检测系统的特征与性能指标
检测系统的特征与性能指标
返回
上页
下页
(2)可靠性 与检测系统无故障工作时间长短有关的一种描述。
(3)分辨率 能引起输出变化的输入量的最小变化量,表示检测系
统分辨输入量微小变化的能力。 (4)灵敏阀
又称死区,是用来衡量检测起始点不灵敏的程度。
返回
上页
下页
第1章 检测系统的特征与性能指标
• 1.1 检测系统的组成 • 1.2 检测系统的静态特性与性能指标 • 1.3 检测系统的动态特性与性能指标
返回
下页
1.1 检测系统的组成
检测技术涉及到半导体技术、激光技术、光纤技术、声
控技术、遥感技术、自动化技术、计算机应用技术、以及数
理统计、控制论、信息论等近代新技术和新理论。其最终目
返回
上页
下页
1.1.2 线性时不变系统及其主要性质
当系统的输入x(t) 和输出 y(t)之间关系可用常系数线性 微分方程来描述时,则称该系统为线性时不变系统,也 称为定常线性系统。即:
an
d
n y(t) dt n
an1
d
n1 y(t) dt n1
a1
dy(t) dt
a0
y(t)
bm
d
m x(t) dt m
非线性度 B 100% A
(1.7)
1.2.4 回程误差 如图1.4所示,回程误差也称为滞后或变差。实际测量
系统在相同的测量条件下,当输入量由小增大,
返回
上页
下页
或由大减小时,对于同一输入量所得到的两个输出量存 在差值,则定义回程误差为:
回程误差 hmax 100% A
(1.8)
1.2.5 稳定度和漂移
的就是从测量对象中获取反映其变化规律的有用信息,一个
检测系统的特征与性能指标
测量装置的测量特性随时间的慢变化,称为漂移。
*
分辨率
灵敏阈
可靠性
与检测系统无故障工作时间长短有关的一种描述。
能引起输出变化的输入量的最小变化量。
又称死区,用来衡量检测起始点不灵敏度的程度。
精确度(精度 )
精密度:说明测量传感器输出值的分散程度。精密度是随机 误差大小的标志,精密度高,意味着随机误差小。注意:精 密度高不一定正确度高。
02
检测装置
检测装置
为了保证测量结果的准确性,检测系统各环节的输出量与输入量之间应保持一一对应和尽量不失真的关系,这种关系通常是线性关系,而且必须尽可能地减小或消除各种干扰。
在工程测试实践中,大多数检测系统属于线性时不变系统。线性时不变系统的分析方法已形成了完整严密的体系,即使是一些非线性系统或时变系统,在限定条件下,它们也遵循线性时不变的规律。
按传感器的工作原理可分为电阻式、电感式、电容式、压电式、光电式、光纤、磁敏式、激光、超声波等传感器。
结构型:主要是通过传感器结构参量的变化实现信号变换的。例如:电容式和电感式传感器. 物性型:利用敏感元件材料本身物理属性的变化来实现信号变换。例如:水银温度计,压电测力计.
01
能量转换型:传感器直接由被测对象输入能量使其工作。例如:热电偶温度计,压电式加速度计.也称有源传感器。 能量控制型:传感器从外部获得能量使其工作,由被测量的变化控制外部供给能量的变化。例如:电阻式、电容式、电感式.也称无源传感器。
传感器
信号调理电路
目前常用的显示器有四类:模拟显示、数字显示、图像显示及记录仪等。
记录、显示仪器
它是现代检测系统中不断被注入新内容的一部分,逐渐成为检测系统的研究重点。它是用来对测试所得的实验数据进行处理、运算、逻辑判断、线性变换,对动态测试结果作频谱分析(幅值谱分析、功率谱分析)、相关分析等,完成这些工作必须采用计算机技术。
光纤监测系统主要技术指标和性能特征
光纤监测系统主要技术指标和性能特征光纤监测系统(Fiber Monitoring System)是一种用于监测和管理光纤传输网络的设备,它可以实时监测光纤的工作状态、性能指标和故障情况,为网络运维人员提供数据支持和决策依据,以保证网络的高效运行和稳定性。
光纤监测系统主要技术指标和性能特征包括以下几个方面:1.功能和性能指标:光纤监测系统的功能主要包括光功率监测、链路质量监测、故障定位和报警等。
其中,光功率监测是指对信号光功率进行实时监测和记录,以便分析和评估光纤传输链路的质量;链路质量监测是指对链路中的光衰减、位移、振动等因素进行监测和识别,以保证链路的正常工作;故障定位是指对链路故障进行定位和分析,以便快速排除故障和修复网络;报警功能是在异常情况下,及时向网络管理人员发出报警信息。
2.系统灵敏度和动态范围:光纤监测系统的灵敏度是指系统对光信号的最小检测能力,它决定了系统能够监测到的最小光功率。
而动态范围是指系统能够监测到的最大光功率,它决定了系统在高功率情况下的工作稳定性。
在实际应用中,系统的灵敏度和动态范围需要根据网络的具体需求和环境因素进行选择和调整。
3.采样频率和时间分辨率:4.高可靠性和稳定性:光纤监测系统需要具备高可靠性和稳定性,以保证长时间的稳定运行。
系统的硬件设计和组件选择需要考虑到抗干扰能力、温度适应性、电源稳定性等因素;同时,系统的软件设计和算法优化也对于系统的可靠性和稳定性起到关键作用。
5.用户界面和数据分析:6.扩展性和兼容性:总之,光纤监测系统的主要技术指标和性能特征涵盖了功能和性能指标、系统灵敏度和动态范围、采样频率和时间分辨率、高可靠性和稳定性、用户界面和数据分析、扩展性和兼容性等方面。
这些指标和特征的选择和优化将直接影响到光纤监测系统的性能和实用性,进而提高光纤传输网络的稳定性和可靠性。
入侵检测系统的性能指标辨别
入侵检测系统的性能指标辨别一、概述性能指标是每个用户采购安全产品必定关注的问题。
但是,如果不知道这些指标的真实含义,不知道这些指标如何测出来,就会被表面的参数所蒙蔽,从而做出错误的决策。
本文介绍了网络入侵检测系统的性能指标的含义、测试方法,并分析了测试过程中可能作假的方法,以给用户正确选择网络入侵检测产品提供辨别的思路。
二、性能指标简介不同的安全产品,各种性能指标对客户的意义是不同的。
例如防火墙,客户会更关注每秒吞吐量、每秒并发连接数、传输延迟等。
而网络入侵检测系统,客户则会更关注每秒能处理的网络数据流量、每秒能监控的网络连接数等。
就网络入侵检测系统而言,除了上述指标外,其实一些不为客户了解的指标也很重要,甚至更重要,例如每秒抓包数、每秒能够处理的事件数等。
1.每秒数据流量(Mbps或Gbps)每秒数据流量是指网络上每秒通过某节点的数据量。
这个指标是反应网络入侵检测系统性能的重要指标,一般涌Mbps来衡量。
例如10Mbps, 100Mbps和1Gbps。
网络入侵检测系统的基本工作原理是嗅探(Sniffer),它通过将网卡设置为混杂模式,使得网卡可以接收网络接口上的所有数据。
如果每秒数据流量超过网络传感器的处理能力,NIDS就可能会丢包,从而不能正常检测攻击。
但是NIDS是否会丢包,不主要取决于每秒数据流量,而是主要取决于每秒抓包数。
2.每秒抓包数(pps)每秒抓包数是反映网络入侵检测系统性能的最重要的指标。
因为系统不停地从网络上抓包,对数据包作分析和处理,查找其中的入侵和误用模式。
所以,每秒所能处理的数据包的多少,反映了系统的性能。
业界不熟悉入侵检测系统的往往把每秒网络流量作为判断网络入侵检测系统的决定性指标,这种想法是错误的。
每秒网络流量等于每秒抓包数乘以网络数据包的平均大小。
由于网络数据包的平均大小差异很大时,在相同抓包率的情况下,每秒网络流量的差异也会很大。
例如,网络数据包的平均大小为1024字节左右,系统的性能能够支持10,000pps的每秒抓包数,那么系统每秒能够处理的数据流量可达到78Mbps,当数据流量超过78Mbps时,会因为系统处理不过来而出现丢包现象;如果网络数据包的平均大小为512字节左右,在10,000pps的每秒抓包数的性能情况下,系统每秒能够处理的数据流量可达到40Mbps,当数据流量超过40Mbps时,就会因为系统处理不过来而出现丢包现象。
检测器的性能指标
检测器的性能指标
灵敏度高、检出限低、线性范围宽、稳定性好。
1、灵敏度
当一定浓度或一定质量的组分进入检测器,产生一定的响应信号R;以进样量C (单位:mg·cm-3或g·S-1)对响应信号(R)作图得到一条通过原点的直线。
直线的斜率就是检测器的灵敏度(S)。
2、检出限(敏感度)
检测器恰能产生二倍于噪声信号时的单位时间引入检测器的样品量或单位体积载气中需含的样品量。
无论那种检测器,检出限都与灵敏度成反比,与噪声成正比。
检出限不仅决定于灵敏度,而且受限于噪声,所以它是衡量检测器性能好坏的综合指标。
3、最小检测量
指产生二倍噪声峰高时,色谱体系所需的进样量。
最小检测量与检出限是不同的两个概念;检出限只用来衡量检测器的性能;而最小检测量不仅与检测器的性能有关,还与色谱柱效及操作条件有关。
4、线性范围
在检测器呈线性时最大和最小进样量之比,或叫最大允许进样量与最小检测量之比。
5、响应时间
进入检测器的某一组分的信号达到其值得63%的所需时间。
检测器的死体积小、电路系统的滞后现象小,响应速度就快。
一般小于1S。
检测系统的基本特性
2.1 静态特性及性能指标
2.1.1 检测系统的静态特性 静态测量和静态特性 :
静态测量:测量过程中被测量保持恒定不变(即 dx/dt=0系统处于稳定状态)时的测量。
静态特性:在静态测量中,检测系统的输出-输入 特性。
y a0 a1 x a2 x a3 x an x
特性:
H ( s) H ( j ) K ( ) e j ( )
s j
2018/9/4
16
2.2.1 检测系统的传递函数 1.零阶系统 系统方程:
a0 y b0 x
H ( s) K 0 H ( j ) K 0
0
或 y K0 x
传递函数:
频率特性:
幅频特性:K () K 相频特性: ( ) 0
2018/9/4
12
理论方法是根据检测系统的数学模型,通过求解微分方程来 分析其输出量与输入量之间的关系。 常用实验的方法: 频率响应分析法――以正弦信号作为系统的输入; 瞬态响应分析法――以阶跃信号作为系统的输入。
2018/9/4
13
2.2.1 检测系统的传递函数
检测系统的理想动态特性要求:当输入量随时间变化 时,输出量能立即随之无失真的变化。但实际的传感器总
或
1
0 2
式中:
d 2 y 2 dy 2 y K0 x 0 dt dt
b0 ; a0
a0 ; a2
K0------系统的静态灵敏度,K 0 ω0------系统的固有角频率,0 ξ ------系统的阻尼比系数,
2018/9/4
a1 2 a0 a2
21
1
检测系统的特征与性能指标课件
总结词
在线质量检测系统是一种在制造业中应 用的自动检测系统,用于实时监测产品 质量。
品图像或测量物理量等 方式,对产品质量进行实时监测,及时发 现并处理问题,提高生产效率和产品质量 。它具有高效、准确、可靠等优点,适用 于制造业的各个领域。
实例三:环境监测系统的设计与实现
实例一:基于图像识别的产品检测系统
总结词
基于图像识别的产品检测系统是一种利用计算机视觉技术对产品进行自动检测 的系统。
详细描述
该系统通过采集产品的图像,利用图像处理技术对图像进行分析,从而实现对 产品的自动检测。它具有高效、准确、非接触式等优点,适用于各种制造业、 医疗、安全等领域。
实例二:在线质量检测系统在制造业的应用
基于人工智能的方法
总结词
基于人工智能的方法是通过人工智能技术来评估系统的性能,通常包括神经网络、支持向量机、决策树等方法。
详细描述
基于人工智能的方法通常利用人工智能技术来建立评估模型,通过对数据的深度学习和特征提取来评估系统的性 能。其中,神经网络方法通常采用前馈神经网络、循环神经网络等技术,支持向量机方法则通过将数据映射到高 维空间中来进行分类和回归分析,决策树方法则通过树的构建来进行分类和回归分析。
详细描述
该系统通过各种光学技术,如光谱分析、显微镜等,对生物样本进行检测和分析,为疾病诊断和治疗 提供科学依据。它具有高精度、高分辨率、安全无创等优点,适用于医学诊断、药物研发等领域。
THANK YOU
基于数据的方法
总结词
基于数据的方法是通过分析大量的实际数据来评估系统的性能,通常包括统计分 析、机器学习等方法。
详细描述
基于数据的方法通常需要大量的实际数据来进行分析和评估,通过数据的分布、 趋势和异常情况来反映系统的性能。其中,统计分析方法通常采用统计推断和假 设检验等技术,而机器学习方法则通过建立预测模型来预测系统的性能。
活体检测评价指标
活体检测评价指标
活体检测是指通过识别生物体的生理特征或行为模式来确定其是否为真实的生物体的过程。
以下是一些常见的活体检测评价指标:
1.准确性:这是衡量活体检测系统正确识别真实生物体和拒绝假冒生物体的能力的重要指标。
它通常以准确率或错误率来表示。
2.误报率:指活体检测系统将真实生物体错误地识别为假冒生物体的比率。
较低的误报率意味着系统更可靠。
3.漏报率:指活体检测系统未能正确识别出假冒生物体的比率。
较低的漏报率表示系统更灵敏。
4.响应时间:指活体检测系统从输入数据到输出结果所需的时间。
较短的响应时间可以提高系统的实时性。
5.稳定性:这是指活体检测系统在不同环境条件下(如光照、温度等)和长时间使用后的性能稳定性。
6.可扩展性:活体检测系统应具备良好的可扩展性,以便适应不同场景和需求的变化。
7.安全性:活体检测系统涉及敏感信息的处理,因此安全性也是一个重要的评价指标,包括数据保护、用户隐私等方面。
8.用户体验:活体检测系统的易用性、界面友好性和用户满意度等因素也会影响其整体性能。
这些指标可以帮助评估活体检测系统的性能和有效性,不同应用场景可能会有不同的重点和要求。
在实际应用中,需要根据具体需求选择合适的活体检测技术和系统,并进行综合评估和测试。
自动控制理论智慧树知到答案章节测试2023年山东大学
第一章测试1.自动控制系统的工作原理是检测{偏差},再以{偏差}为控制作用,从而消除偏差。
()A:对B:错答案:A2.自动控制装置由{测量元件},{比较元件},调节元件,{执行元件}四部分组成。
()A:错B:对答案:B3.连续系统是指系统中各部分的输入和输出信号都是连续变化的模拟量。
()A:对B:错答案:A4.线性定常系统是用线性常系数微分方程描述的系统。
()A:对B:错答案:A5.给定输入是对系统输出量的要求值。
()A:对B:错答案:A6.被控量是指被控系统所要控制的物理量。
()A:对B:错答案:A7.被控对象是指被控制的机器,设备和生产过程。
()A:对B:错答案:A8.下列选项中,开环控制系统是指系统的输出量对系统()。
A:无控制作用B:其他选项都包括C:有无控制作用答案:A9.闭环控制系统是系统的输出量对系统有控制作用。
()A:对答案:A10.开环控制系统的特点是结构简单,无反馈,不能纠正偏差。
闭环控制系统的特点是能自动纠正偏差,需要考虑稳定性问题。
()A:错B:对答案:B第二章测试1.求图示系统的传递函数()A:B:C:D:答案:B2.下列选项中,求图示无源网络的传递函数G(S)==()A:B:C:D:答案:B3.下列选项中,求图示无源网络的传递函数G(S)==()A:B:C:D:答案:D4.下列选项中,求图示无源网络的传递函数G(S)=()A:B:C:D:答案:C5.用解析法列写线性系统的微分方程有哪些步骤?()。
A:确定输入输出、根据物理定律列元件各变量的微分方程、消中间变量、标准化B:确定输入、根据物理定律列元件各变量的微分方程、标准化C:确定输入输出、根据物理定律列元件各变量的微分方程、消中间变量D:确定输入、根据物理定律列元件各变量的微分方程、消中间变量、标准化答案:A6.传递函数与输入和初始条件无关。
()A:错答案:B7.物理性质不同的系统,完全可以有相同的传递函数。
()A:错B:对答案:B8.状态向量是以状态变量为元所组成的向量。
检测系统性能验证
EP9-A2
国内实验室往往未作评价前已开始使用
该仪器,对初步性能有一定了解
而且许多配套检测系统的分析性能已得
到大量文献证实
这种情况下完整而繁琐的评价显然没有
必要
EP15-A
CLSI于2001年颁布的EP15-A文件即《用
户对精密度和准确度性能的核实实验—
—批准指南》
用于核实实验室的性能与声明性能的一
3、正确度、精密度、线性范围、参考区间验 证各需要几天?
4、什么时候要做性能验证?( ) A、方法/系统首次在实验室使用 B、EQA/PT结果未通过,采取纠正措施后
C、达到文件规定周期,一般要求一年一次
D、达到文件规定周期,一般要求两年一次
致性
实验过程相对简单,比较常用
EP15-A
通常厂家都会给出两种精密度的声明— —批内精密度(δ批内)和总的实验室内 精密度(δ总)。因此本方案主要通过实 验得到估计的批内标准差(S批内)和总 标准差(S总)并与厂家声明比较。
EP15-A
一、样本准备 1、来源 质控物、校准品、已分析过的患 者标本以及厂家用于精密度实验的物质都 可使用。量要足够多,因为要连续使用5天。 2、浓度 推荐使用2个浓度。尽可能选择 接近“医学决定水平”的浓度或与厂商性 能接近的浓度,也可选择可报告范围上限 或下限浓度。
致性
实验过程相对简单,比较常用
EP15-A
一、样本准备 1、来源 新鲜患者标本 2、储存 最好是当天收集当天测定,否则按照待 测成分的稳定性来选择储存条件和时间。 3、样本数 每天5个,连续4天,共20个样本。 4、浓度 应分布整个线性范围,不易得到的浓度 可用混合血清。尽可能在线性范围内均匀分布, 覆盖临床医学决定水平。
检测系统的基本特性
5、线性度eL
eL
Lmax yF .S .
100%
Lmax ――检测系统实际测得的输出-输入特性曲线(称为
标定曲线)与其拟合直线之间的最大偏差
yF .S. ――满量程(F.S.)输出
§1 静态特性及性能指标
注意:线性度和直线拟合方法有关。 最常用的求解拟合直线的方法:端点法、最小二乘法
a. 端基线性度 图1-3 线b性.度最小二乘线性度
其直 灵线 敏的 度斜 就率 越越 高大
, S S1S2S3
§1 静态特性及性能指标
3、分辨力与分辨率
分辨力:指能引起输出量发生变化时输
入量的最小变化量,表明测试装置分辨
输入量微小变化的能力。以最小单位输 水平型杠杆百分表
出量所对应的输入量来表示。
xmi n
分辨率:是分辨力与满量程的百分比,
§2 动态特性及性能指标
动态测量:测量过程中被测量随时间变化时的测 量
动态特性――检测系统动态测量时的输出-输入特 性
常用实验的方法: 频率响应分析法――以正弦信号作为系统的输入 瞬态响应分析法――以阶跃信号作为系统的输入
§2 动态特性及性能指标
一、传递函数 线性系统的微分方程(数学模型表达式)
§1 静态特性及性能指标
思考:举出提高传感器线性度的3种方法,说明其工作原理。
三种方法:差动法,串联一非线性环节与传感器非线性抵消,插值法。
1.差动法:
Y1( X ) a0 a1X a2 X 2 L an X n Y2 ( X ) a0 a1X a2 X 2 a3 X 3 L
b1s b0 a1s a0
令s j
s j
检测系统性能验证
主要用于确认和验证声明的性能,也可通 过该方案获得检测系统的分析性能特征
实验过程繁琐,统计过程也比较复杂,实 用性不强
.
35
EP5-A2
国内实验室往往未作评价前已开始使用 该仪器,对初步性能有一定了解
而且许多配套检测系统的分析性能已得 到大量文献证实
这种情况下完整而繁琐的评价显然没有 必要
.
12
线性范围
线性范围即定量检测项目的分析测量范围。 指患者标本未经任何处理(稀释、浓缩或其 他预处理),由检测系统直接测量得到的可 靠结果范围,在此范围内一系列不同样本分 析物的测量值和其实际的浓度(真值)呈线 性比例关系。
.
13
参考区间
对一个参考个体进行某项目测定得到的 的值为该个体的参考值,所有参考抽样 组的各个参考值合起来即为参考值范围。
一、样本准备 1、来源 新鲜患者标本 2、储存 最好是当天收集当天测定,否则按照待
测成分的稳定性来选择储存条件和时间。 3、样本数 每天5个,连续4天,共20个样本。 4、浓度 应分布整个线性范围,不易得到的浓度
可用混合血清。尽可能在线性范围内均匀分布, 覆盖临床医学决定水平。
.
27
.
28
EP15-A
依据所有参考值的分布特性以及临床使 用要求,选择合适的统计方法进行归纳 分析后,确定参考值范围中的一部分为 参考区间,区间的两端为参考区间的限 值,分为低参考限和高参考限。
.
14
参考区间
一般情况下,常选择95%分布范围的大 小表示参考值区间。例如:从2.5%位数 到97.5%位数所在的区间。
很多地方用“参考范围”表示“参考区
验证方案: CLSI C28-A2
.
50
智能交通行程时间检测系统OD系统技术指标
智能交通行程时间检测系统OD系统技术指标一、行程时间检测系统(OD系统)的标准模式OD监测系统模式为“视频采集+经过抓拍”。
该设备的信息记录为每一辆经过车辆一张高清晰图像,经过传输至中心系统进行自动识别。
二、行程时间检测系统(OD系统)的标准结构和功能路口单元安装在各个主要路口的各方向。
系统在无人值守环境下全自动全天候工作,完成通过路口的每一辆车拍摄图像、记录车辆牌号及特征、传输工作。
路口单元主要构成及功能:●安装在路口每个监控方向上的视频摄像机,完成过往车辆的不间断视频信号的采集;●各车道地感线圈和车辆检测器,检测车辆通过信息。
●各路口的视频采集、抓取单元,主要完成视频图像信号的采集、抓帧、图片储存、图片上传等功能。
●前置采集识别系统是一个放置于中心的自动采集识别和储存设备,前置采集识别系统是杭州市公安交警支队重点车辆查控系统的重要组成部分,同时通过网络传输系统与路口记录系统连接。
三、行程时间检测系统(OD系统)的技术标准●系统采用嵌入式技术,抓拍单元采用嵌入式控制器,设备运行稳定可靠不死机,并具有断电后自动恢复和远程维护功能。
●视频摄像机采用高清晰度超动态范围彩色摄像机。
抓帧系统采用专用的高性能DSP视频采集技术。
●系统对每一辆车采集1张图片。
在环境无雾情况下,图片必须能够清晰辨认车辆的车牌号码、车牌颜色、车身颜色、车型等车辆的信息。
●系统能自动判别车辆进入图片采集区的时间。
●在车速不大于120km/h情况下,系统对车辆的捕获率达到90%以上,有效率达到80%以上。
系统的抓帧响应时间小于0.1s。
所采集的图片清晰度应满足对车辆外观、号牌的自动识别和人工认定的要求。
●车辆检测器能检测到高底盘车辆,灵敏度可根据需要调节。
●夜间采用LED灯补光,所拍图片能够满足对车辆外观、号牌的自动识别和人工认定的要求。
●系统采用嵌入式操作系统,确保系统安全可靠、健壮稳定。
●系统支持中心远程操作、远程控制、远程设置、远程维护、远程软件升级。
检验仪器的主要部件与常用的性能指标
一、检验仪器的主要部件 1.取样(或加样)装置(sampling equipment) 是把待 检测的样品引入仪器。对于实验室分析仪器,其取 样装置就是进样器。
返回目录
3
2.预处理系统 是将样品先加以一系列处理,以满 足检测系统对样品的各种状态的要求。 3.分离装置 将样品各个组分加以机械分离或物理 区分的装置都属分离装置。
5 .精度 检测值偏离真值的程度。其高低用误差 来衡量。精度分准确度、精密度和精确度。 精度=精确度=精密度+准确度
6 .重复性 在同一方法和检测条件下连续多次检 测同一参数所得数据精密度。他与精密度相关 , 反映仪器固有误差的精密 度。
返回目录
8
7 .分辩率 仪器能感觉、识别或探测输入量的最 小值。与精确度相关
返回目录
Байду номын сангаас 6
二、检验仪器的常用性能指标
1.灵敏度 稳态下仪器对被检物检测量变化的能力 s=输出的变化量∆y/输入的变化量∆x
2 .误差 测得值与标称值的差 绝对误差 ∆=x- x。 相对误差 δ=Δ/ x。
3 .噪音 在输入为零时,仪器输出信号的波动 或变化范围 。抖动、起伏、漂移
返回目录
7
4 .最小检测量 仪器能确切反映最小物质的 含量
8 .测量范围和示值范围 测量范围 :在仪器允许误差范围内所测出的被
检 测值的范围 示值范围:仪器显示、指示最小到最大值的范围
9 .线性范围 指输入与输出成比例的输入含量的 范围。该范围与仪器应用的原理有关
返回目录
9
10 .响应时间 从被检测量发生变化到仪器给出正 确示值所经历的时间。 40%+(45%-40%)×90%=44.5%
检测系统分析性能验证及确认
方法精密度分析方案-结果汇总
仪器名称:
浓度水平① 项目
精密度CV% 允许范围 判定结果 验证值 判定结果 精密度CV% 允许范 围
日立7600-210
浓度水平②
判定结果 验证值 判定结果
CA
CV批内 CV总
0.77% 1.41% 1.20% 1.38% 1.59% 2.56%
•
——(参考WS/T 406-2012《临床血液学检验常规项目分析质量要求》)
临床血液学
• • 日间精密度 试验方案
• 日间精密度以室内质控在控结果的变异系数为评价指标,使用Sysmex配套质
控品(低值、中值、高值)当前批号累积的变异系数,与允许的变异系数进 行比较,判断结果是否接受。 • ——(参考WS/T 406-2012《临床血液学检验常规项目分析质量要求》)
•检测限(detection limit):分析程序具有适当的确定检出的分析物的最小浓度或量。检 测限依赖于空白读数大小。
性能验证的实施过程
对检验程序的性能验证涉及到多方面工作,为了得到可靠结果,实验 室负责人或实验主持人应对此项工作有一个概括了解,先制定一个方案, 包括如下工作:
1、性能验证项目的选择、质量目标确定、性能验证方案制定及实施工 作计划; 2、实验前准备(人员培训、仪器维护及校准、样本留取及制备);
•
EP10 A2. Preliminary Evaluation of Quantitive Clinical of Laboratory Methods; Approved Guideline—Second Edition.
性能验证相关的基本概念
临床定量检验程序的分析性能指标
定量检验程序的分析性能指标检验的最终目的是为临床提供准确可靠的检验结果,而检验结果的误差是由于检验程序的误差引起,检验程序误差的大小与该检验程序的分析性能直接相关。
检验程序分析性能的指标在检验医学相关文献中存在指标术语和定义上的差异,不同专业之间分析性能指标也有不同,同一分析性能指标也存在评估方法的差异。
在本书中我们引用国内外权威部门发布的技术规范或标准中对检验程序分析性能指标的定义,同时阐述国内外权威部门提出的分析性能标准或允许范围。
一、精密度(一)测量精密度(measurement precision)或精密度(precision):JF1001-2011,5.10-在规定条件下,对同一或类似被测对象重复测量所得示值或测得值间的一致程度。
测量精密度通常用不精密度以数字形式表示,如在规定测量条件下的标准偏差、标准方差或变异系数;规定条件下可以是重复性测量条件、期间精密度测量条件或复现性测量条件。
(二)测量重复性(measurement repeatability)或重复性(repeatability)精密度:1、重复性测量条件(measurement repeatability condition of measurement)(VIM2.20)重复性条件(repeatability condition):在一组测量条件下的测量精密度,包括相同测量程序、相同操作者、相同测量系统、相同操作条件和相同地点,并且在短时间段内对同一或相似被测对象重复测量。
注1:在临床化学上,术语批内或序列内精密度有时用于表示此概念。
注2:在评估体外诊断医疗器械时,通常选择重复性条件来代表基本不变的测量条件(被称为重复性条件),此条件产生测量结果的最小变异。
重复性信息可对故障排除目的有用处。
注3:重复性可以用结果分散性特征术语定量表达,如重复性标准差、重复性方差和重复性变异系数。
相关统计术语在GB/T 6379.2/ISO 5725-2中给出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1 传感器的基本理论
1.1.1 传感器的定义
能感受(或响应)规定的被测量并按照一定 规律转换成可用输出信号的器件或装置。
(1)从输入端来看,一个指定的传感器只能感 受规定的被测量。
(2)从输出端来看,传感器的输出信号为“有 用信号”。 (3)从输入与输出的关系来看,输入输出之间 的关系应具有“一定规律”。
➢ 电阻式,光电式(红外式、光导纤维式), 电感式,谐振式,电容式,霍尔式(磁 式),阻抗式(电涡流式),超声式,磁 电式,同位素式,热电式,电化学式,压 电式,微波式
按信号变换特征分类
❖ 结构型 通过传感器结构参量的变化实现信号转
换,如电容式传感器 ❖ 物性型
利用敏感元件材料本身物理属性的变化 实现信号变换,如水银温度计,压电传感器
子化、网络化的方向发展 ➢ 开展极端测量
1.2 检测技术的基本概论
1.2.1 检测系统的定义
检测(detection)是利用各种物理、化 学效应,选择合适的方法与装置,将生产、 科研、生活等各方面的有关信息通过检查 与测量的方法赋予定性或定量结果的过程。 能够自动地完成整个检测处理过程的技术 称为自动检测与转换技术。
1)微分方程
an
dny dt n
➢ 转换电路(Transduction circuit):将转换电路 参数接入转换电路,便可转换成电量输出。
1.1.3 传感器的分类
传感器种类繁多,目前常用的分类有多种:
➢以被测量来分 ➢以传感器的原理来分 ➢按信号变换特征分类 ➢按能量关系进行分类
按被测量来分类
被测量类别
被测量
热工量 温度、热量、比热;压力、压差、 真空度;流量、流速、风速
1.2.2 检测系统的基本结构
一个广义的检测系统一般由激励装置、
测试装置、数据处理与记录装置所组成
(如图1.1)。
测试对象
传感器
信号调理电路
电信号输出 信号分析与记录
激励信号
图 1.1 检测系统原理图
各组成部分的特点
(1)激励信号 激励信号由激励装置产生,采用激励装置是
为了使被测对象处于预定状态下,并将其有关方 面的内在联系充分显示出来,以便于有效的测量。
(2)测试对象 测试对象的特性均以信号的形式给出,被测
信号一般都是随时间变化的动态量,即使在检测 不随时间变化的静态量时,由于混有动态的干扰 噪声,通常也按动态量进行检测。
(3)传感器 传感器将感知的被测非电量按一定的规律转化
为某一种量值输出,通常是电信号。传感器输出的 电信号一般不能直接传输到后续的信号处理电路或 输出元件中去,必须经过信号的调理。
y=a0+a1x+a2x2+···+anxn 式中 x 为输入量;y为输出量; a0为零输入时的输出,也叫零位输出; a1为传感器线性项系数也称线性灵敏度,常用K或S表示; a2 , a3 , ···, an为非线性项系数,其数值由具体传感器非线性 特性决定。
图1-1 传感器的静态特性
2. 传1.感微器分的方动程态数学模型
机械量
位移(线位移、角位移),尺寸、 形状;力、力矩、应力;重量、 质量;转速、线速度;振动幅度、
频率、ቤተ መጻሕፍቲ ባይዱ速度、噪声
被测量类别 被 测 量
物性和成分 气体化学成分、液体化学成分;
量
酸碱度(PH值)、盐度、浓度、
粘度;密度、比重
状态量
颜色、透明度、磨损量、材料内 部裂缝或缺陷、气体泄漏、表面 质量
按传感器的原理来分类
按能量关系分类
❖ 能量转换型(有源传感器) 传感器直接由被测对象输入能量使其工
作,如热电偶、光电池等 ❖ 能量控制型(无源传感器)
传感器从外部获得能量使其工作,由被 测量的变化控制外部供给能量的变化。如电 阻式、电感式。
1.1.4 传感器技术的发展方向
➢ 测量仪器向高精度和多功能发展 ➢ 参数测量与数据处理向自动化方向发展 ➢ 传感器向智能化、集成化、微型化、量
(4)信号调理电路 信号调理电路的主要作用有两方面,一是把来
自于传感器的信号进行转换和放大;第二方面是进 行信号处理,即对经过信号调理的信号,进行滤波、 调制和解调、衰减、运算、数字化处理等。
(5)信号的分析与记录 信号调理电路输出的测量结果是对被测信号
的真实记录,可以采用光线示波器、屏幕显示器、 打印机等输出装置。此外还可用磁记录器来存储 被测信号,以便于检测工作完成后反复使用信号。 要从客观记录的信号中找出反映被测对象的本质 规律,还必须对信号进行分析从而提取有用信息。
现代检测系统采用了计算机和网络技术,将 调理电路输出的信号直接送到信号分析设备中处 理,进行在线处理。
1.2.3 检测系统的作用
检测(detection)是利用各种物理、化 学效应,选择合适的方法与装置,将生 产、科研、生活等各方面的有关信息通 过检查与测量的方法赋予定性或定量结 果的过程。能够自动地完成整个检测处 理过程的技术称为自动检测与转换技术。
主要内容
❖ 传感器与检测技术基本概论 ❖ 检测系统的误差合成 ❖ 常用传感器的工作原理 ❖ 常见非电参数的检测方法 ❖ 微弱信号检测 ❖ 检测系统抗干扰技术 ❖ 测量信号的调理及处理 ❖ 现代检测系统
第1章 检测系统的特征与性能指标
1.1 传感器的基本理论 1.2 检测技术的基本理论 1.3 传感器与检测系统的基本特性
1.1.2 传感器的组成
➢ 传感器一般由敏感元件、转换元件、转 换电路三部分组成:
被测量 敏感元件
转化元件
转换电路 电路
注:有的书上不包括 虚线后部分
➢ 敏感元件(Sensitive element):直接感受被测 量,并输出与被测量成确定关系的某一物理量的 元件。
➢ 转换元件(Transduction element):以敏感元 件的输出为输入,把输入转换成电路参数。
1.2.4 检测技术的现状与发展 ➢ 检测方法的推进 ➢ 检测仪器与计算机技术集成
硬件功能软件化 仪器仪表集成化和模块化 参数整定和修改实时化 硬件平台通用化
1.3 传感器与检测系统的基本特性
1.3.1 传感器的数学模型
1. 静态数学模型 静态数学模型是指在静态信号作用下,传感器输出与
输入量间的一种函数关系。如不考虑迟滞特性和蠕动效应, 传感器的静态数学模型一般可以用n次多项式来表示: