C'.(2)把△A'B'C'剪下来放到△ABC上,观察△A'B'C'与△ABC是否能够完全重合?3.边角边公理.有两边和它们的夹角对应相等的两个三角形全等(简称“边角边”或“SAS”)三、例题与练习1.填空:(1)如图3,已知AD∥BC,AD=CB,要用边角边公理证明△ABC≌△CDA,需要三个条件,这三个条件中,已具有两个条件,一是AD=CB(已知),二是___________;还需要一个条件_____________(这个条件可以证得吗?).(2)如图4,已知AB=AC,AD=AE,∠1=∠2,要用边角边公理证明△ABD≌ACE,需要满足的三个条件中,已具有两个条件:_________________________(这个条件可以证得吗?).2、例1 已知:AD∥BC,AD= CB(图3).求证:△ADC≌△CBA.问题:如果把图3中的△ADC沿着CA方向平移到△ADF的位置(如图5),那么要证明△ADF≌ △CEB,除了AD∥BC、AD=CB的条件外,还需要一个什么条件(AF = CE或AE =CF)?怎样证明呢?例2已知:AB=AC、AD=AE、∠1=∠2(图4).求证:△ABD≌△ACE.四、小结:1.根据边角边公理判定两个三角形全等,要找出两边及夹角对应相等的三个条件.2.找使结论成立所需条件,要充分利用已知条件(包括给出图形中的隐含条件,如公共边、公共角等),并要善于运用学过的定义、公理、定理.五、作业:1.已知:如图,AB=AC,F、E分别是AB、AC的中点.求证:△ABE≌△ACF.2.已知:点A、F、E、C在同一条直线上, AF=CE,BE∥DF,BE=DF.求证:△ABE≌△CDF.第十二章 全等三角形 12.2 全等三角形的判定 《第2课时 “边角边”》导学案学习目标:1.掌握三角形全等的“边角边”的条件.2.经历探索三角形全等条件的过程,体会利用操作、•归纳获 得数学结论的过程.3.能运用“S AS ”证明简单的三角形全等问题. 重点:掌握一般三角形全等的判定方法S AS.难点:运用全等三角形的判定方法解决证明线段或角相等的问题.一、要点探究探究点1:三角形全等的判定定理2--“边角边”问题:两个三角形的两边和一角分别相等有几种情形?列举说明.活动:先任意画出一个△A′B′C′,使A′B′=AB ,A′C′=AC ,∠A′=∠A ,把画好的△A′B′C′剪下,放到△ABC上,它们全等吗?你能得出什么结论?追问1:你是如何使∠A’=∠A 的? 结合这个问题,给出画△A’B’C’的方法.追问2:回忆作图过程,这两个三角形全等是满足哪三个条件?A BCAB ED要点归纳:相等的两个三角形全等(简称“边角边”或“SAS ”). 几何语言:如图,如果典例精析例1:【教材变式】已知:如图,AB=CB,∠1= ∠2. 求证:(1) AD=CD ;(2) DB 平分∠ADC.变式:已知:AD=CD ,DB 平分∠ADC ,求证:∠A=∠C.例2:如图,有一池塘,要测池塘两端A 、B 的距离,可先在平地上取一个可以直接到达A 和B 的点C ,连接AC 并延长到点D ,使CD =CA ,连接BC 并延长到点E ,使 CE =CB .连接DE ,那么量出DE 的长就是A 、B 的距离,为什么?方法总结:证明线段相等或者角相等时,常常通过证明它们是全等三角形的对应DEF ABC ∆∆⇒⎪⎭⎪⎬⎫===________________________________________边或对应角来解决.针对训练如图,点E、F在AC上,AD//BC,AD=CB,AE=CF.求证:△AFD≌△CEB.探究点2:“边边角”不能作为判定三角形全等的依据做一做:如图,把一长一短的两根木棍的一端固定在一起,摆出△ABC.固定住长木棍,转动短木棍,得到△ABD.这个实验说明了什么?画一画:画△ABC 和△DEF,使∠B =∠E =30°, AB =DE=5 cm ,AC =DF =3 cm .观察所得的两个三角形是否全等?把你画的三角形与其他同学画的三角形进行比较,由此你发现了什么?要点归纳:有两边和其中一边的对角分别相等的两个三角形_________全等.典例精析例2:下列条件中,不能证明△ABC≌△DEF的是( )A.AB=DE,∠B=∠E,BC=EFB.AB=DE,∠A=∠D,AC=DFC.BC=EF,∠B=∠E,AC=DFD.BC=EF,∠C=∠F,AC=DF方法总结:判断三角形全等时,注意两边与其中一边的对角相等的两个三角形不一定全等.解题时要根据已知条件的位置来考虑,只具备SSA时是不能判定三角形全等的.针对训练如图,AD=BC,要得到△ABD和△CDB全等,可以添加的条件是( ) A.AB∥CD B.AD∥BCC.∠A=∠C D.∠ABC=∠CDA二、课堂小结全等三角形判定定理2简称图示符号语言有两边及夹角对应相等的两个三角形全等“边角边”或“SAS”∴△ABC≌△A1B1C1(SAS).注意:“一角”指的是两边的夹角.1.在下列图中找出全等三角形进行连线.2.如图,AB=DB,BC=BE,欲证△ABE≌△DBC,则需要增加的条件是 ( )A.∠A=∠DB.∠E=∠C⎪⎩⎪⎨⎧=∠=∠=,,,11111CAACAABAABC.∠A=∠CD.∠ABD=∠EBC3.已知:如图2,AB=DB,CB=EB,∠1=∠2,求证:∠A=∠D.4.已知:如图,AB=AC,AD是△ABC的角平分线,求证:BD=CD.【变式1】已知:如图,AB=AC, BD=CD,求证:∠ BAD= ∠ CAD.【变式2】已知:如图,AB=AC, BD=CD,E为AD上一点,求证:BE=CE.拓展提升5.如图,已知CA=CB,AD=BD, M,N分别是CA,CB的中点,求证:DM=DN.《第2课时“边角边”》导学案学习目标1.探索三角形全等的“边角边”的条件,理解满足边边角两三角形不一定全等2.应用“边角边”证明两个三角形全等,进而证明线段或角相等.学习重点:应用“边角边”证明两个三角形全等,进而得出线段或角相等.学习难点:寻找判定三角形全等的条件学习过程一、学习准备1.全等三角形的性质?2.“SSS”的内容是什么?二、合作探究探究3:已知任意△ABC,画△A'B'C',使A'B'=AB,A'C'=AC,∠A'=∠A.把画好的△A'B'C',剪下放在△ABC上,观察这两个三角形是否全等结论:两边和分别相等的两个三角形全等.(可以简写成“边角边”或“”)例2,如图,有—池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长就是A、B的距离,为什么?思考:“两边及其中一边的对角对应相等”的条件能判定两个三角形全等吗?为什么?三、巩固练习 教材P39练习1 教材P39练习2 四、课堂小结1. 这节课在动手实际操作中,得到了全等三角形的哪些知识?2. 找全等三角形对应元素的方法有哪些?五、当堂清1.如图所示,BD 、AC 相交于点O ,若OA = OD ,用“SAS ”说明△AOB ≌△DOC ,还需要的条件是 ( ) A .AB = CD B .OB = OC C .∠A =∠D D .∠AOB = ∠DOC2.如图所示,D 是BC 的中点,AD ⊥BC ,那么下列说法错误的是 ( ) A .△ABD ≌△ACD B .∠B =∠CC .AD 是△ABC 的高 D .△ABC 一定是等边三角形 3.如图,AB = CD ,要使△ABD ≌△ACD ,应添加的条件是__________________(添加一个条件即可)4.如图,点C 、D 在线段AB 上,PC = PD ,∠1 =∠2,请你添加一个条件,使图BCDO A ABCD中存在全等三角形,所添加的条件为____________,你得到的一对全等三角形是_________≌_________.5.如图,OA = OB ,OC = OD ,∠O = 60°,∠C = 25°,则∠BED = ________.6.已知:如图,AB ∥CD ,AB = CD .求证:△ABD ≌△CDB参考答案:1.B 2. D 3.∠ABC=∠DCB 4.AC=BD, △ACP ≌△BDP5. 25°6.略《第2课时 “边角边”》导学案【学习目标】1、理解三角形全等“边角边”的内容.2、会运用“S AS ”识别三角形全等,为证明线段相等或角相等创造条件.3、经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程. 【重 点】掌握一般三角形全等的判定方法S AS【难 点】运用全等三角形的判定方法解决证明线段或角相等的问题 一,学前准备1. 回顾判定三角形全等的方法”SSS ”第 3 题第 4 题EAO21PB ABCD ABC D第 5 题ABCD二,探究活动活动1:探索三角形全等的条件1、如图,AC、BD相交于O,AO、BO、CO、DO的长度如图所标,△ABO和△CDO是否能完全重合呢?为什么?从上面的例子可以引起我们猜想:如果两个三角形有两边和它们的夹角对应相等,那么这两个三角形全等.2、上述猜想是否正确呢?不妨按上述条件画图并作如下的实验:(1)读句画图:①画∠DAE=45°,②在AD、AE上分别取 B、C,使 AB=3.1cm, AC=2.8cm.③连结BC,得△ABC.④按上述画法再画一个△A'B'C'.(2)把△A'B'C'剪下来放到△ABC上,观察△A'B'C'与△ABC是否能够完全重合?总结得出:相等的两个三角形全等(简称“边角边”或“SAS”)活动2 :(全等三角形判定的简单应用)1、如图,已知AD∥BC,AD=CB.求证:△ABC≌△CDA.(提示:要证明两个三角形全等,已具有两个条件,一是AD=CB(已知),二是___________,还能再找一个条件吗?可以小组交流后再完成)证明:2、如图,已知AB=AC,AD=AE,∠1=∠2.求证:△ABD≌ACE.(完成后小组交流展示,比比书写过程谁写得好)课堂练习1、已知:如图,AB=AC,F、E分别是AB、AC的中点.求证:△ABE≌△ACF.2、已知:点A、F、E、C在同一条直线上, AF=CE,BE∥DF,BE=DF.求证:AB∥CD3、思考:如果“两边及其中一边的对角对应相等,那么这两个三角形全等吗?”画一画:三角形的两条边分别为4cm和3cm,长度为3cm的边所对的角为30度,画出这个三角形,把你画的三角形与其他同学画的三角形进行比较,由此你发现了什么?《第2课时“边角边”》导学案学习目标1.三角形全等的“边角边”的条件.2.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程.3.掌握三角形全等的“SAS”条件.4.能运用“SAS”证明简单的三角形全等问题.学习重点:三角形全等的条件.学习难点:寻求三角形全等的条件.学习方法:自主学习与小组合作探究学习过程:一、:温故知新1.怎样的两个三角形是全等三角形? 2.全等三角形的性质?二、读一读,想一想,画一画,议一议1.只给一个条件(一组对应边相等或一组对应角相等),•画出的两个三角形一定全等吗?2.给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?阅读:课本总结:通过我们画图可以发现只给一个条件(一组对应边相等或一组对应角相等),•画出的两个三角形不一定全等;给出两个条件画出的两个三角形也不一定全等,按这些条件画出的三角形都不能保证一定全等.给出三个条件画三角形,你能说出有几种可能的情况吗?归纳:有四种可能.即:三内角、三条边、两边一内角、两内有一边.在刚才的探索过程中,我们已经发现三内角不能保证三角形全等.下面我们就来逐一探索其余的三种情况.3、如图2,AC、BD相交于O,AO、BO、CO、DO的长度如图所标,△ABO和△CDO 是否能完全重合呢?不难看出,这两个三角形有三对元素是相等的:AO=CO,∠AOB=∠COD,BO=DO.如果把△OAB绕着O点顺时针方向旋转,因为OA=OC,所以可以使OA与OC重合;又因为∠AOB =∠COD, OB=OD,所以点B与点D重合.这样△ABO与△CDO就完全重合.由此,我们得到启发:判定两个三角形全等,不需要三条边对应相等和三个角对应相等.而且,从上面的例子可以引起我们猜想:如果两个三角形有两边和它们的夹角对应相等,那么这两个三角形全等.4.上述猜想是否正确呢?不妨按上述条件画图并作如下的实验:(1)读句画图:①画∠DAE =45°,②在AD 、AE 上分别取 B 、C ,使 AB =3.1cm , AC =2.8cm .③连结BC ,得△ABC .④按上述画法再画一个△A 'B 'C '. (2)如果把△A 'B 'C '剪下来放到△ABC 上,想一想△A 'B 'C '与△ABC 是否能够完全重合?5.“边角边”公理.有两边和它们的夹角对应相等的两个三角形全等(简称“边角边”或“SAS ”) 书写格式: 在△ABC 和△ A 1B 1C 1中∴ △ABC ≌△ A 1B 1C 1(SAS )用上面的规律可以判断两个三角形全等.判断两个三角形全等的推理过程,叫做证明三角形全等.所以“SAS ”是证明三角形全等的一个依据.. 三、小组合作学习(1)如图3,已知AD ∥BC ,AD =CB ,要用边角边公理证明△ABC ≌△CDA ,需要三个条件,这三个条件中,已具有两个条件,一是AD =CB(已知),二是___________;还需要一个条件_____________(这个条件可以证得吗?).(2)如图4,已知AB =AC ,AD =AE ,∠1=∠2,要用边角边公理证明△ABD ≌ACE ,需要满足的三个条件中,已具有两个条件:_________________________1B 1CABA1还需要一个条件_____________(这个条件可以证得吗?).四、阅读例题:五、评价反思概括总结:1.根据边角边公理判定两个三角形全等,要找出两边及夹角对应相等的三个条件.2.找使结论成立所需条件,要充分利用已知条件(包括给出图形中的隐含条件,如公共边、公共角等),并要善于运用学过的定义、公理、定理.六、作业:七、深化提高1.已知:如图,AB=AC,F、E分别是AB、AC的中点.求证:△ABE≌△ACF.2.已知:点A、F、E、C在同一条直线上, AF=CE,BE∥DF,BE=DF.求证:△ABE≌△CDF.3、已知: AD∥BC,AD= CB,AE=CF(图3).求证:△ADF≌△CBE《第2课时边角边》同步练习一、选择题1. 如图,AB=AC,AD=AE,欲证△ABD≌△ACE,可补充条件( )A.∠1=∠2B.∠B=∠CC.∠D=∠ED.∠BAE=∠CAD2. 能判定△ABC≌△A′B′C′的条件是()A.AB=A′B′,AC=A′C′,∠C=∠C′B. AB=A′B′,∠A=∠A′,BC=B′C′C. A C=A′C′,∠A=∠A′,BC=B′CD. AC=A′C′,∠C=∠C′,BC=B′C3. 如图,AD=BC,要得到△ABD和△CDB全等,可以添加的条件是( )A. AB∥CDB. AD∥BCC. ∠A=∠CD. ∠ABC=∠CDA4.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.AC=DC,∠A=∠D5.如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.1对 B.2对 C.3对 D.4对6.在△ABC和CBA'''∆中,∠C=C'∠,b-a=ab'-',b+a=ab'+',则这两个三角形()A. 不一定全等B.不全等C. 全等,根据“ASA”D. 全等,根据“SAS”7.如图,已知AD是△ABC的BC边上的高,下列能使△ABD≌△ACD的条件是()第1题第3题图第4题图第5题图A .AB=ACB .∠BAC=90°C .BD=ACD .∠B=45°8.如图,梯形ABCD 中,AD ∥BC ,点M 是AD 的中点,且MB=MC ,若AD=4,AB=6,BC=8,则梯形ABCD 的周长为( )A .22B .24C .26D .28 二、填空题9. 如图,已知BD=CD ,要根据“SAS ”判定△ABD ≌△ACD ,则还需添加的条件是.10. 如图,AC 与BD 相交于点O ,若AO=BO ,AC =BD ,∠DBA=30°,∠DAB=50°, 则∠CBO= 度.11.西如图,点B 、F 、C 、E 在同一条直线上,点A 、D 在直线BE 的两侧,AB ∥DE ,BF =CE ,请添加一个适当的条件: , 使得AC =DF .12.如图,已知,,要使 ≌,可补充的条件是 (写出一个即可). 13.如图,OA=OB ,OC=OD ,∠O=60°,∠C=25°,则 ∠BED= 度.AD AB =DAC BAE ∠=∠ABC △ADE △第9题图第7题图第8题图第10题图第11题图14. 如图,若AO=DO,只需补充就可以根据SAS判定△AOB≌△DOC.15. 如图,已知△ABC,BA=BC,BD平分∠ABC,若∠C=40°,则∠ABE为度.16.在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,则AE= cm.17. 已知:如图,DC=EA,EC=BA,DC⊥AC, BA⊥AC,垂足分别是C、A,则BE与DE的位置关系是 .18. △ABC中,AB=6,AC=2,AD是BC边上的中线,则AD的取值范围是 .三、解答题19. 如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:BC∥EF.40DC BAED20.已知:如图,点A、B、C、D在同一条直线上,EA⊥AD,FD⊥AD,AE=DF,AB=DC.求证:∠ACE=∠DBF.21.如图CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.22. 如图,AB=AC,点E、F分别是AB、AC的中点,求证:△AFB≌△AEC.23.如图,一个含45°的三角板HBE的两条直角边与正方形ABCD的两邻边重合,过E点作EF⊥AE交∠DCE的角平分线于F点,试探究线段AE与EF的数量关系,并说明理由。
人教版四年级下册数学:第5单元 三角形 课时2 三角形三边的关系
(1)6,7,8;(2)5,4,9;(3)3,6,10;
你发现了什么?
3学生探讨结束后让学生代表发言。
教师问:我们是否要把三条线段中的每两条线段都相加后才能作出判断?有没有快捷的方法?(用较小的两条线段的和与第三条线段的大小关系来检验)。
4得到结论:三角形任意两边之和大于三角形三条边的一个规律,你能用它来解释小明家到学校哪条路最近的原因吗?
2.请学生独立完成练习十五6—8题
五、反思回顾
在这节课里,你有什么收获?学会了什么知识?是怎样学习的?
六、作业设计
有两根长度分别为2cm和5cm的木棒
(1)用长度为3cm的木棒与它们能围成三角形吗?为什么?
备课教案
教学内容
第五单元 三角形
课时
课时二:三角形三边的关系导学案
主备人
数学教研组
所在学校
教材分析
能够从平面图形中分辨出三角形,进一步丰富学生对三角形的认识和理解;包括三角形的特征,三角形的分类,三角形的内角和及图形的拼组。
教学目标
知识目标
探究三角形三边的关系,知道三角形任意两条边的和大于第三边。
能力目标
根据三角形三边的关系解释生活中的现象,提高运用数学知识解决实际问题的能力;提高观察、思考、抽象概括能力和动手操作能力
情感目标
积极参与探究活动,在活动中获得成功的体验,产生学习的兴趣
教学重点
探究三角形三边的关系。
教学难点
对三角形任意两条边的和大于第三边的判断方法。
教学准备
三角板小棒
教 学 过 程
教 学 内 容
(2)用长度为1cm的木棒与它们能围成三角形吗?为什么?
4.4 探索三角形相似的条件 第二课时导学案
丹东市第二十四中学 4.4 探索三角形相似的条件 第二课时主备:曹玉辉 辅备:孙芬、李春贺 审核: 2014年9月5日 一、学习准备:1、三角形相似的判定方法一: .2、已知:△ABC 中,AB=AC ,∠A=36°,BD 平分∠ABC ,则BD= = ,△ABC ∽ . 二、学习目标:1.掌握三角形相似的判定方法二.2.会用相似三角形的判定方法二来证明及计算. 三、自学提示: 合作探究: 画△ABC 和△DEF ,k DFACDE AB == ,∠A=∠D ,探究下列问题: ⑴当k=2时,请你借助量角器度量并猜想△ABC 与△DEF 是否相似? ⑵你能说明△ABC ∽△DEF 吗?说说你的理由 ⑶改变k 值的大小再试一试判别方法2:两边对应成比例且___角相等的两三角形相似 例2 P91 四、学习小结: 五、夯实基础:1、三角形相似的判定方法一: . 三角形相似的判定方法二: .2、如图1,已知∠DAB=∠EAC ,若再增加一个条件,就能使△ADE 与△ABC 相似。
这个条件根据 可以是 ;或根据 可以是 .图1 图23、如图2,D 、E 分别是△ABC 的边AB 、AC 上的点,要使△ADE 与△ABC 相似,只须添加一个条件,这个条件根据 可以是 ;或根据 可以是 ;根据 还可以是 .4、下列几组图形必相似的是( )A 、各有一角为40°的两个等腰三角形B 、两边之比都是2:3的 两个直角三角形C 、有两边成比例且有1个角相等的两个三角形D 、各有一个角是91°的两个等腰三角形 5、能判定△ABC ∽△DEF 的条件是( )A 、=DE AB DF AC B 、=AC AB DF DE且∠A=∠F C 、=DE AB DF AC 且∠B=∠D D 、=DE AB DFAC且∠A=∠D 6、如右图在△ABC 中,D 、E 分别是AB 、AC 上的点,且AE=3,AD=2,DB=4,AC=9,△ADE 与△ABC 相似吗?为什么?六、能力提升:7、如右图,AC 2=A D ·AB 。
12.2 三角形全等导学案
DCB AA CB E D第二课时 12.2 三角形全等的判定(1)【学习目标】1.知道“边边边”的内容,会运用“SSS ”证明三角形全等,为证明线段相等或角相等创造条件; 2.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程. 【学习重点】探索并运用三角形全等的“SSS ”判定方法 【学习难点】探索三角形全等条件 一、学前准备1.怎样的两个三角形是全等三角形?2.全等三角形的性质:二、探索思考(一)探索三角形全等的条件1.只给一个条件:(1)画出一条边为3cm 三角形 (2) 画出一个角为30°的三角形.小组交流所画的三角形全等吗?2.给出两个条件画三角形时,有几种可能的情况?分别按照下面条件,用刻度尺或量角器画三角形,并和小组的同学比较一下,所画的图形全等吗?①一个内角为60°,一条边为3 cm ; ② 两个内角分别为30°和70°; ③ 两条边分别为3 cm 和5 cm由画图归纳:如果只知道两个三角形有一个或两个对应相等的部分(边或角),那么这两个三角形 3.若给出三个条件画三角形,你能说出有几种可能的情况吗?(小组讨论交流)4. 已知一个三角形的三条边长分别为4cm 、3cm 、2cm .你能画出这个三角形吗?把你画的三角形与同伴画的三角形进行比较,它们全等吗?由活动我们得到全等三角形的一个判定方法:对应相等的两个三角形全等(简称为“边边边”或“SSS ”)例1、如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架.求证:△ABD ≌△A CD .例2、已知∠AOB , 求作:∠A 1O 1B 1,使∠A 1O 1B 1=∠AOB四、当堂反馈1、如图,四边形ABCD 中,AD =BC ,A B =DC . 2.如图AB=DC ,AC=DB , 求证:△ABC ≌△CDA . 求证:△ABC ≌△DCB3、已知:如图点C 是AB 的中点,AD=CE ,且CD=BE.求证:∠D=∠E.4、如图, ∠AOB 是一个任意角,在边OA,OB 上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N 重合,过角尺顶点C 的射线OC 便是∠AOB 的平分线,为什么?五、学习反思ACBEFD符号语言:在△ABC 和△DEF∴△ABC ≌△DEF ()ABAODCBAACDBEF第三课时 12.2 三角形全等的判定(2)【学习目标】1.知道三角形全等“边角边”的内容.2.会运用“SAS”识别三角形全等,为证明线段相等或角相等创造条件.【学习重点】三角形全等的“边角边”判定方法【学习难点】理解两边及一边的对角相等的两个三角形不一定全等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何符号表示法
(1).AM 是△ABC 的∠BAC 的平分线.
(2).∠1=∠2=12
∠BAC. 4已知A 是直线L 外一点,过点A 画直线L 的垂线。
二 合作探究:1.请画出下列三角形的高
可以发现,三条高________;锐角三角形三条高的交点就是______________;直角三角形三条高的交点就是______________;钝角三角形有两条高位于三角形的外部.
2、画出下列三角形的中线
可以发现,三角形的三条中线交于________一点;且三角形的三条中线平分三角形的
3、画出下列三角形的角平分线
可以发现,三条角平分线交点在三角形的_________;
4、通过上述实践中我们可以得到:三角形的三条中线、角平分线、高分别交于一点,直角三角形三条高的交点就是直角顶点,钝角三角形有两条高位于三角形的外部。
三课堂反馈
L
A
(1)
(2) (3) (1) (2) (3) (1)
(2) (3)
1、如图,△ABC 是等腰三角形,且AB =AC .试作出BC 边上的中线和高以及∠A 的平分线.从中你发现了什么?
四延伸拓展
如图,在△ABC 中,AD ⊥BC ,AE 平分∠BAC ,∠B =80°,∠C =46°
(1)你会求∠DAE 的度数吗? (2)你能发现∠DAE 与∠B 、∠C 之间的关系吗?
五中考链接 如图,
)的长为(则的中线,已知是 ,2,6BD DE EC ABC AE ==∆
A. 2
B. 3
C. 4
D. 6
六畅谈收获
这节课我收获了:
七布置作业
A 类
B 类
C 类:课本76页练习题1,2
A 类
B 类: 学习指导
八板书设计
1三角形的角平分线、中线、高线的概念。
2会画出任意三角形的角平分线、中线、高线。
九课堂小测
1.三角形的三条高在( )
A.三角形的内部
B. 三角形的外部
C.三角形的边上
D.三角形的内部,外部或边上
2.下列说法正确的是( )
(第1题) B C D E
A A
B
C
D E
①平分三角形内角的射线叫做三角形的角平分线;②三角形的中线,角平分线都是线段,而高是直线;③每个三角形都有三条中线,高和角平分线;④三角形的中线是经过顶点和对边中点的直线。
A. ③④
B. ③
C. ②③
D. ①④
3.如图△ABC,边BC上的高画得对是()。