数列极限的证明
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列极限的证明X1=2,Xn+1=2+1/Xn,证明Xn的极限存在,并求该极限求极限我会
|Xn+1-A|<|Xn-A|/A
以此类推,改变数列下标可得 |Xn-A|<|Xn-1-A|/A ;
|Xn-1-A|<|Xn-2-A|/A;
……
|X2-A|<|X1-A|/A;
向上迭代,可以得到|Xn+1-A|<|Xn-A|/(A^n)
2
只要证明{x(n)}单调增加有上界就可以了。
用数学归纳法:
①证明{x(n)}单调增加。
x(2)=√[2+3x(1)]=√5>x(1);
设x(k+1)>x(k),则
x(k+2)-x(k+1))=√[2+3x(k+1)]-√[2+3x(k)](分子有理化)
=[x(k+1)-3x(k)]/【√[2+3x(k+1)]+√[2+3x(k)]】>0。
②证明{x(n)}有上界。
x(1)=1<4,
设x(k)<4,则
x(k+1)=√[2+3x(k)]<√(2+3*4)<4。
3
当0
当0
构造函数f(x)=x*a^x(0
令t=1/a,则:t>1、a=1/t
且,f(x)=x*(1/t)^x=x/t^x(t>1)
则:
lim(x→+∞)f(x)=lim(x→+∞)x/t^x
=lim(x→+∞)[x'/(t^x)'](分子分母分别求导)
=lim(x→+∞)1/(t^x*lnt)
=1/(+∞)
=0
所以,对于数列n*a^n,其极限为0
4
用数列极限的定义证明
3.根据数列极限的定义证明:
(1)lim[1/(n的平方)]=0
n→∞
(2)lim[(3n+1)/(2n+1)]=3/2
n→∞
(3)lim[根号(n+1)-根号(n)]=0
n→∞
(4)lim0.999…9=1
n→∞ n个9
5几道数列极限的证明题,帮个忙。。。Lim就省略不打了。。。