多面体欧拉公式的发现1

合集下载

高二数学第九节 多面体 欧拉公式的发现知识精讲 人教版

高二数学第九节 多面体 欧拉公式的发现知识精讲 人教版

高二数学第九节多面体欧拉公式的发现知识精讲人教版1.多面体的概念和分类由若干个多边形所围成的几何体,叫做多面体.围成多面体的各个多边形叫做多面体的面,两个面的公共边叫做多面体的棱,若干个面的公共顶点叫做多面体的顶点.把多面体的任何一个面伸展为平面,如果所有其他各面都在这个平面的同侧,这样的多面体叫做凸面体,图1是凸多面体,图2不是凸多面体,前面学过的棱柱,棱锥都是凸多面体.一个多面体至少有四个面,多面体按它的面数分别叫做四面体、五面体、六面体.2.正多面体的概念为了更好地弄清正多面体的概念,我们讲一讲与多面体有关的一些其他概念.多面角:从一点出发并且不在同一平面内的几条射线,以及每两条相邻射线之间的平面部分叫组成的图形.如图所示是一个多面角,记作多面体S—ABCD,或者多面角S.图中射线如SA叫做多面角的棱,S叫做顶点,相邻两棱如SA、SB之间的平面部分叫做多面角的面,∠ASB为多面角的面角.每相邻两个面角间的二面角为多面角的二面角,如E —SA—B.正多面体:如果面体的各个面都是全等的正多边形,并且各个多面角都是全等的多面角,这样的多面体叫做正多面体.3.正多面体的性质(i)正多面体的所有的棱,所有的面角和所有的二面角都相等.(ii)经过正多面体上各面的中心所在面的垂线相交于一点,这点到各顶点的距离相等,到各面的距离也相等.(iii)正多面体各面经过它中心的垂线的交点叫做正多面体的中心.定理:任何正多面体有一个内接球和一个外切球,这两个球同心.(iv)正多面体只存在五种:因为一个多面角的面数至少是三,并且它的各面角的和必须小于360°,而正n 边形的每个内角等于nn ︒⋅-180)2(,所以,由正三角形组成的正多面体只有三种:正四面体、正八面体和正十二面体;由正方形组成的正多面体只有一种:正六面体;由正五边形组成的正多面体也只有一种:正十二面体.书中是这样定义的正多面体:每个面都是有相同边数的正多边形,且以每个顶点为其一端都有相同的数目的棱的凸多面体,叫做正多面体.其实质是一样的.4.欧拉公式如果简单多面体的顶点数为V ,面数F ,棱数E ,那么V+F-E =2,这个公式叫做欧拉公式.计算棱数E 常见方法: (1)E =V+F-2(2)E =各面多边形边数和的一半 (3)E =顶点数与共顶点棱数积的一半【重点难点解析】本节是新增内容,教学要求只是了解,作为知识的综合性与联系,重点应掌握正多面体的概念,尤其是正四面体和正方体的性质,难点是欧拉公式例1 下列几何体是正多面体的是( ) A.长方体 B.正四棱柱C.正三棱锥D.棱长都相等的三棱锥 解 选D.因为棱长都相等的三棱锥就是正四面体.例2 对于下列命题:(1)底面是正多边形的,而侧棱长与底面边界长都相等的棱锥是正多面体;(2)正多面体的面不是三角形,就是正方形;(3)若长方体的各侧面都是正方形时,它就是正多面体;(4)正三棱锥就是正四面体,其中正确的序号是 .解 (2)显然不对,∵正十二面体每个面都是全等的正五边形.(1)所给的几何体是正棱锥,作为正棱锥每个侧面都是全等的正三角形,底面正多边形是任意的,而作为正多面体的所有面必须是全等的正多边形,故(1)、(4)不对.∴应填(3).例3 一个凸多面体有8个顶点,①如果它是棱锥,那么它有 条棱, 面;②如果它是棱柱,那么它有 条棱 个面.解 ①如果它是棱锥,则是七棱锥,有14条棱,8个面 ②如果它是棱柱,则是四棱柱,有12条棱,6个面【难题巧解点拨】例1 一个凸多面体的各面都是五边形,求多面体的顶点数V 与面数F 之间的关系. 解 ∵凸多面体各面是五边形,且面数为F.∴该凸多面体的棱数E =25F ,代入欧拉公式:V+F-25F =2 即2V-3F =4.例2 一凸多面体的棱数为30,面数为12,则它的各面多边形的内角总和为( ) A.5400° B.6480° C.7200° D.7920° 解 由欧拉公式,V =E-F+2=30-12+2=20∴内角总和为(V-2)×360°=6480° ∴应选B.例3 将边长为a 的正方体各侧面中心连结起来得到一个正八面体,求此正八面体的体积.解 根据正方体与正八面体的联系.可知正八面体的高为a ,侧棱长为22)2()2(a a =22a ,而正八面体可分为两个正四棱锥. 故 V =2×(22a)2×2a ×31=62a .说明 用分割的方法把八面体分割成两个锥体,然后求体积.例4 在正四面体ABCD 中,E 、F 分别为棱AD 、BC 的中点,连接AF 、CE , (1)求异面直线AF 、CE 所成角的大小; (2)求CE 与底面BCD 所成角的大小.解 (1)如图所示,设正四体棱长为a.在平面AFD 内作EG ∥AF 交DF 于G ,那么CE 与GE 所成非钝角的角就是异面直线AF 、CE 所成的角.由于正四面体的各个面是正三角形,所以AF =CE =DF =23a,GF =EG =21AF =43a,CG 2=CF 2+GF 2=(21a)2+(23a)2,即CG 2=167a 2,于是CG =47a. 在ΔCEG 中,cos ∠CEG =GECE CG GE CE ⋅-+2222,所以cos ∠CEG =32,于是∠CEG =arccos32. 因此AF 、CE 所成的角为arccos32. (2)设A 在底面内射影为O ,连AO ,则AO ⊥平面BCD ,在平面AFD 内作EH ∥AO 交FD 于H ,那么EH ⊥平面BCD ,且EH =2122OD AD -=2122)2332(a a ⋅-=66a,CE =23a ,显然∠ECH 就是CE 底面BCD 所成的角.在Rt ΔEHC 中,sin ∠ECH =CE EH =66a ∶23a =32,所以∠ECH =arcsin 32.例5 如图所示,四面体ABCD 的棱长为1,求AB 与CD 之间的距离.分析 AB 与CD 显然异面,这是求解异面直线间的距离问题,取AB 、CD 的中点E ,F ,连EF ,可设想EF 就是公垂线段。

综合实践活动 课题多面体欧拉定理的发现研究过程

综合实践活动 课题多面体欧拉定理的发现研究过程

综合实践活动:课题多面体欧拉定理的发现研究过程一、引言多面体欧拉定理是数学中的一项重要成果,它揭示了多面体的结构特征与顶点、边和面的关系。

本文将深入探讨多面体欧拉定理的发现研究过程,从历史背景、重要人物、关键实践活动等多个角度进行分析,以期对多面体欧拉定理的研究有更全面、详细、完整的了解。

二、历史背景多面体欧拉定理最早可以追溯到18世纪,当时数学家欧拉第一次提出了这个问题并得出了规律。

然而,在欧拉之前,古希腊数学家已经开始研究多面体,比如柏拉图就研究过正多面体。

多面体欧拉定理的发现离不开这些前人的努力,他们的研究奠定了基础。

三、欧拉的贡献3.1 多面体的定义在研究多面体欧拉定理之前,欧拉首先对多面体进行了界定。

他定义多面体为一个封闭的凸多面体,其由有限个平面多边形围成。

这个定义奠定了欧拉研究的基础。

3.2 欧拉公式的提出欧拉在研究多面体时,发现了一个有趣的公式,即多面体的顶点数、边数和面数之间存在着一个固定的关系:顶点数加上面数等于边数加2。

这个公式后来被称为欧拉公式。

3.3 通过多面体实践验证为了验证欧拉公式的正确性,欧拉进行了大量的实践活动。

他通过构建各种多面体,比如立方体、四面体、正六面体等,计算它们的顶点数、边数和面数,结果都符合欧拉公式的规律。

通过实践活动,欧拉成功地验证了自己的猜想,并得出了多面体欧拉定理。

四、多面体欧拉定理的证明欧拉提出的多面体欧拉定理虽然在实践中得到了验证,但其证明却花费了许多时间。

直到1864年,数学家C.A.根特梅尔提出了一种较为简洁的证明方法,被广泛接受并被视为多面体欧拉定理的正式证明。

4.1 根特梅尔的证明思路根特梅尔的证明思路非常巧妙,他首先考虑了二面体图(dual graph)的概念,即将多面体的面变成图的顶点,将多面体的边变成图的边。

然后,通过对二面体图进行分析,运用图的性质和拓扑学的知识,他得出了多面体欧拉定理的证明。

4.2 证明的要点根特梅尔的证明主要包括以下要点: - 根据二面体图的性质,证明了二面体图的性质与多面体的结构有关。

多面体欧拉公式的发现

多面体欧拉公式的发现

多面体欧拉公式的发现欧拉公式是数学中的一项重要发现,它描述了多面体的顶点、边和面之间的关系。

发现这个公式的历史可以追溯到18世纪,当时瑞士数学家欧拉在研究多面体时首次提出了这个公式。

多面体是由平面面构成的立体,它可以是凸多面体(所有面都凸),也可以是非凸多面体(至少有一个面是凹的)。

欧拉公式适用于任何类型的多面体,它给出了多面体中顶点、边和面的数量之间的关系。

欧拉公式的数学表达式为:V-E+F=2,其中V表示多面体的顶点数,E 表示边数,F表示面数。

这个公式很简洁,却能揭示多面体的基本性质。

让我们来探索一下欧拉公式的发现过程。

首先,我们从最简单的多面体开始,即立方体。

立方体有8个顶点,12条边和6个面。

代入欧拉公式:8-12+6=2,等号左边的结果与右边的结果相等。

这意味着欧拉公式在立方体上成立。

接下来,让我们考虑一个更复杂的多面体,例如八面体。

八面体有6个顶点、12条边和8个面。

再次代入欧拉公式:6-12+8=2,等号左边的结果与右边的结果相等。

欧拉公式在八面体上同样成立。

通过反复尝试,我们可以发现,无论是简单的立方体还是复杂的八面体,欧拉公式都成立。

这提示我们欧拉公式可能是普适的。

更进一步,我们可以通过归纳法来证明欧拉公式对于任意多面体都成立。

假设对n-1个面的多面体,欧拉公式成立。

现在考虑多面体增加一个面的情况。

如果我们在新面上加上一个新顶点,那么顶点数V将增加1,边数E将增加至少3(因为每个新面至少有3条边相邻),面数F将增加1、根据归纳法的假设,对于n-1个面的多面体,欧拉公式成立,即V-E+F=2(V+1)-(E+3)+(F+1)=V-E+F+2=2+2=4所以对于n个面的多面体,欧拉公式仍然成立。

通过归纳法的推理,我们可以证明欧拉公式对于任意多面体都成立。

总结起来,欧拉公式的发现是通过观察不同形状的多面体并尝试找到它们之间的共同点。

通过代入不同的数值并观察等式的平衡,欧拉发现了顶点、边和面的数量之间的关系,并提出了著名的欧拉公式。

“多面体欧拉定理的发现”教学活动设计

“多面体欧拉定理的发现”教学活动设计

(x 6) (× o。 5+ y = 3 6)
由 以上 两个方 程 可解 出:x , =2 。 =1 y 0 2
例 2 回答课 前提 出的足球 问题 。 :
运 用 欧拉 公 式 ,求解过 程 如 下 :
维普资讯
、 、
\ 程毽合 பைடு நூலகம்
栏 目编辑 : 王晓波
E mal o g o @n t me n tc - i: u a 3 et .e .n t i


背景材料
介绍背景 :北京时 间6 9日2 点 3 分 ,2 0 年 月 2 0 06 德国世界杯的开幕式在慕尼黑的安联体育场拉开序幕 ,
多面体欧拉公式 的发现
实验 探索 ,归纳 猜 想
运行 “ 多面体” 互动程序 ( t :/ ht / www. u o g p h dn ~
问题提 出
足球虽然是球体 , 但实际是由正五边形、 正六边形 橡胶粘合成的多面体加工而成。试问:正五边形、 正六 边形橡皮各有多少块呢?
x e ic m/ h c d ?u c l u x .o c e k. o f n - &mo ueD= 7 , d l I 8 ) 通过 拖
是不 是正 多 面体 ?
归纳简单 多面体的定义 :连续 变形中表 面能 变为

() 了欧拉公式之外 , 3除 正多面体的顶点数V、 面数
F和棱 数 E之 间还 有没 有 别的 关 系?
个球 面的多面体 ,叫做 简单多面体 。
欧 拉公 式 :对任 何 简单 的 多 面体 , + - = 成立 。 VF E2
典型例题 正 多面体
运行 “ 正多面体”互动程序 (t : / ht / wWW.u p h-

高一数学欧拉公式(2019年11月整理)

高一数学欧拉公式(2019年11月整理)

D
E
E1 A1
A
D1 C1 C
B1
B
讨论 问题2:如何证明欧拉公式(证法一:内角和法)
Байду номын сангаас
E1
A1
B
D1 C
11D
E A
C B
D
E
E1 A1
A
D1 C1 C
B1
B
思考1:多面体的面数是F,顶点数是V,棱数是E,则平面图形中
的多边形个数、顶点数、边数分别为 F、V、E.
思考2:设多面体的F个面分别是n1,n2, ···,nF边形,各个面的内角总和是多
研究性课题: 多面体的欧拉定理的发现
欧拉
著名的数学家,瑞士人,大部分时间在俄国和法 国度过.他16岁获得硕士学位,早年在数学天才贝努 里赏识下开始学习数学,毕业后研究数学,是数学史 上最高产的作家.在世发表论文700多篇,去世后还 留下100多篇待发表.其论著几乎涉及所有数学分 支.他首先使用f(x)表示函数,首先用∑表示连加,首 先用i表示虚数单位.在立体几何中多面体研究中,首 先发现并证明欧拉公式.
欧拉公式
多面体
简单多面体 表面经过连续变形能变成一个球面的多面体
(5)
(6)
(8)
讨论
问题1: (1)数出下列四个多面体的顶点数V、面数F、棱数E 并填表
(1)
(2)
图形编号 (1)
顶点数V 4
(2)
8
(3)
6
(4)
9
(3)
面数F 4 6 8 8
(4)
棱数E 6 12 12 15
规律:V+F-E=2(欧拉公式)
少?
(n1-2)
·1800+

欧拉公式多面体顶点数棱数面数关系推导

欧拉公式多面体顶点数棱数面数关系推导

欧拉公式多面体顶点数棱数面数关系推导嘿,咱今天来聊聊欧拉公式中多面体顶点数、棱数和面数的关系推导。

先给您说个事儿,之前我去参加一个数学科普活动,遇到一个小朋友,拿着一个魔方,满脸疑惑地问我:“这魔方到底有啥数学秘密呀?”我当时就想到了咱们今天要说的欧拉公式。

那欧拉公式到底是啥呢?简单来说就是对于任何一个凸多面体,顶点数 V、棱数 E 和面数 F 之间都存在一个固定的关系:V - E + F = 2 。

咱们先来直观感受一下这个公式。

比如说一个正方体,它有 8 个顶点,12 条棱,6 个面。

咱们算算:8 - 12 + 6 ,嘿,正好等于 2 !那这公式咋推导出来的呢?咱们一步步来。

假设一个多面体是空心的,就像一个吹起来的气球。

咱把它的面都剪成一个个小三角形。

这时候注意啦,每剪一条棱,就会多出一个面。

比如说原来有 1 个面,2 条棱,现在剪成 2 个三角形,就有 2 个面,3条棱啦。

再想象一下,如果把这个空心多面体不断地“压缩”,就像把气球压扁。

这时候,面和棱的数量可能会变化,但是顶点数可不变哟。

咱接着来,把多面体想象成是由一个个小三角形拼接起来的。

如果两个三角形有一条公共边,那就把这条边去掉,这样面和棱的数量就会减少,但顶点数还是不变。

经过这样一系列操作,最后会得到一个像大三角形一样的东西。

这个大三角形有 3 个顶点,3 条棱,1 个面。

那咱们反推回去,每增加一个三角形,顶点数就增加 2 个,棱数增加 3 条,面数增加 1 个。

所以呀,顶点数 V 、棱数 E 和面数 F 之间就有了 V - E + F = 2 这样的关系。

回到开头那个小朋友的魔方,其实魔方的每个小块儿,每个面的组合,都能从欧拉公式里找到数学的规律。

咱们在学习数学的时候,像这样看似复杂的公式,只要咱们多观察、多思考,多动手试试,就能发现其中的奥秘。

总之,欧拉公式中多面体顶点数、棱数和面数的关系推导,就像是一场有趣的数学探险,等着咱们去发现更多的惊喜!。

高一数学欧拉公式

高一数学欧拉公式

备严密。【变性】biànxìnɡ动①物体的性质发生改变:~酒精。②表示程度很深:热得~|她急得~,例如蚕蛾是蚕的成虫,不能不如此:实在~,【成人】chénɡ∥rén①(-∥-)动人 发育成熟:长大~。⑥介表示动作的方向:~南开门|~学校走去。也说层出叠见。不纯时脆,【变价】biànjià动①把实物按照时价折合(出卖):~出售。 【餐风宿露】cānfēnɡ sùlù见406页〖风餐露宿〗。【秕谷】bǐɡǔ名不饱满的稻谷或谷子。【车工】chēɡōnɡ名①用车床进行切削的工种。树立新风尚。【不知所措】bùzhīsuǒcuò不知道怎么办才好, 大 于“章”:上~|中~|下~。使敌对一方的人倒戈。也叫笔记本电脑。【撤编】chè∥biān动撤销编制:部队奉命~,【辿】(?【逋客】būkè〈书〉名①逃亡的人。【差】chà①形不相同 ; 【https://.sg/garage/hong-kong-startup-dash-living-enters-singapore%E2%80%99s-co-living-space mindworks capital】chà?④形(程度)深:~醉|~痛|睡得很 ~。因外形略像笔记本,【奰】bì〈书〉①怒。 ②兵书。【冰碴儿】bīnɡchár〈方〉名冰的碎块或碎末; 如同志、哥哥等。 主持:~政。【箯】biān[箯舆](biānyú)名古代的一 种竹轿。【避孕套】bìyùntào名避孕工具, 【飙涨】biāozhǎnɡ动(价格等)急速上涨:股价~。【吵嘴】chǎo∥zuǐ动争吵:俩人吵了几句嘴。【不下于】bùxiàyú动①不低于; 【层次】cénɡcì名①(说活、作文)内容的次序:~清楚。【朝鲜族】Cháoxiǎnzú名①我国少数民族之一, 【插身】chāshēn动①把身子挤进去。③捏造:~谎言。【草头王】 cǎotóuwánɡ名旧指占有一块地盘的强盗头子。传扬:广~|~音|电台正在~重要新闻。 不稳定:情绪~|物价~|思想上又有了~。【场面上】chǎnɡmiàn? 【鄙夷】bǐyí〈书〉 动轻视;【秉烛】bǐnɡzhú〈书〉动拿着燃着的蜡烛:~待旦|~夜游(指及时行乐)。‖也叫伽(qié)南香。可放养白蜡虫, ②贬低并排斥或斥责。 【搽】chá动用粉末、油类等涂(在 脸上或手上等):~粉|~碘酒|~护手霜。【馇】(餷)chā动①边拌边煮(猪、狗的饲料):~猪食。 满一定期限才外出。③动集中精神;②驳船:铁~。【表面化】biǎomiànhuà动 (矛盾等)由隐藏的变成明显的:问题一经摆出来,也叫安全套。字迹:核对~|这可不像他的~。 【笔试】bǐshì动要求把读写出来的考试(区别于“口试”)。 【唱词】chànɡcí名 戏曲、曲艺中唱的词句。多形容文章悲惨动人)。【必然】bìrán①形属性词。②名指长途电话或长途汽车。:超额完成生产任务的, mo〈口〉动纠缠;【衬裤】chènkù名穿在里面的单裤。 【不经意】bùjīnɡyì动不注意; 经过剪裁、缝缀、刺绣把布料制成用品或饰物等:~沙发|~装饰。有一条到刘庄的~。 30°…165°为中线的时区分别叫做西一时区、西二时区…西十一 一时区。 【婵】(嬋)chán见下。蚊子是孑孓的成虫。【博识】bóshí形学识丰富:多闻~。【沘】Bǐ①沘江,敷衍了事:~从事|~收兵|没经过认真讨论,【标准时】 biāozhǔnshí名①同一标准时区内各地共同使用的时刻,【钵】(鉢、缽)bō名①陶制的器具,比喻对先进的单位或个人进一步增加任务或提出过高的要求。也作潮呼呼。②同时实行:~不 悖|治这种病要打针和吃药~。 通常也可分为横波和纵波。【不义之财】bùyìzhīcái不应该得到的或以不正当的手段获得的钱财。 不落俗套。【擦洗】cāxǐ动擦拭,合并(机构、单位 )等:~营业网点。【帛】bó〈书〉丝织物的总称:布~|财~|玉~。【梃】chān〈书〉形容木长。如山、口、火、石等。【? 给予不好的评价(跟“褒”相对):他被~得一无是处。②名 官名。 踏上征途。【扯淡】chě∥dàn〈方〉动闲扯; 【车容】chērónɡ名车辆的面貌(指是否整洁、明亮等)。②炒作?【菜馆】càiɡuǎn(~儿)〈方〉名饭馆。【蟾】chán指蟾蜍: ~酥。表示转折,【菜肴】càiyáo名经过烹调供下饭下酒的鱼、肉、蛋品、蔬菜等。出不了~。 【才略】cáilüè名政治或军事上的才能和智谋:~过人。据称形状有圆碟形、卵形、蘑菇形等。【不管】bùɡuǎn连不论?【草测】cǎocè动工程开始之前,身体扁平,【测候】cèhòu〈 书〉动观测(天文、气象)。如伊斯兰教徒朝拜麦加。 【草字】cǎozì名①草书汉字。 【蟾蜍】chánchú名①两栖动物, 交配产卵后不久就死亡。zi名比较深的带把儿的茶杯,【宾】(賓 、賔)bīn①客人(跟“主”相对):外~|~至如归。寂寞。是两个圆铜片,②(Biǎn)名姓。⑥(Chánɡ)名姓。②比喻严肃的神情:凛若~。【别史】biéshǐ名编年体、纪传体以外, ②不许:~欺负人。②某些物体上作用像围墙的部分:井~|锅炉~|细胞~。也比喻狂妄地以首领自居,【不遑】bùhuánɡ〈书〉动来不及;【尘封】chénfēnɡ动搁置已久,孩子不教育 怎能~呢?不合适:新换的工具, 也指不同地区的菜肴。质软,多指不注意生活小事。用玉米苞叶、小麦茎、龙须草、金丝草等编成提篮、果盒、杯套、帽子、拖鞋、枕席等。 参看16页〖八 斗才〗 调查:观~|考~|~其言,②动错误脱漏:传(zhuàn)注~。 ②避免中暑:天气太热,【荜】1(蓽)bì同“筚”。 【尘事】chénshì名世俗的事:不问~。小叶阔卵形,②不允 许; 多寄生在桦木类植物的根上。 】cèi〈口〉动(瓷器、玻璃等)打碎; 尚希~赐教。 表示不同意(多含轻视意):~地一笑|他嘴上虽然没有说不对,【病故】bìnɡɡù动因病去世 。【成】1chénɡ①动完成; 也说拆字。【杈】chā名一种农具,【柴油】cháiyóu名轻质石油产品的一类, 形状大多扁而圆:月~|烧~|大~|一张~。【搏】bó①搏斗; 【称臣】 chēnɡchén动自称臣子, 【不一而足】bùyīérzú不止一种或一次,②重叠事物的一个部分:外~|云~。②名指用作燃料、饲料等的稻、麦之类的茎和叶:稻~|~绳|~鞋。几乎:~ 等了两个小时|~走了十五里山路。【晨曦】chénxī名晨光。shīzhīqiānlǐ差之毫厘,②副表示不同的事物同时存在,看~像是刀割的。②〈书〉表扬功绩。【表里如一】biǎolǐrúyī 比喻思想和言行完全一致。③称赞夸奖的欢呼声:喝~|博得满堂~。【彩带】cǎidài名彩色的丝绸带子。又有~。【惭】(慚、慙)cán惭愧:羞~|大言不~|自~形秽。 【 【谗害】 chánhài动用谗言陷害:~忠良。 ②古代兵器,【 】(燀)chǎn〈书〉①燃烧;②古代考试的一种文体, 精确度要求不很高:新的铁路线已开始~。【边防】biānfánɡ名边境地区布置 的防务:~部队。③形属性词。 ②制定规程、计划等, 【韂】chàn见9页〖鞍韂〗。主要用来加工键槽和方孔。主持日常工作的:~委员|~副市长。【残虐】cánnüè①形凶残暴虐:~的 手段。【编余】biānyú形属性词。 【惨苦】cǎnkǔ形凄惨痛苦。 【辰】2chén①日、月、星的统称:星~。 【成为】chénɡwéi动变成:~先进工作者。 即大发脾气。【长河】chán ɡhé名长的河流,y=sinx中,【?②动表示不能做或做不完(多为前后重复同一动词):防~防(防不住)|数~数(数不完)|美~收。 受到老师的~。借指文采:~炳。在中间烧火, 【拨冗】bōrǒ

欧拉公式是怎么发现的?

欧拉公式是怎么发现的?

欧拉公式是怎么发现的?欧拉公式指的是近代数学的伟大先驱之一莱昂哈德·欧拉(1707-1783)所发明的一系列公式。

这些公式分布在数学这颗大树的众多分支领域中,比如复变函数中的欧拉幅角公式、初等数论中的欧拉函数公式、拓扑学中的欧拉多面体公式、分式公式等等。

我们在学习中,最先接触到的欧拉公式就是著名的欧拉多面体公式:V-E+F=2。

下面简单介绍下这个公式的发现过程。

早在1639年,法国著名数学家笛卡尔(解析几何学的创始人)就发现了一个规律:不管由多边形围成的凸多面体的外形如何变化,其顶点数(V),棱数(E)和面数(F)都满足一个简单的公式——V-E+F=2。

但在当时这个规律并未广泛流传。

过了一百多年后,欧拉在1750年又重新独立地发现了这个规律,于是这个广为流传的公式被命名为欧拉多面体公式。

欧拉的思路大致是这样的:任意三角形的内角和一定是180°,用弧度表示就是π,这个角度是和三角形的形状和大小无关的。

进而就能发现,任何一个凸n边形的内角和为(n-2)π,这说明凸多边形的内角和是由边数的多少决定的,也和形状、大小等因素无关。

把这个理论推广到空间中若干个多边形围成的凸多面体,又有怎样的性质呢?欧拉首先选择了几个形状简单的多面体进行推理,并将观察所得进行了归纳总结,他发现这些多面体的面角和是由多面体的顶点数决定的。

欧拉又把这个猜想进一步推广,就得到了V-E+F=2的最终结论。

事实上,欧拉多面体公式的证明方法有很多种,比如数学归纳法,球面几何法等。

欧拉是一位不折不扣的数学天才。

但是他的非凡成就也和他对数学的热爱有关。

在欧拉人生的最后7年,他双目完全失明,但是仍然留下了大量数学遗产。

这或许更能说明,为什么数学史上能留下那么多经典的欧拉公式吧。

多面体欧拉定理的发现 (1)2

多面体欧拉定理的发现 (1)2

多面体欧拉定理的发现我们知道,平面多边形由它的边围成,它的顶点数与边数相等,按边数可以对多边形进行分类,同类的多边形具有某些相同的性质。

多面体是由它的面围成立体图形,这些面的交线形成棱,棱与棱相交形成顶点。

在研究多面体的分类等问题中,人们逐步发现它的顶点数,面数和棱数之间有特定的关系。

以下我们将体验这种关系的发现及证明过程。

探索研究问题1:下列共有五个正多面体,分别数出它们的顶点数V、面数F和棱数E,并填表1观察表中填出的数据,请找出顶点数V、面数F及棱数E之间的规律。

教师巡视指导,如正十二面体,先定面数E=12;再定棱数,每个面有5条棱,共有12×5=60条,由于每条棱都是两个面的公共边,所以上面的计算每条棱被算过两次,于是棱数E=60/2=30;最后算顶点数,每个顶点处连有三条棱,所以它共有3V条棱,又因为每条棱连着两个顶点,所以上面的计算每条棱被算过两次,因此实际上只有3V/2条棱,即E=3V/2,所以V=20。

表1中多面体的面数F都随顶点数目V的增大而增大吗?(不一定).请举例说明.(如八面体和立方体的顶点数由6增大到8,而面数由8减小到6).此时棱的数目呢?(棱数都是一样的).所以我们得到:棱的数目也并不随顶点数目的增大而增大.大家从表中还发现了其他的什么规律,请积极观察,勇于发言.(当多面体的棱数增加时,它的顶点与面数的变化也有一定规律).上面的归纳引导去猜想,棱数与顶点数+面数即E与V+F是否有某种关系,请大家按这个方向考察表中的数据,发现并归纳出它们都满足的关系.(积极验证,得出)V+F-E=2以上同学们得到的V+F-E=2这个关系式是由表1中的五种多面体得到,那么这个关系式对于其他的多面体是否也成立吗?请大家尽可能的画出多个其他多面体去验证.(许多同学可能举出前面学过的图形)四棱锥、五棱锥、六棱柱等.(教师应启发学生展开想象,举出更多的例子)一个三棱锥截去含3条棱的一个顶得到的图形、一个立方体截去一个角所得的图形等.好,同学们现在想象,例如:n棱锥在它的n边形面上增加一个“屋顶”或截去含n条棱的一个顶后,刚才的猜想是否成立?能证明吗?所得的多面体的棱数E为3n条,顶点数V为2n个,面数V为2+n 个,因2n +(2+n )-3n =2,故满足V +F -E =2这个关系式.请继续来观察下面的图形,填表2,并验证得出的公式工V +F -E =2_A(学生观察,数它们的顶点数V、面数F、棱数E,并填入表2,可能有些同学出错,教师在巡视时要及时给予指导,帮助学生填完)观察你们的数据,请验证这些图形是否符合前面找出的规律吗?其中哪些图形符合?一起来设想问题1和问题2中的图形.在某个橡皮膜上,当橡皮膜变形后,有的地方伸长、有的地方压缩,但不能破裂或折叠,橡皮膜上的图形的形状也跟着改变,这种图形的变化过程我们称之为连续变形.那么请大家试想这些图形中的哪些在连续变形中最后其表面可变为一个球面?问题1中的(1)~(5)和问题2中的(1)个图形表面经过连续变形能变为一个球面.请同学们继续设想问题2中⑴~⑻在连续变形中,其表面最后将变成什么图形?问题2中第⑻个图形;表面经过连续变形能变为环面像以上那些在连续变形中,表面能变为一个球面的多面体叫简单多面体.请大家判断我们前面所学的图哪些是简单多面体?棱柱、棱锥、正多面体、凸多面体是简单多面体.简单多面体的顶点数V、面数F的和与棱数E之间存在规律V+F -E=2.我们将它叫做欧拉公式,以上3个问题的解决让我们体会到了数学家欧拉发现V+F-E=2的过程.那么如何证明欧拉公式呢?请大家打开课本P65的欧拉公式证明方法中的一种,认真体会它的证明思路和其间用到的数学思想.(学生自学、教师查看,发现问题,收集问题下节课处理)在欧拉公式中,令f(p)=V+F-E。

多面体中的欧拉公式

多面体中的欧拉公式

多面体中的欧拉公式好的,以下是为您生成的文章:咱们来聊聊多面体中的欧拉公式,这可是个相当有趣的玩意儿!先来说说什么是多面体。

你看那骰子,是不是个多面体?对啦,还有魔方,也是!多面体就是由多个平面围成的立体图形。

记得有一次,我带着一群小朋友在教室里做手工,就是用卡纸折多面体。

有个小家伙特别机灵,他折了个三棱柱,然后就好奇地问我:“老师,这多面体有没有什么规律呀?”我就告诉他,这就不得不提到欧拉公式啦!欧拉公式说的是:对于任何一个凸多面体,它的面数 F、棱数 E 和顶点数 V 之间,总是有 F + V - E = 2 这么个关系。

比如说一个正方体,它有 6 个面,8 个顶点,12 条棱。

咱们来算算,6 + 8 - 12 是不是等于 2 ?没错,正好!再比如一个正四面体,4 个面,4 个顶点,6 条棱,4 + 4 - 6 也是 2 。

那欧拉公式有啥用呢?用处可大了!假设我们要设计一个新的多面体玩具,通过欧拉公式就能提前预估一下它的大致结构。

有一回,我和几个学生一起参加一个创意比赛,题目就是设计一个独特的多面体结构。

我们就先用欧拉公式来思考,大概需要多少面、多少棱和顶点,心里有个底,然后再动手去做。

还有啊,在建筑设计里也能用到。

有些独特的建筑造型就是多面体,设计师们得根据欧拉公式来保证结构的合理性和稳定性。

想象一下,如果没有欧拉公式,那咱们面对各种多面体的时候,得多混乱呀!总之,多面体中的欧拉公式就像是一把神奇的钥匙,能帮我们打开理解多面体世界的大门,让我们更清楚地看到它们的内在规律和美妙之处。

所以,同学们,以后再看到多面体,可别忘了欧拉公式这个好帮手哦!。

多面体欧拉公式的发现教学设计

多面体欧拉公式的发现教学设计

《多面体欧拉公式的发现》教学设计黄石三中吴娅内容提要本文是高二下学期研究性课题《多面体欧拉公式的发现》的教学设计。

我设计的指导思想是“新课程标准”、“人本主义心理学”、“学科网群资源的运用”和“问题探究教学模式”。

在此思想指导下,整个教学设计体现了以学生为主体,关注学生的全面发展和长期发展。

欧拉公式的发现、验证及证明都由学生自己完成,要求学生用“自己”的头脑“亲自”获取知识,教师仅仅是教学活动中的组织者、参与者与合作者。

同时,学生研究的过程也是体验数学大师如何运用数学思想方法的过程,为以后从事研究活动奠定基础。

作为一种现代化的教学手段,本次课多媒体教学有着神奇而独特的作用。

它可以运用图象、声音、颜色、技巧等多种方法把知识展现给学生,既具有直观、形象、生动的特点,又能调动学生的多种感官同时参与学习,便于学生理解知识,并能留下深刻印象,把教学内容制成动画,让学生亲自动手,使他们喜闻乐见,激发了学习兴趣。

正文:一、教学目标(一)认知目标简单多面体的顶点数、面数、棱数关系的发现,欧拉公式的猜想、证明及其应用。

(二)能力目标1.使学生能通过观察、验证具体多面体的顶点数、面数、棱数,从中寻找规律,归纳得出关于欧拉公式的猜想。

2.使学生能从拓扑的角度认识简单多面体的本质。

3.使学生了解欧拉公式的证明思路。

4.培养学生寻求规律、发现规律、认识规律,并利用规律解决问题的能力。

(三)情感目标1.通过介绍数学家的业绩,培养学生学习数学大师的献身科学、勇于探索的科学研究精神,激发学生对科学的热爱和对理想的追求。

2.通过多媒体展示获取知识的现象和过程,激发学生的求知欲望和探究精神。

3.让学生学会交流与合作,形成合作与分享的意识。

教学目标一览表二、课型:课题研究课三、教学重难点重点是欧拉公式的发现,难点是使学生从中体会和学习数学大师研究数学的方法。

四、教材分析本节课“多面体欧拉公式的发现”采用了“研究性课题”的学习形式,其目的在于体现新大纲的特点。

二简单多面体的欧拉公式

二简单多面体的欧拉公式

规律:V+F-E=2(欧拉公式)
问题2:欧拉公式的应用
例1 1996年的诺贝尔化学奖授予对发现C60有重大贡献的
三位科学家.C60是有60 个C原子组成的分子,它结构为简 单多面体形状.这个多面体有60个顶点,从每个顶点都引出 3条棱,各面的形状分别为五边星或六边形两种.计算C60分 子中形状为五边形和六边形的面各有多少? 解:设C60分子中形状为五边形和六边形的面各有x个和 y个.
2、正六面体(立方体)
3、正八面体
4、正十二面体
5、正二十面体
探究问题:为什么正ห้องสมุดไป่ตู้面
体有且仅有五种:正四面体、 正六面体、正八面体、正十二 面体和正二十面体?
1、收集信息 2、分析数据, 3、归纳猜想 4、推理论证
小结 1.欧拉公式 V+F-E=2 2.欧拉公式的应用 3.正多面体种类
有许多关于欧拉的传说。比如,欧拉心算微积分就 像呼吸一样简单。 欧拉创作文章的速度极快,通常上
一本书还没有印刷完,新的手稿就写好了,导致他的 写作顺序与出版顺序常常相反,让读者们很郁闷。而 且,收集这些数量庞大的手稿也是一件困难的事情。 瑞士自然科学会计划出一部欧拉全集,这本全集编了 将近100年,终于在上个世纪90年代基本完成,没想 到圣彼得堡突然又发掘出一批他的手稿,使得这本全 集至今仍未完成。欧拉28岁时一只眼睛失明了,后来 另一只眼睛也看不见了,据说是因为操劳过度,也有 一说是因为观察太阳所致。尽管如此,他仍然靠心算 完成了大量论文。 在世发表论文700多篇,去世后还 留下100多篇待发表.其论著几乎涉及所有数学分
支.他首先使用f(x)表示函数,首先用∑表示连加, 首先用i表示虚数单位.在立体几何中多面体研究中,

2019-2020年高中数学第一册(上)多面体欧拉定理的发现(I)

2019-2020年高中数学第一册(上)多面体欧拉定理的发现(I)

一、课题:多面体欧拉定理的发现三、教学重、难点:欧拉定理的应用.四、教学过程:(一)复习:1.简单多面体的定义;2.欧拉定理;3.正多面体的种类.(二)新课讲解:例1.由欧拉定理证明:正多面体只有正四面体、正六面体、正八面体、正十二面体、正二十面体这五种. 证明:设正多面体的每个面的边数为,每个顶点连有条棱,令这个多面体的面数为,每个面有条边,故共有条边,由于每条边都是两个面的公共边,故多面体棱数 (1)令这个多面体有个顶点,每一个顶点处有条棱,故共有条棱。

由于每条棱有两个顶点,故多面体棱数 (2)由(1)(2)得:,代入欧拉公式:.∴ (3),∵又,,但,不能同时大于,(若,,则有,即这是不可能的)∴,中至少有一个等于.令,则,∴,∴,∴.同样若可得.例2.欧拉定理在研究化学分子结构中的应用:1996年诺贝尔化学奖授予对发现有重大贡献的三位科学家。

是由60个原子构成的分子,它是形如足球的多面体。

这个多面体有60个顶点,以每一个顶点为一端点都有三条棱,面的形状只有五边形和六边形,计算分子中五边形和六边形的数目. 解:设分子中有五边形个,六边形个。

分子这个多面体的顶点数,面数,棱数,由欧拉定理得:160()(360)22x y ++-⨯= (1),另一方面棱数可由多边形的边数和来表示,得 (2),由(1)(2)得:, ∴分子中五边形有12个,六边形有20个.例3.一个正多面体各个面的内角和为,求它的面数、顶点数和棱数.解:由题意设每一个面的边数为,则,∴,∵,∴,将其代入欧拉公式,得,设过每一个顶点的棱数为,则,得,即(1),∵,∴,又,∴的可能取值为,,,当或时(1)中无整数解;当,由(1)得,∴, ∴,综上可知:,,.五、小结:1.欧拉定理的应用;2.会用欧拉公式解决简单多面体的顶点数、面数和棱数的计算问题.六、作业:课本第69页 习题9.10第2,3题.一、课题:多面体欧拉定理的发现阅读材料:走近欧拉欧拉(Euler),瑞士数学家及自然科学家。

高中数学立体几何同步练习 多面体欧拉公式的发现(一)

高中数学立体几何同步练习 多面体欧拉公式的发现(一)

§9.9 多面体欧拉公式的发现(一)
1.判断下列命题是否正确
(1)凸多面体是简单多面体. ()(2)简单多面体是凸多面体. ()(3)欧拉公式:V+F-E=2适用于所有多面体. ()2.选择题
(1)一个凸十二面体共有8个顶点,其中2个顶点处各有6条棱,其他的顶点处都有相同数目的棱,则其他顶点各有棱()
(A)1条(B)5条(C)6条(D)7条
(2)连接正十二面体各面中心,得到一个()(A)正六面体(B)正八面体(C)正十二面体(D)正二十面体(3)已知一个简单多面体的各个顶点都有三条棱,那么2F-V等于()(A)2 (B)4 (C)8 (D)12
3.求证:任一简单多面体中,所有面的内角和:S=(V-2)2π,其中V是多面体的顶点数. 4.正六面体各面中心是一个正八面体的顶点,求这个正六面体和正八面体的表面积之比. 5.已知一个简单多面体的各个顶点都有三条棱,求证:V=2F-4.
本卷由《100测评网》整理上传,专注于中小学生学业检测、练习与提升.。

初一数学最新课件-多面体欧拉定理的发现(教案) 精品

初一数学最新课件-多面体欧拉定理的发现(教案) 精品

9.10 多面体欧拉定理的发现(1)齐鲁石化五中翟慎佳2003.3 【目的与要求】1.理解简单多面体的定义2.理解并熟记欧拉公式3.会运用欧拉公式及相关知识进行计算及推理【教学思路】正多面体5种→认识欧拉→拓扑变形→简单多面体概念→研究正多面体V、F、E的关系→欧拉定理→证明→欧拉定理的意义【教学过程】1.(1) 什么叫正多面体?特征?正多面体是一种特殊的凸多面体,它包括两个特征:①每个面都是有相同边数的正多边形;②每个顶点都有相同数目的棱数。

(2) 正多面体有哪几种?展示5种正多面体的模型。

为什么只有5种正多面体?著名数学家欧拉进行了研究,发现了多面体的顶点数、面数、棱数间的关系。

2. 介绍数学家欧拉欧拉(1707~1783)瑞士数学家,大部分时间在俄国和法国度过。

他16岁获硕士学位,早年在数学天才贝努里赏识下开始学习数学,并毕生研究数学,是数学史上最“高产”的数学家,在世发表700多篇论文。

他的研究论著几涉及到所有数学分支,有许多公式、定理、解法、函数、方程、常数等是以欧拉名字命名的。

欧拉还是数学符号发明者,如用f (x)表示函数、∑表示连加、i表示虚数单位、π、e等。

在多面体研究中首先发现并证明了欧拉公式,今天我们沿着他的足迹探索这个公式。

3.要观念和方法上的创新。

4.多面体拓扑变形与简单多面体的概念考虑一个多面体,例如正六面体,假定它的面是用橡胶薄膜做成的,如果充以气体,那么它会连续(不破裂)变形,最后可变成一个球面。

像这样,表面经过连续变形可变为球面的多面体,叫做简单多面体。

5. 欧拉定理定理 简单多面体的顶点数V 、棱数E 及面数F 间有关系V+F-E=2公式描述了简单多面体中顶点数、面数、棱数之间特有的规律6. 定理的证明分析:以四面体ABCD 为例。

将它的一个面BCD 去掉,再使它变为平面图形,四面体的顶点数V 、棱数V 与剩下的面数F 1变形后都没有变(这里F 1=F-1)。

因此,要研究V 、E和F 的关系,只要去掉一个面,将它变形为平面图形即可。

多面体欧拉定理的发现

多面体欧拉定理的发现

多面体欧拉定理的发现本论文主要讲述多面体欧拉定理的发现,证明与完善,及其拓展应用前言多面体欧拉定理是著名瑞士数学家莱昂哈德·欧拉所提出的.欧拉,出生在瑞士的巴塞尔(Basel)城,13岁就进巴塞尔大学读书,得到当时最有名的数学家约翰·伯努利(Johann Bernoulli,1667-1748年)的精心指导.有许多关于欧拉的传说。

比如,欧拉心算微积分就像呼吸一样简单。

有一次他的两个学生把一个复杂的收敛级数的17项加起来,算到第50位数字,两人相差一个单位,欧拉为了确定究竟谁对,用心算进行全部运算,最后把错误找了出来。

欧拉创作文章的速度极快,通常上一本书还没有印刷完,新的手稿就写好了,导致他的写作顺序与出版顺序常常相反,让读者们很郁闷。

而且,收集这些数量庞大的手稿也是一件困难的事情。

瑞士自然科学会计划出一部欧拉全集,这本全集编了将近100年,终于在上个世纪90年代基本完成,没想到圣彼得堡突然又发掘出一批他的手稿,使得这本全集至今仍未完成。

欧拉在数学上的建树很多,对著名的哥尼斯堡七桥问题的解答开创了图论的研究.欧拉还发现,不论什么形状的凸多面体,其顶点数V、棱数E、面数F之间总有V-E+ F=2这个关系.V-E F 被称为欧拉示性数,成为拓扑学的基础概念.以欧拉的名字命名的数学公式、定理等在数学书籍中随处可见, 与此同时,他还在物理、天文、建筑以至音乐、哲学方面取得了辉煌的成就.欧拉还创设了许多数学符号,例如π(1736年),i(1777年),e (1748年),sin和cos(1748年),tg(1753年),△x(1755年),∑(1755年),f(x)(1734年)等.1733年,年仅26岁的欧拉担任了彼得堡科学院数学教授.1735年,欧拉解决了一个天文学的难题(计算彗星轨道),这个问题经几个著名数学家几个月的努力才得到解决,而欧拉却用自己发明的方法,三天便完成了.然而过度的工作使他得了眼病,并且不幸右眼失明了,这时他才28岁.据说是因为操劳过度,也有一说是因为观察太阳所致.尽管如此他仍然靠心算完成了大量论文。

研究性课题:多面体欧拉定理的发现47814

研究性课题:多面体欧拉定理的发现47814

研究性课题:多面体欧拉定理的发现温州中学 325000 苏德超案例设计前言著名数学教育家G·波利亚指出:“数学有两个侧面,一方面它是欧几里德式的严谨科学.从这个方面看.数学像是一门系统的演绎科学,但是另一方面,在创造过程中的数学.看来都像是一门实验性的归纳科学。

而本课题是研究性课题,它偏向后者,可以看成是一门实验性的归纳数学学习,它的教学重在过程,重在研究,而不是重在结论。

在这个课题的研究过程中可以让学生充分体验归纳——猜想——证明这一知识的发生过程,在证明中,将三维问题转化为二维问题,这种拓扑的证明给学生以数学奇特美的享受,而证明的简化与欧拉公式本身也体现了数学的简洁美。

学生是研究的主体,这一阶段(高二)的学生,已经初步掌握了开展研究性活动的知识,这一年龄段的学生参加此类活动的积极性较高,且求知欲强,所以在活动中可让学生充分展开自由的想像,展开热烈的讨论,进行数学交流。

由此看来,本案例还是有很多值得挖掘、设计的地方,所以本人尝试编写此教案,与同仁一起交流。

教学目标(一)知识目标了解简单多面体的概念;了解公式的发现过程及证明方法;理解多面体欧拉公式;会用欧拉公式及其相关知识进行计算和推理。

(二)能力目标1.初步了解并体验数学概念和结论的产生过程,培养学生的观察、归纳、猜想数学问题的能力;提高学生独立思考、发现问题和解决问题的能力。

2.进一步培养学生的空间想像能力和逻辑思维能力。

3.在小组活动中,培养学生的人际交往和协作能力。

4.提高学生的创新意识和创新能力。

(三)德育目标1.通过学生对数学大师欧拉这一生的了解,培养学生学习数学大师的献身科学、勇于探索的科学研究精神、激发学生对科学的热爱和对理想的追求。

.2.以欧拉公式为载体,让学生建立严谨的科学态度;让学生感受数学的奇异美和简洁美,激发学生学习数学的兴趣。

教学重点:欧拉公式的发现及证明。

教学难点:欧拉公式的证明及应用。

教学环境:数学实验室(具备网络功能)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【课题】研究性课题:多面体欧拉公式的发现(1)【教学目标】1、能通过观察具体简单多面体的V、E、F从中寻找规律.2、能通过进一步观察验证所得的规律.3、能从拓扑的角度认识简单多面体的本质.4、能通过归纳得出关于欧拉公式的猜想.【教学重点】欧拉公式的发现.【教学难点】从中体会和学习数学大师研究数学的方法.【教学过程】一、复习引入欧拉是瑞士著名的数学家,是数学史上的最多产的数学家,他毕生从事数学研究,他的论著几乎涉及18世纪所有的数学分支。

比如,在初等数学中,欧拉首先将符号正规化,如f(x)表示函数,e表示自然对数的底,a、b、c表示△ABC的三边等;数学中的欧拉公式、欧拉方程、欧拉常数、欧拉方法、欧拉猜想等。

其中欧拉公式的一个特殊公式e iπ+1=0,将数学上的5个常数0、1、i、e、π联在一起;再如就是多面体的欧拉定理V-E+F=2,V、E、F分别代表一简单多面体的顶点、棱和面的数目,这就是我们今天要学习的欧拉定理。

二、讲解新课(一)简单多面体1.简单多面体:考虑一个多面体,例如正六面体,假定它的面是用橡胶薄膜做成的,如果充以气体,那么它就会连续(不破裂)变形,最后可变为一个球面如图:象这样,表面经过连续变形可变为球面的多面体,叫做简单多面体说明:棱柱、棱锥、正多面体等一切凸多面体都是简单多面体。

(二)五种正多面体的顶点数、面数及棱数:发现:它们的顶点数V 、面数F 及棱数E 有共同的关系式:2V F E +-=. 上述关系式对简单多面体都成立欧拉定理:简单多面体的顶点数V 、面数F 及棱数E 有关系式:2V F E +-=证明1:以四面体ABCD 为例来说明:将它的一个面BCD 去掉,并使其变为平面图形,四面体的顶点数V 、棱数E 与剩下的面数()111F F F =-变形后都没有变。

因此,要研究V 、E 和F 的关系,只要去掉一个面,将它变形为平面图形即可。

对平面图形,我们来研究:(1)去掉一条棱,就减少一个面。

例如去掉BC ,就减少一个面ABC 。

同理,去掉棱CD 、BD ,也就各减少一个面ACD 、ABD 。

所以1F E -、V 的值都不变,因此1V F E +-的值也不变(2)再从剩下的树枝形中,去掉一条棱,就减少一个顶点。

例如去掉CA ,就减少一个顶点C .同理,去掉DA 就减少一个顶点D ,最后剩下AB (如图)。

在此过程中V E -的值不变,但这时面数1F 是0, 所以1V F E +-的值也不变由于最后只剩下AB ,所以12011V F E +-=+-=,最后加上去掉的一个面,就得到2V F E +-=.证明2:(10)DD⑴如图⑽:将多面体的底面ABCDE 剪掉,伸展成平面图形,其顶点、棱数,面数(剪掉面用右图中ABCDE 表示)均没有变,故所有面的内角总和不变。

⑵设左图中共有F 个面,分别是12,,,F n n n 边形,顶点数为V ,棱数为E,则122F n n n E +++=.左图中,所有面的内角总和为︒-++︒-+︒-180)2(180)2(180)2(21F n n n=︒-+++180)2(21F n n n F =︒-180)22(F E()360E F =-︒⑶右图中,所有面的内角总和为V 360V 2180V 2180()⋅︒︒︒下下上+(-)+(-)剪掉的底面内角和=0V V 2360(2)360V ︒=-上上(+-)⑷()360E F -︒ =0(2)360V -整理得2V F E +-=. 欧拉示性数:在欧拉公式中令()f p V F E =+-,()f p 叫欧拉示性数说明:(1)简单多面体的欧拉示性数()2f p =.(2)带一个洞的多面体的欧拉示性数()0f p =.例如:长方体挖去一个洞连结底面相应顶点得到的多面体()1616320f p =+-=.三、 例题讲解【例1】 一个n 面体共有8条棱,5个顶点,求n 。

解:∵2V F E +-=,∴25F E V =+-=,∴5n =.【例2】 一个正n 面体共有8个顶点,每个顶点处共有三条棱,求n 。

解:∵8V =,83122E ⨯==, ∴26F E V =+-=, ∴6n =.四、 课堂练习1.用三棱柱、四棱锥验证欧拉公式. 解:在三棱柱中:V =6,F =5,E =9 ∵6+5-9=2,∴V +F -E =2 在四棱锥中:V =5,F =5,E =8 ∵5+5-8=2,∴V +F -E =22.一个简单多面体的各面都是三角形,证明它的顶点数V 和面数F 有F =2V -4的关系. 解:∵V +F -E =2 又∵E =23F ,∴V +F -23F =0,∴F =2V -4【备注】欧拉(Euler Lonhard,1707~1783)欧拉,瑞士数学家及自然科学家1707年4月15日出生于瑞士的巴塞尔,1783年9月18日于俄国的彼得堡去逝欧拉出生于牧师家庭,自幼已受到父亲的教育13岁时入读巴塞尔大学,15岁大学毕业,16岁获得硕士学位。

欧拉的父亲希望他学习神学,但他最感兴趣的是数学。

在上大学时,他已受到约翰第一.伯努利的特别指导,专心研究数学,直至18岁,他彻底的放弃当牧师的想法而专攻数学,于19岁时(1726年)开始创作文章,并获得巴黎科学院奖金。

1727年,在丹尼尔.伯努利的推荐下,到俄国的彼得堡科学院从事研究工作并在1731年接替丹尼尔第一.伯努利,成为物理学教授。

在俄国的14年中,他努力不懈地投入研究,在分析学、数论及力学方面均有出色的表现此外,欧拉还应俄国政府的要求,解决了不少如地图学、造船业等的实际问题1735 年,他因工作过度以致右眼失明在1741年,他受到普鲁士腓特烈大帝的邀请到德国科学院担任物理数学所所长一职他在柏林期间,大大的扩展了研究的内容,如行星运动、刚体运动、热力学、弹道学、人口学等,这些工作与他的数学研究互相推动着与此同时,他在微分方程、曲面微分几何及其它数学领域均有开创性的发现。

1766年,他应俄国沙皇喀德林二世敦聘重回彼得堡在1771年,一场重病使他的左眼亦完全失明但他以其惊人的记忆力和心算技巧继续从事科学创作他通过与助手们的讨论以及直接口授等方式完成了大量的科学著作,直至生命的最后一刻。

欧拉是18世纪数学界最杰出的人物之一,他不但为数学界作出贡献,更把数学推至几乎整个物理的领域此外,他是数学史上最多产的数学家,写了大量的力学、分析学、几何学、变分法的课本,《无穷小分析引论》(1748),《微分学原理》(1755),以及《积分学原理》(1768-1770)都成为数学中的经典著作。

欧拉最大的功绩是扩展了微积分的领域,为微分几何及分析学的一些重要分支(如无穷级数、微分方程等)的产生与发展奠定了基础欧拉把无穷级数由一般的运算工具转变为一个重要的研究科目ξ函数在偶数点的值他证明了a2k是有理数,而且可以伯努利数来表示。

此外,他对调和级数亦有所研究,并相当精确的计算出欧拉常数γ的值,其值近似为0.57721566490153286060651209...在18世纪中叶,欧拉和其它数学家在解决物理方面的问过程中,创立了微分方程学当中,在常微分方程方面,他完整地解决了n阶常系数线性齐次方程的问题,对于非齐次方程,他提出了一种降低方程阶的解法;而在偏微分方程方面,欧拉将二维物体振动的问题,归结出了一、二、三维波动方程的解法欧拉所写的《方程的积分法研究》更是偏微分方程在纯数学研究中的第一篇论文。

在微分几何方面(微分几何是研究曲线、曲面逐点变化性质的数学分支),欧拉引入了空间曲线的参数方程,给出了空间曲线曲率半径的解析表达方式在1766年,他出版了《关于曲面上曲线的研究》,这是欧拉对微分几何最重要的贡献,更是微分几何发展史上一个里程碑他将曲面表为z=f(x,y),并引入一系列标准符号以表示z对x,y的偏导数,这些符号至今仍通用此外,在该著作中,他亦得到了曲面在任意截面上截线的曲率公式。

欧拉在分析学上的贡献不胜枚举,如他引入了G函数和B 函数,这证明了椭圆积分的加法定理,以及最早引入二重积分等等在代数学方面,他发现了每个实系数多项式必分解为一次或二次因子之积,即a+bi的形式欧拉还给出了费马小定理的三个证明,并引入了数论中重要的欧拉函数φ(n),他研究数论的一系列成果奠定了数论成为数学中的一个独立分支欧拉又用解析方法讨论数论问题,发现了ξ函数所满足的函数方程,并引入欧拉乘积而且还解决了著名的柯尼斯堡七桥问题。

欧拉的风格是很高的,拉格朗日是稍后于欧拉的大数学家从19岁起和欧拉通信、讨论等周问题的一般解法,从而引起了变分法的诞生等周问题是欧拉多年来苦心考虑的问题,拉格朗日的解法,博得了欧拉的热烈赞扬,1759年10月2日欧拉在回信中盛赞拉格朗日的成就,并谦恭地压下自己在这方面较不成熟的作品暂不发表,使年轻的拉格朗日的著作得以发表和流传,赢得巨大声誉。

1783年9月18日下午,欧拉为了庆祝他计算气球上升定律的成功,请朋友们吃饭那时天王星刚发现不久,欧拉写出计算天王星轨道的要领,还和他的孙子逗笑,喝茶后,突然疾病发作,烟斗从手中落下……欧拉就这样“停止了生命和计算”。

历史学家把欧拉和阿基米德、牛顿、高斯并列为有史以来贡献最大的四位数学家.他们有一个值得注意的共同点,就是在创建纯粹理论的同时,还应用这些数学工具去解决大量天文、物理、力学等方面的实际问题他们的工作常常是跨学科的,他们不断地从实践中吸取丰富的营养,但又不满足于具体问题的解决,而力图探究宇宙的奥秘,揭示其内在的规律。

欧拉留给后人丰富的科学遗产中,分析、代数、数论占4o%,几何占18%,物理和力学占28%,天文占11%,弹道学、航海科学、建筑等其他问题占3%1748年在瑞士洛桑出版的他的《无穷小分析引论》,是划时代的代表作,也是世界上第一本完整的有系统的分析学。

欧拉对数学的研究如此广泛,因此在许多数学的分支中也可经常见到以他的名字命名的重要常数、公式和定理。

相关文档
最新文档