机器视觉检测讲解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
研究背景:
产品表面质量是产品质量的重要组成部分,也是产品商业价值的重要保障。产品表面缺陷检测技术从最初的依靠人工目视检测到现在以CCD 和数字图像处理技术为代表的计算机视觉检测技术,大致经历了三个阶段,分别是传统检测技术阶段、无损检测技术阶段、计算机视觉检测技术阶段。[]
传统检测技术
(1)人工目视检测法
(2)频闪检测法
无损检测技术
(1)涡流检测法
(2)红外检测法
(3)漏磁检测法
计算机视觉检测技术
(1)激光扫描检测法
(2)CCD 检测法
采用荧光管等照明设备,以一定方向照射到物体表面上,使用CCD摄像机来扫描物体表面,并将获得的图像信号输入计算机,通过图像预处理、缺陷区域的边缘检测、缺陷图像二值化等图像处理后,提取图像中的表面缺陷的相关特征参数,再进行缺陷图像识别,从而判断出是否存在缺陷及缺陷的种类信息等。
优点:实时性好,精确度高,灵活性好,用途易于扩充,非接触式无损检测。
基于机器视觉的缺陷检测系统优点:
集成化生产缩短产品进入市场时间改进生产流程100%质量保证实时过程监控提高产量精确检测100%检测
由于经济和技术原因国内绝大多数图像处理技术公司都以代理国外产品为主,没有或者很少涉足拥有自主知识产权的机器视觉在线检测设备,对视觉技术的开发应用停留在比较低端的小系统集成上,对需要进行大数据量的实时在线检测的研究很少也很少有成功案例,但是随着国内经济发展和技术手段不断提高对产品质量检测要求就更高,对在线检测设备的需求也就更大具有巨大的市场潜力。
机器视觉图像处理技术是视觉检测的核心技术
铸件常见缺陷:砂眼气孔缩孔披缝粘砂冷隔掉砂毛刺浇不足缺陷变形
问题的提出:
1.水渍、污迹等不属于铸件缺陷,但由于其外观形貌与缺陷非常类似, 因此易被检测系统误识为缺陷。从目前发表的文献来看,对于伪缺陷的识别率较低。
2.不同种缺陷之间可能存在形状、纹理等方面的相似性,造成缺陷误判。
国外研究发展现状:
20 世纪90 年代后,基于机器视觉检测系统的自动化功能和实用化水平得到了进一步的提高。
1990 年芬兰Rautaruukki New Technology公司研制了Smartivis表面检测系统[],该系统具有自学习分类功能,应用机器学习方法对决策树结构进行自动设计优化。
1996 年美国Cognex公司研发了一套iLearn自学习分类器软件系统并应用于其研制了iS-2000 自动检测系统。通过这两套系统的无缝衔接,极大地提高了检测系统实时的运算速度,有效的改进了传统自学习分类方法在算法执行速度、数据实时吞吐量、样本训练集规模及模式特征自动选择等方面的不足之处[]。
2004 年Parsytec公司发布了新一代表面质量检测产品Parsytec5i,该系统运用了自学习神经
网络分类方法进行缺陷分类,将表面质量信息输入到支持决策信息中,不仅可以对产品的表面质量进行检测和评价,还能预测潜在质量问题,并将检测信息提供给使用者进行整合和利用[]
国内研究发展现状:
2005年北航周正干等人提出了一种新型的数学形态学滤波与计算机视觉算法相结合的缺陷自动提取方法。
2009 年北京科技大学徐科等采用线形激光进行连铸坯表面裂纹的在线检测,并用AdaBoosting分类器成功地实现了对表面裂纹、水痕、渣痕、氧化铁皮和振痕等5 种缺陷和伪缺陷样本的识别。
北京科技大学高效轧制国家工程研究中心研制开发了具有全部自主知识产权的冷轧带钢[ 1 9 - 2 0 ]和热轧带钢表面在线检测系统[ 2 1 ],并在生产线上得到成功应用。
《基于光度立体学的金属板带表面微小缺陷在线检测方法》徐科等机械工程学报2013
检测示意图
微小缺陷与常规缺陷同步检测装置
关键点:二维图像上缺陷研究的关键是如何准确地分割出缺陷目标。图像目标分割方法大多
是为特定应用设计的,具有较强的针对性和局限性。
缺陷分割就是指将感兴趣的缺陷目标从被测表面的背景信息(如颜色、轮廓、亮度、形状)中分离出来,使缺陷直接成为分析和处理对象的过程,是视觉检测的关键。缺陷分割是后续缺陷分析判别的基础,若分割中出现错误或误差而传播给后续的图像分析中,将导致检测错误或失败。因此,缺陷分割性能的优劣直接影响着后续的研究工作的进行,是表面缺陷检测中的一项关键技术。
全局阈值分割双峰法、自适应迭代法和最大类间分割法
东北林业大学纹理分割
(可否获得高质量的图像,突出缺陷?)
光源的作用是形成有利于后续检测算法复杂度降低和缺陷检测率提高的铸坯表面缺陷图像效果。光源的选择直接关系到采集图像的质量和图像中能否明显表露存在的缺陷。据统计,至少30%的图像质量和应用效果受到光源选择的直接影响。采集到的理想图像应是完整的、均匀亮度、对比度强且没有畸变。
难点:由于生产环境而造成的伪缺陷的出现极大的影响了检测的精度和准确度,引起检测系统的误动作。
多维视角分析
在上图一些步骤的基础上,增加了一些基于多维视角几何的分析步骤。多维视角分析的核心思想是,它能够通过从不同的角度进行多维视角分析来获取待测物体的更多的信息。它是一种在检测容易被误检的复杂对象时非常有用的方法,因为从不同角度对同一物体的两个或多个视角能够提高只通过一张图像来检测缺陷的方法的正确率。(剔除伪缺陷,见文献[][][])
图2 多角度获取图像信息
特征提取:
对于表面缺陷检测,在缺陷有效的分割之后,要进行缺陷的判别。这里,缺陷的判别包括缺陷识别、缺陷分类、真伪缺陷判断、缺陷参数给出等问题。
如果将缺陷的判别过程看做是一个“黑盒子”,那么这个“黑盒子”的输入是陷图像的各种特征数据,输出是判别结果(类型、参数等)。征去除无意义特征。
纹理特征提取:
尽量缩小同类内样本特征值之间的差距,增大不同类间特征值的差距,有助于提高分类器的性能,降低分类器设计的复杂性。Gabor滤波器:针对二维数字图像,二维的Gabor 滤波器具有优良的滤波性能,并与生物视系统有相近的特点。二维Gabor 滤波器能够在方向、径向频率带宽以及中心频方面进行定制,因此在空间域和频率域都能获得极佳的分辨率。计算量大。
小波变换:将纹理图像看成是二维信号,运用二维离散小波变换进行纹理图像的处理。可将图像在频域上分解为低频子带(纹理的基本结构)和若干方向上的高频子带(纹理细节),然后提取各子带的特征形成特征向量。
统计几何特征提取方法
《基于非基于非下采样Contourlet变换和PCNN的表面缺陷自动识别方法》周新星中国地质大学
首先用NSCT对缺陷图像进行多尺度多方向分解; 然后将子带图像输入迭代点火,计算点火图的熵序列作为子图的特征,合并各子图特征得到原图的特征向量; 最后用支持向量机进行分类识别。