应用时间序列分析实验报告
时间序列分析试验报告
时间序列分析试验报告
一、试验简介
本次试验旨在探索时间序列分析,以分析日期变化的影响与规律。
时
间序列分析是数据分析的一种,目的是预测未来正确的趋势,并且分析既
有趋势的影响及其变化。
二、试验材料
本次试验使用的资料为最近12个月(即2024年1月到2024年12月)的电子商务网站销售数据。
该电子商务网站以每月总销售量、每月总销售
额及每月交易次数三个变量作为试验数据。
三、试验方法
1.首先,收集2024年1月到2024年12月的电子商务销售数据,记
录每月总销售量、总销售额及交易次数。
2.然后,编制时间序列分析图表,反映每月总销售量、总销售额及
交易次数的变化情况。
3.最后,分析每月的变化趋势,比较每月的销售数据,并进行相关
分析推断。
四、实验结果
1.通过时间序列分析图表可以看出,每月总销售量、总销售额及交
易次数均呈现出稳定上升趋势。
2.从图表中可以推断,在2024年底到2024年底,当月的总销售量、总销售额及交易次数均较上月有所增加。
3.从表中可以推断,每月的总销售量、总销售额及交易次数都在逐渐增加,最终在2024年末达到高峰。
五、结论
通过本次实验可以得出结论。
应用时间序列分析实训报告
《应用时间序列分析》实训报告实训项目名称非平稳时间序列模型的建立实训时间 2013年12月16日实训地点实验楼308班级计科1001班学号姓名《应用时间序列分析》实训(实践) 报告实训名称平稳时间序列模型的建立一、实训目的本次实验是一个综合试验,通过自己选定问题,收集数据,确定研究方法,建立合适模型,解决实际问题,增强学生动手能力,提高学生综合分析的能力。
二、实训内容学生根据自己喜好,选定一个实际问题,确定指标,收集相关数据,利用所学时间序列分析方法队进行研究,建立时间序列模型,揭示其研究对象内部的规律,并对未来进行预测。
并写出分析报告。
具体实验内容如下:1 确定研究问题2 收集数据3 建立合适模型1.ARIMA模型建模前的准备:判断序列是否平稳.①通过序列自相关图、趋势图等进行判断②若序列不平稳:均值非平稳序列通过差分变换转换为平稳方差非平稳序列通过对数变换等转化为平稳序列③模型平稳化以后,将序列零均值化2.模型识别主要通过序列的自相关函数、偏自相关函数表现的特征,进行初步的模型识别3.模型参数估计①在Eviews中估计ARMA模型的方法②估计模型以后要能写出模型的形式(差分方程形式和用B算子表示的形式)4.模型的诊断检验①根据模型残差是不是白噪声来判断模型是否为适应性模型②能根据输出结果判断模型是否平稳,是否可逆③若有多个序列是模型的适应性模型,会用合适的方法从这些模型中进行选择,如比较模型的残差方差,AIC,SC等。
5.模型应用①掌握追溯预测的操作方法②外推预测的操作方法四、实训分析与总结1)输入数据2)生成时序图观测序列时序图,可知序列具有线性长期趋势,需要进行一阶差分观测差分时序图看出并无明显的趋势性或者循环性,得出一阶差分平稳。
由图知,序列一阶自相关显著,序列平稳;Q 统计量P 值小于0.05,非白噪声;同时偏自相关拖尾、自相关一步截尾,可建立ARIMA (0,1,1)模型。
3)模型参数估计ARMA 模型估计方程:t )708169.01(015566.5εB x t ++=∇SBC 值为7.013764由图知偏自相关,C 的值大于0.05,则去掉C,继续建立模型:ARIMA 模型估计方程:t 652119.011εBx t -=∇SBC 值为7.055671比较两个模型的SBC 值,建立ARMA 模型最优。
应用时间序列实验报告
工程学院课程设计《时间序列分析课程设计》学生学号:学院:理学院专业班级:专业课程:时间序列分析课程设计指导教师:2017年 6 月 2 日目录1. 实验一澳大利亚常住人口变动分析 (1)1.1 实验目的 (2)1.2 实验原理 (2)1.3 实验容 (2)1.4 实验过程 (4)2. 实验二我国铁路货运量分析 (9)2.1 实验目的 (10)2.2 实验原理 (10)2.3 实验容 (11)2.4 实验过程 (12)3. 实验三美国月度事故死亡数据分析 (15)3.1 实验目的 (17)3.2 实验原理 (17)3.3 实验容 (18)3.4 实验过程 (18)课程设计体会 (22)1.实验一澳大利亚常住人口变动分析1971年9月—1993年6月澳大利亚常住人口变动(单位:千人)情况如表1-1所示(行数据)。
表1-1(1)判断该序列的平稳性与纯随机性。
(2)选择适当模型拟合该序列的发展。
(3)绘制该序列拟合及未来5年预测序列图。
1.1 实验目的掌握用SAS软件对数据进行相关性分析,判断序列的平稳性与纯随机性,选择模型拟合序列发展。
1.2 实验原理(1)平稳性检验与纯随机性检验对序列的平稳性检验有两种方法,一种是根据时序图和自相关图显示的特征做出判断的图检验法;另一种是单位根检验法。
(2)模型识别先对模型进行定阶,选出相对最优的模型,下一步就是要估计模型中未知参数的值,以确定模型的口径,并对拟合好的模型进行显著性诊断。
(3)模型预测模型拟合好之后,利用该模型对序列进行短期预测。
1.3 实验容(1)判断该序列的平稳性与纯随机性时序图检验,根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常识值附近波动,而且波动的围有界。
如果序列的时序图显示该序列有明显的趋势性或周期性,那么它通常不是平稳序列。
对自相关图进行检验时,可以用SAS系统ARIMA过程中的IDENTIFY语句来做自相关图。
时间序列分析实验报告
引言概述:
时间序列分析是一种用于研究时间数据的统计方法,主要关注数据随时间的变化趋势、季节性和周期性等特征。
时间序列分析应用广泛,可以用于金融预测、经济分析、气象预测等领域。
本实验报告旨在介绍时间序列分析的基本概念和方法,并通过实例分析来展示其应用。
正文内容:
1.时间序列分析基本概念
1.1时间序列的定义
1.2时间序列的模式
1.3时间序列分析的目的
2.时间序列分析方法
2.1随机游走模型
2.2移动平均模型
2.3自回归移动平均模型
2.4季节性模型
2.5ARCH和GARCH模型
3.时间序列数据预处理
3.1数据平稳性检验
3.2数据平滑
3.3缺失值填补
3.4离群值检测
3.5数据变换
4.时间序列模型建立与评估
4.1模型的选择
4.2参数估计
4.3拟合优度检验
4.4模型诊断
4.5预测准确性评估
5.实例分析:某公司销售数据时间序列分析
5.1数据收集与预处理
5.2模型建立与评估
5.3预测分析与结果解释
5.4预测精度评估
5.5结果讨论与进一步改进方向
总结:
时间序列分析是一种重要的统计方法,可用于预测和分析时间相关的数据。
本报告介绍了时间序列分析的基本概念和方法,并通
过实例分析展示了其应用过程。
通过时间序列分析,可以更好地理解数据的趋势和周期性,并进行准确的预测。
时间序列分析也面临着多样的挑战,如数据质量问题和模型选择困难等。
因此,在实际应用中,需要综合考虑多种因素,灵活运用合适的方法和技巧,以提高预测准确性和分析可靠性。
时间序列分析的实验报告-实验一
2013——2014学年第二学期
实验报告
课程名称:应用时间序列分析
实验项目:Eviews软件使用初步
实验类别:综合性□设计性□验证性□√专业班级:
姓名:学号:
实验地点:
实验时间:2014.5. 4
指导教师:成绩:
吉首大学数学与统计学院
一、实验目的:
掌握应用Eviews软件完成以下任务:(1)工作文件及建立;
(2)掌握数据分析的常用操作;(3)进行OLS回归;(4)预测二、实验内容:
用拟合的线性回归模型对数据集进行线性趋势拟合;数据来源是1996年黑龙江省伊春林区16个林业局的年木材采伐量和相关伐木剩余物数据。
三、实验方案(程序设计说明)
四. 实验步骤或程序(经调试后正确的源程序)
五.程序运行结果
六、实验总结
学生签名:
年月日
七、教师评语及成绩
教师签名:
年月日
1。
时间序列法实验报告
一、实验目的1. 了解时间序列分析方法的基本原理和应用。
2. 学习如何使用时间序列分析方法对实际数据进行预测和分析。
3. 通过实验,提高对时间序列数据处理的实际操作能力。
二、实验内容本次实验选取了一组某城市过去三年的月均降雨量数据,旨在通过时间序列分析方法预测未来一个月的降雨量。
三、实验步骤1. 数据预处理- 读取实验数据,确保数据格式正确。
- 检查数据是否存在缺失值,如有,进行插补处理。
- 对数据进行初步的描述性统计分析,了解数据的分布情况。
2. 时间序列平稳性检验- 对原始数据进行ADF(Augmented Dickey-Fuller)检验,判断时间序列是否平稳。
- 若不平稳,进行差分处理,直至序列平稳。
3. 时间序列建模- 根据平稳时间序列的特点,选择合适的模型进行拟合。
- 本实验选取ARIMA模型进行拟合,其中AR项数为1,MA项数为1,差分次数为1。
4. 模型参数估计- 使用最小二乘法对模型参数进行估计。
5. 模型检验- 对拟合后的模型进行残差分析,检查是否存在自相关或异方差。
- 若存在自相关或异方差,对模型进行修正。
6. 预测- 使用拟合后的模型对未来一个月的降雨量进行预测。
四、实验结果与分析1. 数据预处理- 实验数据共有36个观测值,无缺失值。
- 描述性统计分析结果显示,降雨量数据呈正态分布。
2. 时间序列平稳性检验- 对原始数据进行ADF检验,结果显示P值小于0.05,拒绝原假设,说明原始数据不平稳。
- 对数据进行一阶差分后,再次进行ADF检验,结果显示P值小于0.05,接受原假设,说明一阶差分后的数据平稳。
3. 时间序列建模- 根据平稳时间序列的特点,选择ARIMA(1,1,1)模型进行拟合。
4. 模型参数估计- 使用最小二乘法对模型参数进行估计,得到AR系数为0.8,MA系数为-0.9。
5. 模型检验- 对拟合后的模型进行残差分析,发现残差序列存在自相关,但不存在异方差。
- 对模型进行修正,加入自回归项,得到修正后的ARIMA(1,1,1,1)模型。
时序分析实验报告
时间序列分析实验报告1、实验内容1.1问题描述用Eviews软件确定该序列的平稳性,根据数据的性质特征对其进行分析并适当模型拟合该序列的发展,最后利用所选取的拟合模型预测1939-1945年英国绵羊的数量。
2、判别原数据的平稳性2.1.画时序图在Eviews中建立workfile为1867-1938年的年度数据,通过file→ import 把数据导入Eviews中。
变量名命名为x。
在workfile中打开数据x,点击series:x窗口中的view→graph→line,则会出x的现时序图1。
时序图1从时序图1中可以看出数据为非平稳的,且大致呈现下降趋势。
因此为经一步说明该数据的平稳性,做相关分析。
2.2.自相关分析继续在该时序图窗口中点击view→correlogram,在弹出的correlogram Specification 的对话框中的lags to include中输入12,点击OK。
则x的自相关图2如下。
自相关图2从自相关图的autocorrelation的一栏可以看出自相大部分都关超出了(至少第三个自相关值要落入两倍的标准差中则为平稳的)两倍的标准差。
则可以进一步认为该数据为非平稳的。
为作出最终的判断,对数进行单位根检验。
2.3.单位根检验同样在自相关图2的窗口中点击view→unit root test在弹出的unit root test 的对话空中的automatic selection的下拉框中选择Schwarz Info,并在Include in test equation中选择intercept点击ok则有如下结果输出单位根表3。
单位根表3从表3中以看所有的ADF值没有都小于值临界值,因此结合时序图和自相关图可以判断出该数据为非平稳的。
3、对数据进行平稳化3.1.对数据做一阶差分在代码窗口中输入genr dx=d(x)并按回车键则在workfile窗体中新生成变量为dx的数据该数据即为x的一阶差分。
时间序列分析实验报告
时间序列分析实验报告一、实验目的时间序列分析是一种用于处理和分析随时间变化的数据的统计方法。
本次实验的主要目的是通过对给定的时间序列数据进行分析,掌握时间序列分析的基本方法和技术,包括数据预处理、模型选择、参数估计和预测,并评估模型的性能和准确性。
二、实验数据本次实验使用了一组某商品的月销售量数据,数据涵盖了过去两年的时间范围,共 24 个观测值。
数据的具体形式为一个时间序列,其中每个观测值表示该商品在相应月份的销售量。
三、实验方法1、数据预处理首先,对数据进行了可视化,绘制了时间序列图,以便直观地观察数据的趋势、季节性和随机性。
然后,对数据进行了平稳性检验。
采用了 ADF(Augmented DickeyFuller)检验来判断数据是否平稳。
如果数据不平稳,则需要进行差分处理,使其达到平稳状态。
2、模型选择根据数据的特点和可视化结果,考虑了几种常见的时间序列模型,如 ARIMA(AutoRegressive Integrated Moving Average)模型、SARIMA(Seasonal AutoRegressive Integrated Moving Average)模型和HoltWinters 模型。
通过对不同模型的参数进行估计,并比较它们在训练数据上的拟合效果和预测误差,选择了最适合的模型。
3、参数估计对于选定的模型,使用最大似然估计或最小二乘法等方法来估计模型的参数。
通过对参数的估计值进行分析,判断模型的合理性和稳定性。
4、预测使用估计得到的模型参数,对未来一段时间内的销售量进行预测。
为了评估预测的准确性,采用了均方根误差(RMSE)、平均绝对误差(MAE)等指标来衡量预测值与实际值之间的差异。
四、实验过程1、数据可视化通过绘制时间序列图,发现数据呈现出明显的季节性和上升趋势。
同时,数据的波动范围也较大,存在一定的随机性。
2、平稳性检验对原始数据进行 ADF 检验,结果表明数据是非平稳的。
实验报告关于时间序列(3篇)
第1篇一、实验目的1. 了解时间序列的基本概念和特性;2. 掌握时间序列的常用分析方法;3. 学会运用时间序列分析方法解决实际问题。
二、实验内容1. 时间序列数据收集2. 时间序列描述性分析3. 时间序列平稳性检验4. 时间序列模型构建5. 时间序列预测三、实验方法1. 时间序列数据收集:通过查阅相关文献、统计数据网站等方式获取实验所需的时间序列数据。
2. 时间序列描述性分析:对时间序列数据进行统计分析,包括均值、标准差、偏度、峰度等。
3. 时间序列平稳性检验:运用单位根检验(ADF检验)判断时间序列的平稳性。
4. 时间序列模型构建:根据时间序列的平稳性,选择合适的模型进行构建,如ARIMA模型、季节性分解模型等。
5. 时间序列预测:利用构建好的时间序列模型进行预测,并评估预测结果的准确性。
四、实验步骤1. 数据收集:选取我国某地区近十年的GDP数据作为实验数据。
2. 描述性分析:计算GDP数据的均值、标准差、偏度、峰度等统计量。
3. 平稳性检验:对GDP数据进行ADF检验,判断其平稳性。
4. 模型构建:根据ADF检验结果,选择合适的模型进行构建。
5. 预测:利用构建好的模型对GDP数据进行预测,并评估预测结果的准确性。
五、实验结果与分析1. 数据收集:获取我国某地区近十年的GDP数据,数据如下:年份 GDP(亿元)2010 200002011 230002012 260002013 290002014 320002015 350002016 380002017 410002018 440002019 470002. 描述性分析:计算GDP数据的均值、标准差、偏度、峰度等统计量,结果如下:均值:39600亿元标准差:4900亿元偏度:-0.2峰度:-1.83. 平稳性检验:对GDP数据进行ADF检验,结果显示ADF统计量在1%的显著性水平下拒绝原假设,说明GDP数据是非平稳的。
4. 模型构建:由于GDP数据是非平稳的,我们可以对其进行差分处理,使其变为平稳序列。
时间序列分析试验报告
季平均值为:7058。1 5649.3 4909。6 6597.7
年平均值为:5873.0 5875.0 5853.3 6073.7 6262。5 6384。5
每个季度的数据的散点图:
图1城市居民季度用煤消耗量散点图
(2)分解回归直线趋势。由于数据有缓慢的上升趋势,可以试用回归直线表示趋势项,这时认为( 满足一元线性回归模型
end
Rt=dx-St;%求随机项估计
plot(1:24,St,’*—’,1:24,Rt,'<—’)%画出季节项和随机项图形
图2季节项和随机项散点图
预测:为得到1997年的预报值,可以利用公式
,
这里, 是用例中的24个观测数据对第 个数据的预测值,利用MATLAB编写命令:
for i=25:28
m=5780.1+21。9*(i)+s(i-24)%计算1997年四个季度的预测值
1.0371 —0.3936 -1.1552 0.5110
即季节项估计为
分解随机项:利用原始数据 减去趋势项的估计 和季节项的估计 后得到的数据就是随机项的估计 .
在Matlab命令窗口中继续输入下列命令:
for j=1:6
for k=1:4
St(k+4*(j—1))=s(k);%求季节项值St
end
6384.5
季平均
7058。1
5649。3
4909.6
6597。7
(1)由表8.1.1中每年每季的数据计算年平均值与季平均值,并绘出1991~1996年中每个季度的数据的散点图。
(2)用回归直线趋势法对序列进行分解。
(3)若1997年四季的数据分别为:7720。5 5973。3 5304。4 7075。1,运用(2)对1997年数据作预测并分析误差。
时间序列分析实习报告
实习报告实习单位:某知名科技公司实习时间:2023年7月1日 - 2023年8月31日一、实习背景及目的随着大数据时代的到来,时间序列分析在各个领域中的应用越来越广泛。
为了提高自己在时间序列分析方面的实际操作能力,我选择了某知名科技公司进行为期两个月的实习。
实习的目的主要是通过实际项目操作,掌握时间序列数据的特点,学会使用时间序列分析方法对数据进行处理和分析,并提出合理的预测和解决方案。
二、实习内容及过程在实习期间,我参与了公司的一个时间序列分析项目,负责对某一产品的历史销售数据进行分析,并根据分析结果提出销售预测和建议。
具体实习内容如下:1. 数据收集和处理:首先,我需要从公司的数据库中收集所需的历史销售数据。
在收集数据的过程中,我学会了如何使用SQL语句进行数据查询。
然后,我对收集到的数据进行处理,包括数据清洗、数据整合和数据转换等,以确保分析结果的准确性。
2. 数据分析和建模:在数据处理完成后,我开始进行数据分析。
我首先使用描述性统计方法对数据进行初步分析,了解数据的基本特征。
然后,我使用时间序列分析方法对数据进行建模,包括ARIMA模型、季节性分解模型和趋势预测模型等。
通过对比不同模型的预测效果,我选择了一个最佳的模型进行进一步分析。
3. 结果分析和预测:在确定最佳模型后,我使用该模型对未来的销售数据进行预测,并根据预测结果提出销售建议。
我还对预测结果进行了敏感性分析,以评估预测结果的稳定性和可靠性。
三、实习收获和总结通过这次实习,我掌握了时间序列数据的特点和分析方法,学会了使用SQL语句进行数据查询和处理,提高了自己在实际项目中运用时间序列分析方法的能力。
同时,我也学会了如何根据分析结果提出合理的预测和建议,为公司提供决策支持。
在实习过程中,我认识到时间序列分析不仅仅是一种数据分析方法,更是一种解决问题的思维方式。
通过这次实习,我不仅提高了自己的专业技能,还培养了自己的问题解决能力和团队合作能力。
时间序列实验报告
一、实验目的本次实验旨在通过时间序列分析方法,对一组实际数据进行建模、分析和预测。
通过学习时间序列分析的基本理论和方法,提高对实际问题的分析和解决能力。
二、实验内容1. 数据来源及预处理本次实验所使用的数据集为某地区近十年的年度GDP数据。
数据来源于国家统计局,共包含10年的数据。
2. 数据可视化首先,我们将使用Excel软件绘制年度GDP的时序图,观察数据的基本趋势和周期性特征。
3. 平稳性检验根据时序图,我们可以初步判断数据可能存在非平稳性。
为了进一步验证,我们将使用ADF(Augmented Dickey-Fuller)检验对数据进行平稳性检验。
4. 模型选择由于数据存在非平稳性,我们需要对数据进行差分处理,使其变为平稳序列。
然后,根据自相关函数(ACF)和偏自相关函数(PACF)图,选择合适的模型。
5. 模型参数估计使用最大似然估计法(MLE)对所选模型进行参数估计。
6. 模型拟合与检验将估计出的模型参数代入模型,对数据进行拟合,并计算残差序列。
接着,使用Ljung-Box检验对残差序列进行白噪声检验,以验证模型的有效性。
7. 预测利用拟合后的模型,对未来几年的GDP进行预测。
三、实验过程及结果1. 数据可视化通过Excel绘制年度GDP时序图,发现数据呈现明显的上升趋势,但同时也存在一定的波动性。
2. 平稳性检验对数据进行一阶差分后,使用ADF检验进行平稳性检验。
结果显示,差分后的序列在5%的显著性水平下拒绝原假设,说明序列是平稳的。
3. 模型选择根据ACF和PACF图,选择ARIMA(1,1,1)模型。
4. 模型参数估计使用MLE法对ARIMA(1,1,1)模型进行参数估计,得到参数值:- AR系数:-0.864- MA系数:-0.652- 常数项:392.4765. 模型拟合与检验将估计出的模型参数代入模型,对数据进行拟合,并计算残差序列。
使用Ljung-Box检验对残差序列进行白噪声检验,结果显示在5%的显著性水平下拒绝原假设,说明模型拟合效果较好。
应用时间序列分析实验报告
图16对数序列Lnyt差分后偏自相关图
偏自相关图显示该序列1阶截尾的性质,所以考虑用AR(1)模型拟合lnyt1阶差分后序列。考虑到前面已经进行的1阶差分运算,实际上是用 模型拟合原序列。对序列拟合 模型,模型参数及模型的显著性检验如图17、18所示。
显然,这两个序列的ADF检验结果与根据时序图得到的直观判断完全一致
2.对 分别拟合模型(提示:建立ARIMA模型);
对我国出口对数序列lnxt和进口对数序列lnyt绘制时序图,如图4所示。
图4我国出口总额Xt、进口总额yt取对数时序图
图4中,黑色线代表我国出口对数序列lnxt,红色线代表我国进口对数序列lnyt。时序图显示这两个对数序列有显著的上升趋势,为典型的非平稳序列。同时时序图显示这两个序列具有某种同变关系。
图31对数序列Lnyt拟合效果图
说明:图中,星号为序列观察值;曲线为拟合值。
从图可以直观地看出该ARIMAX模型对原序列的拟合效果良好。
将序列拟合值yt和序列观察值yt联合作图,如图32所示。
图32 yt拟合效果图
(二)P155页:第3题(乘积季节模型)
1.绘制序列时序图。绘制时序图,如图1所示(程序见附录1)。
图1美国月度事故死亡人数序列时序图
时序图显示该序列具有以年为周期的季节效应。
2.差分平稳化:对原序列作1阶12步差分,希望提取原序列季节效应,差分后序列时序图如图2所示。
图2美国月度事故死亡人数1阶12步差分后序列时序图
图28模型参数显著性检验,无常数项
考察残差序列白噪声检验结果,如图29所示。
时间序列_实验报告
一、实验目的1. 了解时间序列分析的基本原理和方法;2. 掌握时间序列数据的平稳性检验、模型识别和参数估计等基本操作;3. 通过实例,学习使用ARIMA模型进行时间序列预测。
二、实验环境1. 操作系统:Windows 102. 软件环境:EViews 9.0、R3.6.1三、实验数据1. 数据来源:某城市1980年1月至2020年12月每月的GDP数据;2. 数据格式:Excel表格。
四、实验步骤1. 数据预处理(1)导入数据:将Excel表格中的GDP数据导入EViews软件;(2)观察数据:绘制GDP时间序列图,观察数据的趋势、季节性和周期性;(3)平稳性检验:使用ADF检验判断GDP序列是否平稳。
2. 模型识别(1)自相关函数(ACF)和偏自相关函数(PACF)图:观察ACF和PACF图,初步确定ARIMA模型的阶数;(2)模型选择:根据ACF和PACF图,选择合适的ARIMA模型。
3. 模型估计(1)模型估计:使用EViews软件中的ARIMA过程,对选择的模型进行参数估计;(2)模型检验:对估计出的模型进行残差检验,包括残差的平稳性检验、白噪声检验等。
4. 时间序列预测(1)预测:使用估计出的ARIMA模型,对2021年1月至2025年12月的GDP进行预测;(2)预测结果分析:对预测结果进行分析,评估预测的准确性。
五、实验结果与分析1. 数据预处理(1)导入数据:将Excel表格中的GDP数据导入EViews软件;(2)观察数据:绘制GDP时间序列图,发现GDP序列存在明显的上升趋势和季节性;(3)平稳性检验:使用ADF检验,发现GDP序列在5%的显著性水平下拒绝原假设,序列是平稳的。
2. 模型识别(1)自相关函数(ACF)和偏自相关函数(PACF)图:根据ACF和PACF图,初步确定ARIMA模型的阶数为(1,1,1);(2)模型选择:根据ACF和PACF图,选择ARIMA(1,1,1)模型。
应用时间序列分析实验报告
应用时间序列分析实验报告实验名称:解释程序含义及操作步骤指导老师: 霍艳成绩:一、 实验目的1.利用MATLAB 操作程序,得出结果;2.解释每一个步骤的含义;3.了解步骤的含义,把握实验的含义及操作每一步的具体意义;二、 实验理论依据在MATLAB 中所有的变量名的解释都是让学员更好的把握定义,明确每一步的含义,客观的、直接的掌握重点,进而为后续解释结果作出更好的准备,以至于作出更好的实验报告,精准的把握主旨。
三、实验步骤clear,clcclose alldata=xlsread('appl_14.xls',1,'B2:B38');x=zeros(10,1);std_x=x;x(1)=4.99661+data(end)+0.70766*1.5843625;sigama=56.4763;std_x(1)=sqrt(sigama);inf_sup=zeros(10,2);inf_sup(1,:)=[x(1)-1.96*std_x(1),x(1)+1.96*std_x(1)];for i=2:10x(i)=x(i-1)+4.99661;std_x(i)=sqrt(sigama*((i-1)*1.70766^2+1));inf_sup(i,:)=[x(i)-1.96*std_x(i),x(i)+1.96*std_x(i)];endt1=1952:1988;t2=1989:1998;datal=[data-sqrt(56.48763),data+sqrt(56.47863)];hold onplot(t1,data,'*b-',t1,datal(:,1),'r-',t1,datal(:,2),'r-')plot(t2,x,'*b-',t2,inf_sup(:,1),'r-',t2,inf_sup(:,2),'r-')hold on四、结果分析Clear:%清空变量clc::%晴空命令空间close all:%关闭图形窗口data=xlsread('appl_14.xls',1,'B2:B38'); :%引入数据源x=zeros(10,1); :%创建十行一列的零矩阵std_x=x; :%std函数是用来计算x的标准偏差的函数x(1)=4.99661+data(end)+0.70766*1.5843625; :%x的第一个值sigama=56.4763; :%主函数变量值std_x(1)=sqrt(sigama); :%算出x(1)的标准偏差等于求主函数变量值的平方根inf_sup=zeros(10,2); :%算出的结果大于某个数的上确界值为一个十行二列的零矩阵inf_sup(1,:)=[x(1)-1.96*std_x(1),x(1)+1.96*std_x(1)]; :% 算出(1,:)的结果大于某个数的上确界值等于一个具体值for i=2:10:%2到10循环的变量大小x(i)=x(i-1)+4.99661; :%x(i)的一个值std_x(i)=sqrt(sigama*((i-1)*1.70766^2+1)); :% x的标准偏差的函数等于主函数变量乘以一个具体值后平方根inf_sup(i,:)=[x(i)-1.96*std_x(i),x(i)+1.96*std_x(i)]; :%算出(i,:)的结果大于某个值后的上确界等于一个具体值end:%是指不等於/结尾t1=1952:1988; :%t1的具体值t2=1989:1998; :%t2具体值datal=[data-sqrt(56.48763),data+sqrt(56.47863)]; :%data定义的一个值hold on:%启动图形保持功能plot(t1,data,'*b-',t1,datal(:,1),'r-',t1,datal(:,2),'r-') :%画一条t1横坐标,data为纵坐标,*b为蓝色线条,r-为紫色线条,分别位于蓝色线条的上下部分plot(t2,x,'*b-',t2,inf_sup(:,1),'r-',t2,inf_sup(:,2),'r-') :% 画一条t2横坐标,x为纵坐标,*b为蓝色线条,r-为紫色线条,分别位于蓝色线条的上下部分hold off:%关闭图形保持功能。
时间序列分析实验报告 (4)
基于matlab的时间序列分析在实际问题中的应用时间序列分析(Time series analysis)是一种动态数据处理的统计方法。
该方法基于随机过程理论和数理统计学方法,研究随机数据序列所遵从的统计规律,以用于解决实际问题。
时间序列分析不仅可以从数量上揭示某一现象的发展变化规律或从动态的角度刻画某一现象和其他现象之间的内在的数量关系及其变化规律性,而且运用时间序列模型可以预测和控制现象的未来行为,以达到修正或重新设计系统使其达到最优状态。
时间序列是指观察或记录到的一组按时间顺序排列的数据。
如某段时间内。
某类产品产量的统计数据,某企业产品销售量,利润,成本的历史统计数据;某地区人均收入的历史统计数据等实际数据的时间序列。
展示了研究对象在一定时期内的发展变化过程。
可以从中分析寻找出其变化特征,趋势和发展规律的预测信息。
时间序列预测方法的用途广泛,它的基本思路是,分析时间序列的变化特征,选择适当的模型形式和模型参数以建立预测模型,利用模型进行趋势外推预测,最后对模型预测值进行评价和修正从而得到预测结果。
目前最常用的拟合平稳序列模型是ARMA模型,其中AR和MA模型可以看成它的特例。
一.时间序列的分析及建模步骤(1)判断序列平稳性,若平稳转到(3),否则转到(2)。
平稳性检验是动态数据处理的必要前提,因为时间序列算法的处理对象是平稳性的数据序列,若数据序列为非平稳,则计算结果将会出错。
在实际应用中,如某地区的GDP,某公司的销售额等时间序列可能是非平稳的,它们在整体上随着时间的推移而增长,其均值随时间变化而变化。
通常将GDP等非平稳序列作差分或预处理。
所以获得一个时间序列之后,要对其进行分析预测,首先要保证该时间序列是平稳化的。
平稳性检验的方法有数据图、逆序检验、游程检验、自相关偏相关系数、特征根、参数检验等。
本实验中采用数据图法,数据图法比较直观。
(2)对序列进行差分运算。
一般而言,若某序列具有线性趋势,则可以通过对其进行一次差分而将线性趋势剔除掉。
时间应用序列实验报告
一、实验背景时间序列分析是统计学和数据分析领域的一个重要分支,广泛应用于经济、金融、气象、生物等多个领域。
本实验旨在通过实际案例,学习时间序列分析方法,并运用相关模型进行预测和解释。
二、实验目的1. 掌握时间序列数据的基本特征和常见模型。
2. 学习时间序列数据的平稳性检验、模型识别和参数估计。
3. 熟悉时间序列预测方法,并进行实际应用。
三、实验数据本次实验选用某城市近五年月均气温数据作为研究对象,数据来源为气象局官方网站。
四、实验步骤1. 数据预处理- 将数据导入统计软件,进行数据清洗和整理。
- 绘制时间序列图,观察数据的基本特征,如趋势、季节性、周期性等。
2. 平稳性检验- 对数据进行单位根检验(ADF检验),判断数据是否平稳。
- 对非平稳数据,进行差分处理,使其达到平稳。
3. 模型识别- 根据时间序列图和自相关图、偏自相关图,初步判断模型类型。
- 对候选模型进行参数估计,比较不同模型的拟合优度。
4. 模型验证- 对模型进行残差分析,检验模型是否合适。
- 利用预测指标(如均方误差、均方根误差等)评估模型的预测性能。
5. 模型应用- 利用训练好的模型,对未来一段时间内的气温进行预测。
- 分析预测结果,解释气温变化趋势和原因。
五、实验结果与分析1. 数据预处理- 数据清洗:删除异常值,填补缺失值。
- 数据整理:将数据转换为时间序列格式。
2. 平稳性检验- 对原始数据进行ADF检验,结果显示P值小于0.05,拒绝原假设,说明数据是非平稳的。
- 对数据进行一阶差分,再次进行ADF检验,结果显示P值大于0.05,接受原假设,说明一阶差分后的数据是平稳的。
3. 模型识别- 根据时间序列图和自相关图、偏自相关图,初步判断模型为ARIMA模型。
- 对ARIMA模型进行参数估计,比较不同模型的拟合优度,最终选择ARIMA(1,1,1)模型。
4. 模型验证- 对模型进行残差分析,发现残差基本符合正态分布,说明模型合适。
时间序列分析实验报告
时间序列分析实验报告时间序列分析实验报告一、引言时间序列分析是一种用于研究时间序列数据的统计方法,通过对时间序列数据的分析和建模,可以揭示数据背后的规律和趋势,为预测和决策提供依据。
本报告旨在通过对某一时间序列数据的分析和建模,展示时间序列分析的基本原理和方法。
二、数据描述本次实验所使用的时间序列数据为某公司每月销售额的数据,共计12个月的数据。
下面是数据的具体描述:月份销售额(万元)1 102 123 154 145 166 187 208 229 2510 2411 26三、数据可视化为了更好地了解数据的特点和趋势,我们首先对数据进行可视化分析。
下图展示了月份与销售额之间的关系:(插入柱状图)从图中可以看出,销售额呈现出逐渐增长的趋势,但并不是完全线性增长,而是有一定的波动。
四、平稳性检验在进行时间序列分析之前,需要先对数据的平稳性进行检验。
平稳性是指时间序列数据的均值和方差在时间上保持不变的性质。
我们使用单位根检验来检验数据的平稳性。
对于本次实验的数据,我们使用ADF检验进行单位根检验。
检验结果显示,数据的ADF统计量为-2.456,显著性水平为0.05时的临界值为-3.605。
由于ADF统计量大于临界值,我们无法拒绝原假设,即数据存在单位根,不具备平稳性。
五、差分处理由于数据不具备平稳性,我们需要对数据进行差分处理,以消除趋势和季节性的影响。
差分处理可以通过计算当前观测值与前一观测值之间的差异来实现。
对本次实验的数据进行一阶差分处理后,得到的差分序列如下:月份差分销售额(万元)2 23 34 -16 27 28 29 310 -111 212 2六、建立ARIMA模型差分处理后的数据满足平稳性的要求,我们可以开始建立ARIMA模型来对数据进行拟合和预测。
ARIMA模型是一种常用的时间序列模型,它包括自回归(AR)、差分(I)和移动平均(MA)三个部分。
通过对差分序列的自相关图(ACF)和偏自相关图(PACF)的分析,我们选择了ARIMA(1,0,1)模型来拟合数据。
时间序列检验实验报告(3篇)
第1篇一、实验目的本实验旨在通过实际操作,理解和掌握时间序列数据平稳性检验的方法和步骤,学习如何利用ADF检验(Augmented Dickey-Fuller test)等统计方法判断时间序列的平稳性,并在此基础上进行时间序列的建模和分析。
二、实验背景时间序列数据在经济学、金融学、气象学等领域有着广泛的应用。
然而,在实际研究中,很多时间序列数据都存在非平稳性,这会影响到模型的估计和预测效果。
因此,对时间序列进行平稳性检验是时间序列分析的重要步骤。
三、实验内容1. 数据准备本实验选取某城市1980年1月至2020年12月每月的气温数据作为研究对象。
2. 平稳性检验(1)图检验法首先,我们绘制气温数据的时序图,观察数据的波动情况。
从时序图中可以看出,气温数据呈现出明显的季节性波动,且数据的均值和方差随时间变化,初步判断该时间序列是非平稳的。
(2)ADF检验接下来,我们使用ADF检验对气温数据进行平稳性检验。
ADF检验的基本原理是,通过检验时间序列是否存在单位根,来判断其是否平稳。
具体操作如下:1. 引入库和函数说明```pythonfrom statsmodels.tsa.stattools import adfuller```2. 进行ADF检验```pythondef adf_test(timeseries):增加滞后阶数dftest = adfuller(timeseries, autolag='AIC')output = pd.Series(dftest[0:4], index=['ADF Statistic', 'p-value', ' Lags Used', 'Number of Observations Used'])for key, value in dftest[4].items():output[f'Critical Value ({key})'] = valuereturn outputadf_result = adf_test(data)print(adf_result)```3. 结果分析从ADF检验结果可以看出,气温数据的ADF统计量小于5%的临界值,p值大于0.05,拒绝原假设,即气温数据是非平稳的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用时间序列分析实验报告学院名称理学院专业班级应用统计学14-2学生姓名张艳雪学号************齐鲁工业大学实验报告 成绩课程名称 《应用时间序列分析实验》 指导教师 黄玉林 实验日期 2017.6.30院(系) 理学院 专业班级 统计14-2 实验地点 机电楼C428学生姓名 张艳雪 学号 201411081051 同组人 无实验项目名称 ARIMA 模型、确定性分析法,多元时间序列建模一、 实验目的和要求1.熟悉非平稳序列的确定性分析法:趋势分析、季节效应分析、综合分析2.熟悉差分平稳序列的建模步骤。
3.掌握单位根检验、协整检验、动态回归模型的建立。
二、 实验原理1. 序列的各种变化都归结于四大因素的综合影响:长期趋势(Trend ),循环波动(Circle ),季节性变化(Season ),机波动(Immediate ).常假设它们有如下的相互模型:加法模型 t t t t t X T C S I =+++ 乘法模型 t t t t t X T C S I =⋅⋅⋅ 混合模型 模型结构不唯一2.非平稳序列如果能通过适当阶数的差分后实现平稳,就可以对差分后序列进行ARMA 模型拟合了,所以ARIMA 模型是差分运算与ARMA 模型的组合tt d B x B ε)()(Θ=∇Φ3.单位根检验:(1)DF 检验;(2)ADF 检验; (3)PP 检验; 4.动态回归模型ARIMAX如果两个非平稳序列之间具有协整关系,则先建立它们的回归模型,再对平稳的残差序列建立ARMA 模型。
⎪⎪⎩⎪⎪⎨⎧ΦΘ=+ΦΘ+=∑=t t t kk it l ii ta B B x B B B y i)()()()(1εεμ三、实验内容1、P202页:第7 题(X11因素分解法)2、P155页:第3题(乘积季节模型)3、P240页:第4题出口为t x ,进口为t y ,回答以下问题(1)画出t x ,t y 的时序图,用单位根检验序列它们的平稳性; (2)对t t y x ln ,ln 分别拟合模型(提示:建立ARIMA 模型);(3)考察t t x y ln ln ,的协整关系,建立t t x y ln ln 关于的协整模型,同时建立误差修正模型。
四、实验过程(一) P202页:第7 题(X11因素分解法) 1.绘制序列时序图。
(程序见附录)由上图可得季节序列的振幅随序列水平的变化而变化,所以季节效应与趋势效应不独立,采用乘法模型: x t =T t ×S t ×I t2.进入x -11季节调整模型经过三个阶段共十步的重复迭代后,得到如下的拟合效果图:显然,该地区奶牛的月度产奶量序列具有显著的季节变动特征。
(二)P155页:第3题(乘积季节模型)1.绘制序列时序图。
绘制时序图,如图1所示(程序见附录1)。
图1 美国月度事故死亡人数序列时序图时序图显示该序列具有以年为周期的季节效应。
2.差分平稳化:对原序列作1阶12步差分,希望提取原序列季节效应,差分后序列时序图如图2所示。
图2 美国月度事故死亡人数1阶12步差分后序列时序图时序图显示差分后序列类似平稳。
3.模型定阶:考察差分后序列自相关图,如图3,进一步确定平稳性判断,并估计拟合模型的阶数。
图3 美国月度事故死亡人数1阶12步差分后序列自相关图自相关图显示延迟12阶自相关系数显著大于2倍标准差范围,这说明差分后序列中仍蕴含着非常显著的季节效应。
延迟1阶的自相关系数也大于2倍的标准差,这说明差分后序列还具有短期相关性。
观察偏自相关图,如图4,得到的结论和上面的结论一致。
图4 美国月度事故死亡人数1阶12步差分后序列偏自相关图图5 序列白噪声检验图5显示,原序列延迟各阶LB 统计量的P 值小于显著性水平0.05,所以拒绝原假设,序列不通过白噪声检验。
根据差分后序列的自相关图和偏自相关图的性质,拟合乘积季节模型12),,(),,p (Q D P q d ARIMA 。
自相关图显示,12阶以内的自相关系数1阶截尾,偏自相关图显示,12阶以内的偏自相关系数1阶截尾,所以尝试使用ARMA(1,0)模型提取差分后序列的短期自相关信息。
再考虑季节自相关特征,这时考察延迟12阶、24阶等以周期长度为单位的自相关系数和偏自相关系数的特征。
自相关图显示延迟12阶自相关系数显著非零,而偏自相关图显示延迟12阶偏自相关系数显著非零,这时用以12步为周期的12)1,1(ARMA 模型提取差分后序列的季节自相关信息。
4.参数估计:图6 拟合模型综合前面的差分信息,我们要拟合的乘积季节模型为12)1,1,1()0,1,1(⨯ARIMA 。
使用条件最小二乘估计方法,确定该模型的口径为:5.模型检验:对序列拟合12)1,1,1()0,1,1(⨯ARIMA 模型,模型及模型参数的显著性检验如图7、8所示。
图7 模型参数的显著性由图7知,拟合效果显示模型参数显著。
图8 残差白噪声检验对拟合模型进行白噪声检验,结果显示P值都大于显著性水平0.05.接受原假设,残差序列通过白噪声检验,模型显著,说明模型拟合良好,对序列相关信息提取充分。
将序列拟合值和序列观察值联合作图,如图9所示。
图9 美国月度事故死亡人数拟合效果图说明:图中,点为序列观察值;曲线为序列拟合值。
从图9可以直观地看出该乘积季节模型对原序列的拟合效果良好。
(三)P240页:第4题1.画出t x ,t y 的时序图,用单位根检验序列的平稳性; 输出时序图如图1所示(程序见附录2)。
图1 我国出口总额Xt 、进口总额yt 时序图图1中,黑色为出口总额xt 序列时序图,红色为进口总额yt 序列时序图。
从图1中可以看出出口总额xt 序列、进口总额yt 序列均显著非平稳,这个直观判断还可以通过单位根检验验证。
同时时序图显示这两个序列具有某种同变关系。
对我国出口总额序列xt 进行ADF 检验,单位根检验结果如图2所示。
图2 出口总额xt 白噪声、单位根检验检验结果显示,无论考虑何种类型的模型,检验统计量的P 值均显著大于0.05的显著性水平,所以可以认为中国我国出口总额序列xt 显著非平稳,且这六种处理均不能实现残差序列平稳。
对我国进口总额序列yt 进行ADF 检验,单位根检验结果如图3所示。
图3 进口总额yt 白噪声、单位根检验同出口序列xt 的检验结果一样,在显著性水平取为0.05时,可以认为我国进口序列yt 非平稳,且这六种处理均不能实现残差序列平稳。
显然,这两个序列的ADF 检验结果与根据时序图得到的直观判断完全一致2.对t t y x ln ,ln 分别拟合模型(提示:建立ARIMA 模型);对我国出口对数序列lnxt 和进口对数序列lnyt 绘制时序图,如图4所示。
图4 我国出口总额Xt 、进口总额yt 取对数时序图图4中,黑色线代表我国出口对数序列lnxt,红色线代表我国进口对数序列lnyt。
时序图显示这两个对数序列有显著的上升趋势,为典型的非平稳序列。
同时时序图显示这两个序列具有某种同变关系。
因为序列呈现出近似线性趋势,所以选择1阶差分。
1阶差分后出口对数序列lnxt时序图如图5所示。
图5 对数序列Lnx差分时序图时序图显示,lnxt差分后序列在均值附近比较稳定地波动。
为了进一步确定平稳性,考察差分后序列的自相关图,如图6所示。
图6 对数序列Lnxt差分后自相关图自相关图显示序列有很强的短期相关性,所以可以初步认为lnxt1阶差分后序列平稳。
对平稳的1阶差分序列进行白噪声检验,白噪声检验结果如图7所示。
图7 lnxt一阶差分后序列白噪声检验在检验的显著性水平取为0.05的条件下,由于延迟6阶、12阶的P值均小于0.05,所以lnxt差分后的序列不能视为白噪声序列,即差分后序列还蕴含着不容忽视的相关信息可以提取。
对平稳非白噪声差分序列拟合ARMA模型,1阶差分后序列的自相关图(见图6)已经显示该序列有不截尾的性质。
再考察其偏自相关系数的性质,如图8所示。
图8 对数序列Lnxt差分后偏自相关图偏自相关图显示出1阶截尾性,所以考虑用AR(1)模型拟合lnxt1阶差分后序列。
考虑到前面已经进行的1阶差分运算,实际上是用)0,1,1(ARIMA模型拟合原序列。
对序列拟合)0,1,1(ARIMA模型,模型参数及模型的显著性检验如图9、10所示。
图9 模型参数显著性检验由图9知,系数显著性检验显示两参数均显著。
对残差序列进行白噪声检验,检验结果如图10所示。
图10 残差白噪声检验显然,拟合检验统计量的P值都显著大于显著性检验水平0.05,可以认为残差序列即为白噪声序列,模型显著,这说明)0,1,1(ARIMA模型对lnxt序列建模成功。
图11 模型图12 对数序列Lnxt拟合效果图说明:图中,星号为序列观察值;曲线为拟合值。
从图可以直观地看出该)0,1,1(ARIMA模型对原序列的拟合效果良好。
因为对数序列lnyt呈现出近似线性趋势,所以选择1阶差分。
1阶差分后进口对数序列lnyt时序图如图13所示。
图13 对数序列Lny差分时序图时序图显示,lnyt差分后序列在均值附近比较稳定地波动。
为了进一步确定平稳性,考察差分后序列的自相关图,如图14所示。
图14 对数序列Lnyt差分后自相关图自相关图显示序列有很强的短期相关性,所以可以初步认为lnyt1阶差分后序列平稳。
对平稳的1阶差分序列进行白噪声检验,白噪声检验结果如图15所示。
图15 lnyt一阶差分后序列白噪声检验在检验的显著性水平取为0.05的条件下,由于延迟6阶的P值小于0.05,所以lnyt差分后的序列不能视为白噪声序列,即差分后序列还蕴含着不容忽视的相关信息可以提取。
对平稳非白噪声差分序列拟合ARMA模型,1阶差分后序列的自相关图(见图14)已经显示该序列有1阶截尾的性质。
再考察其偏自相关系数的性质,如图16所示。
图16 对数序列Lnyt差分后偏自相关图偏自相关图显示该序列1阶截尾的性质,所以考虑用AR(1)模型拟合lnyt1阶差分后序列。
考虑到前面已经进行的1阶差分运算,实际上是用)0,1,1(ARIMA模型拟合原序列。
对序列拟合)0,1,1(ARIMA模型,模型参数及模型的显著性检验如图17、18所示。
图17 模型参数显著性检验由图17知,系数显著性检验显示两参数均显著。
对残差序列进行白噪声检验,检验结果如图18所示。
图18 残差白噪声检验显然,拟合检验统计量的P 值都显著大于显著性检验水平0.05,可以认为残差序列即为白噪声序列,模型显著。
这说明)0,1,1(ARIMA 模型对该序列建模成功。
图19 模型图20 对数序列Lnyt 拟合效果图说明:图中,星号为序列观察值;曲线为拟合值。
从图20可以直观地看出该)0,1,1(ARIMA 模型对原序列的拟合效果良好。