高中数学 选修4-4参数方程讲义
高中数学人教A版选修4-4第二讲 一 1. 参数方程的概念 课件
[解] 法一:设 P 点的坐标为(x,y),过
P 点作 x 轴的垂线交 x 轴于 Q.如图所示,则 Rt△OAB≌Rt△QBP.
∴xy==bascions
θ, θ.
这就是所求的轨迹方程.
9.如图所示,OA是圆C的直径,且OA=2a, 射线OB与圆交于Q点,和经过A点的切线 交于B点,作PQ⊥OA,PB∥OA,试求点P 的轨迹方程.
解:设 P(x,y)是轨迹上任意一点,取∠DOQ=θ, 由 PQ⊥OA,PB∥OA,得 x=OD=OQcosθ=OAcos2θ= 2acos2θ,y=AB=OAtan θ=2atan θ. 所以 P 点轨迹的参数方程为xy==22aatcaons2θθ,, θ∈-π2,π2.
解析:x轴上的点横坐标可取任意实数,纵坐标为0.
答案:D
2.若点P(4,a)在曲线x=2t , (t为参数)上,则a等于(
)
y=2 t
A.4
B.4 2
C.8
D.1
解析:根据题意,将点P坐标代入曲线方程中得
4=2t , a=2 t
⇒ta==84,2.
答案:B
3.在方程
参数方程是曲线方程的另一种表达形式,点与曲线 位置关系的判断,与平面直角坐标方程下的判断方法是 一致的.
1.已知点 M(2,-2)在曲线 C:x=t+1t , (t 为参数)上, y=-2
则其对应的参数 t 的值为________. 解:由 t+1t =2 知 t=1. 答案:1
2.已知某条曲线 C 的参数方程为xy==a1t+2 2t, (其中 t 为参数, a∈R).点 M(5,4)在该曲线上,求常数 a.
人教版高中数学选修4-4课件 参数方程的概念
参数方程是曲线方程的另一种表达形式,点与曲线 位置关系的判断,与平面直角坐标方程下的判断方法是 一致的.
16
3.曲线(x-1)2+y2=4上的点可以表示为( )
A.(-1+cos θ,sin θ)
B.(1+sin θ,cos θ)
C.(-1+2cos θ,2sin θ) D.(1+2cos θ,2sin θ)
a2-t2,
(0<t<a).
7
法二:设点 P 的坐标为(x,y),过点 P 作 x 轴的垂线 交 x 轴于点 Q,如图所示.
取∠QBP=θ, θ 为参数(0<θ<π2), 则∠ABO=π2-θ. 在 Rt△OAB 中, |OB|=acos(π2-θ)=asin θ.
8
在 Rt△QBP 中,
|BQ|=acos θ,|PQ|=asin θ.
∴点 P 在第一象限的轨迹的参来自方程为x=asin θ+cos θ, y=asin θ.
(θ 为参数,0<θ<π2).
9
求曲线参数方程的主要步骤 第一步,画出轨迹草图,设M(x,y)是轨迹上任 意一点的坐标.画图时要注意根据几何条件选择点的 位置,以利于发现变量之间的关系.
10
第二步,选择适当的参数.参数的选择要考虑以下两点: 一是曲线上每一点的坐标x,y与参数的关系比较明显,容易列 出方程;二是x,y的值可以由参数唯一确定.例如,在研究运 动问题时,通常选时间为参数;在研究旋转问题时,通常选旋 转角为参数.此外,离某一定点的“有向距离”、直线的倾斜角、 斜率、截距等也常常被选为参数.
1
2
1.参数方程的概念 在平面直角坐标系中,曲线上任一点的坐标 x,y 都是 某个变数 t(θ,φ,…)的函数:xy==gftt ①,并且对于每一 个 t 的允许值,方程组①所确定的点(x,y)都在这条曲线上, 那么方程组①就叫这条曲线的 参数方程 ,t 叫做参数,相对 于参数方程而言,直接给出坐标间关系的方程叫普通方程 .
人教版高数选修4-4第2讲:参数方程(学生版)
参数方程____________________________________________________________________________________________________________________________________________________________________1.了解直线参数方程,曲线参数方程的条件及参数的意义2.会选择适当的参数写出曲线的参数方程3.掌握参数方程化为普通方程几种基本方法4.了解圆锥曲线的参数方程及参数的意义5.利用圆锥曲线的参数方程来确定最值,解决有关点的轨迹问题一.参数方程的定义1.一般地,在平面直角坐标系中,如果曲线C上任一点P的坐标x和y都可以表示为某个变量t的函数:()()x f ty g t=⎧⎨=⎩;反过来,对于t的每个允许值,由函数式()()x f ty g t=⎧⎨=⎩所确定的点P(x,y)都在曲线C上,那么方程()()x f ty g t=⎧⎨=⎩叫作曲线C的参数方程,变量t是参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程,参数方程可以转化为普通方程.2.关于参数的说明.参数方程中参数可以有物理意义、几何意义,也可以没有明显意义.3.曲线的参数方程可通过消去参数而得到普通方程;若知道变数x、y中的一个与参数t的关系,可把它代入普通方程,求另一变数与参数t的关系,则所得的()()x f ty g t=⎧⎨=⎩,就是参数方程.二.圆的参数方程点P 的横坐标x 、纵坐标y 都是t 的函数:cos sin x r ty r t=⎧⎨=⎩(t 为参数).我们把这个方程叫作以圆心为原点,半径为r 的圆的参数方程. 圆的圆心为O 1(a ,b),半径为r 的圆的参数方程为:cos sin x a r ty b r t =+⎧⎨=+⎩(t 为参数).三.椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为cos sin x a y b θθ=⎧⎨=⎩(θ为参数).规定θ的范围为θ∈[0,2π).这是中心在原点O 、焦点在x 轴上的椭圆参数方程.四.双曲线x 2a 2-y 2b 2=1的参数方程为tan x asec y b ϕϕ=⎧⎨=⎩(φ为参数).规定φ的范围为φ∈[0,2π),且φ≠π2,φ≠3π2.这是中心在原点,焦点在x 轴上的双曲线参数方程.五.曲线C 的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数,t ∈R)其中p 为正的常数.这是焦点在x 轴正半轴上的抛物线参数方程.六.直线的参数方程1.过定点M 0(x 0,y 0)、倾斜角为α的直线l 的参数方程为00cos sin x x t y y t αα=+⎧⎨=+⎩(t 为参数),这一形式称为直线参数方程的标准形式,直线上的动点M 到定点M 0的距离等于参数t 的绝对值.当t >0时,M 0M →的方向向上;当t <0时,M 0M →的方向向下;当点M 与点M 0重合时,t =0.2.若直线的参数方程为一般形式为:⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (t 为参数), 可把它化为标准形式:00cos sin t x t x y y αα=+⎧⎨='+'⎩(t′为参数).其中α是直线的倾斜角,tan α=ba ,此时参数t′才有如前所说的几何意义.类型一.参数方程与普通方程的互化例1:指出参数方程3cos 3sin x y θθ=⎧⎨=⎩⎝ ⎛⎭⎪⎫θ为参数,0<θ<π2表示什么曲线练习1:指出参数方程315cos 215sin x y θθ=+⎧⎨=+⎩(θ为参数,0≤θ<2π).表示什么曲线例2:设直线l 1的参数方程为1,13x t y t=+⎧⎨=+⎩(t 为参数),直线l 2的方程为y =3x +4,则l 1与l 2间的距离为______.练习2:若直线112,:2x t y l kt =-⎧⎨=+⎩(t 为参数)与直线l 2:,12x s y s =⎧⎨=-⎩(s 为参数)垂直,则k =______.类型二.曲线参数方程例3:已知点P (x , y )在曲线2cos ,sin x y θθ=-+⎧⎨=⎩(θ为参数)上,则yx 的取值范围为______.练习1:已知点A (1,0),P 是曲线2cos ,1cos 2x y θθ=⎧⎨=+⎩(θ∈R )上任一点,设P 到直线l :y =12-的距离为d ,则|PA|+d 的最小值是______.例4:已知θ为参数,则点(3,2)到方程cos sin x y θθ=⎧⎨=⎩,的距离的最小值是______.练习1:已知圆C 的参数方程为cos 1,sin x y θθ=+⎧⎨=⎩(θ为参数),则点P (4,4)与圆C 上的点的最远距离是______.例5:已知双曲线方程为x 2-y 2=1,M 为双曲线上任意一点,点M 到两条渐近线的距离分别为d 1和d 2,求证:d 1与d 2的乘积是常数.练习1:将参数方程⎩⎪⎨⎪⎧x =a 2⎝ ⎛⎭⎪⎫t +1t ,y =b 2⎝ ⎛⎭⎪⎫t -1t (t 为参数,a >0,b >0)化为普通方程.类型三.直线参数方程例6:曲线C 1:1cos ,sin ,x y θθ=+⎧⎨=⎩(θ为参数)上的点到曲线C 2:1,2112x t y t⎧=-⎪⎪⎨⎪=-⎪⎩(t 为参数)上的点的最短距离为______.练习1:直线⎩⎪⎨⎪⎧x =2+3t ,y =-1+t (t 为参数)上对应t =0,t =1两点间的距离是( )A .1 B.10 C .10 D .2 2类型四.曲线参数方程的应用例7:在直角坐标系xOy 中,直线l 的方程为x -y +4=0,曲线C的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α为参数).(1)已知在极坐标(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为⎝⎛⎭⎪⎫4,π2,判断点P 与直线l 的位置关系;(2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值.练习1:已知曲线C 的方程为⎩⎪⎨⎪⎧x =12(e t +e -t)cos θ,y =12(e t-e-t)sin θ.当t 是非零常数,θ为参数时,C 是什么曲线?当θ为不等于k π2(k ∈Z)的常数,t 为参数时,C 是什么曲线?两曲线有何共同特征?类型五.极坐标与参数方程的综合应用例8:(2015·广东卷Ⅱ,数学文14)在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线C 1的极坐标方程为ρ(cos θ+sin θ)=-2,曲线C 2的参数方程为⎩⎨⎧x =t2y =22t(t 为参数),则C 1与C 2交点的直角坐标为________. 练习1:求圆3cos ρθ=被直线22,14x t y t =+⎧⎨=+⎩(t 是参数)截得的弦长.1.将参数方程⎩⎪⎨⎪⎧x =2+sin 2θ,y =sin 2θ(θ为参数)化为普通方程是( ) A .y =x -2 B .y =x +2C .y =x -2(2≤x≤3)D .y =x +2(0≤y≤1)2.椭圆42cos 15sin x y θθ=+⎧⎨=+⎩(θ为参数)的焦距为( )A.21B .221C.29D .2293.参数方程⎩⎪⎨⎪⎧x =e t-e -t,y =e t +e -t(t 为参数)表示的曲线是( ) A .双曲线 B .双曲线的下支 C .双曲线的上支D .圆4.双曲线23tan sec x y θθ=+⎧⎨=⎩,(θφ为参数)的渐近线方程为5.(2015·惠州市高三第二次调研考试)在直角坐标系xOy 中,直线l的参数方程为⎩⎪⎨⎪⎧x =t ,y =4+t (t为参数).以原点O 为极点,以x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=42sin ⎝⎛⎭⎪⎫θ+π4,则直线l 和曲线C 的公共点有________个.6.若直线3x +4y +m =0与圆1cos ,2sin x y θθ=+⎧⎨=-+⎩(θ为参数),没有公共点,则实数m 的取值范围是______.7.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcos θ=4的直线与曲线⎩⎪⎨⎪⎧x =t 2,y =t 3(t 为参数)相交于A ,B 两点,则|AB|=________. 8.已知直线l :34120x y +-=与圆C :12cos ,22sin x y θθ=-+⎧⎨=+⎩(θ为参数),试判断它们的公共点的个数.9.求直线2,,x t y =+⎧⎪⎨=⎪⎩(t 为参数)被双曲线x 2-y 2=1截得的弦长_________________________________________________________________________________ _________________________________________________________________________________基础巩固1.当参数θ变化时,动点P (2cos θ,3sin θ)所确定的曲线必过( ) A .点(2,3)B .点(2,0)C .点(1,3)D .点⎝⎛⎭⎪⎫0,π22.双曲线6sec x y αα⎧=⎪⎨=⎪⎩(α为参数)的两焦点坐标是( )A .(0,-43),(0,43)B .(-43,0),(43,0)C .(0,-3),(0,3)D .(-3,0),(3,0)3.参数方程⎩⎪⎨⎪⎧x =sin α2+cos α2,y =2+sin α(α为参数)的普通方程为( )A .y 2-x 2=1B .x 2-y 2=1C .y 2-x 2=1(|x |≤2)D .x 2-y 2=1(|x |≤2)4.参数方程⎩⎪⎨⎪⎧x =cos 2θ,y =sin 2θ(θ为参数)表示的曲线是( )A .直线B .圆C .线段D .射线5.设O 是椭圆3cos 2sin x y αα=⎧⎨=⎩(α为参数)的中心,P 是椭圆上对应于α=π6的点,那么直线OP的斜率为( )A.33B. 3C.332D.2396.将参数方程12cos 2sin x y θθ=+⎧⎨=⎩(θ为参数)化为普通方程是____________.7.点P(x ,y)在椭圆4x 2+y 2=4上,则x +y 的最大值为______,最小值为________.8.在平面直角坐标系中,已知直线l 与曲线C 的参数方程分别为l :⎩⎪⎨⎪⎧x =1+s ,y =1-s (s 为参数)和C :⎩⎪⎨⎪⎧x =t +2,y =t 2(t 为参数),若l 与C 相交于A 、B 两点,则|AB|=________. 能力提升9.点(2,33)对应曲线4cos 6sin x y θθ=⎧⎨=⎩(θ为参数)中参数θ的值为( )A .k π+π6(k∈Z)B .k π+π3(k∈Z)C .2k π+π6(k∈Z)D .2k π+π3(k∈Z)10.椭圆x 29+y24=1的点到直线x +2y -4=0的距离的最小值为( )A.55B. 5C.655D .011.(2015·湛江市高三(上)调考)直线⎩⎪⎨⎪⎧x =2-12t ,y =-1+12t(t 为参数)被圆x 2+y 2=4截得的弦长为________.12.在平面直角坐标系xOy中,若l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :3cos 2sin x y θθ=⎧⎨=⎩(θ为参数)的右顶点,则常数a 的值为________.13.(2015·惠州市高三第一次调研考试)已知在平面直角坐标系xOy 中圆C 的参数方程为:3cos 13sin x y θθ⎧=⎪⎨=+⎪⎩(θ为参数),以Ox 为极轴建立极坐标系,直线极坐标方程为:ρcos ⎝ ⎛⎭⎪⎫θ+π6=0,则圆C 截直线所得弦长为________.14.(2014·辽宁卷)将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(1)写出C的参数方程;(2)设直线l:2x+y-2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.课程顾问签字: 教学主管签字:。
选修4-4第二讲参数方程(文)
一、学习目标1. 通过分析抛射体运动中时间与物体位置的关系,了解参数方程的概念,体会其意义。
2. 理解直线、圆、椭圆的参数方程及其参数的意义,掌握它们的参数方程与普通方程的互化,并能利用参数方程解决一些相关的应用问题(如求最值等)。
3. 了解抛物线、双曲线的参数方程,能将它们的参数方程化为普通方程。
4. 知道摆线、圆的渐开线的参数方程,体会参数在建立曲线方程中的作用。
二、重点、难点重点:直线、圆、椭圆的参数方程的建立,以及参数方程与普通方程的互化与应用。
难点:对上述三类重点参数方程中参数的意义的理解,以及熟练应用参数方程解决相关问题。
三、考点分析高考中对本讲的考查以直线、圆、椭圆的参数方程为主,有时会与极坐标方程相结合,多以选做题的形式出现在填空题或解答题中,难度不大,分值为5-10分,不同的省份在题型和分值的设定上略有差异,与普通方程的互化仍然是解决此类问题的常用策略,此外,参数方程也为解决解析几何中的最值、轨迹等问题提供了一条思路。
一、知识网络(1)圆的参数方程其中θ的几何意义为圆心角(参看图甲)(2)椭圆的参数方程其中θ为椭圆的离心角(参看图乙)乙(3)双曲线的参数方程(4)抛物线的参数方程知识点一:参数方程的建立例1 (1)经过点M (1,5)且倾斜角为3π的直线,以定点M 到动点P 的位移t 为参数的参数方程是( )A. ⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 235211 B.⎪⎪⎩⎪⎪⎨⎧+=-=t y t x 235211 C. ⎪⎪⎩⎪⎪⎨⎧-=+=t y t x 235211 D. ⎪⎪⎩⎪⎪⎨⎧+=+=t x t y 215231 (2)已知椭圆1422=+yx ,点P 为椭圆上一动点,O 为坐标原点,设由x 轴逆时针旋转到OP 的角为α,则该椭圆的以α为参数的参数方程为 。
知识点一小结:参数方程的建立主要是指利用教材中的直线、圆、椭圆的参数方程的基本形式结合题中参数的意义直接写出参数方程,同时也是利用参数方程解决一些解析几何问题的知识基础。
选修4-4参数方程
= 4(sin +cos ) 16(1+sin )
2 2
=16sin(2cos -1)>0 1 3 cos ,0 sin . 2 2 由直线参数方程中参数的几何意义知 4 |PA||PB|=|t 2 |=|t1 t 2 |= , 1||t 2 1+sin 16 <|PA||PB|<4. 7
.
的参数方程为
.
x 2cos , ( 为参数) y 2 2sin
4t x , 2 1 t (t为参数) 2 y 4t 1 t2
典型例题—直线的参数方程几何意义的运用
例3直线 l 经过点 P(2,1) ,倾斜角为 ,它与椭圆
4 cos , 6 2x+y max 4.
典型例题—求动点的轨迹方程
例6已知线段BB 4 ,直线 l 垂直平分 BB,交 BB
于点 O ,在 l 上并且以 O 为起点的同一射线上取两
点 P, P ,使 OP OP 9 ,求直线 BP 与直线 BP
典型例题—曲线上的点到定点或定直线的距离
于 A, B 两点,在椭圆C 上找一点 P ,使 ABP
x2 y2 1 例4设直线l : x 2 y 2 0 ,交椭圆 C : 9 4
分析:因为三角形一边AB为定值,故只需 面积最大 . 求AB边上的高的最大值. 解: 由椭圆的参数方程,
x y 2 1相交于A, B 两点,求 PA PB 的取值范围. 2
解: x=2+tcos , 设直线l的参数方程为 (t为参数), y=1+tsin
2
将上式代入到椭圆方程x2 +2y2 =2中, 得(2+tcos ) 2 2(1+tsin ) 2 2 整理,得(1+sin )t +4(sin +cos )t+4=0,
高考数学冲刺讲义选修4-4坐标系与参数方程(选考)
(1 t ) (1 t ) 4,
2 2
因此t1 1, t2 1
t 1
2
x1 0 分别代入直线方程,得 y1 2 交点为A(0,2)和B(2,0)。
x2 2 y2 0
选修4-4
六.圆锥曲线的参数方程
x x0 lt ,t R y y0 mt
例10:直线过点A(1,3),且与向量(2,-4)共线: (1)求出直线的参数方程;(2)练习:求点P(-2,-1) 到此直线的距离。
x 1 2t y 3 4t
解:(1)
(2)解第二问的方法很多,最简单的方法就是把直线才 参数方程转换为直线的一般方程,然后利用点到直线 的距离公式求解。 答案: 2 2
又因为(t以s为单位),得参数方程
x 2 cos 60 t ,t 0 y 2 sin t 60
O
A 2 x
曲线的直角坐标方程常常可以转化为参数方程,转化的 关键是找到一个适当的参数。
曲线的普通方程和参数方程之间有些容易转化,有些则 较困难,有些无法转化。
由此可见,平面上的点与它的极坐标不是一一对应关系。这是极 坐标与直角坐标的 0 ,此时极坐标 ( , ) 对应的点M 的位置下面规则确定:点M在与极轴成 角的射线的反向 延长线上, 它到极点O的距离为 ,即规定当 0 时,点
M ( , ) 就是点M ( , ) 。
选修4-4
坐标系 与 参数方程
选修4-4
一.坐标系 在生产实践中,随着活动范围的扩大和对精度要 求的提高,为了更快,更准确的表述物体的位置, 我们通常要建立新的坐标系,叫做极坐标。
最新人教版高中数学选修4-4《参数方程》本章概览_1
第二讲 参数方程
本章概览
内容提要
1.参数方程的定义:设在平面上取定了一个直角坐标系xOy,把坐标x 、y 表示为第三个变
量t 的函数:⎩
⎨⎧==)(),(t g y t f x (a≤t≤b),若对于t 的每一个值,所确定的点M(x,y)都在一条曲线上;而曲线上的任一点M(x,y)都可通过t 的某个值而得到,则上式即称为该曲线的参数方程.
2.圆的参数方程⎩⎨⎧==θ
θsin ,cos r y r x (θ为参数). 3.椭圆的参数方程⎩
⎨⎧==θθsin ,cos b y a x (θ为参数). 4.双曲线的参数方程⎩⎨⎧==θ
θtan ,sec b y a x (θ为参数). 5.抛物线的参数方程⎩⎨⎧==pt
y pt x 2,22(t 为参数).
6.过M 0(x 0,y 0)的直线的参数方程为⎩⎨⎧+=+=θ
θsin ,cos 00t y y t x x (θ为参数).
7.圆的渐开线⎩
⎨⎧-=+=)cos (sin ),sin (cos ϕϕϕϕϕϕr y r x (φ是参数). 8.圆的摆线⎩⎨⎧-=-=)
cos 1(),sin (ϕϕϕr y r x (φ为参数). 学法指导
1.掌握直线和圆的参数方程,学会参数方程和普通方程的互化.
2.掌握圆锥曲线的参数方程,通过具体问题的分析,体会用参数方程解决某些问题.
3.分析建立曲线的参数方程的步骤,总结用向量方法建立参数方程.
4.体会从实践中抽象出数学问题的过程及数学在实践中的应用价值.。
选修4-4数学坐标系与参数方程
选修4-4数学坐标系与参数方程一、基础知识与考点梳理坐标系是解决几何问题的工具之一,包括平面直角坐标系和极坐标系。
参数方程是通过参数的变化来描述图形的方程,常用于描述曲线的运动或变化。
考点:1. 平面直角坐标系:了解坐标系的定义、坐标轴的性质、平面点的坐标表示方法以及表示直线和曲线的方程的求解方法。
2. 极坐标系:了解极坐标系的定义、坐标轴的性质、平面点的极坐标表示方法以及表示曲线的方程的求解方法。
3. 参数方程:了解参数方程的定义和解题步骤,熟练掌握参数方程求交点和极值点的方法。
二、典型例题解析例1、已知函数y=x²-2x+3,求其图像与x轴、y轴、直线x=1、y=3所围成的面积。
【解析】:1. 求该函数的根,即当y=0时x满足的条件:x=1±√2。
2. 绘制函数图像。
由于该函数为二次函数,故开口向上,图像开口向上,存在顶点,而顶点的横坐标为x=-b/2a,即x=1。
当x=0时,y=3,即函数在y轴上截距为3,因此y轴上的一点为(0,3)。
3. 按要求计算所求面积=△x=1△x=-∫1√2(y-3)dx+∫√2^3(y-x²+2x)dx=2-2√2/3例2、考虑曲线x=2cost+cos2t,y=2sint-sin2t的形状和特征,求其极坐标方程,指出极点和极轴,找出曲线上各点的对称点。
【解析】:1. 观察曲线方程,发现x的系数为2,y的系数为-1。
而2cos2t+1=2cos²t-2sin²t+1,故有x=4cos²t-1-y。
2. 代入x²+y²=r²,消去t,即得其极坐标方程r=4cos2θ-3。
3. 极点为(θ=r=0),为对称中心,且曲线轨迹在极轴之上。
4. 若要求曲线上一点的对称点,可先求该点的极坐标系(r,θ),则其对称点的极坐标系为(r,-θ),再用x=rcosθ,y=rsinθ回代直角坐标系。
北师大版数学高二选修4-4讲义第二讲参数方程1参数方程的概念
【综合评价】参数方程是以参变量为中介来表示曲线上的点的坐标的方程,是曲线在同一坐标系下的又一种表示形式.某些曲线上点的坐标,用普通方程描述它们之间的关系比较困难,甚至不可能,列出的方程既复杂又不易理解,而用参数方程来描述曲线上点的坐标的间接关系比较方便,学习参数方程有助于学生进一步体会数学方法的灵活多变,提高应用意识和实践能力.【学习目标】1.通过分析抛物运动中时间与运动物体位置的关系,写出抛物运动轨迹的参数方程,体会参数的意义.并掌握参数方程的概念.2.分析直线、圆和圆锥曲线的几何性质,选择适当的参数写出它们的参数方程.3.举例说明某些曲线用参数方程表示比用普通方程表示更方便,更能感受参数方程的优越性.4.借助教具或计算机软件,观察圆在直线上滚动时圆上定点的轨迹(平摆线)、直线在圆上滚动时直线上定点的轨迹(渐开线),了解平摆线和渐开线的生成过程,并能推导出它们的参数方程.5.通过阅读材料,了解其他摆线(变幅平摆线、变幅渐开线、外摆线、内摆线、环摆线)的生成过程;了解摆线在实际中应用的实例(例如,最速降线是平摆线,椭圆是特殊的内摆线——卡丹转盘,圆摆线齿轮与渐开线齿轮,收割机、翻土机等机械装置的摆线原理与设计,星形线与公共汽车门);了解摆线在刻画行星运动轨道中的作用.【学习计划】内容学习重点建议学习时间参数方程的概念参数方程的概念1课时直线和圆锥曲线的参数方程直线的参数,圆的参数方程,椭圆的参数方程,双曲线的参数方程5课时参数方程化成普通方程参数方程和普通方程的互化2课时平摆线和渐开线平摆线、渐开线2课时1.参数方程的概念(1)一般地,在取定的坐标系中,如果曲线上任意一点的坐标(x,y)都是某个变数t的函数⎩⎨⎧x=f(t),y=g(t),①并且对于t取的每一个允许值,由方程组①所确定的点P(x,y)都在这条曲线上,那么方程组①就叫作这条曲线的参数方程,联系x,y之间关系的变数t叫作参变数,简称参数.相对于参数方程,我们把直接用坐标(x,y)表示的曲线方程f(x,y)=0叫作曲线的普通方程.(2)在参数方程中,应明确参数t的取值范围.对于参数方程x=f(t),y=g(t)来说,如果t的取值范围不同,它们表示的曲线可能是不相同的.如果不明确写出其取值范围,那么参数的取值范围就理解为x=f(t)和y=g(t)这两个函数的自然定义域的交集.2.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.(2)在参数方程与普通方程的互化中,必须使x,y的取值范围保持一致.【思维导图】【知能要点】 1.参数方程的概念. 2.求曲线的参数方程. 3.参数方程和普通方程的互化.题型一 参数方程及其求法1.曲线的普通方程直接地反映了一条曲线上的点的横、纵坐标之间的联系,而参数方程是通过参数反映坐标变量x 、y 间的间接联系.在具体问题中的参数可能有相应的几何意义,也可能没有什么明显的几何意义.曲线的参数方程常常是方程组的形式,任意给定一个参数的允许取值就可得到曲线上的一个对应点,反过来对于曲线上任一点也必然对应着其中的参数的相应的允许取值.2.求曲线参数方程的主要步骤:第一步,画出轨迹草图,设M (x ,y )是轨迹上任意一点的坐标.画图时要注意根据几何条件选择点的位置,以利于发现变量之间的关系.第二步,选择适当的参数.参数的选择要考虑以下两点:一是曲线上每一点的坐标x ,y 与参数的关系比较明显,容易列出方程;二是x ,y 的值可以由参数惟一确定.第三步,根据已知条件、图形的几何性质、问题的物理意义等,建立点的坐标与参数的函数关系式,证明可以省略.【例1】 设质点沿以原点为圆心,半径为2的圆作匀角速度运动,角速度为π60rad/s.试以时间t 为参数,建立质点运动轨迹的参数方程. 解 如图所示,运动开始时质点位于点A 处,此时t =0,设动点M (x ,y )对应时刻t ,由图可知⎩⎨⎧x =2cos θ,y =2sin θ,又θ=π60t (t 的单位:S),故参数方程为⎩⎪⎨⎪⎧x =2cos π60t ,y =2sin π60t .【反思感悟】 以时间t 为参数,在图形中分别寻求动点M 的坐标和t 的关系.1.已知定直线l 和线外一定点O ,Q 为直线l 上一动点,△OQP 为正三角形(按逆时针方向转,如图所示),求点P 的轨迹方程. 解 以O 点为原点,过点O 且与l 垂直的直线为x 轴,过点O 与l 平行的直线为y 轴建立直角坐标系.设点O 到直线l 的距离为d (为定值,且d >0), 取∠xOQ =θ为参数, θ∈⎝ ⎛⎭⎪⎫-π2,π2, 设动点P (x ,y ).在Rt △OQN 中, ∵|OQ |=dcos θ,|OP |=|OQ |, ∠xOP =θ+π3, ∴x =|OP |cos ⎝ ⎛⎭⎪⎫π3+θ=d cos θ·cos ⎝ ⎛⎭⎪⎫π3+θ=⎝ ⎛⎭⎪⎫12-32tan θ·d , y =|OP |·sin ⎝ ⎛⎭⎪⎫π3+θ=d cos θ·sin ⎝ ⎛⎭⎪⎫π3+θ=⎝ ⎛⎭⎪⎫32+12tan θ·d . ∴点P 的参数方程为⎩⎪⎨⎪⎧x =⎝ ⎛⎭⎪⎫12-32tan θd ,y =⎝ ⎛⎭⎪⎫32+12tan θd ⎝ ⎛⎭⎪⎫-π2<θ<π2. 题型二 参数方程和普通方程的互化参数方程化为普通方程,消去参数方程中的参数即可,通过曲线的普通方程来判断曲线的类型.由普通方程化为参数方程要选定恰当的参数,寻求曲线上任一点M 的坐标x ,y 和参数的关系,根据实际问题的要求,我们可以选择时间、角度、线段长度、直线的斜率、截距等作为参数.【例2】 已知某条曲线C 的参数方程为⎩⎨⎧x =1+2t y =at 2(其中t 是参数,a ∈R ),点M (5,4)在该曲线上. (1)求常数a ;(2)求曲线C 的普通方程.分析 本题主要应根据曲线与方程之间的关系,可知点M (5,4)在该曲线上,则点M 的坐标应适合曲线C 的方程,从而可求得其中的待定系数,进而消去参数得到其普通方程.解 (1)由题意可知有⎩⎨⎧1+2t =5,at 2=4,故⎩⎨⎧t =2,a =1.∴a =1.(2)由已知及(1)可得,曲线C 的方程为⎩⎨⎧x =1+2t ,y =t 2.由第一个方程得t =x -12代入第二个方程,得 y =⎝⎛⎭⎪⎫x -122,即(x -1)2=4y 为所求. 【反思感悟】 参数方程化为普通方程时,求参数的表达式应从简单的有唯一结论的式子入手,易于代入消参.2.把下列参数方程化为普通方程.⎩⎨⎧x =3+cos θ,y =2-sin θ,解 由已知得⎩⎨⎧cos θ=x -3,sin θ=2-y .由三角恒等式sin 2θ+cos 2θ=1,可知(x -3)2+(y -2)2=1这就是所求的普通方程.【例3】 选取适当的参数,把普通方程x 216+y 29=1化为参数方程. 解 设x =4cos φ,代入椭圆方程,得16cos 2φ16+y 29=1.∴y 2=9(1-cos 2φ)=9sin 2φ,即y =±3sin φ.由参数φ的任意性可知y =3sin φ.故所求参数方程为⎩⎨⎧x =4cos φ,y =3sin φ(φ为参数).【反思感悟】 选取的参数不同,所得曲线的参数方程不同,注意普通方程和参数方程的等价性.3.选取适当参数,把直线方程y =2x +3化为参数方程.解 选t =x ,则y =2t +3,由此得直线的参数方程⎩⎨⎧x =t ,y =2t +3(t ∈R ).也可选t =x+1,则y =2t +1,参数方程为⎩⎨⎧x =t -1,y =2t +1.1.已知曲线C 的参数方程是:⎩⎨⎧x =3t ,y =2t 2+1(t 为参数).(1)判断点M 1(0,1),M 2(5,4)与曲线C 的位置关系; (2)已知点M 3(6,a )在曲线C 上,求a 的值.解 (1)把点M 1的坐标(0,1)代入方程组,得:⎩⎨⎧0=3t ,1=2t 2+1 解得:t =0.∴点M 1在曲线C 上.同理,可知点M 2不在曲线C 上. (2)∵点M 3(6,a )在曲线C 上,∴⎩⎨⎧6=3t ,a =2t 2+1,解得:t =2,a =9.∴a =9. 2.将下列曲线的参数方程化为普通方程,并指明曲线的类型. (1)⎩⎨⎧x =a cos θ,y =b sin θ(θ为参数,a 、b 为常数,且a >b >0);(2)⎩⎪⎨⎪⎧x =a cos φ,y =b tan φ (φ为参数,a 、b 为正常数); (3)⎩⎨⎧x =2pt 2,y =2pt (t 为参数,p 为正常数).解 (1)由cos 2θ+sin 2θ=1,得x 2a 2+y 2b 2=1 (a >b >0),它表示的曲线是椭圆.(2)由已知1cos φ=x a ,tan φ=yb ,由1cos 2φ=1+tan 2φ,有x 2a 2-y 2b 2=1,它表示的曲线是双曲线. (3)由已知t =y 2p ,代入x =2pt 2得y 24p 2·2p =x , 即y 2=2px 它表示的曲线是抛物线.3.两曲线的参数方程为⎩⎨⎧x =3cos θ,y =4sin θ (θ为参数)和⎩⎨⎧x =-3t 2,y =-4t 2(t 为参数),求它们的交点坐标.解 将两曲线的参数方程化为普通方程, 得x 29+y 216=1,y =43x (x ≤0).联立解得它们的交点坐标为⎝ ⎛⎭⎪⎫-322,-22. 4.△ABC 是圆x 2+y 2=r 2的内接三角形,已知A (r ,0)为定点,∠BAC =60°,求△ABC 的重心G 的轨迹方程.解 因为∠BAC =60°,所以∠BOC =120°,于是可设B (r cos θ,r sin θ),C (r cos(θ+120°),r sin(θ+120°)),重心坐标为(x ,y ), 则⎩⎪⎨⎪⎧x =r +r cos θ+r cos (θ+120°)3,y =r sin θ+r sin (θ+120°)3,消去θ得(3x -r )2+(3y )2=r 2,所以△ABC 重心G 的轨迹方程为⎝ ⎛⎭⎪⎫x -r 32+y 2=r29 (0≤x ≤r 2).[P 28思考交流]把引例中求出的铅球运动轨迹的参数方程消去参数t 后,再将所得方程与原方程进行比较,体会参数方程的作用.答⎩⎨⎧x =v 0t cos α,y =h +v 0t sin α-12gt2其中v 0、α,h 和g 都是常数.这里的g 是重力加速度.h 是运动员出手时铅球的高度.消去参数t 整理得:y =-g2v 20cos 2αx 2+x ·tan x +h .参数方程的作用:当参数t 每取一个允许值,就可以相应地确定一个x 值和一个y 值.这样铅球的位置就相应的确定了.这样建立的t 与x ,y 之间的关系不仅方便,而且清晰地反映了变数的实际意义.如x =v 0t cos α反映了铅球飞行的水平距离. y =h +v 0t sin α-12gt 2反映了铅球的高度与飞行时间的关系.总之它是物理学中弹道曲线的方程. 【规律方法总结】1.求轨迹的参数方程,可以通过对具体问题的分析,选择恰当的参数,建立参数方程.2.曲线的参数方程和普通方程可以互化,两种方程具有等价性.3.曲线上点的坐标如果需要单独表示,使用参数方程比较方便.一、选择题1.下列各点在方程⎩⎨⎧x =sin θ,y =cos 2θ(θ是参数)所表示曲线上的点是( )A.(2,-7)B.⎝ ⎛⎭⎪⎫13,23 C.⎝ ⎛⎭⎪⎫12,12 D.(1,0)解析 由已知可得⎩⎪⎨⎪⎧x =sin θ,y =1-2sin 2θ,将选项代入上式即可.∴x =12时,y =12.故应选C. 答案 C2.将参数方程⎩⎨⎧x =2+sin 2 θ,y =sin 2 θ(θ为参数)化为普通方程为( )A.y =x -2B.y =x +2C.y =x -2 (2≤x ≤3)D.y =x +2 (0≤y ≤1)解析 将参数方程中的θ消去,得y =x -2.又x ∈[2,3],故选C. 答案 C3.曲线(x -1)2+y 2=4上的点可以表示为( ) A.(-1+cos θ,sin θ) B.(1+sin θ,cos θ) C.(-1+2cos θ,2sin θ)D.(1+2cos θ,2sin θ)解析 可设⎩⎪⎨⎪⎧x -1=2cos θ,y =2sin θ,∴⎩⎪⎨⎪⎧x =1+2cos θ,y =2sin θ,∴曲线x 的点可表示为(1+2cos θ,2sin θ). 答案 D4.直线l 的参数方程为⎩⎨⎧x =a +t ,y =b +t (t 为参数),l 上的点P 1对应的参数是t 1,则点P 1与P (a ,b )之间的距离为( ) A.|t 1| B.2|t 1| C.2|t 1|D.22|t 1|解析 点P 1对应的点的坐标为(a +t 1,b +t 1), ∴|PP 1|=(a +t 1-a )2+(b +t 1-b )2=2t 21=2|t 1|.答案 C5.参数方程⎩⎪⎨⎪⎧x =t 2+2t +3y =t 2+2t +2表示的曲线是( )A.双曲线x 2-y 2=1B.双曲线x 2-y 2=1的右支C.双曲线x 2-y 2=1,但x ≥0,y ≥0D.以上结论都不对解析 平方相减得x 2-y 2=1,但x ≥2,y ≥1. 答案 D 二、填空题6.已知曲线⎩⎨⎧x =2sin θ+1,y =sin θ+3(θ为参数,0≤θ<2π).下列各点A (1,3),B (2,2),C (-3,5),其中在曲线上的点是________.解析 曲线方程可化为x -2y +5=0,将A ,B ,C 三点坐标代入曲线的参数方程可知只有A 符合. 答案 A7.物体从高处以初速度v 0(m/s)沿水平方向抛出,以抛出点为原点,水平直线为x 轴,物体所经路线的参数方程为________.解析 设物体抛出的时刻为0 s ,在时刻t s 时其坐标为M (x ,y ),由于物体作平抛运动,依题意,得⎩⎨⎧x =v 0t ,y =-12gt 2,这就是物体所经路线的参数方程. 答案 ⎩⎪⎨⎪⎧x =v 0t ,y =-12gt 2(t 为参数)8.以过点A (0,4)的直线的斜率k 为参数,将方程4x 2+y 2=16化成参数方程是__________.解析 设直线为y =kx +4,代入4x 2+y 2=16化简即可.答案⎩⎪⎨⎪⎧x =-8k 4+k 2,y =16-4k 24+k 29.将参数方程⎩⎨⎧x =sin θ+cos θy =sin θcos θ化成普通方程为__________. 解析 应用三角变形消去θ,同时注意到|x |≤ 2.答案 x 2=1+2y (|x |≤2)三、解答题10.已知曲线C :⎩⎨⎧x =cos θ,y =-1+sin θ,如果曲线C 与直线x +y +a =0有公共点,求实数a 的取值范围.解 ∵⎩⎨⎧x =cos θ,y =-1+sin θ,∴x 2+(y +1)2=1.圆与直线有公共点,d =|0-1+a |2≤1, 解得1-2≤a ≤1+ 2.11.已知圆的极坐标方程为ρ2-42ρcos ⎝ ⎛⎭⎪⎫θ-π4+6=0. (1)将极坐标方程化为普通方程,并选择恰当的参数写出它的参数方程;(2)若点P (x ,y )在该圆上,求x +y 的最大值和最小值.解 (1)由ρ2-42ρcos ⎝ ⎛⎭⎪⎫θ-π4+6=0得ρ2-4ρcos θ-4ρsin θ+6=0, 即x 2+y 2-4x -4y +6=0为所求,由圆的标准方程(x -2)2+(y -2)2=2,令x -2=2cos α,y -2=2sin α,得圆的参数方程为⎩⎨⎧x =2+2cos α,y =2+2sin α(α为参数). (2)由上述可知x +y =4+2(cos α+sin α)=4+2sin(α+π4),故x +y 的最大值为6,最小值为2.12.如图所示,OA 是圆C 的直径,且OA =2a ,射线OB 与圆交于Q 点,和经过A 点的切线交于B 点,已知动点P 满足PQ ⊥OA 于D ,PB ∥OA ,试求点P 的轨迹方程. 解 设点P 坐标为(x ,y ), 则B (2a ,y ),D (x ,0).在Rt △OAB 中,tan θ=AB OA ,∴AB =OA ·tan θ,即y =2a ·tan θ.在Rt △OAQ 中,cos θ=OQ OA ,∴OQ =OA ·cos θ,在Rt △OQD 中,cos θ=OD OQ ,∴OD =OQ ·cos θ,∴OD =OA ·cos 2θ,即x =2a · cos 2θ.即有⎩⎨⎧x =2a cos 2θ,y =2a tan θθ∈⎝ ⎛⎭⎪⎫-π2,π2,化为普通方程为:xy 2+4a 2x =8a 3. 13.在长为a 的线段AB 上有一个动点E ,在AB 的同侧以AE 和EB 为斜边,分别作等腰直角三角形AEC 和EBD ,点P 是CD 的定比分点,且CP ∶PD =2∶1,求点P 的轨迹.解 建立如图所示坐标系(设C ,D 在x 轴上方).设E (t ,0)(t 为参数,t ∈[0,a ]),B (a ,0),则点C 的坐标为⎝ ⎛⎭⎪⎫t 2,t 2,点D 的坐标为⎝ ⎛⎭⎪⎫a +t 2,a -t 2. ∵CP ∶PD =2∶1,即λ=2.由定比分点公式,有⎩⎪⎨⎪⎧x =t 2+2·12(a +t )1+2=16(2a +3t ),y =t 2+2·12(a -t )1+2=16(2a -t )t ∈[0,a ],这就是点P 运动轨迹的参数方程.习题2-1 (第28页)1.解 以摩托车起飞点为原点,水平向前方向为x 轴正方向建立平面直角坐标系,则摩托车飞行轨迹的参数方程为⎩⎪⎨⎪⎧x =19t cos 12°,y =19t sin 12°-12gt 2(g 为重力加速度,时间t 为参数) 2.物体受三个力的作用;地球对物体的引力(重力)mg ;向上的支撑力F 1=mg cos θ;摩擦力F 2=mg sin θ.3.解 以炮弹的出发点为原点,水平向前方向为x 轴正方向建立平面直角坐标系,则炮弹的弹道轨迹的参数方程为⎩⎪⎨⎪⎧x =v 0t cos α,y =v 0t sin α-12gt 2(g 为重力加速度,时间t 为参数).。
高考复习配套讲义:选修4-4 第2讲 参数方程
第2讲 参数方程[最新考纲]1.了解参数方程,了解参数的意义.2.能选择适当的参数写出直线、圆和椭圆的参数方程.3.掌握直线的参数方程及参数的几何意义,能用直线的参数方程解决简单的相关问题.知 识 梳 理1.曲线的参数方程在平面直角坐标系xOy 中,如果曲线上任意一点的坐标x ,y 都是某个变量t 的函数⎩⎨⎧x =f (t ),y =g (t ).并且对于t 的每一个允许值上式所确定的点M (x ,y )都在这条曲线上,则称上式为该曲线的参数方程,其中变量t 称为参数. 2.一些常见曲线的参数方程(1)过点P 0(x 0,y 0),且倾斜角为α的直线的参数方程为⎩⎨⎧x =x 0+t cos αy =y 0+t sin α(t 为参数).(2)圆的方程(x -a )2+(y -b )2=r 2的参数方程为⎩⎨⎧x =a +r cos θy =b +r sin θ(θ为参数).(3)椭圆方程x 2a 2+y 2b 2=1(a >b >0)的参数方程为⎩⎨⎧x =a cos θy =b sin θ(θ为参数).(4)抛物线方程y 2=2px (p >0)的参数方程为⎩⎨⎧x =2pt 2y =2pt (t 为参数).诊 断 自 测1.极坐标方程ρ=cos θ和参数方程⎩⎨⎧x =-1-t ,y =2+t (t 为参数)所表示的图形分别是________.①直线、直线;②直线、圆;③圆、圆;④圆、直线.解析 ∵ρcos θ=x ,∴cos θ=x ρ代入到ρ=cos θ,得ρ=xρ,∴ρ2=x ,∴x 2+y 2=x 表示圆.又∵⎩⎪⎨⎪⎧x =-1-t ,y =2+t ,相加得x +y =1,表示直线.答案 ④2.若直线⎩⎨⎧x =1-2t ,y =2+3t (t 为实数)与直线4x +ky =1垂直,则常数k =________.解析 参数方程⎩⎪⎨⎪⎧x =1-2t ,y =2+3t ,所表示的直线方程为3x +2y =7,由此直线与直线4x +ky =1垂直可得-32×⎝ ⎛⎭⎪⎫-4k =-1,解得k =-6.答案 -63.(2012·北京卷)直线⎩⎨⎧ x =2+t ,y =-1-t (t 为参数)与曲线⎩⎨⎧x =3cos α,y =3sin α(α为参数)的交点个数为________.解析 直线方程可化为x +y -1=0,曲线方程可化为x 2+y 2=9,圆心(0,0)到直线x +y -1=0的距离d =12=22<3.∴直线与圆相交有两个交点. 答案 24.已知直线l :⎩⎨⎧x =1-2t ,y =2+2t (t 为参数)上到点A (1,2)的距离为42的点的坐标为________.解析 设点Q (x ,y )为直线上的点, 则|QA |=(1-1+2t )2+(2-2-2t )2=(2t )2+(-2t )2=42,解之得,t =±22,所以Q (-3,6)或Q (5,-2). 答案 (-3,6)和(5,-2)5.(2013·广东卷)已知曲线C 的极坐标方程为ρ=2cos θ,以极点为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参数方程为________.解析 由ρ=2cos θ知,ρ2=2ρcos θ 所以x 2+y 2=2x ,即(x -1)2+y 2=1, 故其参数方程为⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ(θ为参数).答案 ⎩⎨⎧x =1+cos θ,y =sin θ(θ为参数)考点一 参数方程与普通方程的互化【例1】 把下列参数方程化为普通方程,并说明它们各表示什么曲线;(1)⎩⎪⎨⎪⎧x =1+12t ,y =2+32t(t 为参数);(2)⎩⎨⎧x =1+t 2,y =2+t(t 为参数); (3)⎩⎪⎨⎪⎧x =t +1t ,y =1t -t(t 为参数).解 (1)由x =1+12t 得t =2x -2. ∴y =2+32(2x -2).∴3x -y +2-3=0,此方程表示直线. (2)由y =2+t 得t =y -2,∴x =1+(y -2)2. 即(y -2)2=x -1,此方程表示抛物线. (3)⎩⎪⎨⎪⎧x =t +1t y =1t -t①②∴①2-②2得x 2-y 2=4,此方程表示双曲线.规律方法 参数方程化为普通方程:化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法,不要忘了参数的范围.【训练1】 将下列参数方程化为普通方程. (1)⎩⎨⎧x =1-sin 2θ,y =sin θ+cos θ(θ为参数); (2)⎩⎪⎨⎪⎧x =12(e t +e -t),y =12(e t-e-t)(t 为参数).解 (1)由(sin θ+cos θ)2=1+sin 2θ=2-(1-sin 2θ), 得y 2=2-x .又x =1-sin 2θ∈[0,2], 得所求的普通方程为y 2=2-x ,x ∈[0,2]. (2)由参数方程得e t =x +y ,e -t =x -y , ∴(x +y )(x -y )=1,即x 2-y 2=1.考点二 直线与圆参数方程的应用【例2】 在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-22t ,y =5+22t(t 为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=25sin θ. (1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B ,若点P 的坐标为(3,5),求|P A |+|PB |. 解 (1)由ρ=25sin θ,得ρ2=25ρsin θ. ∴x 2+y 2=25y ,即x 2+(y -5)2=5. (2)将l 的参数方程代入圆C 的直角坐标方程. 得⎝⎛⎭⎪⎫3-22t 2+⎝ ⎛⎭⎪⎫22t 2=5,即t 2-32t +4=0.由于Δ=(32)2-4×4=2>0,故可设t 1,t 2是上述方程的两实根,所以⎩⎨⎧t 1+t 2=32,t 1·t 2=4.又直线l 过点P (3,5),故由上式及t 的几何意义得|P A |+|PB |=|t 1|+|t 2|=t 1+t 2=3 2.规律方法 (1)过定点P 0(x 0,y 0),倾斜角为α的直线参数方程的标准形式为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数),t 的几何意义是直线上的点P 到点P 0(x 0,y 0)的数量,即t =|PP 0|时为距离.使用该式时直线上任意两点P 1、P 2对应的参数分别为t 1、t 2,则|P 1P 2|=|t 1-t 2|,P 1P 2的中点对应的参数为12(t 1+t 2).(2)对于形如⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (t 为参数),当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题.【训练2】 已知直线l 的参数方程为⎩⎨⎧x =1+t ,y =4-2t (参数t ∈R ),圆C 的参数方程为⎩⎨⎧x =2cos θ+2,y =2sin θ(参数θ∈[0,2π]),求直线l 被圆C 所截得的弦长.解 由⎩⎨⎧ x =1+t ,y =4-2t消参数后得普通方程为2x +y -6=0,由⎩⎨⎧x =2cos θ+2,y =2sin θ消参数后得普通方程为(x -2)2+y 2=4,显然圆心坐标为(2,0),半径为2.由于圆心到直线2x +y -6=0的距离为d =|2×2+0-6|22+1=255,所以所求弦长为222-⎝⎛⎭⎪⎫2552=855. 考点三 极坐标、参数方程的综合应用【例3】 已知P 为半圆C :⎩⎨⎧x =cos θ,y =sin θ(θ为参数,0≤θ≤π)上的点,点A 的坐标为(1,0),O 为坐标原点,点M 在射线OP 上,线段OM 与C 的弧AP 的长度均为π3.(1)以O 为极点,x 轴的正半轴为极轴建立极坐标系,求点M 的极坐标; (2)求直线AM 的参数方程.解 (1)由已知,点M 的极角为π3,且点M 的极径等于π3,故点M 的极坐标为⎝ ⎛⎭⎪⎫π3,π3.(2)点M 的直角坐标为⎝ ⎛⎭⎪⎫π6,3π6,A (1,0). 故直线AM 的参数方程为⎩⎪⎨⎪⎧x =1+⎝ ⎛⎭⎪⎫π6-1t ,y =3π6t(t 为参数).规律方法 涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.【训练3】 (2013·福建卷)在平面直角坐标系中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知点A 的极坐标为(2,π4),直线l 的极坐标方程为ρcos(θ-π4)=a ,且点A 在直线l 上. (1)求a 的值及直线l 的直角坐标方程;(2)圆C 的参数方程为⎩⎨⎧x =1+cos α,y =sin α(α为参数),试判断直线l 与圆C 的位置关系.解 (1)由点A (2,π4)在直线ρcos(θ-π4)=a 上,可得a = 2. 所以直线l 的方程可化为ρcos θ+ρsin θ=2, 从而直线l 的直角坐标方程为x +y -2=0.(2)由已知得圆C 的直角坐标方程为(x -1)2+y 2=1,所以圆C 的圆心为(1,0),半径r =1, 因为圆心C 到直线l 的距离d =12=22<1, 所以直线l 与圆C 相交.转化思想在解题中的应用【典例】 已知圆锥曲线⎩⎨⎧x =2cos θy =3sin θ(θ是参数)和定点A (0, 3),F 1、F 2是圆锥曲线的左、右焦点.(1)求经过点F 1且垂直于直线AF 2的直线l 的参数方程;(2)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求直线AF 2的极坐标方程.[审题视点] (1)先将圆锥曲线参数方程化为普通方程,求出F 1的坐标,然后求出直线的倾斜角度数,再利用公式就能写出直线l 的参数方程.(2)直线AF 2是已知确定的直线,利用求极坐标方程的一般方法求解.解 (1)圆锥曲线⎩⎪⎨⎪⎧x =2cos θy =3sin θ化为普通方程x 24+y 23=1,所以F 1(-1,0),F 2(1,0),则直线AF 2的斜率k =-3,于是经过点F 1且垂直于直线AF 2的直线l 的斜率k ′=33,直线l 的倾斜角是30°,所以直线l 的参数方程是⎩⎪⎨⎪⎧x =-1+t cos 30°y =t sin 30°(t 为参数),即⎩⎪⎨⎪⎧x =32t -1,y =12t(t 为参数).(2)直线AF 2的斜率k =-3,倾斜角是120°,设P (ρ,θ)是直线AF 2上任一点,则ρsin 60°=1sin (120°-θ),ρsin(120°-θ)=sin 60°,则ρsin θ+3ρcos θ= 3.[反思感悟] (1)本题考查了极坐标方程和参数方程的求法及应用.重点考查了转化与化归能力.(2)当用极坐标或参数方程研究问题不很熟练时,可以转化成我们比较熟悉的普通方程求解.(3)本题易错点是计算不准确,极坐标方程求解错误.【自主体验】已知直线l 的参数方程为⎩⎨⎧ x =4-2t y =t -2(t 为参数),P 是椭圆x 24+y 2=1上任意一点,求点P 到直线l 的距离的最大值.解 将直线l 的参数方程⎩⎨⎧x =4-2ty =t -2(t 为参数)转化为普通方程为x +2y =0,因为P 为椭圆x 24+y 2=1上任意一点, 故可设P (2cos θ,sin θ),其中θ∈R . 因此点P 到直线l 的距离d =|2cos θ+2sin θ|12+22=22⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫θ+π45. 所以当θ=k π+π4,k ∈Z 时, d 取得最大值2105.一、填空题1.(2014·芜湖模拟)直线⎩⎨⎧x =-2-2t ,y =3+2t(t 为参数)上与点A (-2,3)的距离等于2的点的坐标是________.解析 由题意知(-2t )2+(2t )2=(2)2,所以t 2=12,t =±22,代入⎩⎪⎨⎪⎧x =-2-2t ,y =3+2t(t 为参数),得所求点的坐标为(-3,4)或(-1,2). 答案 (-3,4)或(-1,2)2.(2014·海淀模拟)若直线l :y =kx 与曲线C :⎩⎨⎧x =2+cos θ,y =sin θ(参数θ∈R )有唯一的公共点,则实数k =________.解析 曲线C 化为普通方程为(x -2)2+y 2=1,圆心坐标为(2,0),半径r =1.由已知l 与圆相切,则r =|2k |1+k 2=1⇒k =±33.答案 ±333.已知椭圆的参数方程⎩⎨⎧x =2cos t y =4sin t (t 为参数),点M 在椭圆上,对应参数t =π3,点O 为原点,则直线OM 的斜率为________.解析 当t =π3时,x =1,y =23,则M (1,23),∴直线OM 的斜率k =2 3. 答案 2 34.(2013·湖南卷)在平面直角坐标系xOy 中,若l :⎩⎨⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎨⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值为________. 解析 ∵x =t ,且y =t -a , 消去t ,得直线l 的方程y =x -a , 又x =3cos φ且y =2sin φ,消去φ, 得椭圆方程x 29+y 24=1,右顶点为(3,0),依题意0=3-a , ∴a =3. 答案 35.直线3x +4y -7=0截曲线⎩⎨⎧x =cos α,y =1+sin α(α为参数)的弦长为________.解析 曲线可化为x 2+(y -1)2=1,圆心(0,1)到直线的距离d =|0+4-7|9+16=35,则弦长l =2r 2-d 2=85.答案 856.已知直线l 1:⎩⎨⎧ x =1-2t ,y =2+kt (t 为参数),l 2:⎩⎨⎧x =s ,y =1-2s (s 为参数),若l 1∥l 2,则k =________;若l 1⊥l 2,则k =________.解析 将l 1、l 2的方程化为直角坐标方程得l 1:kx +2y -4-k =0,l 2:2x +y -1=0,由l 1∥l 2,得k 2=21≠4+k1⇒k =4,由l 1⊥l 2,得2k +2=0⇒k =-1. 答案 4 -17.(2012·广东卷)在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧ x =t ,y =t (t 为参数)和⎩⎨⎧x =2cos θ,y =2sin θ(θ为参数),则曲线C 1与C 2的交点坐标为________.解析 曲线C 1的普通方程为y 2=x (y ≥0), 曲线C 2的普通方程为x 2+y 2=2.由⎩⎪⎨⎪⎧y 2=x (y ≥0),x 2+y 2=2,解得⎩⎪⎨⎪⎧ x =1,y =1,即交点坐标为(1,1). 答案 (1,1)8.直角坐标系xOy 中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,设点A ,B 分别在曲线C 1:⎩⎨⎧ x =3+cos θ,y =sin θ(θ为参数)和曲线C 2:ρ=1上,则|AB |的最小值为________.解析 消掉参数θ,得到关于x 、y 的一般方程C 1:(x -3)2+y 2=1,表示以(3,0)为圆心,以1为半径的圆;C 2:x 2+y 2=1,表示的是以原点为圆心的单位圆,|AB |的最小值为3-1-1=1.答案 19.(2012·湖南卷)在极坐标系中,曲线C 1:ρ(2cos θ+sin θ)=1与曲线C 2:ρ=a (a >0)的一个交点在极轴上,则a =______.解析 ρ(2cos θ+sin θ)=1,即2ρcos θ+ρsin θ=1对应的普通方程为2x +y -1=0,ρ=a (a >0)对应的普通方程为x 2+y 2=a 2.在2x +y -1=0中,令y =0,得x =22.将⎝ ⎛⎭⎪⎫22,0代入x 2+y 2=a 2得a =22. 答案 22二、解答题10.(2013·新课标全国Ⅰ卷)已知曲线C 1的参数方程为⎩⎨⎧ x =4+5cos t ,y =5+5sin t(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).解 (1)将⎩⎨⎧x =4+5cos t ,y =5+5sin t 消去参数t ,化为普通方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x -10y +16=0.将⎩⎨⎧ x =ρcos θ,y =ρsin θ代入x 2+y 2-8x -10y +16=0得ρ2-8ρcos θ-10ρsin θ+16=0. 所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0.(2)C 2的普通方程为x 2+y 2-2y =0.由⎩⎨⎧x 2+y 2-8x -10y +16=0,x 2+y 2-2y =0, 解得⎩⎨⎧ x =1,y =1或⎩⎨⎧ x =0,y =2.所以C 1与C 2交点的极坐标分别为⎝ ⎛⎭⎪⎫2,π4,⎝ ⎛⎭⎪⎫2,π2. 11.(2013·新课标全国Ⅱ卷)已知动点P 、Q 都在曲线C :⎩⎨⎧ x =2cos t ,y =2sin t(t 为参数)上,对应参数分别为t =α与t =2α(0<α<2π),M 为PQ 的中点.(1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 解 (1)依题意有P (2cos α,2sin α),Q (2cos 2α,2sin 2α),因此M (cos α+cos 2α,sin α+sin 2α).M 的轨迹的参数方程为⎩⎨⎧ x =cos α+cos 2α,y =sin α+sin 2α,(α为参数,0<α<2π). (2)M 点到坐标原点的距离d =x 2+y 2=2+2cos α(0<α<2π).当α=π时,d =0,故M 的轨迹通过坐标原点.12.(2012·新课标全国卷)已知曲线C 1的参数方程是⎩⎨⎧x =2cos φ,y =3sin φ(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2,正方形ABCD 的顶点都在C 2上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为⎝ ⎛⎭⎪⎫2,π3. (1)求点A ,B ,C ,D 的直角坐标;(2)设P 为C 1上任意一点,求|P A |2+|PB |2+|PC |2+|PD |2的取值范围.解 (1)由已知可得A ⎝ ⎛⎭⎪⎫2cos π3,2sin π3, B ⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π3+π2,2sin ⎝ ⎛⎭⎪⎫π3+π2, C ⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π3+π,2sin ⎝ ⎛⎭⎪⎫π3+π, D ⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π3+3π2,2sin ⎝ ⎛⎭⎪⎫π3+3π2, 即A (1,3),B (-3,1),C (-1,-3),D (3,-1).(2)设P (2cos φ,3sin φ),令S =|P A |2+|PB |2+|PC |2+|PD |2,则S =16cos 2φ+36sin 2φ+16=32+20sin 2φ.因为0≤sin 2φ≤1,所以S 的取值范围是[32,52].。
人教A版数学【选修4-4】ppt课件:第二讲《参数方程》小结
本讲小结
知识结构
知识要点
方法技巧
本讲主要介绍了参数方程的概念,以及常用曲线的参数方程和 它们的应用. 1.曲线参数方程的定义 一般地,在给定的坐标系中,如果曲线上任意一点的坐标x,y 都是某个变量t的函数
x=ft, y=gt.
(1)
并且对于t的每一个允许值,由方程(1)所确定的点M(x,y) 都在这条曲线上,那么方程(1)就叫作这条曲线的参数方程, 联系x,y之间关系的变数叫作参变数,简称参数.参数方程的 参数可以有物理意义,几何意义,也可以没有明显的意义.
(t为参数).
代入圆的方程x2+y2=7,得 3 2 1 2 (-4+ t) +( t) =7,化简得 2 2 t2-4 3t+9=0.
(1)设点A,B所对应的参数分别为t1和t2,由韦达定理,得t1+ t2=4 3,t1· t2=9. ∴|AB|=|t1-t2| = t1+t22-4t1t2 = 4 32-4×9=2 3. (2)设过P0作圆的切线为P0T. 由切割线定理及参数t的几何意义得 |P0T|2=|P0A|· |P0B|=|t1t2|=9. ∴切线长|P0T|=3.
在互化后某个变量的范围扩大了(或缩小了),则必须注明,将 扩大(或缩小)的部分去掉(或补上).由于选取参数不同,同一 曲线的参数方程也不一样.因此,一般曲线的参数方程不唯 一.另外,不是所有的参数方程都能用初等方法化为普通方程 的. 化参数方程为普通方程,常用的方法有:代入法、三角恒 等式消参数法、代数恒等式消参数法等.
(φ 为参数).
【答案】
x=2cosφ+φsinφ, y=2sinφ-φcosφ
(φ为参数)
x=2φ-sinφ, y=21-cosφ
人教A版高中数学选修4-4课件参数方程的概念ppt
意义。
2. 2.同一曲线选取参数不同,曲线参数方程形式也不一样 3. 3.在实际问题中要确定参数的取值范围
变式:
一架救援飞机以100m/s的速度作水平直线飞行.在离灾 区指定目标1000m时投放救援物资(不计空气阻力,重 力加速g=10m/s)问此时飞机的飞行高度约是多少? (精确到1m)
例1:已知曲线C的参数方程是
B
( 25 , 0); 16
2、方程{ x sin (为参数)表示的曲线上 y cos 2
的一个点的坐标是 () C
A、(2,7)B、(1 , 1),C、(1 , 1), D(1,0)
32
22
训练2:
已知曲线C的参数方程是
x y
1 2t at 2.
,ቤተ መጻሕፍቲ ባይዱ
(t为参数,a
x y
3t, 2t 2
(t为参数) 1.
(1)判断点M1(0,1),M2(5,4)与曲线C 的位置关系; (2)已知点M3(6,a)在曲线C上,求a的值。
训练1
1、曲线与xx轴的1 交t 2点, (坐t为标参是数()) y 4t 3
A、(1,4);B、(12C65、, 0D)、; (1, 3);
小结:
一般地,在平面直角坐标系中,如果曲线上任意一点的坐标
x,y都是某个变数t的函数 x f (t),
y
g (t ).
(2)
并且对于t的每一个允许值,由方程组(2)所确定的点M(x,y) 那都么在方这程条(曲2线)上就,叫做这条曲线的参数方程, 联系变数x,y的变数t叫做参变数,简称参数。
2
思考题:动点M作等速直线运动,它在x轴和y轴方向的 速度分别为5和12,运动开始时位于点P(1,2),求点M的轨 迹参数方程。
高中数学选修4-4-参数方程
参数方程知识集结知识元参数方程知识讲解1.参数方程的概念【知识点的认识】参数方程的定义在平面直角坐标系中,如果曲线上任意一点的坐标(x,y)都是某个变数t的函数,即,并且对于t的每一个允许值,由该方程组所确定的点M(x,y)都在这条曲线上,那么此方程组就叫做这条曲线的参数方程,联系变数x,y的变数t叫做参变数,简称参数.对于参数方程而言,直接给出点的坐标间关系的方程F(x,y)=0叫做普通方程.2.参数方程化成普通方程【知识点的认识】参数方程和普通方程的互化由参数方程化为普通方程:消去参数,消参数的方法有代入法、加减(或乘除)消元法、三角代换法等.如果知道变数x,y中的一个与参数t的关系,例如x=f(t),把它代入普通方程,求出另一个变数与参数的关系y=g(t),那么就是曲线的参数方程,在参数方程与普通方程的互化中,必须使x,y的取值范围保持一致.3.直线的参数方程【知识点的认识】直线、圆锥曲线的普通方程和参数方程轨迹普通方程参数方程直线y﹣y0=tan α(x﹣x0)(t为参数)圆(x﹣a)2+(y﹣b)2=r2(θ为参数)椭圆(θ为参数)+=1(a>b>0)双曲线(θ为参数)﹣=1抛物线y2=2px(p>0)(t为参数)【解题思路点拨】1.选取参数时的一般原则是:(1)x,y与参数的关系较明显,并列出关系式;(2)当参数取一值时,可唯一的确定x,y的值;(3)在研究与时间有关的运动物体时,常选时间作为参数;在研究旋转物体时,常选用旋转角作为参数;此外,也常用线段的长度、倾斜角、斜率、截距等作为参数.2.求曲线的参数方程常常分成以下几步:(1)建立直角坐标系,在曲线上设任意一点P(x,y);(2)选择适当的参数;(3)找出x,y与参数的关系,列出解析式;(4)证明(常常省略).3.根据直线的参数方程标准式中t的几何意义,有如下常用结论:(1)若M1,M2为l上任意两点,M1,M2对应t的值分别为t1,t2,则|M1M2|=|t1﹣t2|;(2)若M0为线段M1M2的中点,则有t1+t2=0;(3)若线段M1M2的中点为M,则M=t M=.一般地,若点P分线段M1M2所成的比为λ,则t P=.4.直线的参数方程的一般式(t为参数),是过点M0(x0,y0),斜率为的直线的参数方程.当且仅当a2+b2=1且b≥0时,才是标准方程,t才具有标准方程中的几何意义.将非标准方程化为标准方程是(t′∈R),式中“±”号,当a,b同号时取正;当a,b异号时取负.5.参数方程与普通方程互化时,要注意:(1)不是所有的参数方程都能化为普通方程;(2)在化参数方程为普通方程时变量的范围不能扩大或缩小;(3)把普通方程化为参数方程时,由于参数选择的不同而不同,参数的选择是由具体的问题来决定的.6.在已知圆、椭圆、双曲线和抛物线上取一点可考虑用其参数方程设定点的坐标,将问题转化为三角函数问题求解.7.在直线与圆和圆锥位置关系问题中,涉及距离问题探求可考虑应用直线参数方程中参数的几何意义求解.8.在求某些动点的轨迹方程时,直接寻找x,y的关系困难,甚至找不出时,可以通过引入参数,建立动点的参数方程后求解.4.圆的参数方程【知识点的认识】直线、圆锥曲线的普通方程和参数方程轨迹普通方程参数方程直线y﹣y0=tan α(x﹣x0)(t为参数)圆(x﹣a)2+(y﹣b)2=r2(θ为参数)椭圆(θ为参数)+=1(a>b>0)双曲线(θ为参数)﹣=1抛物线y2=2px(p>0)(t为参数)【解题思路点拨】1.选取参数时的一般原则是:(1)x,y与参数的关系较明显,并列出关系式;(2)当参数取一值时,可唯一的确定x,y的值;(3)在研究与时间有关的运动物体时,常选时间作为参数;在研究旋转物体时,常选用旋转角作为参数;此外,也常用线段的长度、倾斜角、斜率、截距等作为参数.2.求曲线的参数方程常常分成以下几步:(1)建立直角坐标系,在曲线上设任意一点P(x,y);(2)选择适当的参数;(3)找出x,y与参数的关系,列出解析式;(4)证明(常常省略).3.根据直线的参数方程标准式中t的几何意义,有如下常用结论:(1)若M1,M2为l上任意两点,M1,M2对应t的值分别为t1,t2,则|M1M2|=|t1﹣t2|;(2)若M0为线段M1M2的中点,则有t1+t2=0;(3)若线段M1M2的中点为M,则M0M=t M=.一般地,若点P分线段M1M2所成的比为λ,则t P=.4.直线的参数方程的一般式(t为参数),是过点M0(x0,y0),斜率为的直线的参数方程.当且仅当a2+b2=1且b≥0时,才是标准方程,t才具有标准方程中的几何意义.将非标准方程化为标准方程是(t′∈R),式中“±”号,当a,b同号时取正;当a,b异号时取负.5.参数方程与普通方程互化时,要注意:(1)不是所有的参数方程都能化为普通方程;(2)在化参数方程为普通方程时变量的范围不能扩大或缩小;(3)把普通方程化为参数方程时,由于参数选择的不同而不同,参数的选择是由具体的问题来决定的.6.在已知圆、椭圆、双曲线和抛物线上取一点可考虑用其参数方程设定点的坐标,将问题转化为三角函数问题求解.7.在直线与圆和圆锥位置关系问题中,涉及距离问题探求可考虑应用直线参数方程中参数的几何意义求解.8.在求某些动点的轨迹方程时,直接寻找x,y的关系困难,甚至找不出时,可以通过引入参数,建立动点的参数方程后求解.例题精讲参数方程例1.直线l的参数方程为(t为参数).圆C的参数方程为(θ为参数),则直线l被圆C截得的弦长为___.例2.已知圆C的参数方程为(θ为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsinθ+ρcosθ=1,则直线l截圆C所得的弦长是___.例3.在平面直角坐标系中,以原点为极点,x轴正半轴为极轴建立极坐标系,已知抛物线C的极坐标方程为ρcos2θ=4sinθ(ρ≥0),直线l的参数方程为(t为参数),设直线l与抛物线C的两交点为A、B,点F为抛物线C的焦点,则|AF|+|BF|=___.当堂练习填空题练习1.在平面直角坐标系xOy中,直线l的参数方程为(t为参数).圆C的参数方程是=(θ为参数),直线l与圆C交于两个不同的点A、B,当点P在圆C上运动时,△PAB面积的最大值为___练习2.参数方程(θ∈R)所表示的曲线与x轴的交点坐标是_______练习3.设直线的参数方程为(t为参数),点P在直线上,且与点M0(-4,0)的距离为2,若该直线的参数方程改写成(t为参数),则在这个方程中P点对应的t值为____.练习4.设a∈R,直线ax-y+2=0和圆(θ为参数)相切,则a的值为___。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
——基础梳理——1.椭圆的参数方程(1)中心在原点,焦点在x 轴上的椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程是__________.规定参数φ的取值范围为__________.(2)中心在(h ,k)的椭圆的普通方程为-a2+-b2=1,则其参数方程为__________. 2.双曲线的参数方程(1)中心在原点,焦点在x 轴上的双曲线x2a2-y2b2=1(a >0,b >0)的参数方程是__________.规定参数φ的取值范围为__________.(2)中心在原点,焦点在y 轴上的双曲线y2a2-x2b2=1(a >0,b >0)的参数方程是__________. 3.抛物线的参数方程(1)抛物线y2=2px(p >0)的参数方程为__________,t ∈__________.(2)参数t 的几何意义是__________.[答案]1.(1)⎩⎪⎨⎪⎧x =acos φy =bsin φ(φ为参数) [0,2π) (2)⎩⎪⎨⎪⎧ x =h +acos φy =k +bsin φ(φ为参数) 2.(1)⎩⎪⎨⎪⎧ x =asec φy =btan φ(φ为参数) [0,2π),且φ≠π2,φ≠3π2(2)⎩⎪⎨⎪⎧ x =btan φy =asec φ(φ为参数) 3.(1)⎩⎪⎨⎪⎧ x =2pt2y =2pt (t 为参数) (-∞,+∞)(2)抛物线上除顶点外的任意一点与原点连线的斜率的倒数自主演练1.已知方程x2+my2=1表示焦点在y 轴上的椭圆,则()A .m <1B .-1<m <1C .m >1D .0<m <1[解析]方程化为x2+y21m=1,若要表示焦点在y 轴上的椭圆,需要1m>1,解得0<m <1.故应选D.2.已知90°<θ<180°,方程x 2+y 2cos θ=1表示的曲线是( )A .圆B .椭圆C .双曲线D .抛物线[解析]当90°<θ<180°时,-1<cos θ<0,方程x 2+y 2cos θ=1表示的曲线是双曲线.故应选C.[答案]C3.直线y =ax +b 经过第一、二、四象限,则圆⎩⎪⎨⎪⎧x =a +rcos θ,y =b +rsin θ(θ为参数)的圆心位于第几象限() A .一 B .二 C .三 D .四[解析]直线y =ax +b 经过第一、二、四象限,则a <0,b >0,而圆心坐标为(a ,b),所以位于第二象限.[答案]B4.椭圆⎩⎪⎨⎪⎧x =acos θ,y =bsin θ(θ为参数),若θ∈[0,2π],则椭圆上的点(-a,0)对应的θ为( ) A .π B.π2 C .2π D.32π [解析]由已知acos θ=-a ,∴cos θ=-1,又θ∈[0,2π],∴θ=π.故选A.[答案]A5.二次曲线⎩⎪⎨⎪⎧ x =5cos θ,y =3sin θ(θ是参数)的左焦点的坐标为__________.[解析]原方程消去参数θ,得普通方程为x225+y29=1.它是焦点在x 轴上的椭圆,a2=25,b2=9,c2=a2-b2=16,c =4,所以左焦点坐标是(-4,0).6.圆锥曲线⎩⎪⎨⎪⎧ x =4sec θ,y =3tan θ(θ是参数)的渐近线方程是________________,实轴长是__________.[解析]原方程可化为⎩⎪⎨⎪⎧ x 4=sec θ,y 3=tan θ,因为sec2θ-tan2θ=1,所以x216-y29=1.它是焦点在x 轴上的双曲线,∴a2=16.∴双曲线的渐近线为y =±34x ,且实轴长为8. [答案]y =±34x 8——题型探究——题型一 椭圆的参数方程及应用【例1】已知A ,B 分别是椭圆x 236+y 29=1的右顶点和上顶点,动点C 在该椭圆上运动,求△ABC 的重心G 的轨迹方程. 【分析】△ABC 的重心G 取决于△ABC 的三个顶点的坐标,为此需要把动点C 的坐标表示出来,可考虑用参数方程的形式.【解析】由题意知A(6,0),B(0,3),由于动点C 在椭圆上运动,故可设动点C 的坐标为(6cos θ,3sin θ),点G 的坐标设为(x ,y),由三角形重心的坐标公式可得⎩⎪⎨⎪⎧ x =6+0+6cos θ3y =0+3+3sin θ3,即⎩⎪⎨⎪⎧ x =2+2cos θy =1+sin θ,消去参数θ得到-24+(y -1)2=1. 【评析】本题的解法体现了椭圆的参数方程对于解决相关问题的优越性,运用参数方程显得很简单,运算更简便. 变式训练在椭圆x225+y216=1中有一内接矩形,问内接矩形的最大面积是多少? [解析]椭圆的参数方程为⎩⎪⎨⎪⎧ x =5cost ,y =4sint (t 为参数),设第一象限内椭圆上任一点M(x ,y),由椭圆的对称性,知内接矩形的面积为S =4xy =4³5cost³4sint=40sin2t.当t =π4时,面积S 取得最大值40,此时,x =5cos π4=522,y =4sin π4=22,因此,矩形在第一象限的顶点为⎝ ⎛⎭⎪⎫522,22,此时内接矩形的面积最大,且最大面积为40. 题型二 双曲线的参数方程及应用【例2】求点M0(0,2)到双曲线x2-y2=1的最小距离(即双曲线上任一点M 与点M0距离的最小值).【分析】化双曲线方程为参数方程,对||MM0建立三角函数求最值.【解析】把双曲线方程化为参数方程⎩⎪⎨⎪⎧ x =sec θ,y =tan θ.设双曲线上动点M(sec θ,tan θ),则||M0M 2=sec2θ+(tan θ-2)2=(tan2θ+1)+(tan2θ-4tan θ+4)=2tan2θ-4tan θ+5=2(tan θ-1)2+3,当tan θ-1=0即θ=π4时,||M0M 2取最小值3,此时有||M0M =3,即M0点到双曲线的最小距离为 3. 【评析】在求解一些最值问题时,用参数方程来表示曲线的坐标,将问题转化为三角函数求最值,能简化运算过程.变式训练设P 为等轴双曲线x2-y2=1上的一点,F1,F2为两个焦点,证明:||F1P ²||F2P =||OP 2.[解析]如图所示,设双曲线上的动点为P(x ,y),焦点F1(-2,0),F2(2,0),双曲线的参数方程为⎩⎪⎨⎪⎧ x =sec θ,y =tan θ,得(||F1P ²||F2P )2=[(sec θ+2)2+tan2θ]²[(sec θ-2)2+tan2θ]=(sec2θ+22sec θ+2+tan2θ)²(sec2θ-22sec θ+2+tan2θ)=(2sec2θ+1)2-(22sec θ)2=4sec4θ-4sec2θ+1=(2sec2θ-1)2,又||OP 2=sec2θ+tan2θ=2sec2θ-1,由此得||F1P ²||F2P =||OP 2.题型三 抛物线的参数方程及应用【例3】如图,O 是直角坐标原点,A ,B 是抛物线y2=2px(p >0)上异于顶点的两动点,且OA ⊥OB ,点A ,B 在什么位置时,△AOB 的面积最小?最小值是多少?【分析】利用抛物线的参数方程,将△AOB 面积用其参数表示,再利用均值不等式求最值.【解析】根据题意,设点A ,B 的坐标分别为(2pt21,2pt1),(2pt22,2pt2)(t1≠t2,且t1²t2≠0),则 ||OA =21+=2p ||t1t21+1, ||OB =2+=2p ||t2t22+1.因为OA ⊥OB ,所以OA →²OB →=0,即2pt21²2pt 2+2pt1²2pt2=0,所以t1²t2=-1.△AOB 的面积为S △AOB =12||OA ²||OB =12²2p ||t1t21+1²2p ||t2t22+1 =2p2||t1t221+2+=2p2t21+t22+2=2p2t21+1t21+2 ≥2p22+2=4p2. 当且仅当t21=1t21,即t1=1,t2=-1时,等号成立. 所以点A ,B 的坐标分别为(2p,2p),(2p ,-2p)时,△AOB 的面积最小,最小值为4p2.变式训练已知抛物线y2=2px ,过顶点两弦OA ⊥OB ,求以OA 、OB 为直径的两圆的另一个交点Q 的轨迹方程.[解析]设A(2pt21,2pt1),B(2pt22,2pt2),则以OA 为直径的圆的方程为x2+y2-2pt21x -2pt1y =0,以OB 为直径的圆的方程为x2+y2-2pt22x -2pt2y =0,即t1,t2为方程2pxt2+2pty -x2-y2=0的两根,∴t1t2=-+2px .又OA ⊥OB ,∴t1t2=-1,∴x2+y2-2px =0(x≠0),∴另一交点Q 的轨迹是以(p,0)为圆心,p 为半径的圆(除去(0,0)点).题型四 圆锥曲线参数方程的综合应用【例4】已知双曲线x2a2-y2b2=1(a >0,b >0)的动弦BC 平行于虚轴,M 、N 是双曲线的左、右顶点. (1)求直线MB 、CN 的交点P 的轨迹方程;(2)若P(x1,y1),B(x2,y2),求证:a 是x1,x2的比例中项.【分析】将双曲线方程化为参数方程.(1)利用交轨法求解;(2)即x1x2=a2【解析】(1)由题意可设点B(asec θ,btan θ),则点C(asec θ,-btan θ),又M(-a,0),N(a,0),∴直线MB的方程为y =btan θasec θ+a (x +a),直线CN 的方程为y =btan θa -asec θ(x -a).将以上两式相乘消去参数θ,得点P 的轨迹方程为x2a2+y2b2=1. (2)证明:因为点P 既在MB 上,又在CN 上,由两直线方程消去y1得x1=a sec θ,而x2=asec θ,所以有x1x2=a2,即a 是x1,x2的比例中项.【评析】利用圆锥曲线的参数方程解决圆锥曲线综合问题时要根据条件使用不同方法,如方程的思想、函数思想、数形结合思想等.变式训练抛物线y2=4x 的内接三角形的一个顶点在原点,其重心恰是抛物线的焦点,求内接三角形的周长.[解析]如图,y2=4x 焦点F(1,0),设A 点坐标为(4t2,4t),t 为参数,且t >0,则B 点坐标为(4t2,-4t). AF 斜率为kAF =4t 4t2-1,∴AF :y =4t 4t2-1(x -1). 而OB 的中点(2t2,-2t)应在直线AF 上,∴-2t =4t 4t2-1(2t2-1),∵t≠0,∴-1=24t2-1(2t2-1), ∴t2=38,t =64,∴A 点坐标为⎝ ⎛⎭⎪⎫32,6, 则||AB =26,||OA =⎝ ⎛⎭⎪⎫322+6=332. ∴△OAB 的周长为||AB +2||OA =26+33.课内巩固1.椭圆⎩⎪⎨⎪⎧ x =4+5cos φy =3sin φ(φ为参数)的焦点坐标为( )A .(0,0),(0,-8)B .(0,0),(-8,0)C .(0,0),(0,8)D .(0,0),(8,0) [解析]利用平方关系化为普通方程-25+y29=1,c2=16,c =4,中心(4,0),焦点在x 轴上,∴焦点为(0,0),(8,0).也可以直接画出椭圆的示意图,排除A ,B ,C.故应选D.2.与参数方程为⎩⎨⎧ x =t ,y =21-t (t 为参数)等价的普通方程为( )A .x2+y24=1 B .x2+y24=1(0≤x≤1) C .x2+y24=1(0≤y≤2) D .x2+y24=1(0≤x≤1,0≤y≤2)[解析]x2=t ,y24=1-t =1-x2,x2+y24=1,而t≥0,0≤1-t≤1,得0≤t≤1,即0≤x≤1,0≤y≤2.3.参数方程⎩⎪⎨⎪⎧ x =et -e -t ,y =et +e -t (t 为参数)表示的曲线是( )A .双曲线B .双曲线的下支C .双曲线的上支D .圆[解析]由已知得x +y =2et ,y -x =2e -t ,两式相乘得y2-x2=4.又y =et +e -t≥2.∴方程表示双曲线y24-x24=1上支.4.椭圆⎩⎪⎨⎪⎧ x =3+17cos θ,y =8sin θ-2(θ为参数)的中心坐标为______.[解析]将椭圆的参数方程化为普通方程得-172++82=1,∴椭圆的中心为(3,-2).5.若曲线⎩⎪⎨⎪⎧ x =2pt y =2pt2(t 为参数)上异于原点的不同两点M1,M2所对应的参数分别是t1,t2,则弦M1M2所在直线的斜率是__________.[解析]设M1(2pt1,2pt21),M2(2pt2,2pt22),∴k =2pt21-2pt222pt1-2pt2=t21-t22t1-t2=t1+t2.[答案]t1+t26.求点M0(2,0)到双曲线y2-x2=1的最小距离(即双曲线上任一点M 与点M0距离的最小值).[解析]把双曲线方程化为参数方程⎩⎪⎨⎪⎧ x =tan θ,y =sec θ.设双曲线上动点M(tan θ,sec θ),则||M0M 2=sec2θ+(tan θ-2)2=(tan2θ+1)+(tan2θ-4tan θ+4)=2tan2θ-4tan θ+5=2(tan θ-1)2+3,当tan θ-1=0即θ=π4时,||M0M 2取最小值3,此时有||M0M =3,即M0点到双曲线的最小距离为 3.。