第12章波动光学
波动光学基础优秀课件
普朗克(Planck) 爱因斯坦(Einstein) 康普顿(Compton)
1900年普朗克提出辐射能量的量子化理论,成功地解释了黑体 辐射问题。1905年爱因斯坦提出光量子理论,圆满地解释了光电 效应。爱因斯坦的结论于1923年被康普顿的散射实验所证实。
一、光是电磁波
电磁波的产生: 凡做加速运动的电荷都是电磁波的波源
例如:天线中的振荡电流; 分子或原子中电荷的振动
电磁波的描述:
EH//v
y
E
zOH
v
x
平面简谐光波方程:
EAco stcr0
光 强: 光波的平均能流密度称为光强 I E2
波动光学基础
前言
光学: 研究光的本性、光的传播和光与物质相互作 用等规律的学科。
几何光学:以光的直线传播为基础,研究光 在透明介质中的传播规律。
光学 波动光学:以光的波动性质为基础,研究光 的传播及规律。
量子光学:以光的粒子性为基础,研究光与 物质相互作用的规律。
光学发展史
光是什么?
一、几何光学时期
举了几个世纪以来两种学说的拥护者,以及它们刚被提出
时的出发点和存在的问题:
支持者
能够解释/无法解释(刚提出时)
牛顿(Newton)
光的直线传播
微 毕奥(Biot)
光的反射
粒 拉普拉斯(Laplace) 光的折射
说 泊松(Poission)
光在折射率大的介质中传播
马吕斯(Malus)
速率小
光的干涉
胡克(Hooke)
波动光学(二)答案
(A) a+b=6 a.
注:当此比值为整数时,该整数即为第一个缺级.
[ C ]4. 在如图所示的单缝夫琅禾费衍射装置中,将单缝宽度a稍梢
变宽,同时使单缝沿y轴正方向作微小平移(透镜屏幕位置不动),则屏
幕C上的中央衍射条纹将
(A) 变窄,同时向上移;
(B) 变窄,同时向下移;
(C) 变窄,不移动;
(D) 变宽,同时向上移;
750 nm (1 nm=10-9 m)的光谱线.在光栅光谱中,这两种波长的谱线有
重叠现象,重叠处l2的谱线的级数将是
(A) 2 ,3 ,4 ,5 ......
(B) 2 ,5 ,8 ,11......
(C) 2 ,4 ,6 ,8 ......
(D) 3 ,6 ,9 ,12......
注:同一角度对应同一种光栅找最小公倍数即可.
(E) 变宽,不移.
注:
[ D ]5. 根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面
为S,则S的前方某点P的光强度决定于波阵面S上所有面积元发出的子波
各自传到P点的
(A) 振动振幅之和.
(B) 光强之和.
(C) 振动振幅之和的平方. 6. 某元素的特征光谱中含有波长分别为l1=450 nm和l2=
4.钠黄光中包含两个相近的波长μ1=589.0 nm和μ2=589.6 nm.用 平行的钠黄光垂直入射在每毫米有 600条缝的光栅上,会聚透镜的焦距 f=1.00 m.求在屏幕上形成的第2级光谱中上述两波长μ1和μ2的光谱之 间的间隔Δl.(1 nm =10−9 m)
解:
5.将一束波长μ = 589 nm (1 nm = 10-9 m)的平行钠光垂直入射在1 厘米内有5000条刻痕的平面衍射光栅上,光栅的透光缝宽度a与其间距b 相等,求:
12-1双缝干涉、光程、光程差
双缝干涉
例1 以单色光照射到相距为 0.2mm的双缝上,缝距屏 为 1m 。( 1 )从第一级明纹到同侧第四级的明纹为 7.5mm 时 , 求 入 射 光 波 长 ; ( 2 ) 若 入 射 光 波 长 为 6000Å,求相邻明纹间距离。 3 D 解(1) x4 x1 3x d x4 x1 7.5 103 d 0.2 103 5 107 m 500nm 3 3D
4000Å 紫
7600Å 红
2)基本关系
第十二章 光学
光在介质中波长
c 介质折射率 n u
n n
在光波中,引起视觉效应的是
x o
y
E
E,称光矢量
H
k z
§12-2 光源 单色光 相干光
一. 光源
光源的最基本发光单元是分子、原子 E2 E1 能级跃迁辐射 波列
第十二章 光学
第十二章 光学
第十二章 波动光学
一. 教学内容: 干涉: 光程差、双缝干涉、薄膜干涉; 衍射: 单缝衍射、光栅衍射; 偏振: 马吕斯定律、布儒斯特定律、晶体的双折射. 二. 教学要求: 理解光的干涉、衍射、偏振现象; 清楚光路图, 熟练写出光程差; 掌握双缝干涉、等厚干涉、单缝衍射、光栅衍射; 理解马吕斯定律、布儒斯特定律; 了解晶体的双折射. 三. 重点波带法分析单缝衍射、产生双折射的原因.
2 2 E0 E10 E20 2E10 E20 cos 2 其 中: 20 10
E2
E
20
0
E1 10
相干光
第十二章 光学
平均光强为:
I I1 I 2 2 I1I 2 cos
I = I 1 + I 2 —非相干叠加
第12章2氢原子粒子的波动性与波函数
把电子从基态移到离核无穷远处所需能量称为电离
能,氢原子的电离能为13.6eV。
氢原子的能级公式稍加修改,也适用于类氢离子,
例如氦离子He+。 He 原子核外有两个电子,当它
电离失去一个电子后,其结构类似于氢原子,但核
电荷数为+2e。以Z表示类氢离子的核电荷数,则类
氢离子的能级公式为
Ze2 1
En
这样就能制造出用电子波代替光波的电子显微镜。
19
光学显微镜和电子显微镜成像比较
20
例题1:计算被15000V 电场加速运动电子的德布罗意波长。
解:静止电子经电压U加速后的动能
由 P mv 代入 P 2meU
ቤተ መጻሕፍቲ ባይዱ
1
2
mv eU
2
34
h
h
6
.
63
10
2meU
P
2 9 . 1 10 31 1 . 6 10 19 15000
中发现粒子的概率正比于
*
dV dV
2
30
在电子双缝干涉实验中,用波函数 B (r , t ) 和 A (r , t )
分别表示从A、B缝通过电子的状态。两缝同时开启时,
电子的波函数为 (r , t ) A (r , t ) B (r , t )
根据玻恩统计假设,屏上发现电子的概率分布为
玻恩的统计诠释成为量子力学的一个基本假设。 31
和粒子在空间各处出现的概率有什么联系?
3.玻恩假定
波函数 r,t 是一种概率波, 本身无物理意义,但波
2
*
函数模的平方 r ,t r ,t r ,t 代表时刻 t,在空
第12章 几何光学
望远镜的光路
内窥镜
水柱引导光线的行进
11
12.2 光程 费马原理
一、光程
光在均匀介质走过的几何路程 r 与
介质折射率 n 之乘积。用 L表示。
即: L= nr
光程的物理意义:光程就是光在介质中通过的 几何路程按波数相等折合到真空中的路程。
r nr
'
介质中:
折合到真
r
连续变化的介质:
空中:
nr
n
2
◆ 光的波粒二象性
• 牛顿:光的直线转播说明光是粒子流。 • 惠更斯、托马斯 · 杨、菲涅耳:光具有干涉和衍
射现象,所以光是一种波。 • 麦克斯韦:根据我的理论,光是一种电磁波,而
且是横波,转播速度为每秒30万公里。 • 迈克尔逊:我为什么测不到“以太风”。 • 爱因斯坦:用普朗克的“能量子”解释了光电效应。
y P iO
n1
γC
n2
Q
y A
p
q
m y n1q y n2 p
22
一、透镜
12.4 薄透镜成像
透镜——将玻璃、水晶等磨成两面为球面(或一面为平面) 的透明物体。
薄透镜:透镜厚度远小于两球面的曲率半径。
或 两个侧面的中心靠得很近的透镜。
凸透镜: 中间厚边缘薄 的透镜。
①
②
③
凹透镜:中间薄边缘厚
率),其定义为:
n c v
光在真空中的传播速度 光在介质中的传播速度
两种介质相比较,折射率大的介质,光在其中的
传播速度小,称为光密介质;折射率小的介质,光在
其中的传播速度大,称为光疏介质。
n21
v1 v2
n2 n1
折射定律也可表示为:
大学物理第十二章波动光学
[](A)(B)2第12章波动光学、选择题1.如T12-1-1图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为 片和n 3,已知n 1 n 2 n 3 .若波长为 入的单色平行光垂直入射到该薄膜上,则从薄膜上、下 两表面反射的光束①与②的光程差是: [](A) 2n ?e (B) 2n ?e 1 2 (C) 2n 2(D) 2n ?e -2n 2径S 1P 垂直穿过一块厚度为t 1 ,折射率为n 1的一种介质; 路径S 2P 垂直穿过一块厚度为t 2的另一介质;其余部分3.在相同的时间内,一束波长为的单色光在空气和在玻璃中[ ](A)传播的路程相等,走过的光程相等 (B) 传播的路程相等,走过的光程不相等 (C) 传播的路程不相等,走过的光程相等2.女口 T12-1-2图所示, S 1、S 2是两个相干光源, 他们到P 点的距离分别为 r 1和r 2 .路可看作真空. 这两条光路的光程差等于: [](A) (「2 匕上)(「nd 1) (B) [r 2 (n 2 1)t 2][「1 (n 2 1)h](C) (「2匕上2)(A n 缶)(D) n 2t 2S 2T12-1-2 图[](A)(B)2(D) 传播的路程不相等,走过的光程不相等4.频率为f的单色光在折射率为n的媒质中的波速为其光振动的相位改变了2 n f ](A)vv,则在此媒质中传播距离为I2 n vf(B) T (C)2 n nlf vlf(D)厂5.波长为的单色光在折射率为n的媒质中由到b点的几何路程为:a点传到b点相位改变了,则光从a点(C) (D) n6.真空中波长为的单色光,在折射率为n的均匀透明媒质中从a点沿某一路径传到b 点.若将此路径的长度记为I, a、b两点的相位差记为,则[](A) 2则合光照在该表面的强度为8. 相干光是指 [](A)振动方向相同、频率相同、相位差恒定的两束光 (B) 振动方向相互垂直、频率相同、相位差不变的两束光 (C) 同一发光体上不同部份发出的光 (D) 两个一般的独立光源发出的光9.两个独立的白炽光源发出的两条光线 ,各以强度I 照射某一表面•如果这两条光线同时照射此表面,则合光照在该表面的强度为10. 相干光波的条件是振动频率相同、相位相同或相位差恒定以及 [](A)传播方向相同 (B)振幅相同 (C)振动方向相同(D)位置相同n i 和n 2 (n i v n 2)的两片透明介质分别盖住杨氏双缝实验13. 在杨氏双缝实验中,若用白光作光源3 [](A) l , 3 n 2 3 (C) l ,3 n2n33n n (B) l2n , (D) l 3—n , 3n n27. 两束平面平行相干光,每一束都以强度 I 照射某一表面,彼此同相地并合在一起[ ](A) I(B) 21 (C) 41 (D) 2I [](A) I (B) 2I(C) 4I(D) 8I11.用厚度为d 、折射率分别为 中的上下两缝,若入射光的波长为 此时屏上原来的中央明纹 处被第三级明纹所占据 则该媒质的厚度为[](A) 3(B)3 n 2 n 1(C) 22 (D)n 2 n 112. 一束波长为的光线垂直投射到一双缝上,在屏上形成明、暗相间的干涉条纹则下列光程差中对应于最低级次暗纹的是 (B)2(C) (D)T12-1-11 图T12-1-21 图[ ](A)中央明纹是白色的 (C)紫光条纹间距较大干涉条纹的情况为(B)红光条纹较密 (D)干涉条纹为白色T12-1-21 图[](A)缝屏间距离,则条纹间距不变 (C) 入射光强度,则条纹间距不变(B)双缝间距离,则条纹间距变小 (D)入射光波长,则条纹间距不变 20. 在保持入射光波长和缝屏距离不变的情况下 [](A)干涉条纹宽度将变大 (C)干涉条纹宽度将保持不变,将杨氏双缝的缝距减小,则 (B)干涉条纹宽度将变小(D)给定区域内干涉条纹数目将增加21. 有两个几何形状完全相同的劈形膜:一个由空气中的玻 璃形成玻璃劈形膜;一个由玻璃中的空气形成空劈形膜•当用相 同的单色光分别垂直照射它们时,从入射光方向观察到干涉条纹 间距较大的是14. 在双缝干涉实验中,屏幕 E 上的P 点处是明条纹•若将缝S 2盖住,并在S ,S 2连线的垂直平面出放一反射镜 M ,如图所示,则此时[](A)P 点处仍为明条纹(B) P 点处为暗条纹(C) 不能确定P 点处是明条纹还是暗条纹 (D) 无干涉条纹T12-1-14图15.在双缝干涉实验中, 入射光的波长为 ,用玻璃纸遮住双缝中的一个缝, 若玻璃纸中光程比相同厚度的空气的光程大 2.5,则屏上原来的明纹处 [](A)仍为明条纹(C)既非明条纹也非暗条纹(B)变为暗条纹(D)无法确定是明纹还是暗纹16.把双缝干涉实验装置放在折射率为 D (D d ),所用单色光在真空中的波长为是: D n D [](A) (B)nddn 的水中,两缝间距离为d,双缝到屏的距离为 ,则屏上干涉条纹中相邻的明纹之间的距离(C)d nD(D)D 2nd17.如T12-1-17图所示,在杨氏双缝实验中,若用一片厚度为 装置中的上面一个缝挡住;再用一片厚度为d 2的透光云母片将 下面一个缝挡住,两云母片的折射率均为 n, d 1>d 2,干涉条纹的变化情况是 [](A)条纹间距减小(B)条纹间距增大 (18. 在杨氏双缝实验中,若用一片能透光的云母片将双缝装 置中的上面一个缝盖住,干涉条纹的变化情况是 [ ](A)条纹间距增大 (B) 整个干涉条纹将向上移动 (C)条纹间距减小(D)整个干涉条纹将向下移动T12-1-18 图19.当单色光垂直照射杨氏双缝时 ,屏上可观察到明暗交替的干涉条纹•若减小d 1的透光云母片将双缝T12-1-17 图[](A) d 1 d o ,d 2 d o 3(B) d 1 d o , d 2 d o 3(C) d 1do2,d2 do(D) d1 do孑d2 do(B) 明纹间距逐渐变小,并向劈棱移动 (C) 明纹间距逐渐变大,并向劈棱移动 (D) 明纹间距逐渐变大,并背向劈棱移动 24. 两块平玻璃板构成空气劈尖,左边为棱边,用单色平行光垂直入射•若上面的平 玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的 [](A)间隔变小,并向棱边方向平移 (B)间隔变大,并向远离棱边方向平移 (C)间隔不变,向棱边方向平移 (D)间隔变小,并向远离棱边方向平移25.检验滚珠大小的干涉试装置示意如 T12-1-25(a)图.S 为光源,L 为汇聚透镜,M为半透半反镜.在平晶T i 、T 2之间放置A 、B 、C 三个滚珠,其中A 为标准,直径为d o •用 波长为 的单色光垂直照射平晶,在 M 上方观察时观察到等厚条纹如 T12-1-25(b)图所示,轻压C 端,条纹间距变大,则B 珠的直径d 1、C 珠的直径d 2与d 0的关系分别为:[ ](A)玻璃劈形膜(C)两劈形膜干涉条纹间距相同(B)空气劈形膜(D)已知条件不够,难以判定22. 用波长可以连续改变的单色光垂直照射一劈形膜 的变化情况为,如果波长逐渐变小,干涉条纹](A)明纹间距逐渐减小 并背离劈棱移动23. 在单色光垂直入射的劈形膜干涉实验中 方向可以察到干涉条纹的变化情况为 若慢慢地减小劈形膜夹角,则从入射光[](A)条纹间距减小(B) 给定区域内条纹数目增加 (C) 条纹间距增大(D) 观察不到干涉条纹有什么变化T12-1-23 图aaaaaaET12-1-25(a)图T12-1-25(b)图26•如T12-1-26(a)图所示,一光学平板玻璃 A 与待测工件B 之间形成空气劈尖, 用波长=500nm(1 nm = 10-9m)的单色光垂直照射.看到的反射光的干涉条纹如 T12-1-26(b)图所示.有些条纹弯曲部分的顶点恰好与其右边条纹的直线部27.设牛顿环干涉装置的平凸透镜可以在垂直于平玻璃的方向上下移动 ,当透镜向上平移(即离开玻璃板)时,从入射光方向可观察到干涉条纹的变化情况是 [](A)环纹向边缘扩散,环纹数目不变 (B)环纹向边缘扩散,环纹数目增加 (C)环纹向中心靠拢,环纹数目不变(D)环纹向中心靠拢,环纹数目减少28.牛顿环实验中,透射光的干涉情况是[](A) 中心暗斑, 条纹为内密外疏的同心圆环(B) 中心暗斑, 条纹为内疏外密的同心圆环(C) 中心亮斑,条纹为内密外疏的同心圆环(D) 中心亮斑, 条纹为内疏外密的同心圆环(平凸透镜的平面始终保29.在牛顿环装置中 ,若对平凸透镜的平面垂直向下施加压力持与玻璃片平行),则牛顿环[](A) 向中心收缩 ,中心时为暗斑,时为明斑,明暗交替变化H 1 H 1(B) 向中心收缩 ,中心处始终为暗斑(C) 向外扩张,中心处始终为暗斑(D)向中心收缩 ,中心处始终为明斑 T12-1-29 图30. 关于光的干涉,下面说法中唯一正确的是[](A)在杨氏双缝干涉图样中,相邻的明条纹与暗条纹间对应的光程差为 一2(B) 在劈形膜的等厚干涉图样中,相邻的明条纹与暗条纹间对应的厚度差为一2(C) 当空气劈形膜的下表面往下平移时,劈形膜上下表面两束反射光的光程差2将增加一2(D) 牛顿干涉圆环属于分波振面法干涉31.根据第k 级牛顿环的半径r k 、第k 级牛顿环所对应的空气膜厚d k 和凸透镜之凸面[](A) 不平处为凸起纹,最大高度为 500nm(B)不平处为凸起纹, 最大高度为 250nm(C) 不平处为凹槽,最大深度为 500nm 分的切线相切.则工件的上表面缺陷是 (D)不平处为凹槽,最大深度为250nmT12-1-26(a)图T12-1-26(b)图半径R 的关系式d k 工可知,离开环心越远的条纹2R[ ](A)对应的光程差越大,故环越密 (B)对应的光程差越小,故环越密 (C)对应的光程差增加越快,故环越密(D)对应的光程差增加越慢,故环越密32. 如果用半圆柱形聚光透镜代替牛顿环实验中的平凸透镜 放在平玻璃上,则干涉条纹的形状 [ ](A)为内疏外密的圆环(B)为等间距圆环形条纹 (C)为等间距平行直条纹(D) 为以接触线为中心,两侧对称分布,明暗相间,内疏外密的一组平行直条纹33. 劈尖膜干涉条纹是等间距的,而牛顿环干涉条纹的间距是不相等的•这是因为: [](A)牛顿环的条纹是环形的(B)劈尖条纹是直线形的 (C)平凸透镜曲面上各点的斜率不等(D)各级条纹对应膜的厚度不等34•如T12-1-34图所示,一束平行单色光垂直照射到薄膜上,经上、下两表面反射的 光束发生干涉.若薄膜的厚度为e ,且n i < n 2 > n 3,为入射光在折射率为 n i 的媒质中的波35.用白光垂直照射厚度 折射率为n 1,薄膜下面的媒质折射率为 n 3 •则反射光中可看到的加强光的波长为:37. 欲使液体(n > 1)劈形膜的干涉条纹间距增大,可采取的措施是: ](A)增大劈形膜夹角 (B) (C)换用波长较短的入射光(D)38. 若用波长为的单色光照射迈克尔逊干涉仪,并在迈克尔逊干涉仪的一条光路中放长,则两束反射光在相遇点的相位差为: 4 n2 n n 2 [](A)e(B)e n4 n r>24 n(C) e n(D)-ee = 350nm 的薄膜,若膜的折射率 n 2 = 1.4 ,薄膜上面的媒质n 3, 且 n 1 < n 2 <](A) 450nm (C) 690nm(B) 490nm (D) 553.3nmT12-2-35 图n i36. 已知牛顿环两两相邻条纹间的距离不等. 不可行的是如果要使其相等 ,以下所采取的措施中](A)将透镜磨成半圆柱形(C)将透镜磨成三棱柱形(B)将透镜磨成圆锥形 (D)将透镜磨成棱柱形增大棱边长度换用折射率较小的液体入厚度为I 、折射率为n 的透明薄片•放入后,干涉仪两条光路之间的光程差改变量为 [](A) ( n-1) I(B) nl(C) 2 nl(D) 2( n-1)139. 若用波长为 的单色光照射迈克尔逊干涉仪 ,并在迈克尔逊干涉仪的一条光路中放入一厚度为I 、折射率为n 的透明薄片,则可观察到某处的干涉条纹移动的条数为 [ ](A) 4(n 1)-(B)(C)2(n 1)- (D) (n 1)丄40.如图所示,用波长为的单色光照射双缝干涉实验装置,若将一折射率为 n 、劈角为 的透明劈尖b 插入光线2中,则当劈尖b 缓慢向 上移动时(只遮住S 2),屏C 上的干涉条纹 [](A)间隔变大,向下移动 (B) 间隔变小,向上移动 (C) 间隔不变,向下移动(D) 间隔不变,向上移动41.根据惠更斯--菲涅耳原理,若已知光在某时刻的波阵面为S,则S 的前方某点P 的光强度取决于波阵面 S 上所有面积元发出的子波各自传到 P 点的[](A)振动振幅之和 (C)光强之和(B)振动振幅之和的平方 (D)振动的相干叠加42.无线电波能绕过建筑物,而可见光波不能绕过建筑物.这是因为 [](A)无线电波是电磁波 (B)光是直线传播的(C)无线电波是球面波(D)光波的波长比无线电波的波长小得多43.光波的衍射现象没有显著,这是由于[](A)光波是电磁波,声波是机械波 (B)光波传播速度比声波大(C)光是有颜色的(D)光的波长比声波小得多a 的单缝上,缝后紧靠着焦距为f 的薄凸透镜, 屏置于透镜的焦平面上,若整个实验装置浸入折射率为 n 体中,则在屏上出现的中央明纹宽度为的液 ](A)na2f (C)na(B) (D)na 2nf亠L L J口 I -IT12-1-44 图T12-1-40 图44.波长为的单色光垂直入射在缝宽为45. 在单缝衍射中,若屏上的P 点满足a sin ](A)第二级暗纹 (B) (C)第二级明纹 (D) 46.在夫琅和费单缝衍射实验中,欲使中央亮纹宽度增加,可采取的方法是 [](A)换用长焦距的透镜 (B)换用波长较短的入射光=5/2则该点为第五级暗纹 第五级明纹(C)增大单缝宽度 (D)将实验装置浸入水中47. 夫琅和费单缝衍射图样的特点是 [ ](A)各级亮条纹亮度相同 (B) 各级暗条纹间距不等 (C) 中央亮条纹宽度两倍于其它亮条纹宽度(D) 当用白光照射时,中央亮纹两侧为由红到紫的彩色条纹 48. 在夫琅和费衍射实验中,对给定的入射单色光,当缝宽变小时,除中央亮纹的中 心位置不变,各衍射条纹 [ ](A)对应的衍射角变小 (B)对应的衍射角变大 (C)对应的衍射角不变 (D)光强也不变 49. 一束波长为 的平行单色光垂直入射到一单缝 在屏幕E 上形成衍射图样.如果P 是中央亮纹一侧第- AB 上,装置如 T12-1-49图所示, 个暗纹所在的位置,则 BC 的长度为 [ ](A) (B)- 23 c (C) (D) 2 250.在单缝夫琅和费衍射实验中,若增大缝宽,其它条件不变,则中央明纹 [ ](A)宽度变小 (B)宽度变大 (C)宽度不变,且中心强度也不变 (D)宽度不变,但中心强度增大 51.在如T12-1-51图所示的在单缝夫琅和费衍射装置中,设中央明纹的衍射角范围很 小.若单缝a 变为原来的 3 -,同时使入射的单色光的波长 2 3变为原来的 -,则屏幕E 上的单缝衍射条纹中央明纹的 4宽度△x 将变为原来的T12-1-51 图[](A) 44 倍 4 2 9 1 (B)-倍 (C) 9 倍 (D)-倍 3 8 2 52. 一单缝夫琅和费衍射实验装置如 T12-1-52图所 示,L 为透镜,E 为屏幕;当把单缝向右稍微移动一点时, 衍射图样将 [ ](A)向上平移 (B)向下平移 (C)不动(D)消失T12-1-52 图55.在T12-1-55图所示的单缝夫琅和费衍射实验中,将单缝宽度a 稍稍变窄,同时使会聚透镜L 2沿x 轴正方向作微小移动,则屏幕 央衍射条纹将 [](A)变宽,同时上移 (B) 变宽,同时下移 (C) 变宽,不移动 (D) 变窄,同时上移56. 一衍射光栅由宽 300 nm 、中心间距为 直照射时,屏幕上最多能观察到的亮条纹数为: [](A) 2 条(B) 3 条57. 白光垂直照射到每厘米有5000条刻痕的光栅上,若在衍射角 =30。
大学物理波动光学课件
麦克斯韦电磁理论:19 世纪中叶,英国物理学 家麦克斯韦建立了电磁 理论,揭示了光是一种 电磁波,为波动光学提 供了更加深入的理论根 据。
在这些重要人物和理论 的推动下,波动光学逐 渐发展成为物理学的一 个重要分支,并在现代 光学、光电子学等领域 中发挥了重要作用。
02 光的干涉
干涉的定义与分类
定义 分类 分波前干涉 分振幅干涉
干涉是指两个或多个相干光波在空间某一点叠加产生加强或减 弱的现象。
根据光源的性质,干涉可分为两类,分别是ห้องสมุดไป่ตู้波前干涉和分振 幅干涉。
波前上不同部位发出的子波在空间某点相遇叠加产生的干涉。 如杨氏双缝干涉、洛埃镜、菲涅尔双面镜以及菲涅尔双棱镜等
。
一束光的振幅分成两部分(或以上)在空间某点相遇时产生的 干涉。例如薄膜干涉、等倾干涉、等厚干涉以及迈克耳孙干涉
波动光学与几何光学的比较
几何光学
几何光学是研究光线在介质中传播的光学分支,它主要关注 光线的方向、成像等,基于光的直线传播和反射、折射定律 。
波动光学与几何光学的区分
波动光学更加关注光的波动性质,如光的干涉、衍射等现象 ,而几何光学则更加关注光线传播的几何特性。两者在研究 对象和方法上存在差异,但彼此相互补充,构成了光学的完 整体系。
VS
马吕斯定律
当一束光线通过两个偏振片时,只有当两 个偏振片的透振方向夹角为特定值时,光 线才能通过。这就是马吕斯定律,它描述 了光线通过偏振片时的透射情况。这两个 定律在光学和物理学中都有着广泛的应用 。
THANKS
感谢观看
分类
根据障碍物的大小和光波波长的相对 关系,衍射可分为菲涅尔衍射和夫琅 禾费衍射。
单缝衍射与双缝衍射
单缝衍射
第12章-2波动光学
对纵波而言, 对纵波而言,由于振动方向和波的传播方 向一致,如果过波的传播方向做很多平面, 向一致,如果过波的传播方向做很多平面, 振动方向总包含在此平面内。 振动方向总包含在此平面内。因此没有振 动的取向问题,即纵波没有偏振性的问题。 动的取向问题,即纵波没有偏振性的问题。 要区别横波还是纵波, 要区别横波还是纵波,主要就是讨论这种 波动是否具有偏振性。 波动是否具有偏振性。
§12-5 光的偏振 1212-5-1 自然光与偏振光
E
H
光是一种电磁波(横波)。电矢量 光是一种电磁波(横波)。电矢量 E与磁矢量 H相 )。 互垂直,它们分别又与电磁波的传播方向垂直。 互垂直,它们分别又与电磁波的传播方向垂直。
光振动: 振动。 光振动:电磁波的 E振动。 光矢量: 矢量。 光矢量:电磁波的 E矢量。
E
v
自然光: 自然光:在垂直于光传播方向上的所有可能方向 上,E 振动的振幅都相等。 振动的振幅都相等。
v
Ey
v
Ex
线偏振光:某一光束只含有一个方向的光振动。 线偏振光:某一光束只含有一个方向的光振动。 振动面:光振动方向与传播方向所确定的那平面。 振动面:光振动方向与传播方向所确定的那平面。
部分偏振光: 部分偏振光:某一方向的光振动比与之相垂直的另 一方向的光振动占优势。 一方向的光振动占优势。
12-5-2 偏振片 马吕斯定律
偏振片:能吸收某一方向的光振动, 偏振片:能吸收某一方向的光振动,而只让与之垂 直方向上的光振动通过的一种透明薄片。 直方向上的光振动通过的一种透明薄片。 偏振化方向: 偏振化方向: 允许通过的光振 动方向。 动方向。
偏振片的用途: 起偏” 偏振片的用途:“起偏”和“检偏” 检偏”
大学物理物理学波动光学PPT课件
一束光分解为振动面垂直的两束光。
S2
E
2、杨氏双缝干涉实验装置
1801年,杨氏巧妙地设计了一种把单个波阵面分解为两个 波阵面以锁定两个光源之间的相位差的方法来研究光的干涉现 象。杨氏用叠加原理解释了干涉现象,在历史上第一次测定了 光的波长,为光的波动学说的确立奠定了基础。
3、双缝干涉的光程差
两光波在P点的光程差为 = r2-r1
?人的眼睛不能区分自然光与偏振光用于鉴别光的偏振状态的器件称为检偏器2偏振片是一种人工膜片对不同方向的光振动有选择吸收的性能从而使膜片中有一个特殊的方向当一束自然光射到膜片上时与此方向垂直的光振动分量完全被吸收只让平行于该方向的光振动分量通过即只允许沿某一特定方向的光通过的光学器件叫做偏振片
绪言
一、光学的研究内容 二、光的两种学说
薄膜干涉属于分振幅法
1、等倾干涉:
实验装置
在空气(或真空)中放入上
下表面平行,厚度为 e 的均 匀介质 n
光a与光 b的光程差为:
n(AB BC) (AD / 2)
光a有半波损失。
a
iD
b
n
A r
C e
B
由折射定律和几何关系可得出:
sin i nsin
AD ACsin i AC 2e tan n AB BC e / cos 代入 n(AB BC) (AD / 2)
光的干涉和衍射现象表明了光的波动性, 而光的偏振现象则显示了光是横波。光波作为 一种电磁波也包含两种矢量的振动,即电矢量 E和磁矢量H,引起感光作用和生理作用的是其 中的电矢量E,所以通常把E矢量称为光矢量, 把E振动称为光振动。
§8-1 光波及其相干条件
一、光波
1.光波的概念:
马可福章12章逐节解释
马可福章12章逐节解释篇一:马可福章(Markus Fuchs)是一位德国化学家,他在20世纪60年代开始研究碳纳米管。
他于1969年发表了第一篇关于碳纳米管的研究论文,并在此后的几十年里持续深入研究,成为了碳纳米管领域的先驱者和重要人物之一。
以下是马可福章的12章逐节解释,包括了碳纳米管的基本概念、物理性质、制备方法、表征方法等方面的内容。
第一章:碳纳米管的概念本章介绍了碳纳米管的概念和定义。
碳纳米管是一种由碳原子组成的多孔、多裂缝的碳材料,其直径通常只有几个到几十纳米。
碳纳米管具有许多独特的物理和化学性质,如高比表面积、强大的机械强度、优异的导电性、热稳定性等,因此在纳米材料研究领域具有广泛的应用前景。
第二章:碳纳米管的结构和形态本章介绍了碳纳米管的结构和形态。
碳纳米管通常由一个碳原子的孤对电子与相邻的碳原子形成共价键,形成多孔、多裂缝的碳材料。
碳纳米管的形态包括晶体形态、树枝状形态、球状形态等。
其中,晶体形态是碳纳米管最常见的形态,树枝状形态和球状形态也可以通过控制碳纳米管的结构和尺寸来实现。
第三章:碳纳米管的制备方法本章介绍了碳纳米管的制备方法。
碳纳米管的制备方法包括化学气相沉积、物理气相沉积、电化学沉积、化学溶解法等。
其中,化学气相沉积是最常用的制备方法之一,它通过将碳材料溶解在沉积剂中,然后通过气相沉积技术将其沉积到基材表面。
第四章:碳纳米管的表征方法本章介绍了碳纳米管的表征方法。
碳纳米管的表征方法包括光学显微镜、电子显微镜、X射线衍射、核磁共振、激光扫描隧道显微镜等。
其中,光学显微镜是最常用的表征方法之一,它可以通过观察碳纳米管的孔径、结构、形态等特征来评估碳纳米管的质量和尺寸。
篇二:马可福章(Markus Fuchs)是德国著名的数学家和物理学家,他在数学和物理学领域做出了许多杰出的贡献。
以下是他第12章逐节解释的内容。
第1节:基本几何学这一章主要介绍了几何学的基本概念和定理。
马可福章指出,几何学是物理学的基础,因为它提供了描述自然现象的一种重要工具。
波 动 光 学
波动光学
三、 光的干涉
两个普通光源或者同一光源的不同部分发出的光 是不满足相干条件的.近代发展起来的激光光源是一种 受激辐射,光源中的各个原子或分子能发出振动方向 相同,频率相同,初相位一致的光波列,使得来自两 个独立的激光光源或同一激光光源上不同部分的光有 可能相干.按照波的叠加原理,当两列波在空间相遇时 发生干涉现象需满足振动频率相同,振动方向相同,相 位相同或相位差恒定.
一、 光波 1. 光波的概念
波动光学
光波是电磁波的一部分,仅占电磁波谱很小的一部分,它与无线 电波、X射线等其他电磁波的区别只是频率不同,能够引起人眼视觉 的那部分电磁波称为可见光.
光源发出的频率为1022~1026Hz的电磁波泛称为光.光包括红外 光、可见光和紫外光三部分.可见光的频率为3.9×1014~7.5×1014Hz. 在可见光范围内,不同频率的光将引起不同的颜色感觉,下表为各光 色与频率(或真空中波长)的对照,光在波长从小到大过程中呈现出 由紫到红等各种颜色.
波动光学
二、 光源
波动光学
大量原子受外来激励会处于激发状态.处于激发状态的原子是不稳定 的,它要自发地向低能级状态跃迁,并同时向外辐射电磁波. 由于原子发 光的无规则性,同一个原子先后发出的波列之间及不同原子发出的波列 之间都没有固定的相位关系,且振动方向和频率也不尽相同,这就决定 了两个独立的普通光源发出的光不是相干光,因而不能产生干涉现象, 如图13- 1(a)所示.图13- 1(b)所示为波列的叠加,两个独立光源中 原子1和原子2各自发出一系列的波列,当它们到达P点时,因为不符合相 干条件,所以不会产生干涉.故两个独立的光源不能构成相干光源,不仅 如此,即使是同一个光源上不同部分发出的光,也不会产生干涉.
大学物理第12章复习提纲
第12章 波动光学(1) 掌握双缝干涉的形成机理及k 级明、暗条纹对应的位置公式、以及相邻明、暗纹间距公式。
掌握光程的概念。
(2) 掌握等倾干涉(即薄膜干涉)形成的机理及明、暗条纹对应的光程差公式。
掌握增透膜和增反膜的厚度计算。
(3) 掌握等厚干涉(即劈尖干涉)形成的的机理及明、暗条纹对应的光程差公式。
(4) 掌握利用劈尖条纹特点进行的的一系列计算(如直径计算,工件凹,凸程度计算),牛顿环明、暗条纹对应的半径计算。
(5) 掌握单缝衍射半波带分析方法和明暗纹计算公式(6) 掌握光栅方程,会利用光栅方程计算条纹的位置,最大级次。
(7) 掌握利用偏振片进行光的起偏、捡偏、以及马吕斯定理,会用马吕斯定理计算光强。
(8) 掌握反射光和折射光的偏振方法,布儒斯特定律。
2.在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为3π ,则此路径AB 的光程为4.(本题3分)如图所示为杨氏双缝干涉实验光路图。
当1r 和2r 质中时,中央明条纹位于O 点位置,当在1r 光路中放置一块折射率为1.5,厚度为1mm 的玻璃片时,则中央明纹位置:(A) 在o 点不变;(B) 向ox 正方向移动; (C) 向ox 负正方向移动;(D) 无法确定. []6.如图,在双缝干涉实验中,若把一厚度为e 、折射率为n 的薄云母片覆盖在S 1缝上,中央明条纹将向__________移动;覆盖云母片后,两束相干光至原中央明纹O 处的光程差为__________________.8. 在空气中有一劈形透明膜,其劈尖角θ=1.0×10-4rad ,在波长λ=700 nm 的单色光垂直照射下,测得两相邻干涉明条纹间距l =0.25 cm ,由此可知此透明材 料的折射率n =______________________.(1 nm=10-9m)10. 用劈尖干涉法可检测工件表面缺陷,当波长为λ的单色平行光垂直入射时,若观察到的干涉条纹如图所示,每一条纹弯曲部分的顶点恰好与其左边条纹的直线部分的连线相切,则工件表面与条纹弯曲处对应的部分12.波长为 600 nm 的单色平行光,垂直入射到缝宽为a =0.60 mm 的单缝上,缝后有一焦距cm f 60'=的透镜,在透镜焦平面上观察衍射图样.则:中央明纹的宽度为__________,两个第三级暗纹之间的距离为____________.(1 nm =10﹣9m)14.一束波长为λ的平行单色光垂直入射到一单缝AB 上,装置如图.在屏幕D 上形成衍射图样,如果P 是中央亮纹一侧第一个暗纹所在的位置,则BC 的长度为 (A) λ / 2.(B) λ.(C) 3λ / 2 . (D) 2λ .[ ]16. 一束具有两种波长λ1和λ2的平行光垂直照射到一衍射光栅上,测得波长λ1的第三级主极大衍射角和λ2的第四级主极大衍射角均为30°.已知λ1=560 nm (1 nm= 10-9m),试求: (1) 光栅常数a +b (2) 波长λ218.将三个偏振片叠放在一起,第二个与第三个的偏振化方向分别与第一个的偏振化方向成45°和90°角. (1) 强度为I 0的自然光垂直入射到这一堆偏振片上,试求经每一偏振片后的光强和偏振状态. (2) 如果将第二个偏振片抽走,情况又如何?20. 一束自然光入射到两种媒质交界平面上产生反射光和折射光.如果反射光是线偏振光光;则折射光是________光;这时的入射角b i 称为____________角.22. 有一双缝相距0.3mm ,要使波长为600nm 的红光通过并在光屏上呈现干涉条纹,每条明纹或暗纹的宽度为1mm ,问光屏应放在距双缝多远的地方? 24. 在杨氏双缝实验中,双缝相距0.3mm ,以波长为600nm 的红光照射狭缝,求在离双缝50cm 远的屏幕上,从中央向一侧数第二条与第五条暗纹之间的距离。
大学物理 第十二章 波动光学2
2 又,明纹所在处x满足: x tg 1.5 0.003 , f 500
2 0.5 1.5 3 104 2ax / f 107 m A λ (2k 1) 500 2k 1 2k 1
白光波长范围4000—7000Å,满足上式的波长值即为所求:
• • • •
例题:已知单缝宽a=0.5mm,透镜焦距f=50cm,今以白光垂直照 射狭缝,在观察屏上x=1.5mm处看到明纹极大,求: (1)入射光的波长及衍射级数; (2)单缝所在处的波阵面被分成的波带数目。
[解]: (1)由明纹条件: a sin (2k 1)
x 很小 。 sin ≈ tg f
sin
中央极大值对应的明条纹称 中央明纹。 中央极大值两侧的其他明条纹称次极大。
2、明暗纹中心位置坐标
(1)中央明纹中心位置 x=0
xk t g k f
tgk sin k
x xk
k
中 O 央 明 纹
k2
k 1
(1)
(2)
f
(2)暗纹中心位置坐标
由 a sin k k 及式(1)、(2) 得
二、光学仪器的分辨本领
1.22 1 D
D
瑞 利 判 据
定义
分辨本领
D R 1.22
1
刚可分辨
非相干叠加
不可分辨
瑞利判据 : 对于两个等光强的非相
干物点,若其中一点的象斑中心恰好落 在另一点的象斑的边缘(第一暗纹处), 则此两物点被认为是刚刚可以分辨。
当 再 , =3/2时,可将缝分成三个“半波带”,
B a A θ a B θ
波动光学答案
形成明纹,先光程差为半的透明薄膜上,透明薄故薄膜的最小厚度h 应第十二章波动光学(一)一.选择题[B ]1.在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(A) 使屏靠近双缝. (B) 使两缝的间距变小. (C) 把两个缝的宽度稍微调窄. (D) 改用波长较小的单色光源. 参考解答:根据条纹间距公式Ax =2 •,即可判断。
nd[B ]2.在双缝干涉实验中,入射光的波长为 ■,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大2.5 •,则屏上原来的明纹处 (A)仍为明条纹; (B)变为暗条纹;(C)既非明纹也非暗纹;(D)无法确定是明纹,还是暗纹参考解答:光程差变化了 2.5 -,原光程差为半波长的偶数倍波长的奇数倍,故变为暗条纹。
[A ]3.如图所示,波长为■的平行单色光垂直入射在折射 率为n 2的薄膜上,经上下两个表面反射的两束光发生干涉•若薄 膜厚度为e ,而且n i >n 2>出,则两束反射光在相遇点的相位差为(A) 4 二n 2 e / ■.(B) 2 二n 2 e / ■.(C) (4 m2 e / ■. j 亠,. (D) (2 二n 2 e / ■-二 参考解答:此题中无半波损失,故相位差为:…2兀2兀.「二光程差 =2en 24二 n 2e /,。
[B ]4. 一束波长为■的单色光由空气垂直入射到折射率为 膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为(A)人 /4 . (B) / (4 n).(C)九/ 2 .(D)九/ (2n).参考解答:反射光要干涉加强,其光程差应为半波长的偶数倍满足如下关系式:2nh ■ — =1工(要考虑半波损失),由此解得h =,/ (4n)。
2n 3n i[C ]5.若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹参考解答:接触点P 的左边两反射光的光程差为'飞《 = 2nh ,接触点P 的右边两反射光的光程差为“ght=2nh 。
大学物理第十二章 波动光学
第12章 波动光学一、选择题1. 如T12-1-1图所示,折射率为2n 、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为1n 和3n ,已知321n n n <<.若波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②的光程差是:[ ] (A) e n 22 (B) λ2122-e n(C) λ-22n (D) 2222n e n λ-2. 如T12-1-2图所示,1S 、2S 是两个相干光源,他们到P 点的距离分别为 1r 和 2r .路径P S 1垂直穿过一块厚度为1t ,折射率为1n 的一种介质;路径P S 2垂直穿过一块厚度为2t 的另一介质;其余部分可看作真空.这两条光路的光程差等于: [ ] (A) )()(111222t n r t n r +-+(B) ])1([])1([121222t n r t n r -+--+ (C) )()(111222t n r t n r ---(D) 1122t n t n -3. 在相同的时间内,一束波长为λ的单色光在空气和在玻璃中[ ] (A) 传播的路程相等,走过的光程相等(B) 传播的路程相等,走过的光程不相等 (C) 传播的路程不相等,走过的光程相等 (D) 传播的路程不相等,走过的光程不相等4. 频率为f 的单色光在折射率为n 的媒质中的波速为v , 则在此媒质中传播距离为l 后, 其光振动的相位改变了 [ ] (A)vlfπ2 (B)lvfπ2 (C)vnlfπ2 (D)π2vlf5. 波长为λ的单色光在折射率为n 的媒质中由a 点传到b 点相位改变了π, 则光从a 点到b 点的几何路程为: [ ] (A)n2λ(B)2nλ (C)2λ(D) λn6. 真空中波长为λ的单色光, 在折射率为n 的均匀透明媒质中从a 点沿某一路径传到b 点.若将此路径的长度记为l , a 、b 两点的相位差记为∆ϕ , 则1SS PT12-1-2图[ ] (A) π3,23=∆=ϕλl (B) π3,23n n l =∆=ϕλ(C) π3,23=∆=ϕλn l (D) π3,23n n l =∆=ϕλ7. 两束平面平行相干光, 每一束都以强度I 照射某一表面, 彼此同相地并合在一起, 则合光照在该表面的强度为 [ ] (A) I(B) 2I (C) 4I (D)I 28. 相干光是指[ ] (A) 振动方向相同、频率相同、相位差恒定的两束光(B) 振动方向相互垂直、频率相同、相位差不变的两束光 (C) 同一发光体上不同部份发出的光 (D) 两个一般的独立光源发出的光9. 两个独立的白炽光源发出的两条光线, 各以强度I 照射某一表面.如果这两条光线同时照射此表面, 则合光照在该表面的强度为 [ ] (A) I(B) 2I (C) 4I (D) 8I10. 相干光波的条件是振动频率相同、相位相同或相位差恒定以及 [ ] (A) 传播方向相同 (B) 振幅相同(C) 振动方向相同 (D) 位置相同11. 用厚度为d 、折射率分别为n 1和n 2 (n 1<n 2)的两片透明介质分别盖住杨氏双缝实验中的上下两缝, 若入射光的波长为λ, 此时屏上原来的中央明纹处被第三级明纹所占据, 则该媒质的厚度为 [ ] (A) λ3(B)123n n -λ(C) λ2(D)122n n -λ12. 一束波长为 λ 的光线垂直投射到一双缝上, 在屏上形成明、暗相间的干涉条纹, 则下列光程差中对应于最低级次暗纹的是 [ ] (A) λ2(B)λ23 (C)λ(D)2λ13. 在杨氏双缝实验中, 若用白光作光源, 干涉条纹的情况为 [ ] (A) 中央明纹是白色的(B) 红光条纹较密 (C) 紫光条纹间距较大(D) 干涉条纹为白色T12-1-11图14. 在双缝干涉实验中,屏幕E 上的P 点处是明条纹.若将缝2S 盖住,并在21S S 连线的垂直平面出放一反射镜M ,如图所示,则此时 [ ] (A) P 点处仍为明条纹(B) P 点处为暗条纹(C) 不能确定P 点处是明条纹还是暗条纹 (D) 无干涉条纹15. 在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大2.5λ,则屏上原来的明纹处 [ ] (A) 仍为明条纹(B) 变为暗条纹(C) 既非明条纹也非暗条纹(D) 无法确定是明纹还是暗纹16. 把双缝干涉实验装置放在折射率为n 的水中,两缝间距离为d , 双缝到屏的距离为D (d D >>),所用单色光在真空中的波长为λ,则屏上干涉条纹中相邻的明纹之间的距离是: [ ] (A)ndDλ (B)dDn λ (C)nDd λ (D)ndD 2λ17. 如T12-1-17图所示,在杨氏双缝实验中, 若用一片厚度为d 1的透光云母片将双缝装置中的上面一个缝挡住; 再用一片厚度为d 2的透光云母片将下面一个缝挡住, 两云母片的折射率均为n , d 1>d 2, 干涉条纹的变化情况是[ ] (A) 条纹间距减小(B) 条纹间距增大 (C) 整个条纹向上移动(D) 整个条纹向下移动18. 在杨氏双缝实验中, 若用一片能透光的云母片将双缝装置中的上面一个缝盖住, 干涉条纹的变化情况是 [ ] (A) 条纹间距增大(B) 整个干涉条纹将向上移动 (C) 条纹间距减小(D) 整个干涉条纹将向下移动19. 当单色光垂直照射杨氏双缝时, 屏上可观察到明暗交替的干涉条纹.若减小 [ ] (A) 缝屏间距离, 则条纹间距不变 (B) 双缝间距离, 则条纹间距变小 (C) 入射光强度, 则条纹间距不变 (D) 入射光波长, 则条纹间距不变20. 在保持入射光波长和缝屏距离不变的情况下, 将杨氏双缝的缝距减小, 则 [ ] (A) 干涉条纹宽度将变大 (B) 干涉条纹宽度将变小(C) 干涉条纹宽度将保持不变 (D) 给定区域内干涉条纹数目将增加21. 有两个几何形状完全相同的劈形膜:一个由空气中的玻璃形成玻璃劈形膜; 一个由玻璃中的空气形成空劈形膜.当用相同的单色光分别垂直照射它们时, 从入射光方向观察到干涉条纹间距较大的是T12-1-14图T12-1-17图T12-1-18图T12-1-21图[ ] (A) 玻璃劈形膜(B) 空气劈形膜(C) 两劈形膜干涉条纹间距相同(D) 已知条件不够, 难以判定22. 用波长可以连续改变的单色光垂直照射一劈形膜, 如果波长逐渐变小, 干涉条纹的变化情况为[ ] (A) 明纹间距逐渐减小, 并背离劈棱移动(B) 明纹间距逐渐变小, 并向劈棱移动 (C) 明纹间距逐渐变大, 并向劈棱移动 (D) 明纹间距逐渐变大, 并背向劈棱移动23. 在单色光垂直入射的劈形膜干涉实验中, 若慢慢地减小劈形膜夹角, 则从入射光方向可以察到干涉条纹的变化情况为 [ ] (A) 条纹间距减小(B) 给定区域内条纹数目增加 (C) 条纹间距增大(D) 观察不到干涉条纹有什么变化24. 两块平玻璃板构成空气劈尖,左边为棱边,用单色平行光垂直入射.若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的 [ ] (A) 间隔变小,并向棱边方向平移(B) 间隔变大,并向远离棱边方向平移 (C) 间隔不变,向棱边方向平移(D) 间隔变小,并向远离棱边方向平移25. 检验滚珠大小的干涉试装置示意如T12-1-25(a)图.S 为光源,L 为汇聚透镜,M 为半透半反镜.在平晶T 1、T 2之间放置A 、B 、C 三个滚珠,其中A 为标准,直径为0d .用波长为λ的单色光垂直照射平晶,在M 上方观察时观察到等厚条纹如T12-1-25(b)图所示,轻压C 端,条纹间距变大,则B 珠的直径1d 、C 珠的直径2d 与0d 的关系分别为:[ ] (A) ,01λ+=d d λ302+=d d (B) ,01λ-=d d λ302-=d d(C) ,201λ+=d d 2302λ+=d d (D) ,201λ-=d d 2302λ-=d dS12TT12-1-25(a)图 T12-1-25(b)图T12-1-23图26. 如T12-1-26(a)图所示,一光学平板玻璃A 与待测工件B 之间形成空气劈尖,用波长λ=500nm(1nm = 10-9m)的单色光垂直照射.看到的反射光的干涉条纹如T12-1-26(b)图所示.有些条纹弯曲部分的顶点恰好与其右边条纹的直线部分的切线相切.则工件的上表面缺陷是[ ] (A) 不平处为凸起纹,最大高度为500nm(B) 不平处为凸起纹,最大高度为250nm (C) 不平处为凹槽,最大深度为500nm (D) 不平处为凹槽,最大深度为250nm27. 设牛顿环干涉装置的平凸透镜可以在垂直于平玻璃的方向上下移动, 当透镜向上平移(即离开玻璃板)时, 从入射光方向可观察到干涉条纹的变化情况是 [ ] (A) 环纹向边缘扩散, 环纹数目不变(B) 环纹向边缘扩散, 环纹数目增加 (C) 环纹向中心靠拢, 环纹数目不变(D) 环纹向中心靠拢, 环纹数目减少28. 牛顿环实验中, 透射光的干涉情况是 [ ] (A) 中心暗斑, 条纹为内密外疏的同心圆环(B) 中心暗斑, 条纹为内疏外密的同心圆环 (C) 中心亮斑, 条纹为内密外疏的同心圆环 (D) 中心亮斑, 条纹为内疏外密的同心圆环29. 在牛顿环装置中, 若对平凸透镜的平面垂直向下施加压力(平凸透镜的平面始终保持与玻璃片平行), 则牛顿环[ ] (A) 向中心收缩, 中心时为暗斑, 时为明斑, 明暗交替变化(B) 向中心收缩, 中心处始终为暗斑 (C) 向外扩张, 中心处始终为暗斑 (D) 向中心收缩, 中心处始终为明斑30. 关于光的干涉,下面说法中唯一正确的是[ ] (A) 在杨氏双缝干涉图样中, 相邻的明条纹与暗条纹间对应的光程差为2λ (B) 在劈形膜的等厚干涉图样中, 相邻的明条纹与暗条纹间对应的厚度差为2λ (C) 当空气劈形膜的下表面往下平移2λ时, 劈形膜上下表面两束反射光的光程差将增加2λ (D) 牛顿干涉圆环属于分波振面法干涉31. 根据第k 级牛顿环的半径r k 、第k 级牛顿环所对应的空气膜厚d k 和凸透镜之凸面T12-1-26(a)图T12-1-26(b)图T12-1-29图半径R 的关系式Rr d k k 22=可知,离开环心越远的条纹[ ] (A) 对应的光程差越大,故环越密(B) 对应的光程差越小,故环越密(C) 对应的光程差增加越快,故环越密(D) 对应的光程差增加越慢,故环越密32. 如果用半圆柱形聚光透镜代替牛顿环实验中的平凸透镜, 放在平玻璃上, 则干涉条纹的形状 [ ] (A) 为内疏外密的圆环(B) 为等间距圆环形条纹 (C) 为等间距平行直条纹(D)为以接触线为中心,两侧对称分布,明暗相间, 内疏外密的一组平行直条纹33. 劈尖膜干涉条纹是等间距的,而牛顿环干涉条纹的间距是不相等的.这是因为: [ ] (A) 牛顿环的条纹是环形的(B) 劈尖条纹是直线形的 (C) 平凸透镜曲面上各点的斜率不等(D) 各级条纹对应膜的厚度不等34. 如T12-1-34图所示,一束平行单色光垂直照射到薄膜上,经上、下两表面反射的光束发生干涉.若薄膜的厚度为e ,且n 1 < n 2 > n 3,λ为入射光在折射率为n 1的媒质中的波长,则两束反射光在相遇点的相位差为: [ ] (A)e n n 12π2⋅λ(B)ππ421+⋅e n n λ (C)ππ412+⋅e n n λ (D)e n n 12π4⋅λ35. 用白光垂直照射厚度e = 350nm 的薄膜,若膜的折射率n 2 = 1.4 ,薄膜上面的媒质折射率为n 1,薄膜下面的媒质折射率为n 3,且n 1 < n 2 < n 3.则反射光中可看到的加强光的波长为: [ ] (A) 450nm(B) 490nm (C) 690nm(D) 553.3nm36. 已知牛顿环两两相邻条纹间的距离不等.如果要使其相等, 以下所采取的措施中不可行的是[ ] (A) 将透镜磨成半圆柱形 (B) 将透镜磨成圆锥形(C) 将透镜磨成三棱柱形 (D) 将透镜磨成棱柱形37. 欲使液体(n > 1)劈形膜的干涉条纹间距增大,可采取的措施是: [ ] (A) 增大劈形膜夹角 (B) 增大棱边长度(C) 换用波长较短的入射光 (D) 换用折射率较小的液体38. 若用波长为λ的单色光照射迈克尔逊干涉仪,并在迈克尔逊干涉仪的一条光路中放T12-1-32图T12-1-34图T12-2-35图入厚度为l 、折射率为n 的透明薄片.放入后,干涉仪两条光路之间的光程差改变量为 [ ] (A) (n -1)l (B) nl(C) 2nl (D) 2(n -1)l39. 若用波长为λ的单色光照射迈克尔逊干涉仪, 并在迈克尔逊干涉仪的一条光路中放入一厚度为l 、折射率为n 的透明薄片, 则可观察到某处的干涉条纹移动的条数为 [ ] (A)λln )1(4-(B)λln(C)λln )1(2-(D)λln )1(-40. 如图所示,用波长为λ的单色光照射双缝干涉实验装置,若将一折射率为n 、劈角为α的透明劈尖b 插入光线2中,则当劈尖b 缓慢向上移动时(只遮住S 2),屏C 上的干涉条纹 [ ] (A) 间隔变大,向下移动 (B) 间隔变小,向上移动 (C) 间隔不变,向下移动 (D) 间隔不变,向上移动41. 根据惠更斯--菲涅耳原理, 若已知光在某时刻的波阵面为S , 则S 的前方某点P 的光强度取决于波阵面S 上所有面积元发出的子波各自传到P 点的 [ ] (A) 振动振幅之和 (B) 振动振幅之和的平方(C) 光强之和 (D) 振动的相干叠加42. 无线电波能绕过建筑物, 而可见光波不能绕过建筑物.这是因为[ ] (A) 无线电波是电磁波 (B) 光是直线传播的 (C) 无线电波是球面波 (D) 光波的波长比无线电波的波长小得多43. 光波的衍射现象没有显著, 这是由于 [ ] (A) 光波是电磁波, 声波是机械波 (B) 光波传播速度比声波大(C) 光是有颜色的 (D) 光的波长比声波小得多44. 波长为λ的单色光垂直入射在缝宽为a 的单缝上, 缝后紧靠着焦距为f 的薄凸透镜,屏置于透镜的焦平面上, 若整个实验装置浸入折射率为n 的液体中, 则在屏上出现的中央明纹宽度为 [ ] (A)na f λ (B)na f λ (C) naf λ2(D) anf λ245. 在单缝衍射中, 若屏上的P 点满足a sin ϕ = 5/2则该点为 [ ] (A) 第二级暗纹 (B) 第五级暗纹(C) 第二级明纹 (D) 第五级明纹46. 在夫琅和费单缝衍射实验中, 欲使中央亮纹宽度增加, 可采取的方法是[ ] (A) 换用长焦距的透镜 (B) 换用波长较短的入射光S1S 2S O Cb 12λT12-1-40图T12-1-44图(C) 增大单缝宽度(D) 将实验装置浸入水中47. 夫琅和费单缝衍射图样的特点是 [ ] (A) 各级亮条纹亮度相同(B) 各级暗条纹间距不等(C) 中央亮条纹宽度两倍于其它亮条纹宽度(D) 当用白光照射时, 中央亮纹两侧为由红到紫的彩色条纹48. 在夫琅和费衍射实验中,对给定的入射单色光,当缝宽变小时,除中央亮纹的中心位置不变,各衍射条纹[ ] (A) 对应的衍射角变小 (B) 对应的衍射角变大(C) 对应的衍射角不变 (D) 光强也不变49. 一束波长为λ的平行单色光垂直入射到一单缝AB 上,装置如T12-1-49图所示,在屏幕E 上形成衍射图样.如果P 是中央亮纹一侧第一个暗纹所在的位置,则BC 的长度为 [ ] (A) λ (B) 2λ(C) 23λ(D) λ250. 在单缝夫琅和费衍射实验中,若增大缝宽,其它条件不变,则中央明纹[ ] (A) 宽度变小 (B) 宽度变大(C) 宽度不变,且中心强度也不变(D) 宽度不变,但中心强度增大51. 在如T12-1-51图所示的在单缝夫琅和费衍射装置中,设中央明纹的衍射角范围很小.若单缝a 变为原来的23,同时使入射的单色光的波长变为原来的43,则屏幕E 上的单缝衍射条纹中央明纹的宽度△x 将变为原来的 [ ] (A)43倍 (B)32倍 (C)89倍 (D)21倍52. 一单缝夫琅和费衍射实验装置如T12-1-52图所示,L 为透镜,E 为屏幕;当把单缝向右稍微移动一点时,衍射图样将[ ] (A) 向上平移 (B) 向下平移(C) 不动 (D) 消失PT12-1-49图T12-1-51图λT12-1-52图λ53. 在T12-1-53图所示的单缝夫琅和费衍射实验中,)方向稍微平移,则 [ ] (A) 衍射条纹移动,条纹宽度不变(B) 衍射条纹移动,条纹宽度变动(C) 衍射条纹中心不动,条纹变宽 (D) 衍射条纹不动,条纹宽度不变54. 在T12-1-54图所示的单缝夫琅和费衍射实验中,将单缝宽度 a 稍稍变宽,同时使单缝沿x 轴正向作微小移动,则屏幕E 的中央衍射条纹将[ ] (A) 变窄,同时上移 (B) 变窄,同时下移(C) 变窄,不移动 (D) 变宽,同时上移55. 在T12-1-55图所示的单缝夫琅和费衍射实验中,将单缝宽度a 稍稍变窄,同时使会聚透镜L 2沿x 轴正方向作微小移动,则屏幕E 上的中央衍射条纹将[ ] (A) 变宽,同时上移 (B) 变宽,同时下移(C) 变宽,不移动 (D) 变窄,同时上移56. 一衍射光栅由宽300 nm 、中心间距为900 nm 的缝构成, 当波长为600 nm 的光垂直照射时, 屏幕上最多能观察到的亮条纹数为:[ ] (A) 2条 (B) 3条 (C) 4条 (D) 5条57. 白光垂直照射到每厘米有5000条刻痕的光栅上, 若在衍射角ϕ = 30°处能看到某一波长的光谱线, 则该光谱线所属的级次为[ ] (A) 1 (B) 2 (C) 3 (D) 458. 波长为λ的单色光垂直入射于光栅常数为d 、缝宽a 、 总缝数为N 的光栅上.取0=k ,1±,2±,……,则决定出现主级大的衍射角θ的公式可写成 [ ] (A) λθk Na =sin (B) λθk a =sin(C) λθk Nd =sin (D) λθk d =sin59. 一衍射光栅对某一定波长的垂直入射光,在屏幕上只能出现零级和一级主极大,欲使屏幕出现更高级次的主极大,应该[ ] (A) 换一个光栅常数较小的光栅 (B) 换一个光栅常数较大光栅(C) 将光轴向靠近屏幕的方向移动 (D) 将光轴向远离屏幕的方向移动60. 为测量一单色光的波长,下列方法中最准确的是( )实验.T12-1-53图T12-1-54图T12-1-55图[ ] (A) 双缝干涉(B) 牛顿环干涉 (C) 单缝衍射 (D) 光栅衍射61. 一束白光垂直照射在一光栅上,在形成的同一级光栅光谱中,偏离中央明纹最远的是[ ] (A) 紫光 (B) 绿光 (C) 黄光 (D) 红光62. 在光栅光谱中,假设所有的偶数极次的主级大都恰好在每缝衍射的暗纹方向上,因而实际上不出现,那么光栅每个透光缝宽度a 和相邻两缝间不透光部分宽度b 的关系 [ ] (A) a = b (B) a =2b (C) a = 3b (D) b = 2a63. 若用衍射光栅准确测量一单色可见光的波长,在下列各种光栅常数的光栅中选那一种最好?[ ] (A) 1100.1-⨯mm(B) 1100.5-⨯mm (C) 2100.1-⨯mm(D) 3100.1-⨯mm64. 在一光栅衍射实验中,如果光栅、透镜均与屏幕平行,则当入射的平行单色光从垂直于光栅平面入射变为斜入射时,能观察到的光谱线的最高级数k [ ] (A) 变小 (B) 变大 (C) 不变 (D) 改变无法确定65. 在一光栅衍射实验中,若衍射光栅单位长度上的刻痕数越多, 则在入射光波长一定的情况下, 光栅的[ ] (A) 光栅常数越小 (B) 衍射图样中亮纹亮度越小 (C) 衍射图样中亮纹间距越小 (D) 同级亮纹的衍射角越小66. 以平行可见光(400nm ~700nm)照射光栅, 光栅的第一级光谱与第二级光谱将会出现什么现象?[ ] (A) 在光栅常数取一定值时, 第一级与第二级光谱会重叠起来(B) 不论光栅常数如何, 第一级与第二级光谱都会重合 (C) 不论光栅常数如何, 第一级与第二级光谱都不会重合(D) 对于不同光栅常数的光栅, 第一级与第二级光谱的重叠范围相同67. 用单色光照射光栅,屏幕上能出现的衍射条纹最高级次是有限的.为了得到更高衍射级次的条纹,应采用的方法是: [ ] (A) 改用波长更长的单色光 (B) 将单色光斜入射(C) 将单色光垂直入射 (D) 将实验从光密媒质改为光疏媒质68. 已知一衍射光栅上每一透光狭缝的宽度都为a , 缝间不透明的那一部分宽度为b ;若b = 2a , 当单色光垂直照射该光栅时, 光栅明纹的情况如何(设明纹级数为k )? [ ] (A) 满足k = 2 n 的明条纹消失( n =1、2、...)(B) 满足k = 3 n 的明条纹消失( n =1、2、...) (C) 满足k = 4 n 的明条纹消失( n =1、2、...) (D) 没有明条纹消失69. 用波长为λ的光垂直入射在一光栅上, 发现在衍射角为ϕ 处出现缺级, 则此光栅上缝宽的最小值为[ ] (A) ϕλsin 2 (B) ϕλsin (C) ϕλsin 2 (D) λϕsin 270. 一束平行光垂直入射在一衍射光栅上, 当光栅常数)(b a +为下列哪种情况时(a 为每条缝的宽度, b 为不透光部分宽度) , k = 3、6、9⋯等级次的主极大均不出现.[ ] (A) a b a 2=+(B) a b a 3=+ (C) a b a 4=+(D) a b a 6=+71. 在双缝衍射实验中,若保持双缝S 1和S 2的中心之间的距离d 不变,而把两条缝的宽度a 略为加宽,则[ ] (A) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变少(B) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变多(C) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目不变(D) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变少72. 一束光垂直入射到一偏振片上, 当偏振片以入射光方向为轴转动时, 发现透射光的光强有变化, 但无全暗情形, 由此可知, 其入射光是[ ] (A) 自然光 (B) 部分偏振光(C) 全偏振光 (D) 不能确定其偏振状态的光 73. 把两块偏振片紧叠在一起放置在一盏灯前, 并使其出射光强变为零.当把其中一块偏振片旋转 180°时, 出射光强的变化情况是[ ] (A) 光强由零逐渐变为最大(B) 光强由零逐渐增为最大, 然后由最大逐渐变为零(C) 光强始终为零(D) 光强始终为最大值74. 自然光通过两个主截面正交的尼科尔棱镜后, 透射光的强度为[ ] (A) I = 0 (B) 与入射光的强度相同(C) I ≠ 0 (D) 与入射光强度不相同75. 在双缝干涉实验中, 用单色光自然光在屏上形成干涉条纹.若在两缝后面放一块偏振片, 则[ ] (A) 干涉条纹间距不变, 但明条纹亮度加强(B) 干涉条纹间距不变, 但明条纹亮度减弱(C) 干涉条纹间距变窄, 且明条纹亮度减弱(D) 无干涉条纹76. 在双缝干涉实验中, 用单色光自然光在屏上形成干涉条纹.若在两缝后面分别放置一块偏振片, 且两偏振片的偏振化方向相互垂直,则T12-1-72图[ ] (A) 干涉条纹间距不变, 但明条纹亮度加强(B) 干涉条纹间距不变, 但明条纹亮度减弱(C) 干涉条纹间距变窄, 且明条纹亮度减弱(D) 无干涉条纹77. 有两种不同的媒质, 第一媒质的折射率为n 1 , 第二媒质的折射率为n 2 ; 当一束自然光从第一媒质入射到第二媒质时, 起偏振角为i 0 ; 当自然光从第二媒质入射到第一媒质时, 起偏振角为i .如果i 0>i , 则光密媒质是[ ] (A) 第一媒质 (B) 第二媒质(C) 不能确定 (D) 两种媒质的折射率相同78. 设一纸面为入射面.当自然光在各向同性媒质的界面上发生反射和折射时, 若入射角不等于布儒斯特角, 反射光光矢量的振动情况是[ ] (A) 平行于纸面的振动少于垂直于纸面的振动(B) 平行于纸面的振动多于垂直于纸面的振动(C) 只有垂直于纸面的振动(D) 只有平行于纸面的振动79. 自然光以 60 的入射角照射到不知其折射率的某一透明介质表面时,反射光为线偏振光,则[ ] (A) 折射光为线偏振光,折射角为(B) 折射光为部分线偏振光,折射角为(C) 折射光为线偏振光,折射角不能确定(D) 折射光为部分线偏振光,折射角不能确定80. 自然光以布儒斯特角由空气入射到一玻璃表面上,则反射光是[ ] (A) 在入射面内振动的完全线偏振光(B) 平行于入射面的振动占优势的部分偏振光(C) 垂直于入射面的振动的完全偏振光(D) 垂直于入射面的振动占优势的部分偏振光81. 一束自然光由空气射向一块玻璃,[ ] (A) 自然光 (B) 完全偏振光且光矢量的振动方向垂直于入射面 (C) 完全偏振光且光矢量的振动方向平行于入射面 (D) 部分偏振光 82. 强度为I 0的自然光经两个平行放置的偏振片后, 透射光的强度变为I 0/4, 由此可知, 这两块偏振片的偏振化方向夹角是[ ] (A) 30° (B) 45°(C) 60° (D) 90° 0I T12-1-82图 4/0I83. 起偏器A 与检偏器B 的偏振化方向相互垂直,偏振片C 位于A 、B 中间且与A 、B 平行,其偏振化方向与A 的偏振化方向成30°夹角. 当强度为I 的自然光垂直射向A 片时,最后的出射光强为[ ] (A) 0 (B) I /2(C) I /8 (D) 以上答案都不对84. 一束光强为I 0的自然光相继通过三块偏振片P 1、P 2、P 3后,其出射光的强度为I = I 0/8.已知P 1和P 3的偏振化方向相互垂直.若以入射光线为轴转动P 2, 问至少要转过多少角度才能出射光的光强度为零?[ ] (A) 30° (B) 45° (C) 60° (D) 90°85. 光强为I 0的自然光垂直通过两个偏振片,他们的偏振化方向之间的夹角 60=α.设偏振片没有吸收,则出射光强I 与入射光强0I 之比为[ ] (A) 1/4 (B) 3/4 (C) 1/8 (D) 3/886. 两偏振片堆叠在一起,一束自然光垂直入射其上时没有光线通过.当其中一偏振片慢慢转动时, 投射光强度发生的变化为:[ ] (A) 光强单调增加(B) 光强先增加,后又减小至零(C) 光强先增加,后减小,再增加(D) 光强先增加,然后减小,再增加,再减小至零 87. 如T12-1-87图所示,ABCD 一块方解石的一个截面,AB 垂直于纸面的晶体平面与纸面的交线.光轴的方向在纸面内与AB 成一锐角θ.一束平行的单色自然光垂直于AB 端面入射.在方解石内折射光分为O 光和e 光,O 光和e 光的 [ ] (A) 传播方向相同,电场强度的振动方向相互垂直 (B) 传播方向相同,电场强度的振动方向不相互垂直(C) 传播方向不同,电场强度的振动方向相互垂直(D) 传播方向不同,电场强度的振动方向不相互垂直88. 一束自然光通过一偏振片后,射到一块方解石晶体上,入射角为i 0.关于折射光,下列的说法正确的是[ ] (A) 是是e 光,偏振化方向垂直于入射面(B) 是e 光,偏振化方向平行于入射面(C) 是O 光,偏振化方向平行于入射面(D) 是O 光,偏振化方向垂直于入射面 89. 用白光光源进行双缝实验,若用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝,则I T12-1-83图A B C I T12-1-84图1P 3P 2P T12-1-87图 DT12-1-88图[ ] (A) 干涉条纹的宽度将发生改变(B) 产生红光和蓝光的两套彩色干涉条纹(C) 干涉条纹的亮度将发生改变(D) 不产生干涉条纹90. 在扬氏双缝实验中,屏幕中央明纹处的最大光强是I 1.当其中一条缝被盖住时,该位置处的光强变为I 2.则I 1 : I 2为[ ] (A) 1 (B) 2 (C) 3 (D) 4二、填空题1. 如T12-2-1图所示,折射率为2n 、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为1n 和3n ,已知321n n n ><,若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下表面反射的光束(用①与②示意)的光程差是 .2. 真空中波长 λ = 400 nm 的紫光在折射率为 n =1.5 的媒质中从A 点传到B 点时, 光振动的相位改变了5π, 该光从A 到B 所走的光程为 .3. 如T12-2-3图所示,两缝S 1和S 2之间的距离为d ,介质的折射率为n =1,平行单色光斜入射到双缝上,入射角为θ,则屏幕上P 处,两相干光的光程差为 ________________.4. 如T12-2-4图所示,在双缝干涉实验中SS 1=SS 2用波长为λ的光照射双缝S 1和S 2,通过空气后在屏幕E 上形成干涉条纹.已知P 点处为第三级明条纹,则S 1和S 2到P 点的光程差为 _________.若将整个装置放于某种透明液体中,P 点为第四级明条纹,则该液体的折射率n= ____________. 5. 两条狭缝相距2mm, 离屏300cm, 用600nm 的光照射时, 干涉条纹的相邻明纹间距为___________mm?6. 将一块很薄的云母片(n = 1.58)覆盖在扬氏双缝实验中的一条缝上,这时屏幕上的中央明纹中心被原来的第7级明纹中心占据.如果入射光的波长λ = 550nm, 则该云母片的厚度为___________.T12-2-3图T12-2-4图。
大学物理高校出版社罗圆圆主编-第12章波动光学PPT课件
现象:一系列平行的明暗相间的条纹; 不太大时条纹等间距.
24
干涉条纹定量分析:
(1)条纹(中心)的位置
s
s
d
1
(在 较小的情况下) s 2
波程差:
r1
p
r2
x
o
D
r2r1dsin dt gdD x
Δ20 10 2 π(r2r1) 现已有 20 - 10=0
25
亮纹: (相长干涉)
2kπ (k0,1,2, ) 或波程 r2差 r1k
13
P点处:
E 1E 1c 0 o ts (1)
E 2E 2c 0 o ts (2)
r1
· 1
r2
· 2
E20
·P
E0
EE1E2
EE0cos(t)
2 1 E10
14
E 0 2E 1 2 0E 2 2 02E 1E 0 2c 0 os
其中:21
I E 0 2 = 1 0 E 2 0 d t = 1 0 [E 1 2 0 E 2 2 0 2 E 1 0 E 2 0 c o s ] d t
电磁谐波 EE0cots(k)x
电磁波的强度:
I
wu1
2
E02u
在同一介质中通常把强度直接写成
I
E
2 0
说明:与物质作用的主要物理量是电矢量 通常称 E为光矢量
按波长或频率的次序把这些电磁波排列成谱
----称为电磁波谱。
可见光的范围
4000埃~7600埃,
:40~076n0m只占很小的一段 :7.51104~4.31104Hz 8
2
波动光学
第一部分 光的干涉 第二部分 光的衍射 第三部分 光的偏振
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第12章波动光学、选择题1.如T12-1-1图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为 片和n3,已知n 1 ::: n 2 ::: n 3.若波长为 入的单色平行光垂直入射到该薄膜上,则从薄膜上、下 两表面反射的光束①与②的光程差是: [](A) 2n ?e (B) 2n ze —1' 2(C) 2n ? -,(D) 2n ?e - ■2n 2径S 1P 垂直穿过一块厚度为t 1 ,折射率为n 1的一种介质; 路径S 2P 垂直穿过一块厚度为t 2的另一介质;其余部分 可看作真空.这两条光路的光程差等于: (B) [「2 ' (n 2 —1)t 2】~{「1 ■ (n 2 T)t 1】 (C)(「2 山2)-(「1 -n^)(D) n 2t 2 -n 1t 13.在相同的时间内,一束波长为 ,的单色光在空气和在玻璃中 [](A)传播的路程相等,走过的光程相等 (B) 传播的路程相等,走过的光程不相等 (C) 传播的路程不相等,走过的光程相等 (D) 传播的路程不相等,走过的光程不相等5.波长为•的单色光在折射率为 n 的媒质中由到b 点的几何路程为:6.真空中波长为■的单色光,在折射率为n 的均匀透明媒质中从a 点沿某一路径传到b4.频率为f 的单色光在折射率为n 的媒质中的波速为其光振动的相位改变了2 n f ](A) v2 n vf(B)〒"(C)2 n nlf v,则在此媒质中传播距离为 Ivlf(D)厂](A)(B) n2(C)2.女口 T12-1-2图所示, S 1、S 2是两个相干光源, 他们到P 点的距离分别为r 1和r 2 .路[](A) (「2 口2上2)- 仃1 门缶)a 点传到b 点相位改变了二,则光从a 点S S 2T12-1-2 图点.若将此路径的长度记为I, a、b两点的相位差记为二:-,则T12-1-21 图[](A) l , .1 ・:=3 n2 3、 (C) l , . ':「=3 n2n7. 两束平面平行相干光,每一束都以强度 I 照射某一表面,彼此同相地并合在一起则合光照在该表面的强度为 [](A) I (B) 2I8. 相干光是指 [](A)振动方向相同、频率相同、相位差恒定的两束光 (B) 振动方向相互垂直、频率相同、相位差不变的两束光 (C) 同一发光体上不同部份发出的光 (D) 两个一般的独立光源发出的光 9. 两个独立的白炽光源发出的两条光线,各以强度I 照射某一表面•如果这两条光线同时照射此表面,则合光照在该表面的强度为 [](A) I(B) 2I(C) 4I(D) 8I10. 相干光波的条件是振动频率相同、相位相同或相位差恒定以及 [](A)传播方向相同 (B)振幅相同 (C)振动方向相同 (D)位置相同11.用厚度为d 、折射率分别为n i 和n 2 (n i < n ?)的两片透明介质分别盖住杨氏双缝实验 中的上下两缝,若入射光的波长为,,此时屏上原来的中央明纹处被第三级明纹所占据 ,则该媒质的厚度为3九 [ ](A) 3’ (B) 门2 _ n 〔(C) 2' (D)n 2 _ n 112. 一束波长为■的光线垂直投射到一双缝上 ,在屏上形成明、暗相间的干涉条纹则下列光程差中对应于最低级次暗纹的是»3 .扎[](A) 2(B)(C) '(D)-(B) l ,.::「= 3 n n 2n3 、 m(D) l n .•;,■,.::「=3n n2(C) 41(D) 2IT12-1-11 图2 213. 在杨氏双缝实验中,若用白光作光源[ ](A)中央明纹是白色的(C)紫光条纹间距较大干涉条纹的情况为(B)红光条纹较密(D)干涉条纹为白色T12-1-21 图14. 在双缝干涉实验中,屏幕 E 上的P 点处是明条纹•若将缝S 2盖住,并在S ,S 2连线的垂直平面出放一反射镜 M ,如图所示,则此时[](A)P 点处仍为明条纹(B) P 点处为暗条纹(C) 不能确定P 点处是明条纹还是暗条纹 (D) 无干涉条纹T12-1-14图15.在双缝干涉实验中, 入射光的波长为■,用玻璃纸遮住双缝中的一个缝, 若玻璃纸中光程比相同厚度的空气的光程大 2.5 •,则屏上原来的明纹处 [](A)仍为明条纹(C)既非明条纹也非暗条纹(B)变为暗条纹(D)无法确定是明纹还是暗纹16.把双缝干涉实验装置放在折射率为 D (D d ),所用单色光在真空中的波长为是:扎DMD[](A)(B)nd dn 的水中,两缝间距离为d,双缝到屏的距离为 则屏上干涉条纹中相邻的明纹之间的距离Zd (C)nD(D)D 2nd17.如T12-1-17图所示,在杨氏双缝实验中,若用一片厚度为 装置中的上面一个缝挡住;再用一片厚度为 d 2的透光云母片将 下面一个缝挡住,两云母片的折射率均为 n, d j >d 2,干涉条纹的变化情况是 [](A)条纹间距减小 (B)条纹间距增大(C)整个条纹向上移动(D)整个条纹向下移动18.在杨氏双缝实验中,若用一片能透光的云母片将双缝装 置中的上面一个缝盖住,干涉条纹的变化情况是 [](A)条纹间距增大 (B)整个干涉条纹将向上移动 (C)条纹间距减小(D)整个干涉条纹将向下移动1 ——> 11ET12-1-17 图----- > E1L119.当单色光垂直照射杨氏双缝时 ,屏上可观察到明暗交替的干涉条纹•若减小d 1的透光云母片将双缝T12-1-18 图[ ](A)缝屏间距离,则条纹间距不变(C)入射光强度,则条纹间距不变(B)双缝间距离,则条纹间距变小(D)入射光波长,则条纹间距不变20. 在保持入射光波长和缝屏距离不变的情况下[ ](A)干涉条纹宽度将变大(C)干涉条纹宽度将保持不变,将杨氏双缝的缝距减小,则(B)干涉条纹宽度将变小(D)给定区域内干涉条纹数目将增加21. 有两个几何形状完全相同的劈形膜:一个由空气中的玻璃形成玻璃劈形膜;一个由玻璃中的空气形成空劈形膜•当用相同的单色光分别垂直照射它们时,从入射光方向观察到干涉条纹间距较大的是(B) 明纹间距逐渐变小,并向劈棱移动(C) 明纹间距逐渐变大,并向劈棱移动(D)明纹间距逐渐变大,并背向劈棱移动24. 两块平玻璃板构成空气劈尖,左边为棱边,用单色平行光垂直入射•若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的[ ](A)间隔变小,并向棱边方向平移(B)间隔变大,并向远离棱边方向平移(C)间隔不变,向棱边方向平移(D)间隔变小,并向远离棱边方向平移25. 检验滚珠大小的干涉试装置示意如T12-1-25(a)图.S为光源,L为汇聚透镜,M为半透半反镜.在平晶「、T2之间放置A、B、C三个滚珠,其中A为标准,直径为d0.用波长为■的单色光垂直照射平晶,在M上方观察时观察到等厚条纹如T12-1-25(b)图所示,轻压C端,条纹间距变大,则B珠的直径d1、C珠的直径d2与d0的关系分别为:aaaaaaET12-1-25(a)图[ ](A) d1=d o ,d- d o 3 ■[ ](A)玻璃劈形膜(B)空气劈形膜(C)两劈形膜干涉条纹间距相同(D)已知条件不够,难以判定22. 用波长可以连续改变的单色光垂直照射一劈形膜的变化情况为,如果波长逐渐变小,干涉条纹](A)明纹间距逐渐减小并背离劈棱移动23. 在单色光垂直入射的劈形膜干涉实验中方向可以察到干涉条纹的变化情况为若慢慢地减小劈形膜夹角,则从入射光[ ](A)条纹间距减小(B) 给定区域内条纹数目增加(C) 条纹间距增大(D) 观察不到干涉条纹有什么变化(B) d1 =d。
- ’,d2 =d。
- 3'. 3-'-(D) d1"0-〒d2"0一刁T12-1-23 图T12-1-25(b)图T12-1-21 图3-' ■ (C) d1 "0 —,d2二d。
2 226•如T12-1-26(a)图所示,一光学平板玻璃 A 与待测工件B 之间形成空气劈尖, 用波长■= 500nm(1 nm = 10-9m)的单色光垂直照射.看到的反射光的干涉条纹如 T12-1-26(b)图所27.设牛顿环干涉装置的平凸透镜可以在垂直于平玻璃的方向上下移动,当透镜向上平移(即离开玻璃板)时,从入射光方向可观察到干涉条纹的变化情况是 [](A)环纹向边缘扩散,环纹数目不变 (B)环纹向边缘扩散,环纹数目增加 (C)环纹向中心靠拢,环纹数目不变 (D)环纹向中心靠拢,环纹数目减少28. 牛顿环实验中,透射光的干涉情况是 [](A)中心暗斑,条纹为内密外疏的同心圆环 (B) 中心暗斑,条纹为内疏外密的同心圆环(C) 中心亮斑,条纹为内密外疏的同心圆环 (D)中心亮斑,条纹为内疏外密的同心圆环 29.在牛顿环装置中,若对平凸透镜的平面垂直向下施加压力 (平凸透镜的平面始终保30. 关于光的干涉,下面说法中唯一正确的是扎[](A)在杨氏双缝干涉图样中,相邻的明条纹与暗条纹间对应的光程差为一2Z(B) 在劈形膜的等厚干涉图样中,相邻的明条纹与暗条纹间对应的厚度差为-2九(C) 当空气劈形膜的下表面往下平移时,劈形膜上下表面两束反射光的光程差2将增加一示.有些条纹弯曲部分的顶点恰好与其右边条纹的直线部分的切线相切.则工件的上表面缺陷是[](A)不平处为凸起纹,最大高度为 500nm(B) 不平处为凸起纹,最大高度为250nm(C) 不平处为凹槽,最大深度为500nm(D) 不平处为凹槽,最大深度为 250nm>)A B持与玻璃片平行),则牛顿环](A)向中心收缩,中心时为暗斑,时为明斑,明暗交替变化 (B) 向中心收缩 ,中心处始终为暗斑 (C) 向外扩张,中心处始终为暗斑 (D) 向中心收缩 ,中心处始终为明斑T12-1-26(a)图T12-1-26(b)图T12-1-29 图2(D) 牛顿干涉圆环属于分波振面法干涉31 •根据第k 级牛顿环的半径「k 、第k 级牛顿环所对应的空气膜厚d k 和凸透镜之凸面2半径R 的关系式d k = J 可知,离开环心越远的条纹2R[ ](A)对应的光程差越大,故环越密 (B)对应的光程差越小,故环越密(C)对应的光程差增加越快,故环越密(D)对应的光程差增加越慢,故环越密32. 如果用半圆柱形聚光透镜代替牛顿环实验中的平凸透镜 放在平玻璃上,则干涉条纹的形状 [ ](A)为内疏外密的圆环(B) 为等间距圆环形条纹 (C) 为等间距平行直条纹(D)为以接触线为中心,两侧对称分布,明暗相间,内疏外密的一组平行直条纹33. 劈尖膜干涉条纹是等间距的,而牛顿环干涉条纹的间距是不相等的•这是因为: [](A)牛顿环的条纹是环形的(B)劈尖条纹是直线形的 (C)平凸透镜曲面上各点的斜率不等(D)各级条纹对应膜的厚度不等34•如T12-1-34图所示,一束平行单色光垂直照射到薄膜上,经上、下两表面反射的 光束发生干涉.若薄膜的厚度为e ,且①< n 2 > n 3,,为入射光在折射率为 山的媒质中的波37. 欲使液体(n > 1)劈形膜的干涉条纹间距增大,可采取的措施是: [](A)增大劈形膜夹角 (B)增大棱边长度(C)换用波长较短的入射光(D)换用折射率较小的液体长, 则两束反射光在相遇点的相位差为:2 n r )24 n m[](A)e(B)e nA几n 2(C) 4 n 匕e +e n(D) 4 n n 2e扎e = 350nm 的薄膜,若膜的折射率氐=1.4 ,薄膜上面的媒质折射率为n 1,薄膜下面的媒质折射率为 n 3,且n 1 <氐<n 3 •则反射光中可看到的加强光的波长为: [](A) 450nm (C) 690nm(B) 490nm (D) 553.3nm36.已知牛顿环两两相邻条纹间的距离不等.如果要使其相等 不可行的是[ ](A)将透镜磨成半圆柱形 (B)将透镜磨成圆锥形(C)将透镜磨成三棱柱形 (D)将透镜磨成棱柱形35.用白光垂直照射厚度 n 3T12-1-34 图以下所采取的措施中38.若用波长为,的单色光照射迈克尔逊干涉仪,并在迈克尔逊干涉仪的一条光路中放 入厚度为I 、折射率为n 的透明薄片•放入后,干涉仪两条光路之间的光程差改变量为 [](A) ( n-1) I (B) nl(C) 2 nl(D) 2( n-1)139. 若用波长为•的单色光照射迈克尔逊干涉仪,并在迈克尔逊干涉仪的一条光路中放入一厚度为I 、折射率为n 的透明薄片,则可观察到某处的干涉条纹移动的条数为 II II[](A) 4(n-1)—(B) n —(C)2(n -1)—(D) (n-1)-40.如图所示,用波长为■的单色光照射双缝干涉实验装置,若将一折射率为 n 、劈角为[的透明劈尖b 插入光线2中,则当劈尖b 缓慢向 上移动时(只遮住S0,屏C 上的干涉条纹 [](A)间隔变大,向下移动 (B) 间隔变小,向上移动 (C) 间隔不变,向下移动 (D) 间隔不变,向上移动41.根据惠更斯--菲涅耳原理,若已知光在某时刻的波阵面为S,则S 的前方某点P 的光强度取决于波阵面 S 上所有面积元发出的子波各自传到 P 点的45. 在单缝衍射中,若屏上的P 点满足a sin ::= 5/2则该点为[ ](A)振动振幅之和 (C)光强之和(B)振动振幅之和的平方(D) 振动的相干叠加42.无线电波能绕过建筑物 [](A)无线电波是电磁波(C)无线电波是球面波而可见光波不能绕过建筑物.这是因为(B) 光是直线传播的(D)光波的波长比无线电波的波长小得多43. 光波的衍射现象没有显著,这是由于 [](A)光波是电磁波,声波是机械波 (B)光波传播速度比声波大 (C)光是有颜色的(D)光的波长比声波小得多44. 波长为,的单色光垂直入射在缝宽为a 的单缝上,缝后紧靠着焦距为f 的薄凸透镜n 的液 体中,则在屏上出现的中央明纹宽度为f 扎f ■[ ](A)(B)nana 2f-2nf ' (C)na(D)a7丄■ Jd一 |丁T12-1-44 图屏置于透镜的焦平面上,若整个实验装置浸入折射率为[ ](A)第二级暗纹(B)第五级暗纹(C)第二级明纹(D)第五级明纹46. 在夫琅和费单缝衍射实验中,欲使中央亮纹宽度增加,可采取的方法是 [](A)换用长焦距的透镜 (B)换用波长较短的入射光(C)增大单缝宽度 (D)将实验装置浸入水中47. 夫琅和费单缝衍射图样的特点是 [](A)各级亮条纹亮度相同 (B) 各级暗条纹间距不等(C) 中央亮条纹宽度两倍于其它亮条纹宽度(D) 当用白光照射时,中央亮纹两侧为由红到紫的彩色条纹48. 在夫琅和费衍射实验中,对给定的入射单色光,当缝宽变小时,除中央亮纹的中 心位置不变,各衍射条纹 [](A)对应的衍射角变小 (B)对应的衍射角变大 (C)对应的衍射角不变(D)光强也不变49.一束波长为'的平行单色光垂直入射到一单缝 在屏幕E 上形成衍射图样.如果P 是中央亮纹一侧第-50. 在单缝夫琅和费衍射实验中,若增大缝宽,其它条件不变,则中央明纹个暗纹所在的位置,则 BC 的长度为[](A)'(B)23 ■2 (C)(D)2[ ](A)宽度变小(B)宽度变大(C)宽度不变,且中心强度也不变(D) 宽度不变,但中心强度增大51. 在如T12-1-51图所示的在单缝夫琅和费衍射装置中,设中央明纹的衍射角范围很3小.若单缝a变为原来的-,同时使入射的单色光的波长23变为原来的-,则屏幕E上的单缝衍射条纹中央明纹的4宽度△x将变为原来的3 2 9 1[ ](A) 3倍(B)—倍(C)9倍(D)—倍52. 一单缝夫琅和费衍射实验装置如T12-1-52图所示,L为透镜,E为屏幕;当把单缝向右稍微移动一点时,衍射图样将[ ](A)向上平移(C)不动(B)向下平移(D)消失T12-1-52 图57.白光垂直照射到每厘米有 5000条刻痕的光栅上,若在衍射角;:=30。