过流保护电路原理 过流保护电路图
直流电源过电压过流保护电路
直流电源过电压、欠电压及过流保护电路该保护电路在直流电源输入电压大于30V或小于18V或负载电流超过35A时,晶闸管都将被触发导通,致使断路器QF跳闸。
图中,YR为断路器QF的脱扣线圈;KI为过电流继电器。
带过流保护的电动自行车无级调速电路图中,RC为补偿网络,以改善电动机的力矩特性。
具体数值由实验决定。
电路如图16-91所示。
它适用于电动自行车或电动三轮车。
调节电位器RP,可改变由555时基集成电路A组成的方波发生器的方波占空比,达到调速的目的。
Rs是过电流取样电阻,当电动机过载时,Rs上的压降增大,使三极管VTz导通,触发双向晶闸管V导通,分流了部分负载,从而保护了功率管VTi。
过流保护用电子保险的制作电路图本电路适用于直流供电过流保护,如各种电池供电的场合。
如果负载电流超过预设值,该电子保险将断开直流负载。
重置电路时,只需把电源关掉,然后再接通。
该电路有两个联接点(A、B标记),可以连接在负载的任意一边。
负载电流流过三极管T4、电阻R10和R11。
A、B端的电压与负载电流成正比,大多数的电压分配在电阻上。
当电源刚刚接通时,全部电源电压加在保险上。
三极管T2由R4的电流导通,其集电极的电流值由下式确定:VD4=VR7+0.6。
因为D4上的电压(VD4)和R7上的电压(VR7)是恒定的,所以T2的集电极电流也是恒定。
该三极管提供稳定的基极电流给T3,因而使其导通,接着又提供稳定的基极电流给T4。
保险导电,负载有电流流过。
当电源刚接通时,电容器C1提供一段延时,从而避免T1导电和保持T2断开。
保险上的电压(VAB)通常小于2V,具体值取决于负载电流。
当负载电流增大时,该电压升高,并且在二极管D4导通时,达到分流部分T2的基极电流,T2的集电极电流因而受到限制。
由此,保险上的电压进一步增大,直到大约4.5V,齐纳二极管D1击穿,使T1导通,T2便截止,这使得T3和T4也截止,此时保险上的电压增大,并且产生正反馈,使这些三极管保持截止状态。
过流保护电路原理--过流保护电路图
過流保護電路原理過流保護電路圖過流保護電路原理本電路適用於直流供電過流保護,如各種電池供電的場合。
如果負載電流超過預設值,該電子保險將斷開直流負載。
重置電路時,只需把電源關掉,然後再接通。
該電路有兩個聯接點(A、B標記),可以連接在負載的任意一邊。
負載電流流過三極管T4、電阻R10和R11。
A、B端的電壓與負載電流成正比,大多數的電壓分配在電阻上。
當電源剛剛接通時,全部電源電壓加在保險上。
三極管T2由R4的電流導通,其集電極的電流值由下式確定:VD4=VR7+0.6。
因為D4上的電壓(VD4)和R7上的電壓(VR7)是恒定的,所以T2的集電極電流也是恒定。
該三極管提供穩定的基極電流給T3,因而使其導通,接著又提供穩定的基極電流給T4。
保險導電,負載有電流流過。
當電源剛接通時,電容器C1提供一段延時,從而避免T1導電和保持T2斷開。
保險上的電壓(VAB)通常小於2V,具體值取決於負載電流。
當負載電流增大時,該電壓升高,並且在二極體D4導通時,達到分流部分T2的基極電流,T2的集電極電流因而受到限制。
由此,保險上的電壓進一步增大,直到大約4.5V,齊納二極體D1擊穿,使T1導通,T2便截止,這使得T3和T4也截止,此時保險上的電壓增大,並且產生正回饋,使這些三極管保持截止狀態。
C1的作用是給出一段短時延遲,以便保險可以控制短時超載,如象白熾燈的開關電流,或直流電機的啟動電流。
因此,改變C1的值可以改變延遲時間的長短。
該電路的電壓範圍是10~36V的直流電,延遲時間大約0.1秒。
對於電路中給出的元件值,負載電流限制為1A。
通過改變元件值,負載電流可以達到10mA~40A。
選擇合適額定值的元件,電路的工作電壓可以達到6~500V。
通過利用一個整流電橋(如下面的電源電路),該保險也可以用於交流電路。
電容器C2提供保險端的暫態電壓保護。
二極體D2避免當保險上的電壓很低時,C1經過負載放電。
過流保護電路圖帶自鎖的過流保護電路1.第一個部分是電阻取樣...負載和R1串聯...大家都知道.串聯的電流相等...R2上的電壓隨著負載的電流變化而變化...電流大,R2兩端電壓也高...R3 D1組成運放保護電路...防止過高的電壓進入運放導致運放損壞...C1是防止干擾用的...2.第二部分是一個大家相當熟悉的同相放大器...由於前級的電阻取樣的信號很小...所以得要用放大電路放大.才能用...放大倍數由VR1 R4決定...3.第三部分是一個比較器電路...放大器把取樣的信號放大...然後經過這級比較...從而去控制後級的動作...是否切斷電源或別的操作...比較器是開路輸出.所以要加上上位電阻...不然無法輸出高電平...4.第四部分是一個驅動繼電器的電路...這個電路和一般所不同的是...這個是一個自鎖電路... 一段保護信號過來後...這個電路就會一直工作...直到斷掉電源再開機...這個自鎖電路結構和單向可控矽差不多.過流保護電路過流保護用PTC熱敏電阻通過其阻值突變限制整個線路中的消耗來減少殘餘電流值。
过流保护电路原理
过流保护电路原理过流保护电路图过流保护电路原理本电路适用于直流供电过流保护,如各种电池供电的场合。
如果负载电流超过预设值,该电子保险将断开直流负载。
重置电路时,只需把电源关掉,然后再接通。
该电路有两个联接点(A、B标记),可以连接在负载的任意一边。
负载电流流过三极管T4、电阻R10和R11。
A、B端的电压与负载电流成正比,大多数的电压分配在电阻上。
当电源刚刚接通时,全部电源电压加在保险上。
三极管T2由R4的电流导通,其集电极的电流值由下式确定:VD4=VR7+0.6。
因为D4上的电压(VD4)和R7上的电压(VR7)是恒定的,所以T2的集电极电流也是恒定。
该三极管提供稳定的基极电流给T3,因而使其导通,接着又提供稳定的基极电流给T4。
保险导电,负载有电流流过。
当电源刚接通时,电容器C1提供一段延时,从而避免T1导电和保持T2断开。
保险上的电压(VAB)通常小于2V,具体值取决于负载电流。
当负载电流增大时,该电压升高,并且在二极管D4导通时,达到分流部分T2的基极电流,T2的集电极电流因而受到限制。
由此,保险上的电压进一步增大,直到大约4.5V,齐纳二极管D1击穿,使T1导通,T2便截止,这使得T3和T4也截止,此时保险上的电压增大,并且产生正反馈,使这些三极管保持截止状态。
C1的作用是给出一段短时延迟,以便保险可以控制短时过载,如象白炽灯的开关电流,或直流电机的启动电流。
因此,改变C1的值可以改变延迟时间的长短。
该电路的电压范围是10~36V的直流电,延迟时间大约0.1秒。
对于电路中给出的元件值,负载电流限制为1A。
通过改变元件值,负载电流可以达到10mA~40A。
选择合适额定值的元件,电路的工作电压可以达到6~500V。
通过利用一个整流电桥(如下面的电源电路),该保险也可以用于交流电路。
电容器C2提供保险端的瞬时电压保护。
二极管D2避免当保险上的电压很低时,C1经过负载放电。
过流保护电路图带自锁的过流保护电路1.第一个部分是电阻取样...负载和R1串联...大家都知道.串联的电流相等...R2上的电压随着负载的电流变化而变化...电流大,R2两端电压也高...R3 D1组成运放保护电路...防止过高的电压进入运放导致运放损坏...C1是防止干扰用的...2.第二部分是一个大家相当熟悉的同相放大器...由于前级的电阻取样的信号很小...所以得要用放大电路放大.才能用...放大倍数由VR1 R4决定...3.第三部分是一个比较器电路...放大器把取样的信号放大...然后经过这级比较...从而去控制后级的动作...是否切断电源或别的操作...比较器是开路输出.所以要加上上位电阻...不然无法输出高电平...4.第四部分是一个驱动继电器的电路...这个电路和一般所不同的是...这个是一个自锁电路... 一段保护信号过来后...这个电路就会一直工作...直到断掉电源再开机...这个自锁电路结构和单向可控硅差不多.过流保护电路过流保护用PTC热敏电阻通过其阻值突变限制整个线路中的消耗来减少残余电流值。
过流保护电路图
过流保护电路图2008年04月24日 09:24 本站原创作者:本站用户评论(3)关键字:带自锁的过流保护电路1.第一个部分是电阻取样...负载和R1串联...大家都知道.串联的电流相等 (2)的电压随着负载的电流变化而变化...电流大,R2两端电压也高...R3 D1组成运放保护电路...防止过高的电压进入运放导致运放损坏...C1是防止干扰用的...2.第二部分是一个大家相当熟悉的同相放大器...由于前级的电阻取样的信号很小...所以得要用放大电路放大.才能用...放大倍数由VR1 R4决定...3.第三部分是一个比较器电路...放大器把取样的信号放大...然后经过这级比较...从而去控制后级的动作...是否切断电源或别的操作...比较器是开路输出.所以要加上上位电阻...不然无法输出高电平...4.第四部分是一个驱动继电器的电路...这个电路和一般所不同的是...这个是一个自锁电路... 一段保护信号过来后...这个电路就会一直工作...直到断掉电源再开机...这个自锁电路结构和单向可控硅差不多.过流保护电路过流保护用PTC热敏电阻通过其阻值突变限制整个线路中的消耗来减少残余电流值。
可取代传统的保险丝,广泛用于马达、变压器、开关电源、电子线路等的过流过热保护,传统的保险丝在线路熔断后无法自行恢复,而过流保护用PTC热敏电阻在故障撤除后即可恢复到预保护状态,当再次出现故障时又可以实现其过流过热保护功能。
过流保护电路图过流保护元件通用线路过流保护用PTC热敏电阻氟利昂,三氯乙烷或四氯乙烯等温和的清洗剂均适用于清洗,同样可以使用超声波清洗的方法,但是一些清洗剂可能会损害热敏电阻的性能,清洗前最好进行试验或到我公司咨询。
4、贮藏条件与期限如果存贮得当,PTC热敏电阻器的存贮期没有什么期限限制。
为了保持PTC热敏电阻器的可焊性,应在没有侵蚀性的气氛中进行贮藏,同时要注意空气湿度,温度以及容器材料。
元件应尽可能的在原包装中进行贮藏。
晶体管功放末级常用的保护电路(图)
晶体管功放末级常用的保护电路(图)对于大功率、大动态的音响功放,完善的末级保护电路是必不可少的。
一、过流保护晶体管功放为了保护大功率输出管及扬声器,防止其过载,一般装有过流保护电路。
1.RXE系列聚合开关扬声器过载保护电路RXE系列聚合开关(PLOYSWITCH)在功放中一般用于喇叭限流(过载)保护。
其外形如图1所示。
聚合开关制造材料为高分子PTC。
其中专用于扬声器保护的聚合开关,在常温下,其电阻(最小值)只有30mΩ,插入损耗只有0.1dB。
开关本身无任何容抗或感抗分量,在听觉频率范围内不会引起任何失真。
使用时,根据电路及扬声器参数的要求,选择合适的型号(RXE系列不同的型号对应不同的参数)接入电路。
其工作原理十分简单,即当扬声器过载时,聚合开关内部动作,动作后的阻抗比未动作之前增加几个数量级,只要有足够的驱动电压,聚合开关将保持在动作状态以保护扬声器。
喇叭保护TXE系列聚合开关,其最大耐压60V,最大中断电流40A,外形尺寸随型号有所变化,保持电流由0.1A~3.75A不等,触发电流一般为保护电流的两倍。
型号中的数字即为其保持电流,如RXE010保持电流为0—10A,RXE375保持电流为3.75A等等。
常用的有RXE050、RXE075、RXE090、RXE110等。
2.扬声器过载电子线路保护典型应用电路如图2所示。
为简单起见,只画出大功率管过流检拾电路,动作电路因可借用普通中点偏移喇叭保护电路起控,即通过驱动电路控制继电器断开喇叭负载。
关于中点偏移喇叭保护电路的工作原理,将在后面介绍,故此处省略了该起控原理图。
本电路的工作原理:BG5、BG6基极分别接入两只大功率管的发射极。
在输出信号的正、负半周分别监测其中一只输出管的发射极电流。
当发射极电流超过规定的电流(本电路中为15A)时,BG7、BG8的集电极电位下降到一定程度,并通过D1、D2检测,使中点偏移喇叭保护电路中的继电器工作,切断喇叭负载。
过欠压、过流、过温、软启动、CNT保护实际电路详解!
输出过压保护电路当用户在使用电源模块时,可能会由于某种原因,造成模块输出电压升高,为了保护用户电路板上的器件不被损坏,当模块的输出电压高于一定值时,模块必须封锁脉冲,阻止输出电压的继续上升。
D320产生一个5.1V电压基准送至运放U301反相输入端,R330、R334、R336用于检测输出电压、检测电压值送至运放U301同相输入端。
输出电压没有达到过压保护点时,运放U301 5脚的电压小于6脚的电压,运放输出为低电平,输出正常。
输出电压Vo升高到设定检测点电压时,电阻R336、R334、R330检测的分压比送入运放U301的5脚,此时5脚电压高于6脚电压,运放U301输出高电平,封闭控制芯片PWM信号,模块输出电压为零。
过流保护电路实例(1)图2.过流保护电路实例工作原理T2采集模块原边开关管的输入电流,采样电流经取样电阻R18转换成电压信号,再经两路开关二极管(D6)整流形成两路控制信号。
一路峰值信号去控制38C43的3脚;另一路准峰值电平进入38C43 EA的反相输入端2脚。
采用CT作电流采样的好处是采样电路功耗小,采样电路灵活,CT可以放置在MOSFET开关管的D极或S极,也可以串联于主变压器原边的Vin+端。
缺点是电路稍复杂,体积大,CT存在大占空比时不能有效复位的问题。
CT采样一般用于中大功率的模块。
3843PWM芯片介绍图3.3843芯片内部结构图芯片工作原理虚线所框部分为38C43芯片内置的误差放大器和电流放大器。
误差放大器的输出经过内部分压后(被钳位到1V),进入电流放大器的反相输入端,与电流采样信号比较后进入PWM产生电路。
最终在芯片的6脚输出PWM信号。
在这里,误差放大器被用来作OCP保护,电流控制放大器I/A作峰值电流限流保护。
误差放大器E/A用于准峰值限流。
当38C43反相输入端2脚的直流电平达到2.5V时,误差放大器E/A起作用,使38C43的6脚输出驱动信号占空比D减小,达到模块OCP之目的。
两种集成稳压器中的过流保护电路
集成稳压器中的过流保护电路在集成稳压器电路内部含有各种保护电路,如过流保护、短路保护、调整管安全工作区保护、芯片过热保护电路等,使集成稳压器在出现不正常情况下不至于损坏。
这里只介绍过流保护电路。
过流保护电路作用:能够在稳压器输出电流超过额定值时,限制调整管发射极电流在某一数值或使之迅速减小,从而保护调整管不会因电流过大而烧坏。
限流型过流保护电路:过流时使调整管发射极电流限制在某一数值的电路,称为限流型过流保护电路。
截流型(或减流型)过流保护电路:凡在过流时使调整管发射极电流迅速减小数值的电路,称截流型(或减流型)过流保护电路。
★限流型过流保护电路如图(a)所示为限流型过流保护电路,T1为调整管,T2和R O 构成保护电路,R O为电流取样电阻,其电流近似等于稳压电路的输出电流I O,故其电压正比于I O。
工作原理:◆稳压电路正常工作时,T2的b-e间电压U BE2=I O R O<U on,U on 为间的开启电路,因而T2处于截止状态。
◆当过流时,即输出电流增大到一定数值时,R O上的电压足以使T2导通,便从T1管的基极分流,因而限制了调整管的发射极电流。
R O的取值不同,调整管发射极的限定值将不同。
图(b)为输出特性。
限流型保护电路虽然组成简单,但在保护电路起作用后调整管仍有较大的工作电流,因而也就有较大的功耗,所以不适用于大功率电路。
★截流型过流保护电路如下图(a)所示为截流型过流保护电路,T1为调整管,R O为电流取样电阻,它与T2、R1和R2构成保护电路,电路中A、B点的电位分别为因而T2管的工作原理:◆正常工作时,U BE2<U on,T2处于截止状态。
◆过流时(I O增大到一定数值或输出端短路时),T2导通,对调整管T1的基极分流,使I O减小,从而导致输出电压U O减小;此时虽然U B随U O的下降而下降,但是U O下降的幅值大于U B下降的幅值,使得T2的电流进一步增大,T1的电流进一步减小,最终减小到较小数值。
软启动保护、过压保护、过流保护、欠压掉电保护设计实例
开关电源电路负责为整个机床数控系统各部分设备提供电源。
文中主要介绍了一种机床数控系统用开关电源各种保护电路的工作原理和实现方法,通过实际研制,使得该系统开关电源稳定性大大提高,保护功能稳定可靠,满足了批量生产要求。
1 保护电路工作原理分析机床数控用开关电源包含有软启动保护、过压保护、过流保护、欠压掉电保护等电路。
(1) 软启动电路由于开关电源输入整流电路后级大多采用电容性滤波电路滤波,在电源合闸瞬间,往往会产生电流幅值高达几十甚至几百安培的浪涌电流,此种浪涌电流十分有害,会造成开关电源启动故障甚至损坏。
常用的软启动电路有可控硅和限流电阻组成的防浪涌软启动保护、继电器触点组成的软启动保护、负温度系数电阻组成的软启动保护电路等。
本系统开关电源采用负温度系数电阻组成的软启动保护电路,简单实用,工作可靠。
如图1, 220 V 交流电经线圈L1滤波共模干扰后,整流产生约三百伏左右直流电压, RT 电阻为负温度系数热敏电阻,型号为M02-7Ω。
当电源合闸瞬间,浪涌电流使得热敏电阻发热,阻值迅速减小,输出直流电压逐渐建立,可有效防止浪涌电流对电源电路的冲击,使得整个电源半桥变换电路稳定可靠。
图1 负温度系数电阻组成的输入软启动电路在开关电源启动时,由于脉宽调制器尚未建立稳定的驱动脉冲,需采取措施使得驱动脉冲逐渐建立起来,该开关电源脉宽调制器采用性价比较高的脉宽调制器T L494。
如图2, TL494 的第四脚为死区控制,它既可以为变换功率管提供安全的死区时间控制,也可以作为驱动芯片的软启动控制。
开机瞬间,电容器C1上未建立电压, + 5 V 通过电容C1 送TL494: 4 脚,封锁脉宽调制器的输出脉冲。
随着电容C1 两端电压逐渐升高, T L494: 4 脚电压逐渐下降,驱动脉冲宽度逐渐展宽。
当辅助电源+ 15 V 出现故障时,三级管V1迅速导通, + 5 V 电压经三极管V1 送T L494: 4 脚,切断驱动脉冲,使开关电源停止工作而不致损坏。
317过流保护电路
317过流保护电路
芯片是lm358。
左边是电压放大,放大倍数要根据自己的需要调整,公式写在图上了。
这里要注意C1的大小,太小358容易自激,太大保护动作迟滞,需要反复调试,我用的是104。
右边是比较器,基准电压我用的是8050的b-e节,很稳定,数量根据需要调整。
不要用稳压管,比起b-e节来差多了,也不要用电阻分压,电源不稳时基准也不稳。
输入端接在分流器上就行了。
过压部分的电路和这个图的右边是一样的,输入端接在317的输入和输出就可以了。
把RP换成固定电阻分压,调整分压比或调整基准使继电器动作就行了。
开关电源过流保护电路原理
开关电源过流保护电路原理在电子设备中,开关电源是一个常见的电源供应形式。
然而,由于各种原因可能导致电路中的电流超过设计值,这就需要过流保护电路的应用。
过流保护电路旨在检测电路中的电流超过额定值时,立即切断电源以防止电路元件损坏。
过流保护原理过流保护电路通常由电流传感器、比较器、触发器和开关元件等部分组成。
当电路中的电流超过设定的阈值时,电流传感器会检测到这一超额电流,并将信号传递给比较器。
比较器用于比较电流传感器输出的信号与预设阈值,并在检测到超额电流时触发触发器。
触发器受到比较器的信号后,将立即切断开关元件,使电路中的电流降至安全范围内。
在某些设计中,过流保护电路还可以配备延时器,以确保在电流波动较大但仍在可接受范围内时不误触发保护电路。
过流保护电路的应用过流保护电路广泛应用于各种电子设备中,特别是对于需求高稳定性和可靠性的设备更是必不可少。
例如,计算机电源、家用电器、通信设备等都需要过流保护电路来确保设备在异常电流情况下得以安全运行。
对于开关电源而言,过流保护电路更是必备的一部分。
由于开关电源通常工作在较高频率下,一旦发生过流现象,元件可能会迅速损坏,进而导致整个电源系统崩溃。
因此,过流保护电路的可靠性和高效性对于开关电源的稳定性起着至关重要的作用。
总结过流保护电路是一种关键的电路保护部件,能够有效地保护电子设备免受因过大电流而产生的损坏。
通过适当设计和应用过流保护电路,不仅能提升电子设备的安全性和稳定性,也能延长设备的使用寿命。
在电子设备设计和制造过程中,考虑到过流保护电路的合理性和可靠性将对产品质量和用户体验产生积极的影响。
1。
过压过流保护器电路图
过压过流保护器电路图
作者:佚名来源:本站整理发布时间:2009-7-29 14:55:12 [收藏] [评论]
过压过流保护器
当电源供给电压或负载吸取的电流太大时,下图电路可断开负载给出故障指示。
正常工作时,Tr1和Tr2均截止,555复位,555中的放电晶体管导通,它从Tr3基极吸取电流,使Tr3处开饱和,电源5~12V便直接送主负载。
当负载吸取电流超过规定值时,Rsc上压降增加,使Tr1导通,5 55被触发,于是内部放电晶体管截止,跟着Tr3也截止,将电源与负载隔离,这时555处于单稳状态,单稳时间一到,只要负载过流现象不排除,555又重新触发,Tr3继续将负载隔离。
若负载出现过压,则经R4、R5、D1后Tr2导通,也使555触发,Tr3这时也将负载隔离。
对于过流或过压,555③脚均将输出高电位,使LED发光,表示负载处于隔离状态。
由于Tr3或者处于饱和,或者处于截止,因此只用一只功率晶体管便可工作。
完整的电路保护:过流保护,过压保护,热保护
2010-12-16
9
Teccor Overvoltage Protection Product
1、 聚合物ESD抑制器 2、 可变电阻--表面贴 A、多层叠的可变电阻(ML,MLE、MHS、AUML and MLN Series) B、压敏电阻(CH Series) 3、硅保护产品 A、TVS/Diode Arrays(SP05x,SP72x Series) B、闸流管(SiBODTM ) C、TVS Diodes/Silicon Avalance Diodes(SADs) 4、气体放电管(GDTs) 5、工业&轴向压敏电阻 A、Radial Leaded MOVs(UltraMOVTM,C-III,LA,ZA,RA and TMOVTM Varistors) B、轴向引脚的压敏电阻(MA Series MOVs) C、工业级的压敏电阻(CA,NA,PA,HA,HB34,DA and DB Series varistors)
封装类型 0402/0603 JEDEC SOT-23 0402/0603 JEDEC SOT-23 EIA 2012 (0805)
特点
低电容,容量在3-22pF. 主要用低速设备上. 四通道,每通道的电容值 为3pF. 非常低的电容值,仅为 0.05pF.
接口类型 数据线(Data Line) 400Mbps
推荐产品
可控硅(SCR) 压敏电阻(MOV) TVS / ULTraMOV
2010-12-16 13
2010-12-16
14
雷电的防护
---电力系统器件应用比较 电力系统器件应用比较
气体放电管 压敏电阻
能承受数百微秒内数千安培瞬态雷电电流 的冲击。缺点是对雷电过电压的波头无法进行有效的保护。 有较好的非线性,有很大的吸收能力,响 应速度快。缺点是应用于DVI、ISDN等图像传输设备上时, 容易失真。同时容易老化。
过流保护电路图
过流保护电路图带自锁的过流保护电路1.第一个部分是电阻取样...负载和R1串联...大家都知道.串联的电流相等...R2上的电压随着负载的电流变化而变化...电流大,R2两端电压也高...R3 D1组成运放保护电路...防止过高的电压进入运放导致运放损坏...C1是防止干扰用的...2.第二部分是一个大家相当熟悉的同相放大器...由于前级的电阻取样的信号很小...所以得要用放大电路放大.才能用...放大倍数由VR1 R4决定...3.第三部分是一个比较器电路...放大器把取样的信号放大...然后经过这级比较...从而去控制后级的动作...是否切断电源或别的操作...比较器是开路输出.所以要加上上位电阻...不然无法输出高电平...4.第四部分是一个驱动继电器的电路...这个电路和一般所不同的是...这个是一个自锁电路... 一段保护信号过来后...这个电路就会一直工作...直到断掉电源再开机...这个自锁电路结构和单向可控硅差不多.过流保护电路过流保护用PTC热敏电阻通过其阻值突变限制整个线路中的消耗来减少残余电流值。
可取代传统的保险丝,广泛用于马达、变压器、开关电源、电子线路等的过流过热保护,传统的保险丝在线路熔断后无法自行恢复,而过流保护用PTC热敏电阻在故障撤除后即可恢复到预保护状态,当再次出现故障时又可以实现其过流过热保护功能。
通用线路过流保护用PTC热敏电阻使用注意事项1、焊接在焊接时要注意,PTC热敏电阻器不能由于过分的加热而受到损害。
必须遵守下列的最高的温度,最长的时间和最小的距离:浸焊烙铁焊溶池温度 max. 260 ℃max. 360℃钎焊时间 max. 10s max. 5 s距PTC热敏电阻器最小的距离 min. 6mm min. 6mm在较恶劣的钎焊条件下将会引起电阻值的变化。
2、涂层和灌注在PTC热敏电阻器上加涂层和灌注时,不允许在固化和以后的处理中由于不同的热膨胀而出现机械应力。
过流保护
过流保护∙电流保护是指心在的电子设备都有额定电流,不允许超过额定电流,会引起设备烧坏,在这个基础上的设备就会先做电流保护模块。
当电流超过设定电流,设备就会断电保护设备。
目录∙过流保护的方式∙过流保护电路的应用举例∙开关电源中几种过流保护方式的比较∙过流保护在可控硅整流装置中的应用过流保护的方式∙1、复合型:将多种保护符合起来.2、限功率型:限定输出的总功率3、回卷型:初始电流恒定不变,电压下降到一定数值电流开始减小.4、打隔型:过流后,电流电压下降到0,然后又开始上升,周而复始.5:恒流行:电流恒定不变,电压下降过流保护电路的应用举例∙压器初级电压220V,次级电压16V,次级电流1.5A,次级异常时的初级电流约350mA,10分钟之内应进入保护状态,变压器工作环境温度-10 ~ 40 ℃,正常工作时温升15 ~20 ℃,PTC热敏电阻器靠近变压器安装,请选定一PTC热敏电阻器用于初级保护。
1.确定最大工作电压已知变压器工作电压220V,考虑电源波动的因素,最大工作电压应达到220V×(1+20%)=264VPTC热敏电阻器的最大工作电压选265V。
2.确定不动作电流经计算和实际测量,变压器正常工作时初级电流125mA,考虑到PTC热敏电阻的安装位置的环境温最高可达60 ℃,可确定不动作电流在60 ℃时应为130~ 140mA。
3.确定动作电流考虑到PTC热敏电阻器的安装位置的环境温度最低可达到-10 ℃或25℃,可确定动作电流在-10 ℃或25℃时应为340~ 350mA,动作时间约5分钟。
4.确定额定零功率电阻R25PTC热敏电阻器串联在初级中,产生的电压降应尽量小,PTC热敏电阻器自身的发热功率也应尽量小,一般PTC热敏电阻器的压降应小于总电源的1%,R25经计算:220V × 1% ÷0.125A=17.6 Ω5.确定最大电流经实际测量,变压器次级短路时,初级电流可达到500mA,如果考虑到初级线圈发生部分短路时有更大的电流通过,PTC热敏电阻器的最大电流确定在1A以上。
过流保护电路的工作原理
过流保护电路的工作原理1. 引言1.1 什么是过流保护电路过流保护电路是一种电子设备,用于监测和保护电路中的负载免受过大电流的损害。
当电路中的电流超过设定的阈值时,过流保护电路会自动触发保护动作,例如切断电路连接或者限制电流流动。
这种保护装置可以有效地防止电路元件和设备因过载而受损,提高了电路的稳定性和可靠性。
过流保护电路通常被广泛应用于各种电子设备和系统中,例如电源供应器、电动机、变频器和工控系统等。
它们不仅能够保护电子设备,还可以确保人员的安全,避免火灾等意外事件发生。
通过监测电路中的电流变化,过流保护电路可以快速响应并采取保护措施,有效地保护电路中的设备和元件。
在现代电子技术发展日新月异的今天,过流保护电路已经成为电子设备中不可或缺的重要部分,它为电路的稳定运行和设备的长久使用提供了有力的保障。
1.2 过流保护电路的作用过流保护电路是一种常见的电路保护装置,其作用是在电路中发生过流情况时,能够迅速检测到并采取相应的保护措施,以防止电路过载和损坏设备的发生。
过流保护电路在电力系统中起着至关重要的作用,可以有效地保护设备和系统免受过流带来的危害。
过流保护电路可以保护电路中的电子元件不受损坏。
当电路中的电流超过设计范围时,会导致电子元件过载运行,增加元件的温度,从而缩短元件的使用寿命甚至引发元件损坏。
过流保护电路可以及时检测到过流情况,并迅速切断电路连接,有效地保护电子元件免受损害。
过流保护电路还可以保护电路中的电线和继电器等设备。
在电路中发生过流情况时,电线和继电器会承受过大的电流负荷,导致线路发热甚至引发火灾的危险。
过流保护电路可以及时切断电路连接,防止过大电流对电线和继电器造成损坏,确保电路的安全运行。
过流保护电路在电路中的作用不可忽视。
它可以有效地保护电子元件、电线和继电器等设备,避免电路过载和损坏的发生,确保电路的安全运行和设备的正常使用。
在设计和运行电力系统时,应该合理配置过流保护电路,以提高电路的可靠性和安全性。
(完整word版)过流保护电路原理过流保护电路图
過流保護電路原理過流保護電路圖過流保護電路原理本電路適用於直流供電過流保護,如各種電池供電的場合。
如果負載電流超過預設值,該電子保險將斷開直流負載。
重置電路時,只需把電源關掉,然後再接通。
該電路有兩個聯接點(A、B標記),可以連接在負載的任意一邊。
負載電流流過三極管T4、電阻R10和R11。
A、B端的電壓與負載電流成正比,大多數的電壓分配在電阻上。
當電源剛剛接通時,全部電源電壓加在保險上。
三極管T2由R4的電流導通,其集電極的電流值由下式確定:VD4=VR7+0。
6.因為D4上的電壓(VD4)和R7上的電壓(VR7)是恒定的,所以T2的集電極電流也是恒定。
該三極管提供穩定的基極電流給T3,因而使其導通,接著又提供穩定的基極電流給T4。
保險導電,負載有電流流過。
當電源剛接通時,電容器C1提供一段延時,從而避免T1導電和保持T2斷開。
保險上的電壓(VAB)通常小於2V,具體值取決於負載電流.當負載電流增大時,該電壓升高,並且在二極體D4導通時,達到分流部分T2的基極電流,T2的集電極電流因而受到限制.由此,保險上的電壓進一步增大,直到大約4.5V,齊納二極體D1擊穿,使T1導通,T2便截止,這使得T3和T4也截止,此時保險上的電壓增大,並且產生正回饋,使這些三極管保持截止狀態。
C1的作用是給出一段短時延遲,以便保險可以控制短時超載,如象白熾燈的開關電流,或直流電機的啟動電流。
因此,改變C1的值可以改變延遲時間的長短.該電路的電壓範圍是10~36V的直流電,延遲時間大約0。
1秒。
對於電路中給出的元件值,負載電流限制為1A.通過改變元件值,負載電流可以達到10mA~40A。
選擇合適額定值的元件,電路的工作電壓可以達到6~500V。
通過利用一個整流電橋(如下面的電源電路),該保險也可以用於交流電路.電容器C2提供保險端的暫態電壓保護。
二極體D2避免當保險上的電壓很低時,C1經過負載放電。
過流保護電路圖帶自鎖的過流保護電路1.第一個部分是電阻取樣。
过流保护电路图
过流保护电路图2008年04月24日 09:24 本站原创作者:本站用户评论(3)关键字:带自锁的过流保护电路1.第一个部分是电阻取样...负载和R1串联...大家都知道.串联的电流相等 (2)的电压随着负载的电流变化而变化...电流大,R2两端电压也高...R3 D1组成运放保护电路...防止过高的电压进入运放导致运放损坏...C1是防止干扰用的...2.第二部分是一个大家相当熟悉的同相放大器...由于前级的电阻取样的信号很小...所以得要用放大电路放大.才能用...放大倍数由VR1 R4决定...3.第三部分是一个比较器电路...放大器把取样的信号放大...然后经过这级比较...从而去控制后级的动作...是否切断电源或别的操作...比较器是开路输出.所以要加上上位电阻...不然无法输出高电平...4.第四部分是一个驱动继电器的电路...这个电路和一般所不同的是...这个是一个自锁电路... 一段保护信号过来后...这个电路就会一直工作...直到断掉电源再开机...这个自锁电路结构和单向可控硅差不多.过流保护电路过流保护用PTC热敏电阻通过其阻值突变限制整个线路中的消耗来减少残余电流值。
可取代传统的保险丝,广泛用于马达、变压器、开关电源、电子线路等的过流过热保护,传统的保险丝在线路熔断后无法自行恢复,而过流保护用PTC热敏电阻在故障撤除后即可恢复到预保护状态,当再次出现故障时又可以实现其过流过热保护功能。
过流保护电路图过流保护元件通用线路过流保护用PTC热敏电阻Ф在PTC热敏电阻器上局部的过热而导致其被毁坏。
3、清洗氟利昂,三氯乙烷或四氯乙烯等温和的清洗剂均适用于清洗,同样可以使用超声波清洗的方法,但是一些清洗剂可能会损害热敏电阻的性能,清洗前最好进行试验或到我公司咨询。
4、贮藏条件与期限如果存贮得当,PTC热敏电阻器的存贮期没有什么期限限制。
为了保持PTC热敏电阻器的可焊性,应在没有侵蚀性的气氛中进行贮藏,同时要注意空气湿度,温度以及容器材料。
过流保护电路设计
过流保护电路如上图所示。
此电路是过流保护电路,其中100kΩ电阻用来限流,通过比较器LM311对电流互感器采样转化的电压进行比较,LM311的3脚接一10kΩ电位器来调比较基准电压,输出后接一100Ω的电阻限流它与后面的220µF的电容形成保护时间控制。
当电流过流时比较器输出是高电平产生保护,使SPWM不输出,控制场效应管关闭,等故障消除,比较器输出低电平,逆变器又自动恢复工作。
1.第一个部分是电阻取样...负载和R1串联...大家都知道.串联的电流相等...R2上的电压随着负载的电流变化而变化...电流大,R2两端电压也高...R3 D1组成运放保护电路...防止过高的电压进入运放导致运放损坏...C1是防止干扰用的...2.第二部分是一个大家相当熟悉的同相放大器...由于前级的电阻取样的信号很小...所以得要用放大电路放大.才能用...放大倍数由VR1 R4决定...3.第三部分是一个比较器电路...放大器把取样的信号放大...然后经过这级比较...从而去控制后级的动作...是否切断电源或别的操作...比较器是开路输出.所以要加上上位电阻...不然无法输出高电平...4.第四部分是一个驱动继电器的电路...这个电路和一般所不同的是...这个是一个自锁电路... 一段保护信号过来后...这个电路就会一直工作...直到断掉电源再开机...这个自锁电路结构和单向可控硅差不多.1 采用电流传感器进行电流检测过流检测传感器的工作原理如图1所示。
通过变流器所获得的变流器次级电流经I/V转换成电压,该电压直流化后,由电压比较器与设定值相比较,若直流电压大于设定值,则发出辨别信号。
但是这种检测传感器一般多用于监视感应电源的负载电流,为此需采取如下措施。
由于感应电源启动时,启动电流为额定值的数倍,与启动结束时的电流相比大得多,所以在单纯监视电流电瓶的情况下,感应电源启动时应得到必要的输出信号,必须用定时器设定禁止时间,使感应电源启动结束前不输出不必要的信号,定时结束后,转入预定的监视状态。
IGBT驱动的欠压保护电路及过流保护电路
IGBT驱动的欠压保护电路及过流保护电路作者:海飞乐技术时间:2017-06-19 14:321.欠压保护电路一般情况下,IGBT栅极电压V GE需要+15V才能使IGBT进入深饱和。
如果V GE低于10V时,IGBT将工作在线性区,并且很快因过热而被烧坏。
lGBT驱动要求电源电压为正电压不低于10V,负电压不低于-12V,一般欠压保护常用稳压管检测电源电压以保护IGBT。
欠压保护电路如图1所示,采用两只稳压值分别为12V和10V的稳压管Z1和Z2。
图1 欠压保护电路当正负电压均不欠压时,三极管Q6进入饱和导通,比较器LM193反向端电压被拉低,比较器正向电压由电阻分压得到,为5V左山。
所以比较器输出高电平,无欠压故障信号。
当正电压欠压时(低于10V),10V稳压管Z2不能被击穿,使得Q6截止,比较器反向端电压升高,比较器输出低电平故障信号。
当负电压欠压时(低于-12V),12V稳压管Z1阴极大于0,,使得Q6基极电压被拉低而截止,比较器也会输出电平故障信号。
2.过流保护电路通过对流保护检测及措施的研究,驱动电路采用如下过流保护电路:(1)采用饱和压降V CC(sat)检测法,来检测过流和短路情况,并且过流阈值可调,检测过流范围IGBT额定集电极电流1.2倍到10倍;(2)过流保护采用软关断的方法。
即检测到过流发生时,立即缓慢降低栅极电压,限制集电极电流继续上升,并软关断lGBT,经过固定延时后,再硬关断IGBT(此时软关断电路退出,保证故障情况下可靠关断IGBT)。
图2 过流保护电路图2所示为设计的过流保护电路。
其中RC_refA和PWM信号反向,与IGBT开通时,RC_refA变低,比较器正向端电压V ref由RCA端电压决定,其中通过改变RCA电阻和电容值,可以调节V ref大小以及参考时间长短(即电压下降时间),V ref可调范围为0V-15V。
比较器反向端通过连接检测二极管来检测IGBT饱和压降,IGBT关断时检测的V ce(sat)上升到稳压管Z3电压10V。
充电电源过流保护电路框图
充电电源过流保护电路框图
本电源模块设有独立的故障检测系统,检测输入过压、欠压和过流、短路、过热等故障。
出现故障时,由继电器引出提供给微机监控模块。
所有这些均为恢复性保护,当发生保护后,待故障消失时,模块能自动恢复工作。
其中一个或几个电源模块因故障停止工作,并不影响其他模块的正常工作。
下面简单介绍一下过流保护电路,其原理框图如图所示。
过流保护能否在主电路发生过流时准确及时动作,不但决定功率IGBT 器件能否正常工作,而且将决定整个电
源模块的可靠性及其是否具有实用价值。
为了解决这一问题,经大量的研究与试验,研制出过流保护专用电路。
此电路由主检测动作电路和缓冲加速电路组成。
工作原理如下,在主电路中串联一个采样用的锰铜片Ro,如图3 所示。
在Ro 上所采到的电压信号U 是由公式U=IR 确定,此信号通过屏蔽线送到
X5∶1 与X5∶2 之间。
当U 达到某一确定值URO 时,检测电路立即动作,使
高速光耦迅速导通,电压信号送到保护信号入口,从而使脉宽调制器封锁脉冲,电源模块停止工作。
待过流信号消失后,此时U 为了进一步提高整个系统的可靠性,本电源模块设计了备用电路,此电路能够在微机监控模块发生故障时,继续保持各电源模块正常工作。
图充电电源过流保护电路框图
tips:感谢大家的阅读,本文由我司收集整编。
仅供参阅!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
過流保護電路原理過流保護電路圖
過流保護電路原理
本電路適用於直流供電過流保護,如各種電池供電的場合。
如果負載電流超過預設值,該電子保險將斷開直流負載。
重置電路時,只需把電源關掉,然後再接通。
該電路有兩個聯接點(A、B標記),可以連接在負載的任意一邊。
負載電流流過三極管T4、電阻R10和R11。
A、B端的電壓與負載電流成正比,大多數的電壓分配在電阻上。
當電源剛剛接通時,全部電源電壓加在保險上。
三極管T2由R4的電流導通,其集電極的電流值由下式確定:VD4=VR7+0.6。
因為D4上的電壓(VD4)和R7上的電壓(VR7)是恒定的,所以T2的集電極電流也是恒定。
該三極管提供穩定的基極電流給T3,因而使其導通,接著又提供穩定的基極電流給T4。
保險導電,負載有電流流過。
當電源剛接通時,電容器C1提供一段延時,從而避免T1導電和保持T2斷開。
保險上的電壓(VAB)通常小於2V,具體值取決於負載電流。
當負載電流增大時,該電壓升高,並且在二極體D4導通時,達到分流部分T2的基極電流,T2的集電極電流因而受到限制。
由此,保險上的電壓進一步增大,直到大約4.5V,齊納二極體D1擊穿,使T1導通,T2便截止,這使得T3和T4也截止,此時保險上的電壓增大,並且產生正回饋,使這些三極管保持截止狀態。
C1的作用是給出一段短時延遲,以便保險可以控制短時超載,如象白熾燈的開關電流,或直流電機的啟動電流。
因此,改變C1的值可以改變延遲時間的長短。
該電路的電壓範圍是10~36V的直流電,延遲時間大約0.1秒。
對於電路中給出的元件值,負載電流限制為1A。
通過改變元件值,負載電流可以達到10mA~40A。
選擇合適額定值的元件,電路的工作電壓可以達到6~500V。
通過利用一個整流電橋(如下面的電源電路),該保險也可以用於交流電路。
電容器C2提供保險端的暫態電壓保護。
二極體D2避免當保險上的電壓很低時,C1經過負載放電。
帶自鎖的過流保護電路
1.第一個部分是電阻取樣...負載和R1串聯...大家都知道.串聯的電流相等...R2上的電壓隨著負載的電流變化而變化...電流大,R2兩端電壓也高...R3 D1組成運放保護電路...防止過高的電壓進入運放導致運放損壞...C1是防止干擾用的...
2.第二部分是一個大家相當熟悉的同相放大器...由於前級的電阻取樣的信號很小...所以得要用放大電路放大.才能用...放大倍數由VR1 R4決定...
3.第三部分是一個比較器電路...放大器把取樣的信號放大...然後經過這級比較...從而去控制後級的動作...是否切斷電源或別的操作...比較器是開路輸出.所以要加上上位電阻...不然無法輸出高電平...
4.第四部分是一個驅動繼電器的電路...這個電路和一般所不同的是...這個是一個自鎖電路... 一段保護信號過來後...這個電路就會一直工作...直到斷掉電源再開機...這個自鎖電路結構和單向可控矽差不多.
過流保護用PTC熱敏電阻通過其阻值突變限制整個線路中的消耗來減少殘餘電流值。
可取代傳統的保險絲,廣泛用於馬達、變壓器、開關電源、電子線路等的過流過熱保護,傳統的保險絲在線路熔斷後無法自行恢復,而過流保護用PTC熱敏電阻在故障撤除後即可恢復到預保護狀態,當再次出現故障時又可以實現其過流過熱保護功能。
過流保護電路圖
過流保護元件
通用線路過流保護用PTC熱敏電阻
使用注意事項
1、焊接
在焊接時要注意,PTC熱敏電阻器不能由於過分的加熱而受到損害。
必須遵守下列的最高的溫度,
最長的時間和最小的距離:
浸焊烙鐵焊
溶池溫度max. 260 ℃max. 360℃
釺焊時間max. 10s max. 5 s
距PTC熱敏電阻器最小的距離min. 6mm min. 6mm
在較惡劣的釺焊條件下將會引起電阻值的變化。
2、塗層和灌注
在PTC熱敏電阻器上加塗層和灌注時,不允許在固化和以後的處理中由於不同的熱膨脹而出現機械應力。
請謹慎使用灌注材料或填料。
在固化時不允許超過PTC 熱敏電阻器的上限溫度。
此外,要注意到,灌注材料必須是化學中性的。
在PTC熱敏電阻器中鈦酸鹽陶瓷的還原可能會導致電阻降低和電性能的喪失;由於灌注而引起熱散熱條件的變化可能會引起在PTC熱敏電阻器上局部的過熱而導致其被毀壞。
3、清洗
氟利昂,三氯乙烷或四氯乙烯等溫和的清洗劑均適用於清洗,同樣可以使用超聲波清洗的方法,但是一些清洗劑可能會損害熱敏電阻的性能,清洗前最好進行試驗或到我公司諮詢。
4、貯藏條件與期限
如果存貯得當,PTC熱敏電阻器的存貯期沒有什麼期限限制。
為了保持PTC熱敏電阻器的可焊性,應在沒有侵蝕性的氣氛中進行貯藏,同時要注意空氣濕度,溫度以及容器材料。
元件應盡可能的在原
包裝中進行貯藏。
對未焊接的PTC熱敏電阻器的金屬覆層的觸碰可能會導致可焊性能降低。
暴露在過潮或過高溫度下,一些規格產品性能可能會改變,比如錫鉛的可焊性等,但是在正常的電器元件保存條件下可以長期保存。
5、注意事項
為避免PTC熱敏電阻器發生失效/短路/燒毀等事故,使用(測試)PTC熱敏電阻器時應特別注意如下事項:
不要在油中或水中或易燃易爆氣體中使用(測試)PTC熱敏電阻器;
不要在超出"最大工作電流"或"最大工作電壓"條件下使用(測試)PTC熱敏電阻器。
過流保護電路圖
帶過流保護加開關機控制的線性電源...這個電源電路可以分為二個部分來分析...左邊的部分是過流檢測...右邊的是控制和輸出...
1.我們先來看看這個左邊的過流保護...H EHE...
1.過流檢測電路...
左邊的過流保護電路簡化下就是這樣子了...檢測原理是...當Q1的E B二端電壓為0.7V左右的時候.Q1導通...C端輸出電壓...這樣完成過流檢測的原理...檢測電流的大小取決於R1 R2的值...不知道設計者在這裡為什麼這樣設計...我不知道這二個二極體參數...應該不是普通的二極體,因為普通的二極體壓降太大.一個約0.7V.二個串聯起來就1.4了...接成這樣就沒有太大的實際意義了...因為三極管E B二端電壓超過0.7V就導通了...導通後電路就會切斷後級的輸出...這樣起到保護作用...
通過模擬.感覺到如果是二個普通二極體.這樣串聯起來沒什麼意義...
如果有上面這二個二極體資料的朋友,請提供上來...H EHE...一起討論下...
過流保護電路就這麼簡單.HE HE...
2.控制輸出電路...
控制輸出電路在這裡.我們也簡化下...其實就是由普通的三極管組成的開關電路...下面是簡化後的圖...
在這裡我把場效應管換了下...方便模擬...其實原理是一樣的.HE HE...
電路要有電壓輸出.必須得三個三極管全導通...Q1 的導通取決於Q2 Q3的導通...Q2的導通取決於3.3V電壓...Q3的導通在這裡面則是由C1來提供的...電路的原理是這樣...
上電...Q2導通...Q3由開關機信號...經C1後再導通...Q2 Q3全導通後.Q1才能導通...Q1導通後...Q3的B極電壓則由R3提供...達到穩定的狀態...
在這裡的C1非常關鍵...因為C1是啟動電容...如果沒有C1 Q3無法導通...無法導通則整個電路都沒辦法工作...
不過這樣的方式不是很穩定...設計不合理的情況下.使電源難以啟動...。