电极溶液界面的结构与性质

合集下载

电极过程动力学第2章电极-溶液界面的基本性质

电极过程动力学第2章电极-溶液界面的基本性质
粗糙度因子用于描述电极表面真实面积与表观面积 之间的比值,它对电极过程的动力学行为有重要影 响。
电极表面吸附现象
物理吸附
物理吸附是指物质通过范德华力等物理作用在电极表面吸附的现象。 物理吸附对电极反应的影响较小。
化学吸附
化学吸附是指物质通过化学键合作用在电极表面吸附的现象。化学 吸附对电极反应的影响较大,可以改变电极表面的性质。
电极过程动力学第2章电极-溶 液界面的基本性质

CONTENCT

• 电极-溶液界面概述 • 电极表面特性 • 溶液性质对界面影响 • 界面电势差与双电层结构 • 界面电荷转移过程 • 界面传质过程与扩散层结构
01
电极-溶液界面概述
界面定义与分类
界面定义
电极与溶液之间的接触区域,发生电 化学反应的场所。
竞争吸附
当多种物质在电极表面发生吸附时,它们之间可能存在竞争关系。竞 争吸附的结果取决于各种物质的吸附能力和电极表面的性质。
03
溶液性质对界面影响
溶液组成与性质
溶质种类与浓度
不同溶质及其浓度会对电极-溶液界面的性质产生显著影响。例如 ,某些溶质可能在界面处发生吸附或反应,从而改变界面的结构 和性质。
电极表面的能量状态与晶体内部 不同,表面能的高低影响了电极 反应的进行。
电极表面粗糙度
表面形貌
电极表面的粗糙度是指表面形貌的不规则程度,它 对电极反应速率和电流分布有重要影响。
真实面积与表观面积
电极表面的真实面积通常比表观面积大,这是由于 表面粗糙度引起的。真实面积对电极反应速率有直 接影响。
粗糙度因子
扩散层结构特点
01
扩散层定义
在电极表面附近,由于浓度梯度引 起的物质扩散区域。

第3章电极-溶液界面的结构与性质

第3章电极-溶液界面的结构与性质

C0r
l
公式3 23
单位uF/cm2
电化学原理
实验表明,界面双电层的电容并不完全像平行板电容器那样是 恒定值,而是随着电极电位的变化而变化的。因此,应该用微分形 式来定义界面双电层的电容,称为微分电容。即
Cd
dq
d
1、利用电毛细曲线求微分电容值
根据微分电容的定义和李普曼方程,很容易从电毛细曲线求得 微分电容值。
R d d d R d d d R
根据能斯特方程式得知: 当参比电极对正离子可逆时: 当参比电极对负离子可逆时:
d d R zF
d d R zF
电化学原理 ⑵不可能单独改变溶液中某一种离子的浓度和化学位的处理 电解质MA将在水溶液中发生电离反应如下:
M A M zA z
根据化学位的加和性可知:
dM A d d
电解质MA的浓度是可以人为地改变的。因此可利用上式通过 dμMA来计算离子表面剩余量。
电化学原理 ⑶处理过程: 假设参比电极对负离子可逆:
dddR
d d R zF
代入
d id i q d
d q d/ q z d F d d
d 0
dji 0
带入
d id i q d
则得到i离子在一定电极电位时的离子表面剩余量:
i
i ,ki0
(3-9)
所以,从理论上讲,测出μi与σ的关系曲线后,就可以由式(39)计算离子表面剩余量。但在实际工作中,由于下面两种原因,不 可能直接应用式(3-9),而需要推导一个能实际应用的计算公式。
距离x
电化学原理 把界面层溶液一侧垂直于电极表面的单位截面积液柱中,有离 子双电层存在时i离子的摩尔数与无离子双电层存在时i离子的摩尔 数之差定义为i离子的表面剩余量。

电化学原理-吴金平-2012第三章304-1-wu

电化学原理-吴金平-2012第三章304-1-wu
最接近电极表面 的水化阳离子电荷中 心所在的液层称为外 紧密层或外亥姆荷兹 平面(OHP)
OHP
水化程度高, 冲出水化膜、 钻进水偶极 层难! 水偶极层 水化阳离子层
外紧密层结构示意图
b.内紧密层结构(q>0)
特性吸附:内紧密层的离 子吸附称为特性吸附 紧密层厚度:仅为一个 阴离子半径,d=r-
IHP
0 r
x1
1 1 1 = C紧 C水 C 0 r
x2
x1 x2 1 = C紧 0 H2O 0
H2O
x1 1 C紧 0 H 2O
实验结果证明:在荷负电的电极上, 紧密层的
电容与组成双电层的水化阳离子的种类基本无关.
x1 1 C紧 0 H2O
紧密层是带有剩余电荷的两相之间的界面层,厚度不 超过几个埃;而分散层是液相中具有剩余离子电荷及 电位梯度的表面层,稀溶液中及表面电荷密度很小时 分散层厚度可达几百埃。 浓溶液中及表面电荷密度不太小时几乎可以忽视分散 层的存在,即可近似认为分散层中的剩余电荷均集中 在界面层的外表面上。
§3.5 零电荷电位
例:已知某电极的 求此时对应的零标电位
思考:零标电位能否用于热力学计算中的电位标度?
p162
课堂练习:
某电极的微分电容曲线如图2所示,试画出图中1和 2 电位下的双电层结构示意图及电位分布图。
四、
的作用
判断电极表面剩余电荷q的符号和数量
1、可以通过
规律:
例:已知汞在稀的KCl溶液中
2 . 通过零电荷电位可研究电极/溶液界面的许 多重要性质:
双电层电位分布、界面电容、界面张力、 离子的 界面吸附行为、气体在金属表面的附着、溶液对金属 电极的润湿性、电动现象和光电现象等 . 零电荷电位下的极值现象: 界面张力

电化学原理简答题

电化学原理简答题

电化学原理简答题第三章电极/溶液界面的结构与性质1.为什么电毛细曲线是具有极大值的抛物线形状?溶液界面存在双电层,剩余电荷无论带正电还是负电,同性电荷间相互排斥,使界面扩大,而界面张力力图使界面缩小,两者作用效果相反,因此带电界面的张力比不带电时小,且电荷密度越大,界面张力越小,因此电毛细曲线是具有极大值的抛物线形状。

2.标准氢电极的表面剩余电荷是否为零?不一定,标准氢电极电位为0指的是氢标电位,是人为规定的,电极表面剩余电荷密度为0时的电位指的是零电荷电位,其数值并不一定为0;因为形成相间电位差的原因除了离子双电层外,还有吸附双电层\偶极子双电层\金属表面电位。

3.影响双电层结构的主要因素是什么?为什么?静电作用和热运动。

静电作用使符号相反的剩余电荷相互靠近,贴于电极表面排列,热运动使荷电粒子外散,在这两种作用下界面层由紧密层和分散层组成。

4.什么叫Ψ1电位?能否说Ψ1电位的大小只取决于电解质总浓度而与电解质本性无关? Ψ1电位的符号是否总是与双电层总电位的符号一致?为什么?距离电极表面d处的电位叫Ψ1电位。

不能,因为不同的紧密层d的大小不同,而紧密层的厚度显然与电解质本性有关,所以不能说Ψ1电位的大小只取决于电解质总浓度而与电解质本性无关。

当发生超载吸附时Ψ1电位的符号与双电层总电位的符号不一致。

5.简要概括电极/溶液界面发展的四个阶段、优缺点及其主要内容。

①亥姆赫兹紧密双电层模型:主要内容:将双电层比作是平行板电容器优点:a能够解释界面张力随电极电位变化b能够解释微分电容曲线上所出现的平台区域缺点:a解释不了界面电容随电极电位和溶液总浓度的变化规律b解释不了在稀溶液中,零电荷电位下微分电容最小等实验事实②Gouy和Chapman分散层模型:主要内容:溶液中的离子在静电作用和热运动作用下,按位能场中粒子的波尔兹曼分配律分布,完全忽略紧密层,只考虑分散层。

优点:a能较好解释微分电容最小值的出现b能较好解释电容随电极电位的变化规律缺点:a理论计算微分电容值与实验事实相差太大b解释不了微分电容曲线上的“平台区”的出现③Stern模型(双电层静电模型):主要内容:双电层由紧密层和分散层两部分组成。

电极与溶液界面的性质

电极与溶液界面的性质
26
(3)“紧密层”中的电势分布呈线性,“分散层”中的电势分布为非线 性
27
可解释以下实验现象: (1)、在稀溶液中,Cd有极小值; (2)、电极表面荷正电时,Cd值较大; (3)、电极表面荷较大负电时, Cd值约20; (4)、随电极表面荷电量的加大, Cd急剧上升。
C=ε0 ε/d dH2O=2.8 X10-8cm ε0= 8.85 X10-8μF/cm; εH2O= 6; C= 8.85 X10-8X6/2.8 X10-8 ≈20 μF/cm2
0.2V/20Å
106 V/cm
速率V2= exp(-βFΔV/RT)×速率V1
研究“电极 /溶液”界面的目的:弄清界面性质与电极反应速度的关联
性; 加深对界面电势和电极电势等物化概念的理解
6
“电极溶液”界面对电极反应速度的影响因素: ( 1 )材料因素:电极材料及其表面状态、电解质溶液性质 对电极反应速度有影响
上一章基本概念回顾
电极反应 阳极,阳极反应 阴极,阴极反应 电极过程,阳极过程,阴极过程 电极过程的主要特征
控制步骤
电极电势:绝对电极电势,相对电极电势,氢标电势 极化
超电势
1
本章内容引导
现象:
1、在不同电极上,同一电极反应的进行速度可以相 差10个数量级;
H+ + e
H2( Pt上比Hg上快10个数量级)
(电解质溶液的组成和浓度、电极材料的物理、化学性质及 表面状况)
(2)电场因素:界面电场影响反应的活化能,从而影响电极
反应速度;
7
3、电极/溶液界面附近荷电层的形成、结构 形成机制(金属电极/电解质界面): (1)、离子双电层
由电极表面的剩余电荷与溶液中与之相反的离子组成

3、电极-溶液界面的结构与性质

3、电极-溶液界面的结构与性质
Page 16
电毛细曲线微分方程 ( Lippmann方程 )
3、2 电毛细现象
对电毛细曲线微分方程的实验解释 当电极表面存在正的剩余电荷时:
q 0: 0
对应电毛细曲线左半部分(上升分支); 当电极表面存在负的剩余电荷时, q 0: 0 对应电毛细曲线右半部分(下降分支) 。
RT
Page 20
ln
,
3、2 电毛细现象
离子表面剩余量的具体求法 测出不同浓度的
~ 曲线;
从 ~ 曲线上取同一
下的 值,做
,
由 ~ ln 曲线求出某一浓度下的斜率 ~ ln, 即 ,从而得 。
3、2 电毛细现象
电极的极化(polarization) 当电极上无电流通过时,电极处于平衡状态,这时 的电极电势分别称为阳极平衡电势和阴极平衡电 势——理想极化电极。
在有电流通过时,随着电极上电流密度的增加,电
极实际分解电势值对平衡值的偏离也愈来愈大,
这种对平衡电势的偏离称为电极的极化。
Page 9
零电荷 0
左半部 0 电极表面剩余电荷密度 为正值。 右半部 0 电极表面剩余电荷密度 为负值。
Page 28
3、3 双电层的微分电容
溶液越稀微分电容曲线的极小值
点越明显。
微分电容曲线有“平台”出现,

不随 Cd
变化。
但正、负离子出现“平台”的数
值不同,表明双电层结构不同。
Rf
通常情况下,通过外电路 流向“电极/溶液”界面的 电荷可能参加两种不同的 过程:
C
电极体系的等效电路
在界面上参加电化学(电极)反应而被消耗,相当 于部分电量通过一个电阻

电化学电极与溶液界面的性质

电化学电极与溶液界面的性质
分散层中电势分布呈非线性。
d
界面荷电层中离子浓度的分布: 遵循Bolizmann分布
j-y y
j
(具体数学表达式见参考书)
j
d
x
10
4、研究电极/溶液界面的实验手段和方法
研究电极溶液界面的基本思路:实验测量反映界面性质的 参数(如界面张力,微分电容,电极表面剩余电荷密度等) 与电极电势的关系,根据结果给出理论模型。
j j-y y
d d
j
x
20
现象: 在离零电势较远的负电势区,界面微分电容值几 乎与电势无关,也与溶液中阳离子的半径及价态基本 无关。且在不同金属的荷负电表面上,微分电容具有 相近的数值(20微法/平方厘米)。
21
1963年,Bockris等人提出BDM双电层模型(BockrisDavanathan-Muller): 紧密层由两个串联的双电层组成。紧靠电极表面的内 层为吸附的水分子偶极层,外层为水化离子层。
“电极/溶液”界面的构造和性质
1
1、何为电极/溶液界面
(静电、特性吸附、水偶极分子定向排布)
电极/溶液界面:当电极与溶液接触时,在各种界面因素 的作用下,电极和溶液相之间形成的一个在结构和性质上 与本体溶液不同的过渡相。 2
E.g. 锌电极插入硫酸锌溶液中
电极/溶液界面的结构:指在这一两相过渡区域中剩余电荷和电势的分布;
电极/溶液界面的性质:指结构随电极电位的变化关系。
3
2、为什么要研究电极/溶液界面?
“电极/溶液”界面是电极反应发生的“客观环境”,其结构和性质对电极 反应速度有重大影响!
实验现象:
(1)在不同电极上,同一电极反应的进行速度可以 相差10个数量级;
H+ + e

电化学 第2章 双电层(1)

电化学 第2章 双电层(1)

第2章 电极/溶液界面的结构和性质(Properties of Metal/Solution Interface or Properties of Electrode/Electrolyte Interface )前面介绍过,电化学反应是在电极/溶液界面进行的异相反应。

尤其是电化学步骤—得失电子的过程,是直接在该界面上进行的。

反过来说,该界面是实现电化学反应的场所,而这个场所的基本结构和性质对界面反应的动力学规律有很大影响。

我们研究界面性质的目的就是为了搞清楚界面的性质对反应速度的影响。

在不同性质或附加一些不同条件的电极表面上,同一电极反应的进行速度可以很不相同,有时这种差别甚至可以超过十几个数量级。

为什么不同电极表面的“反应能力”会出现这样大的差别呢?或者说什么样的影响造成这种差别呢?主要原因可大致归纳为两个方面。

第一方面:化学因素(1)电极材料不同,或者说电极的化学组成不同,催化活性就不同。

比如,2H 析出反应:↑=+-+222H e H该反应在Pt 电极上要比在Hg 电极上进行的速度大1010倍,即1010/≥Hg Pt v v (当然,其它条件应同:ϕ、S 等)。

这就是说,对于2H 析出反应而言,Pt 的催化活性要比Hg 大得多。

(2)当电极表面出现吸附或成相的有机或无机化合物层,或者表面状态不同(粗糙程度等),活性也不同。

如:2PbO (acid Pb -电池正极活性物质)有α和β两种晶型,其活性不同。

第二方面:电场因素S M /界面上的电场强度(大致对应于ϕ)对电极反应的活化能有直接的影响,活化能的大小又直接影响到反应速度的大小:i W →→ϕ界面电场是如何形成的?我们先不去考虑,这里只需要接受这个事实:有电场。

那么这个电场因素对反应的影响有多大呢?(1)许多电极反应,ϕ改变0.1~0.2V ,)(i v 可变10倍。

ϕ改变1~2V ,)(i v 可变1010倍。

一般的电极反应,ϕ的变化都可以达到1~2V 的程度,很一般。

2009-01-15--第三章+电极-溶液界面结构与性质(3.4-双电层的结构和零电荷电位2学时)

2009-01-15--第三章+电极-溶液界面结构与性质(3.4-双电层的结构和零电荷电位2学时)
第三章 电极-溶液界面结构与性质(3.4 双电层的结构和 3.5 零电荷电位2学时)
一、电极/溶液界面的基本结构
电极/溶液界面的双电层如图所示。
上一内容 下一内容 回主目录
返回
第三章 电极-溶液界面结构与性质(3.4 双电层的结构和 3.5 零电荷电位2学时)
电极/溶液界面剩余电荷分布和电位分布如图3.14所示。
常数

2RT F
ln a

RT F
ln
c
Ψl<0时
1

常数

2RT F
ln( a)
RT F
ln
c
式中,“常数”为:
2RT ln 1 F C紧
2 RT 0 r
上一内容 下一内容 回主目录
返回
第三章 电极-溶液界面结构与性质(3.4 双电层的结构和 3.5 零电荷电位2学时)
RT

返回
第三章 电极-溶液界面结构与性质(3.4 双电层的结构和 3.5 零电荷电位2学时)



1和x=时,

x
=0和
x
=0
利用数学关系式
2
x2

1 ( )2
2 x x
从x=d到x=∞积分

x
)2 x=d

2cRT
0 r

exp(

1F
上一内容 下一内容 回主目录
返回
第三章 电极-溶液界面结构与性质(3.4 双电层的结构和 3.5 零电荷电位2学时)
双电层电位差由紧密层电位差与分散层电位差两部分 组成,可以利用下列式计算双电层电容:
1 da d (a 1) d1 1 1

电化学原理简答题

电化学原理简答题

电化学原理简答题第三章电极/溶液界面的结构与性质1.为什么电毛细曲线是具有极大值的抛物线形状?溶液界面存在双电层,剩余电荷无论带正电还是负电,同性电荷间相互排斥,使界面扩大,而界面张力力图使界面缩小,两者作用效果相反,因此带电界面的张力比不带电时小,且电荷密度越大,界面张力越小,因此电毛细曲线是具有极大值的抛物线形状。

2.标准氢电极的表面剩余电荷是否为零?不一定,标准氢电极电位为0指的是氢标电位,是人为规定的,电极表面剩余电荷密度为0时的电位指的是零电荷电位,其数值并不一定为0;因为形成相间电位差的原因除了离子双电层外,还有吸附双电层\偶极子双电层\金属表面电位。

3.影响双电层结构的主要因素是什么?为什么?静电作用和热运动。

静电作用使符号相反的剩余电荷相互靠近,贴于电极表面排列,热运动使荷电粒子外散,在这两种作用下界面层由紧密层和分散层组成。

4.什么叫Ψ1电位?能否说Ψ1电位的大小只取决于电解质总浓度而与电解质本性无关? Ψ1电位的符号是否总是与双电层总电位的符号一致?为什么?距离电极表面d处的电位叫Ψ1电位。

不能,因为不同的紧密层d的大小不同,而紧密层的厚度显然与电解质本性有关,所以不能说Ψ1电位的大小只取决于电解质总浓度而与电解质本性无关。

当发生超载吸附时Ψ1电位的符号与双电层总电位的符号不一致。

5.简要概括电极/溶液界面发展的四个阶段、优缺点及其主要内容。

①亥姆赫兹紧密双电层模型:主要内容:将双电层比作是平行板电容器优点:a能够解释界面张力随电极电位变化b能够解释微分电容曲线上所出现的平台区域缺点:a解释不了界面电容随电极电位和溶液总浓度的变化规律b解释不了在稀溶液中,零电荷电位下微分电容最小等实验事实②Gouy和Chapman分散层模型:主要内容:溶液中的离子在静电作用和热运动作用下,按位能场中粒子的波尔兹曼分配律分布,完全忽略紧密层,只考虑分散层。

优点:a能较好解释微分电容最小值的出现b能较好解释电容随电极电位的变化规律缺点:a理论计算微分电容值与实验事实相差太大b解释不了微分电容曲线上的“平台区”的出现③Stern模型(双电层静电模型):主要内容:双电层由紧密层和分散层两部分组成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电极溶液界面的结构与性质
各类电极反应都发生在电极/溶液的界面上,因而界面的结构和性质对电极反应有很大影响。

这一影响主要表现在以下两个方面。

1.界面电场对电极反应速度的影响
界面电场是由电极/溶液相间存在的双电层所引起的。

而双电层中符号相反的两个电荷层之间的距离非常小,因而能给出巨大的场强。

特别有意义的是,电极电位可以被人为地、连续地加以改变,因而可以通过控制电极电位来有效地、连续地改变电极反应速度。

这正是电极反应区别于其他化学反应的一大特点。

2.电解液性质和电极材料及其表面状态的影响
电解质溶液的的组成和浓度,电极材料的物理、化学性质及其表面状态均能影响电极/溶液界面的结构和性质,从而对电极反应的性质和速度有明显的作用。

所以,要深入了解电极过程的动力学规律,就必须了解电极/溶液界面的结构和性质。

对界面有了深入的研究,才能达到有效地控制电极反应性质和反应速度的目的。

一、电极/溶液界面的基本结构
在电极/溶液界面存在着两种相间相互作用:一种是电极与溶液两相中的剩余电荷所引起的静电作用;另一种是电极和溶液中各种粒子之间的短程作用。

这些相互作用决定着界面的结构和性质。

我们在物理化学中已学过,某种物质的分子、原子或离子在界面富集或贫乏的现象称为吸附。

按照吸附作用力的性质,可分为物理吸附和化学吸附。

当电极表面带有剩余电荷时,会在静电作用下使荷相反符号电荷的离子聚集到界面区,这种现象可称为静电吸附。

除此之外,溶液中的各种粒子还可能因非静电作用力而发生吸附,则称为特性吸附。

本节只讨论特性吸附现象。

凡是能在电极/溶液界面发生吸附而使界面张力降低的物质,就叫做表面活性物质。

表面活性物质在界面的特性吸附行为取决于电极与表面活性粒子之间、电极与溶剂分子之间、表面活性粒子与溶剂分子之间的相互作用。

因此,不同的物质发生特性吸附的能力不同,同一物质在不同的电极体系中的吸附行为也不相同。

如前所述,绝大多数阳离子地表面活性都很小,可作为非表面活性物质处理。

少数阳离子发生特性吸附时,具有与阴离子类似地规律,如使界面张力下降,微分电容升高,零电荷电位移动等。

不过由于阳离子所带电荷符号不同,零电荷电位将向正方向移动,阳离子地吸附也主要发生在比零电荷电位更负的电位范围内和零电荷电位附近。

但是,在出现氢和氧的吸附的电位范围内,可能同时发生电化学过程,这样,发生氢或氧吸附的电极体系已不再具备理想极化电极的性质了,因此不能用微分电容法和电毛细曲线法来研究氢和氧的吸附。

目前,常用的方法有两种:充电曲线法和电位扫描法。

下面分别予以介绍。

电极/溶液界面附近液相中的传质过程
电极反应的分部步骤:界面附近传质过程,化学转化过程,界面上转化过程,电子转移过程
对于发生在电极/溶液异相界面的电极过程,除了电子转移过程之外,还涉及传质过程及各种表面效应,后者甚至可以成为速控步骤。

一般认为总的电极反应由一系列分步骤所组成。

电极反应的速率由这一系列分步骤的一个控制或若干个混合控制。

这些步骤包括以下几种。

物质传递:反应物从溶液本体相传递到电极表面和产物从电极表面相传递到分布到本体溶液.。

电荷转移:电极/溶液界面的电子传递
耦联化学反应:电子传递反应前置或后续的化学转化,这些过程可能是均相也可能是异相过程。

表面转化反应:反应物或产物的吸脱附过程及新相生成(表面沉积、沉淀形成、气体放出)等其他的表面反应。

对流传质:物质的粒子随着流动的液体而移动。

引起对流的原因:液体各部分之间存在密度差(自然对流)
外加的搅拌作用(强制对流)
在电极表面附近(扩散层区),电活性物质通常由扩散和电迁移两种过程来传递。

净电流密度可以分为扩散电流密度Id和电迁移密度Im。

分别表示电极表面上电活性物质的流量中扩散和电迁移的分量:。

相关文档
最新文档