八年级数学二次根式精美、课件
合集下载
人教版八年级数学下册《二次根式的乘除》二次根式PPT精品课件
6
观察两者有什么关系?
4×9
36 6 ;
=_________
400 20 ;
16 × 25 =_________
900 30 .
25 × 36 = _________
知识讲解
观察三组式子的结果,我们得到下面三个等式:
(1)
4
(2)
16
(3)
25
9 = 4 9;
25= 16 25;
16a 4a 2 a 2 .
4
4
知识讲解
2. 若长为 24 ,宽为 8 ,求出它的面积.
解:它的面积为 24 × 8 = 24 × 8 =
82 × 3 = 8 3.
随堂训练
−6 = ⋅ −6
1.若
,则 ( A )
A.x≥6
B.x≥0
C.0≤x≤6
D.x为一切实数
( D )
6 2
(2) 6 × 12 = _______;
2 6
(3) 3 × 2 2 = _____.
4. 比较下列两组数的大小(在横线上填“>”“<”或“=”):
(1)
5 4
>
4 5;
(2) 4 2
<
2 7.
随堂训练
5.计算:(1)2 3 × 5 21;
18
(2)3 3 × (−
);
4
(3)3 2 × 2 10 × 5;
(3) 3 ×
1
=
3
1
3
3 × = .
1
.
3
知识讲解
归纳: 化简二次根式的步骤:
1.把被开方数分解因式(或因数) ;
2.把各因式(或因数)积的算术平方根化为每个因
观察两者有什么关系?
4×9
36 6 ;
=_________
400 20 ;
16 × 25 =_________
900 30 .
25 × 36 = _________
知识讲解
观察三组式子的结果,我们得到下面三个等式:
(1)
4
(2)
16
(3)
25
9 = 4 9;
25= 16 25;
16a 4a 2 a 2 .
4
4
知识讲解
2. 若长为 24 ,宽为 8 ,求出它的面积.
解:它的面积为 24 × 8 = 24 × 8 =
82 × 3 = 8 3.
随堂训练
−6 = ⋅ −6
1.若
,则 ( A )
A.x≥6
B.x≥0
C.0≤x≤6
D.x为一切实数
( D )
6 2
(2) 6 × 12 = _______;
2 6
(3) 3 × 2 2 = _____.
4. 比较下列两组数的大小(在横线上填“>”“<”或“=”):
(1)
5 4
>
4 5;
(2) 4 2
<
2 7.
随堂训练
5.计算:(1)2 3 × 5 21;
18
(2)3 3 × (−
);
4
(3)3 2 × 2 10 × 5;
(3) 3 ×
1
=
3
1
3
3 × = .
1
.
3
知识讲解
归纳: 化简二次根式的步骤:
1.把被开方数分解因式(或因数) ;
2.把各因式(或因数)积的算术平方根化为每个因
二次根式的ppt课件
将二次根式化简成最简二 次根式,即根号内不含能 开方的因数或因式。
变形技巧
根据题目要求,对二次根 式进行变形,如平方差公 式、完全平方公式等。
估算方法
利用二次根式的性质进行 估算,比较大小,求取值 范围等。
易错点提醒
忽略二次根式的非负性。 运算顺序不正确。
变形过程中出错。
感谢您的观看
THANKS
总结词
有理化因式
详细描述
有理化因式是指将一个二次根式化简为最 简二次根式,其关键是将根号下的被开方 数分解为两个互为有理数乘积的因式。
方法
例子
选择与原二次根式相乘后,能够使得根号 内被开方数= sqrt(-7) = sqrt(7)
二次根式是指根号内含有 变量的表达式,其一般形 式为$\sqrt{a}$,其中$a$ 是非负数。
二次根式的性质
二次根式具有非负性,即 $\sqrt{a} \geq 0$,当且 仅当$a=0$时等号成立。
二次根式的运算
二次根式可以与有理数进 行四则运算,运算顺序先 乘方再乘除,最后加减。
方法总结
化简方法
表达式与符号
表达式
二次根式可以表示为$\sqrt{a}$(其 中a是非负数)及其变体,如 $\sqrt[3]{a}$等。
符号
$\sqrt{}$是二次根式的符号,表示求 某个数的平方根。
运算顺序与规则
运算顺序
二次根式的运算顺序与其他数学运算符相同,先乘方再乘除,最后加减。
规则总结
二次根式可以进行加减运算、乘除运算、幂运算等,运算结果需满足二次根式 的限制条件。
05
二次根式的综合例题
代数例题
总结词
二次根式的代数例题主要涉及完全平方公式 、平方差公式以及多项式展开等知识点。
变形技巧
根据题目要求,对二次根 式进行变形,如平方差公 式、完全平方公式等。
估算方法
利用二次根式的性质进行 估算,比较大小,求取值 范围等。
易错点提醒
忽略二次根式的非负性。 运算顺序不正确。
变形过程中出错。
感谢您的观看
THANKS
总结词
有理化因式
详细描述
有理化因式是指将一个二次根式化简为最 简二次根式,其关键是将根号下的被开方 数分解为两个互为有理数乘积的因式。
方法
例子
选择与原二次根式相乘后,能够使得根号 内被开方数= sqrt(-7) = sqrt(7)
二次根式是指根号内含有 变量的表达式,其一般形 式为$\sqrt{a}$,其中$a$ 是非负数。
二次根式的性质
二次根式具有非负性,即 $\sqrt{a} \geq 0$,当且 仅当$a=0$时等号成立。
二次根式的运算
二次根式可以与有理数进 行四则运算,运算顺序先 乘方再乘除,最后加减。
方法总结
化简方法
表达式与符号
表达式
二次根式可以表示为$\sqrt{a}$(其 中a是非负数)及其变体,如 $\sqrt[3]{a}$等。
符号
$\sqrt{}$是二次根式的符号,表示求 某个数的平方根。
运算顺序与规则
运算顺序
二次根式的运算顺序与其他数学运算符相同,先乘方再乘除,最后加减。
规则总结
二次根式可以进行加减运算、乘除运算、幂运算等,运算结果需满足二次根式 的限制条件。
05
二次根式的综合例题
代数例题
总结词
二次根式的代数例题主要涉及完全平方公式 、平方差公式以及多项式展开等知识点。
人教版八年级下册16.1《二次根式》课件(共15张PPT)
(1) 32, (2) 6, (3) 12, (4) - m (m≤0), (6) a 1 ,
2
(5) xy (x,y 异号) , (7)
3
5
自学效果检测 例2.当x是怎样的实数时,下列式子在实数范围 内有意义?
(1) 2 x x 1 (4) 3 x 8 (2) 3 2x (5) x 2 1 x 1 (3) x 3
2.什么叫做一个数的算术平方根?如何表示 ? 表示为: a (a≥0)
ቤተ መጻሕፍቲ ባይዱ
自学效果检测 形如 a (a 0) 的式子叫做二次根式.
a叫被开方数 定义包含三个内容: 1.必需含有二次根号 “ 2.被开方数a≥0. 3.a可以是数,也可以是含有字母的式子. ”.
自学效果检测
例1.下列式子中,是二次根式的 (1)(4)(6) 有 ___________________( 填序号)
课堂小结 (1)二次根式的概念
形如 a (a 0) 的式子叫做二次根式.
(2)二次根式有意义的条件 a≥0 (3)二次根式的性质: a ≥0 (a≥0) 双重非负性
作业布置
1.课本P5-6 习题21.1第 3 、5、6 2.预习课本P3-5
S
3.圆形的面积为 6.28,则半径 2 为 _______.
h 5 4.h=5t2,则t=_______
6.28
自学效果检测
65
S
2
h 5
你认为所得的各式有哪些共同点?
表示一些正数的算术平方根
知识回顾 1.什么叫做平方根?如何表示?
一般地,若一个数的平方等于a,则这个数 就叫做a的平方根。
根据定义可知a≥0 a的平方根是 ± a
16.1二次根式
二次根式(第一课时二次根式的概念)(课件)(共17张PPT)八年级数学下册(人教版)
−1 2 ≥0
−1 2 =0
=1
又∵
−2≥0 ∴
−2= 0 ∴ =2
= 5
− 5 ≥0
− 5 =0
∴2 + 2 = 2 ∴△ABC为直角三角形,故选:D.
C.钝角三角形
D.直角三角形
课后回顾
课后回顾
01
02
03
谢谢~
⑹ − (<)
⑺ 2 + 2 + 2
⑻ ( − 5)2
课堂测试
2.求下列二次根式中字母 a 的取值范围:
⑴ +5
⑵ −4
1)由a+5 ≥0,得a ≥-5,当a ≥-5时, + 5 在实数范围内有意义。
2)由a-4 ≥0,得a ≥ 4 ,当a ≥ 4时, − 4 在实数范围内有意义。
课堂测试
3.下列各式中,一定是二次根式的是(
)
A. + 2
B. − 2
C. 2 − 2
D. 2 + 2 + 2
【答案】D
【详解】
A、被开方数可能为负数,二次根式无意义,故选项错误;
B、被开方数可能为负数,二次根式无意义,故选项错误;
C、被开方数可能为负数,二次根式无意义,故选项错误;
(3) 一个物体从高处自由下落,落到地面所用的时间 t ( 单位:s ) 与开始
落下时离地面的高度 h ( 单位:m ) 满足关系h=5t2,如果用含有h 的式子
表示 t,那么 t
ℎ
5
为_________
探索与思考
、 、 、
被开方数和根指数有什么特点?
1.根指数为 2 ;
2.被开方数是非负数 .
人教版初二数学8年级下册 第16章(二次根式)二次根式 课件(共35张PPT)
而 2a b2 0
?
2a0 , b20
a 2, b 2
原式 a2 b 12 2 2 212 21 3
已知 1 有意义,那A(a, a
在 二 象限.
∵由题意知a<0 ∴点A(-,+)
a )
?
已知y 2 x x 2 5,
则
y x
5
___2_
2-X≥0
X-2≥0
x ≤2 x≥2
练习:用心算一算:
1 25 5 2 72 7
33
2
2
18
4
1
2
2
5 x2 2xy y2 (x﹤y)
已知a.b为实数,且满足 a 2b 1 1 2b 1 求a 的值.
若a.b为实数,且 2 a b 2 0
求 a2 b2 2b 1的值
解:
2 a 0, b 2 0
的正方形的边长为___S__。
2.一长方形围栏,长是宽的2倍,
面积为130,则它的宽为 ___6_5__
h 3.h=5t2,则t=_____5__
3S
h 65 5
你认为所得的各式有哪些共同点?
表示一些正数的算术平方根
我们知道,一个正数有两个平方根;0的平 方根是0;在实数范围内,负数没有平方根。因 此,在实数范围内开平方时,被开放数只能是 正数或0.
22 __2_,
| 2 | _2__;
52 _5__,
02 __0_,
| 5 | _5__; | 0 | __0_ .
a2 a
请比较左右两边的式子,议一议: a2与 | a | 有什么关系?
a 当 a 0 时, a2 ____ ; 当 a 0 时, a2 __a__.
一般地,二次根式有下面的性质:
?
2a0 , b20
a 2, b 2
原式 a2 b 12 2 2 212 21 3
已知 1 有意义,那A(a, a
在 二 象限.
∵由题意知a<0 ∴点A(-,+)
a )
?
已知y 2 x x 2 5,
则
y x
5
___2_
2-X≥0
X-2≥0
x ≤2 x≥2
练习:用心算一算:
1 25 5 2 72 7
33
2
2
18
4
1
2
2
5 x2 2xy y2 (x﹤y)
已知a.b为实数,且满足 a 2b 1 1 2b 1 求a 的值.
若a.b为实数,且 2 a b 2 0
求 a2 b2 2b 1的值
解:
2 a 0, b 2 0
的正方形的边长为___S__。
2.一长方形围栏,长是宽的2倍,
面积为130,则它的宽为 ___6_5__
h 3.h=5t2,则t=_____5__
3S
h 65 5
你认为所得的各式有哪些共同点?
表示一些正数的算术平方根
我们知道,一个正数有两个平方根;0的平 方根是0;在实数范围内,负数没有平方根。因 此,在实数范围内开平方时,被开放数只能是 正数或0.
22 __2_,
| 2 | _2__;
52 _5__,
02 __0_,
| 5 | _5__; | 0 | __0_ .
a2 a
请比较左右两边的式子,议一议: a2与 | a | 有什么关系?
a 当 a 0 时, a2 ____ ; 当 a 0 时, a2 __a__.
一般地,二次根式有下面的性质:
人教版八年级数学下册《二次根式》PPT
.
典例解析
例1 计算:
(1)( 8 3) 6; (2)(4 2 3 6) 2 2.
解:(2) (4 2 3 6) 2 2 4 22 23 62 2
多项式除以 单项式法则
23 3 2
二次根式除法法则
算中思先与考乘有:除理(2,数)中后、,加实每减数一;运步算的一依样据,是在什混么合?运
例2 计算:
思考 二次根式加减,分为几个步骤?
二次根式的加减主要归纳为两个步骤: 第一步,先将二次根式化成最简二次根式; 第二步,再将被开方数相同的二次根式进行合并.
探究1 由(x+y)·z=x·z+y·z=xz+yz,你能求出 的值吗?你是怎样做的?
探究2 由 ,你能求出
的值吗?由此你有何发现?
典例解析
(1) ( 2 3)( 2 - 5) ; (2) ( 5 3)( 5 - 3)
解:(1)( 2 3)( 2 - 5) ( 2)2 3 2 5 2 15 2 2 2 15
13 2 2
思考:(1)中,每一步的依据是什么? 第一步的依据是:多项式乘多项式法则; 第二步的依据是:二次根式化简,合并被开方数 相同的二次根式(依据是:分配律); 第三步的依据是:合并同类项.
(3)( 3 2)2 ( 3)2 2 2 3 22 7 4 3;
(4)(2 5 2)2 (2 5)2 2 2 5 2 ( 2)2 22 4 10
综合应用
(3 10)2015(3 10)2015 解: (3 10)2015(3 10)2015
(3 10)(3 10)2015 (9 10)2015
例3 计算下列各题:
练习
1.计算: (1) 2( 3 5); (3)( 5 3)( 5 2);
典例解析
例1 计算:
(1)( 8 3) 6; (2)(4 2 3 6) 2 2.
解:(2) (4 2 3 6) 2 2 4 22 23 62 2
多项式除以 单项式法则
23 3 2
二次根式除法法则
算中思先与考乘有:除理(2,数)中后、,加实每减数一;运步算的一依样据,是在什混么合?运
例2 计算:
思考 二次根式加减,分为几个步骤?
二次根式的加减主要归纳为两个步骤: 第一步,先将二次根式化成最简二次根式; 第二步,再将被开方数相同的二次根式进行合并.
探究1 由(x+y)·z=x·z+y·z=xz+yz,你能求出 的值吗?你是怎样做的?
探究2 由 ,你能求出
的值吗?由此你有何发现?
典例解析
(1) ( 2 3)( 2 - 5) ; (2) ( 5 3)( 5 - 3)
解:(1)( 2 3)( 2 - 5) ( 2)2 3 2 5 2 15 2 2 2 15
13 2 2
思考:(1)中,每一步的依据是什么? 第一步的依据是:多项式乘多项式法则; 第二步的依据是:二次根式化简,合并被开方数 相同的二次根式(依据是:分配律); 第三步的依据是:合并同类项.
(3)( 3 2)2 ( 3)2 2 2 3 22 7 4 3;
(4)(2 5 2)2 (2 5)2 2 2 5 2 ( 2)2 22 4 10
综合应用
(3 10)2015(3 10)2015 解: (3 10)2015(3 10)2015
(3 10)(3 10)2015 (9 10)2015
例3 计算下列各题:
练习
1.计算: (1) 2( 3 5); (3)( 5 3)( 5 2);
二次根式ppt课件
02
二次根式的化简与求值
化简二次根式的方法
因式分解法
将被开方数进行因式分解,提取 完全平方数。例如,√(24) = √(4×6) = 2√6。
分母有理化
当分母含有二次根式时,通过与其 共轭式相乘使分母变为有理数。例 如,1/(√3 + 1) = (√3 - 1)/[(√3 + 1)(√3 - 1)] = (√3 - 1)/2。
计算$(sqrt{3} + sqrt{2})(sqrt{3} - sqrt{2})$。
利用平方差公式进行计算,即 $(sqrt{3} + sqrt{2})(sqrt{3} sqrt{2}) = (sqrt{3})^2 (sqrt{2})^2 = 3 - 2 = 1$。
04
二次根式在方程中的应用
二次根式与一元二次方程的关系
二次根式ppt课件
目录
• 二次根式基本概念与性质 • 二次根式的化简与求值 • 二次根式的运算与变形 • 二次根式在方程中的应用 • 二次根式在不等式中的应用 • 二次根式在函数中的应用
01
二次根式基本概念与性质
二次根式的定义
01
02
03geq 0$)的式子叫做二次根式 。
二次根式的变形技巧
分母有理化
利用平方差公式将分母化为有理 数,同时保持分子的形式不变。
提取公因式
将多项式中相同的部分提取出来 ,简化计算过程。
完全平方公式
将某些二次根式化为完全平方的 形式,便于进行开方运算。
典型例题解析
例题1
解析
例题2
解析
计算$sqrt{8} + sqrt{18}$。
先将$sqrt{8}$和$sqrt{18}$化 为最简二次根式,即$sqrt{8} = 2sqrt{2}$,$sqrt{18} = 3sqrt{2}$,然后根据同类二次 根式的加法法则进行计算,即 $2sqrt{2} + 3sqrt{2} = 5sqrt{2}$。
《二次根式》PPT课件(第1课时)
《二次根式》PPT课件(第1课时)
人教版八年级数学下册《二次根式》PPT课件(第1课时),共30页。
学习目标
1. 理解二次根式的概念.
2. 掌握二次根式有意义的条件,能运用二次根式的概念求被开方数中字母的取值范围.
3. 会利用二次根式的双重非负性解决相关问题.
探究新知
二次根式的定义和有意义的条件
根据你的理解,猜想一下二次根式的定义应该有哪些条件?
我们知道,一个正数有两个平方根;
0的平方根为0;
在实数范围内,负数没有平方根.
因此,在实数范围内开平方的时候,被开方数只能是正数或0.
利用二次根式有意义的条件求字母的取值范围
当x是怎样的实数时,√x-2在实数范围内有意义?
归纳小结:要使二次根式在实数范围内有意义,即需满足被开方数≥0,列不等式求解即可.若二次根式为分式的分母时,应同时考虑分母不为零.
被开方数是多项式时,需要对组成多项式的项进行恰当分组凑成含完全平方的形式,再进行分析讨论.
二次根式有意义的条件应用的不同类型:
(1)单个二次根式如√A有意义的条件:A≥0;
(2)二次根式作为分式的分母如B/√A有意义的条件:A>0;
二次根式的双重非负性
二次根式√a的被开方数a的取值范围是什么?它本身的取值范围又是什么?
课堂小结
二次根式的定义
形如√a (a≥0)的式子叫做二次根式
在有意义条件下求字母的取值范围
抓住被开方数必须为非负数,从而建立不等式或不等式组求出其解集二次根式的双重非负性
二次根式√a中,a≥0且√a≥0
... ... ...
关键词:二次根式PPT课件免费下载,.PPTX格式;。
初中数学二次根式PPT课件图文
【解析】选C.若二次根式 有意义,则2x+6≥0, 解得x≥-3,在数轴上时从表示-3的点向右画,且用实心 圆点.
3.(2014·南通中考)若 在实数范围内有意义, 则x的取值范围是 ( ) A.x≥ B.x≥- C.x> D.x≠
【解析】选C.由题意得 解得x>
一、二次根式的相关概念 1.二次根式:一般地,形如 (_____)的式子. 2.最简二次根式:同时满足:(1)被开方数不含_____. (2)被开方数中不含能开得尽方的___________.
a≥0
字母
因数或因式
二、二次根式的性质
两个重要性质
( )2=__(a≥0).
=|a|=
【名师点津】理解二次根式的性质需注意的两个问题 (1) (a≥0)的双重非负性: ①被开方数a非负; ② 本身非负.
(2) 与( )2的异同: 中的a可以取任何实数,而( )2中的a必须取非负 数,只有当a取非负数时, =( )2.
【题组过关】 1.(2016·潍坊中考)实数a,b在数轴上对应点的位置如 图所示,化简|a|+ 的结果是 ( ) A.-2a+b B.2a-b C.-b D.b
【解析】选A.由题干图知:a<0,a-b<0, 则|a|+ =-a-(a-b)=-2a+b.
2.(2015·资阳中考)已知:(a+6)2+ =0,则 2b2-4b-a的值为________. 【解题指南】首先根据非负数的性质可求出a的值和 b2-2b=3,进而可求出2b2-4b-a的值.
3.二次根式的混合运算:与实数的运算顺序相同,先算 乘方,再算_____,最后算加减,有括号的先算括号里面 的(或先去括号).
3.(2014·南通中考)若 在实数范围内有意义, 则x的取值范围是 ( ) A.x≥ B.x≥- C.x> D.x≠
【解析】选C.由题意得 解得x>
一、二次根式的相关概念 1.二次根式:一般地,形如 (_____)的式子. 2.最简二次根式:同时满足:(1)被开方数不含_____. (2)被开方数中不含能开得尽方的___________.
a≥0
字母
因数或因式
二、二次根式的性质
两个重要性质
( )2=__(a≥0).
=|a|=
【名师点津】理解二次根式的性质需注意的两个问题 (1) (a≥0)的双重非负性: ①被开方数a非负; ② 本身非负.
(2) 与( )2的异同: 中的a可以取任何实数,而( )2中的a必须取非负 数,只有当a取非负数时, =( )2.
【题组过关】 1.(2016·潍坊中考)实数a,b在数轴上对应点的位置如 图所示,化简|a|+ 的结果是 ( ) A.-2a+b B.2a-b C.-b D.b
【解析】选A.由题干图知:a<0,a-b<0, 则|a|+ =-a-(a-b)=-2a+b.
2.(2015·资阳中考)已知:(a+6)2+ =0,则 2b2-4b-a的值为________. 【解题指南】首先根据非负数的性质可求出a的值和 b2-2b=3,进而可求出2b2-4b-a的值.
3.二次根式的混合运算:与实数的运算顺序相同,先算 乘方,再算_____,最后算加减,有括号的先算括号里面 的(或先去括号).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
除
法
= xy
经典例题
二
次
例题5、已知:实数a,b在数轴上的位置如图所示,
根
化简:
﹣|a﹣b|。
式
解:从数轴上a、b的位置关系可知:
的
﹣2<a<﹣1,1<b<2,且b>a,
乘
故a+1<0,b﹣1>0,a﹣b<0,
除
原式=|a+1|+2|b﹣1|﹣|a﹣b| =﹣(a+1)+2(b﹣1)+(a﹣b)
法
=b﹣3.
经典例题
二
次
例题6、把下列二次根式化成最简二次根式:
①②③
④
根
式
解:①
=
=2
的
乘
②
=
=3
除
③
=
=
法
④
=Байду номын сангаас
=
03 二次根式的加减法
■ 运算法则 ■ 经典例题
二次根式加减法运算
二
次
■ 同类二次根式:
根
一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,
式
笼统的说,就是根号内的数相同,就把这几个二次根式叫做同类二次根式。
答:这个大正方体铁块的棱长是3.80cm。
法
经典例题
二
例题10、一个三角形的三边长分别为 、 、
次
①求它的周长(要求结果化简);
根
②请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值。
式
解:① +
+
的
=
+ +×
加
= ++
减
=
法
② 根式内取偶数的完全平方数,
如3x=36时,x=12,此时三角形的周长C=15。
二次根式乘除法运算
二
■ 乘法法则:
次
a· b = ab (a≥0,b≥0)
根
二次根式的乘法运算法则,用语言叙述为:两个因式的算术平方根
式
的积,等于这两个因式积的算术平方根。
的 乘
■ 除法法则:
a / b = a/b (a≥0,b>0)
二次根式的除法运算法则,用语言叙述为:两个数的算术平方根的商,
除
次
式);2、被开方数不含分母的二次根式叫做最简二次根式。
根
■ 在二次根式运算中,一般要把最后结果化为最简二次根式;
式
■ 二次根式化简一般步骤:
的
1、把带分数或小数化成假分数;
定
2、把开方数分解成质因数或分解因式;
3、把根号内能开得尽方的因式或因数移到根号外;
义
4、化去根号内的分母,或化去分母中的根号;
义
■ 被开方数可以是数 ,也可以是代数式。
二次根式的基本性质
二
次
■ 对于非负实数a,由于 a 是a的一个平方根,因此:
根
( a )2 = a (a≥0)
式
■ a2 = |a|= a (a≥0)
的
-a (a<0)
定
义
■ ab = a · b (a≥0,b≥0)
最简二次根式
二
我们把满足下面两个条件:1、被开方数中不含开得尽方的因数(或因
的
■ 合并同类二次根式:
加
把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。 ■ 二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同
减
的进行合并。
法
■ 有括号时,要先去括号。
二
二次根式混合运算
次
根
第一步:确定运算顺序
第二步:灵活运用运算定律
式
第三步:正确使用乘法公式
的
第四步:大多数分母有理化要及时
初中数学课件 之
二次根式
目 录
01、二次根式的定义 02、二次根式的乘法和除法 03、二次根式的加法和减法
01 二次根式的定义
■ 定义 ■ 性质 ■ 最简二次根式
二
二次根式的定义
次
根
一般地,形如 a 的代数式叫做二次根式,其中,a叫做被开方数。
式
二次根式
a
被开方数
的
定
■ 只有当被开方数是非负实数时,二次根式才在实数范围内有意义。
等于这两个数商的算术平方根。
法
■ 注意:1、 a 与 1 / a (a>0)互为倒数。
2、上述运算法则从右到左,可用于化简二次根式。
经典例题 二
次
根
例题4、化简:4x2
■ 在解二次根式运算题时,可以将
式
解:4x2
常数项放在最前面,然后将相同未
的 乘
=4x2÷12×3 =x2
知数的项按照指数从高到低排列, 有利于解题。
加
第五步:在有些简便运算中也许可以约分,不要盲目有理化
减
第六步:字母运算时注意隐含条件和末尾括号的注明。
法
经典例题
二
次
根
例题7、计算:﹣42﹣|1﹣ |+
例题8、解方程: (x﹣1)= (x+1)
式
解:原式=﹣16+1﹣ +2
解:移项得:( ﹣ )x= ﹣
的
加
=﹣15+
解得:x=5+2
减
法
经典例题
定
则自然数x的对应值是:
义
21、20、17、12、 5。
经典例题
二
例题3、已知:x,y为实数,且,
, 化简:
次
解:依题意,得:
根
式
∴x﹣1=0,1-x=0;
的
解得:x=1 ∴y<3 ∴ y﹣3<0,y﹣4<0
定
∴
义 =3﹣y﹣
=3﹣y﹣(4﹣y) =﹣1.
02 二次根式的乘除法
■ 运算法则 ■ 经典例题
备用页
请 输 入 您 的 标 题
谢谢观赏
二
例题9、如果把棱长分别为3.51cm, 2.26cm的两个正方体铁块熔化,制成一个
次
大的正方体铁块,那么这个大正方体铁块的棱长是多少?(用一个式子表示,
根
并用计算器进行计算,最后结果保留2个有效数字)
式
解:∵这个大正方体的体积为3.513+2.263 ,
的
∴这个大正方体的棱长=
加
=3.80cm,
减
5、约分。
经典例题
二
例题1、已知:
,求:(x+y)4 的值。
次
解:∵
与
有意义
根
∴
式
的
解得x=2,
定
∴ y=﹣3,
义
∴ (x+y)4
=(2﹣3)4
=1
经典例题
二
例题2、已知
为整数,试求自然数x的值。
次 根
解:根据题意得:
21﹣x≥0,
式
解得:x≤21.
的
由此可知:21-x,可能为0、1、4、9、16