解三角形完整讲义
解直角三角形讲义
解直角三角形初三下册第一章: 知识点总结:1. 解直角三角形:在直角三角形中,由已知元素求位置元素的过程,就是解直角三角形。
(1) 三边关系:222c b a (2) 锐角关系:∠A+∠B=90°; ( 3 ) 边角关系:正弦:锐角A 的对边与斜边的比叫做∠A 的正弦,记sinA ,即sinA =c a余弦:锐角A 的邻边与斜边的比叫做∠A 的余弦,记cosA ,即cosA=c b;正切:锐角A 的对边与邻边的比叫做∠A 的正切,记tanA ,即tanA=ba;特殊锐角的三角函数值① 同角三角函数的关系:平方关系:1cos sin 22 A A ; 商数关系:tanA=AAcos sin ②互余两角的三角函数关系:sinA=cosB; sinA=cos(90°-A) ; cosA=sin (90°-A ); tanA=cot(90°-A )2.实际问题仰角:进行高度测量时,在视线与水平线所成的角中,当视线在水平线上方时叫做仰角。
俯角:进行高度测量时,在视线与水平线所成的角中,当视线在水平线下方时叫做俯角。
坡度(坡比):坡面的铅垂高度和水平宽度的比叫做坡面的坡度,记作i=h:l。
坡角:坡面与水平面的夹角叫做坡角,记作a,即i=h:l=tana.方位角:从某点的正北方向沿顺时针方向旋转到目标方向所形成的角叫做方位角。
方向角:从正北方向或正南方向到目标方向形成的小雨90°的角叫做方向角。
典型例题:题型一:特殊三角函数值1、计算2sin30°-sin245°+cot60°的结果是()A、B、C、D、2、已知a=3,且(4tan 45°-b)2+=0,以a,b,c为边组成的三角形面积等于()A、6B、7C、8D、93、已知a为锐角,且sin(a-10°)=,则a等于()A、50°B、60°C、70°D、80°4、在△ABC中,∠C=90°,∠B=2∠A,则cosA等于()A、B、C、D、5、如图,如果∠A是等边三角形的一个内角,那么cosA的值等于()A、B、C、D、16、△ABC中,∠A、∠B都是锐角,且sinA=,cosB=,则△ABC的形状是()A、直角三角形B、钝角三角形C、锐角三角形D、不能确定7、计算:sin213°+cos213°+sin60°-tan30°.8、求下列各式的值:(1)a、b、c是△ABC的三边,且满足a2=(c+b)(c-b)和4c-5b=0,求cosA+cosB的值;(2)已知A为锐角,且tanA=,求sin2A+2sinAcosA+cos2A的值.题型二:解直角三角形1、如图,在△ABC中,∠C=90°,∠B=60°,D是AC上一点,DE⊥AB于E,且CD=2,DE=1,则BC的长为()A、2B、C、2D、42、等腰三角形的顶角为120°,腰长为2cm,则它的底边长为()A、cmB、cmC、2cmD、cm3、如图,梯形ABCD中,AD∥BC,∠B=45°,∠D=120°,AB=8cm,则DC的长为()A、cmB、cmC、cmD、8cm4、如图,在Rt△ABC中,∠ACB为90°,CD⊥AB,cos∠BCD=,BD=1,则边AB的长是()A、B、C、2 D、5、如图,将等腰直角三角形ABC绕点A逆时针旋转15°后得到△AB′C′,若AC=1,则图中阴影部分的面积为()A、B、C、D、6、在△ABC中,∠A=120°,AB=4,AC=2,则sinB的值是()A、B、C、D、7、如图,矩形ABCD中,对角线AC、BD相交于点0,∠AOB=60°,AB=5,则AD的长是()A、5B、5C、5D、108、如图,在菱形ABCD中,DE⊥AB,,BE=2,则tan∠DBE的值()A、B、2 C、D、9、如图,四边形ABCD和四边形BEFD都是矩形,且点C恰好在EF上.若AB=1,AD=2,则S△BCE为()A、1B、C、D、10、如图,在Rt△ABC中,∠A=90°,AB=AC=8,点E为AC的中点,点F在底边BC上,且FE⊥BE,则△CEF的面积是()A、16B、18C、6D、711、如图,在梯形ABCD中,∠A=∠B=90°,AB=,点E在AB上,∠AED=45°,DE=6,CE=7.求:AE的长及sin∠BCE的值.12、如图,直角梯形ABCD中,AD∥BC,∠A=90°,AB=AD=6,DE⊥DC交AB于E,DF平分∠EDC交BC 于F,连接EF.(1)证明:EF=CF;(2)当tan∠ADE=时,求EF的长.题型三:解直角三角形的应用1、如图,某市在“旧城改造”中计划在一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米a元,则购买这种草皮至少要()A、450a元B、225a元C、150a元D、300a元2、如图,AB是斜靠在墙上的长梯,D是梯上一点,梯脚B与墙脚的距离为1.6m(即BC的长),点D与墙的距离为1.4m(即DE的长),BD长为0.55m,则梯子的长为()A、4.50mB、4.40mC、4.00mD、3.85m3、如图,太阳光线与地面成60°角,一棵倾斜的大树AB与地面成30°角,这时测得大树在地面的影长BC为10m,则大树的长为()m.A、5B、10C、15D、204、如图,小明同学在东西走向的文一路A处,测得一处公共自行车租用服务点P在北偏东60°方向上,在A 处往东90米的B处,又测得该服务点P在北偏东30°方向上,则该服务点P到文一路的距离PC为()A、60米B、45米C、30米D、45米5、如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:(1)(2)的计算结果精确到0.1米,参考数据:≈1.41,≈1.73,≈2.24,≈2.45)6、如图,河流的两岸PQ、MN互相平行,河岸PQ上有一排小树,已知相邻两树之间的距离CD=50米,某人在河岸MN的A处测得∠DAN=35°,然后沿河岸走了120米到达B处,测得∠CBN=70°.求河流的宽度CE(结果保留两个有效数字).(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)7、某市为缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯长AB=6m,∠ABC=45°,后考虑到安全因素,将楼梯脚B移到CB延长线上点D处,使∠ADC=30°(如图所示).(1)求调整后楼梯AD的长;(2)求BD的长.(结果保留根号)8、某河道上有一个半圆形的拱桥,河两岸筑有拦水堤坝.其半圆形桥洞的横截面如图所示.已知上、下桥的坡面线ME、NF与半圆相切,上、下桥斜面的坡度i=1:3.7,桥下水深=5米.水面宽度CD=24米.设半圆的圆心为O,直径AB在坡角顶点M、N的连线上.求从M点上坡、过桥、下坡到N点的最短路径长.(参考数据:π≈3,≈1.7,tan15°=)题型四:坡度坡角问题及仰角俯角问题1、如图,是一水库大坝横断面的一部分,坝高h=6m,迎水斜坡AB=10m,斜坡的坡角为α,则tanα的值为()A、B、C、D、2、如图,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m.如果在坡度为0.75的山坡上种树,也要求株距为4m,那么相邻两树间的坡面距离为()A、5mB、6mC、7mD、8m3、周末,身高都为1.6米的小芳、小丽来到溪江公园,准备用她们所学的知识测算南塔的高度.如图,小芳站在A处测得她看塔顶的仰角α为45°,小丽站在B处(A、B与塔的轴心共线)测得她看塔顶的仰角β为30°.她们又测出A、B两点的距离为30米.假设她们的眼睛离头顶都为10cm,则可计算出塔高约为(结果精确到0.01,参考数据:≈1.414,≈1.732)()A、36.21米B、37.71米C、40.98米D、42.48米4、一次数学活动中,小迪利用自己制作的测角器测量小山的高度CD.已知她的眼睛与地面的距离为1.6米,小迪在B处测量时,测角器中的∠AOP=60°(量角器零度线AC和铅垂线OP的夹角,如图);然后她向小山走50米到达点F处(点B,F,D在同一直线上),这时测角器中的∠EO′P′=45°,那么小山的高度CD约为()(注:数据≈1.732,≈1.414供计算时选用)A、68米B、70米C、121米D、123米5、如图,已知楼高AB为50m,铁塔基与楼房房基间的水平距离BD为50m,塔高DC为m,下列结论中,正确的是()A、由楼顶望塔顶仰角为60°;B、由楼顶望塔基俯角为60°;C、由楼顶望塔顶仰角为30°;D、由楼顶望塔基俯角为30°6、已知小芳站在层高为2.5米的六层楼的屋顶上来估计旁边一支烟囱的高度,当小芳以俯角∠COB=45°向下看时,刚好可以看到烟囱的底部,当小芳以仰角∠AOB=30°向上看时,刚好可以看到烟囱的顶部,若小芳的身高为1.5米,请你估计烟囱的高度(=1.414,=1.732结果保留三个有效数字)()A、22.1米B、26.0米C、27.9米D、32.8米7、如图,小明在大楼30米高(即PH=30米)的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B 处的俯角为60°,巳知该山坡的坡度i(即tan∠ABC)为1:,点P,H,B,C,A在同一个平面上,点H、B、C在同一条直线上,且PH丄HC.(1)山坡坡角(即∠ABC)的度数等于多少度;(2)求A、B两点间的距离(结果精确到0.1米,参考数据:≈1.732).8、如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度.他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为2米,台阶AC的坡度为(即AB:BC=),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(测倾器的高度忽略不计).题型五:方向角问题1、如图,已知一渔船上的渔民在A处看见灯塔M在北偏东60°方向,这艘渔船以28海里/时的速度向正东方向航行,半小时后到达B处,在B处看见灯塔M在北偏东15°方向,此时灯塔M与渔船的距离是()A、7海里B、14海里C、7海里D、14海里2、在一次夏令营活动中,小霞同学从营地A点出发,要到距离A点10千米的C地去,先沿北偏东70°方向走了8千米到达B地,然后再从B地走了6千米到达目的地C,此时小霞在B地的()A、北偏东20°方向上B、北偏西20°方向上C、北偏西30°方向上D、北偏西40°方向上3、如图,小亮家到学校有两条路,一条沿北偏东45°方向可直达学校前门,另一条从小明家一直往东,到商店处向正北走100米,到学校后门;若两条路程相等,学校南北走向,学校后门在小明家北偏东67.5°处,学校前门到后门的距离是()A、100米B、米C、米D、米4、综合实践课上,小明所在小组要测量护城河的宽度.如图所示是护城河的一段,两岸ABCD,河岸AB上有一排大树,相邻两棵大树之间的距离均为10米.小明先用测角仪在河岸CD的M处测得∠α=36°,然后沿河岸走50米到达N点,测得∠β=72°.请你根据这些数据帮小明他们算出河宽FR(结果保留两位有效数字)(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)5、如图,自来水厂A和村庄B在小河l的两侧,现要在A,B间铺设一知输水管道.为了搞好工程预算,需测算出A,B间的距离.一小船在点P处测得A在正北方向,B位于南偏东24.5°方向,前行1200m,到达点Q处,测得A位于北偏东49°方向,B位于南偏西41°方向.(1)线段BQ与PQ是否相等?请说明理由;(2)求A,B间的距离.(参考数据cos41°=0.75).6、如图所示,一艘轮船以30海里/小时的速度向正北方向航行,在A处得灯塔C在北偏西30°方向,轮船航行2小时后到达B处,在B处时测得灯塔C在北偏西45°方向.当轮船到达灯塔C的正东方向的D处时,求此时轮船与灯塔C的距离.(结果精确到0.1海里,参考数据≈1.41,≈1.73).7如图,港口B在港口A的西北方向,上午8时,一艘轮船从港口A出发,以15海里∕时的速度向正北方向航行,同时一艘快艇从港口B出发也向正北方向航行,上午10时轮船到达D处,同时快艇到达C处,测得C 处在D处得北偏西30°的方向上,且C、D两地相距100海里,求快艇每小时航行多少海里?(结果精确到0.1海里∕时,参考数据≈1.41,≈1.73)8、(2010•陕西)在一次测量活动中,同学们要测量某公园的码头A与他正东方向的亭子B之间的距离,如图他们选择了与码头A、亭子B在同一水平面上的点P在点P处测得码头A位于点P北偏西方向30°方向,亭子B位于点P北偏东43°方向;又测得P与码头A之间的距离为200米,请你运用以上数据求出A与B的距离.练习作业:1、在Rt△ABC中,∠C=90°,∠B=35°,AB=7,则BC的长为()A、7sin35°B、C、7cos35°D、7tan35°2、Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边.那么c等于()A、acos A+bsin BB、asin A+bsin BC、D、3、如图AD⊥CD,AB=13,BC=12,CD=3,AD=4,则sinB=()A、B、C、D、4、如图,已知一坡面的坡度i=1:,则坡角α为()A、15°B、20°C、30°D、45°5、如图所示,CD是平面镜,光线从A点出发经CD上的E点反射后到达B点,若入射角为α,AC⊥CD,BD⊥CD,垂足分别为C,D,且AC=3,BD=6,CD=11,则tanα的值是()A、B、C、D、6、如图,沿AC方向开山修路,为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B,取∠ABD=145°,BD=500米,∠D=55度.要使A,C,E成一直线.那么开挖点E离点D的距离是()A、500sin55°米B、500cos55°米C、500tan55°米D、500cot55°米7、如图,在矩形ABCD中,DE⊥AC于E,设∠ADE=α,且cosα=,AB=4,则AD的长为()A、3 B、C、D、8、如图,在梯形ABCD中,AD∥BC,AB=CD=AD,BD⊥CD.(1)求sin∠DBC的值;(2)若BC长度为4cm,求梯形ABCD的面积.9、路边路灯的灯柱BC垂直于地面,灯杆BA的长为2米,灯杆与灯柱BC成120°角,锥形灯罩的轴线AD 与灯杆AB垂直,且灯罩轴线AD正好通过道路路面的中心线(D在中心线上).已知点C与点D之间的距离为12米,求灯柱BC的高.(结果保留根号)10、如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了100m,此时自B处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m,请你计算出该建筑物的高度.(取=1.732,结果精确到1m).11、如图,某船由西向东航行,在点A测得小岛O在北偏东60°,船航行了10海里后到达点B,这时测得小岛O在北偏东45°,船继续航行到点C时,测得小岛O恰好在船的正北方,求此时船到小岛的距离.。
解三角形完整讲义
正余弦定理知识要点:a b c1、正弦定理: 2Rsin A sin B sin C或变形: a :b: c sin A:s in B : sin C .2 2 2a b c 2bc cos A2 2 2b ac 2ac cosB2 2 2c b a 2ba cosC 或cos AcosBcosC2 2 2b c a2bc2 2 2a c b2ac2 2 2b a c2ab2、余弦定理:.3、解斜三角形的常规思维方法是:(1)已知两角和一边(如A、B、C),由A+B+C =π求C,由正弦定理求a、b;(2)已知两边和夹角(如a、b、c),应用余弦定理求 c 边;再应用正弦定理先求较短边所对的角,然后利用A+B+C =π,求另一角;(3)已知两边和其中一边的对角(如a、b、A),应用正弦定理求B,由A+B+C = π求C,再由正弦定理或余弦定理求 c 边,要注意解可能有多种情况;(4)已知三边a、b、c,应余弦定理求A、B,再由A+B+C =π,求角C。
4、判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.5、解三角形问题可能出现一解、两解或无解的情况,这时应结合“三角形中大边对大角定理及几何作图来帮助理解”。
6、已知三角形两边a,b,这两边夹角C,则S=1/2 * absinC7、三角学中的射影定理:在△ABC 中,b a cos C c cos A,,8、两内角与其正弦值:在△ABC 中,A B sin A sin B ,,【例题】在锐角三角形ABC中,有( B )A.cosA>sinB且cosB>sinA B.cosA<sinB且cosB<sinAC.cosA>sinB 且cosB<sinA D.cosA<sinB 且cosB>sinA9、三角形内切圆的半径:r2Sa b c,特别地,r直a b c斜2正弦定理专题:公式的直接应用1、已知△ABC 中,a 2 ,b 3 ,B 60 ,那么角 A 等于()A.135 B.90 C.45 D.302、在△ABC中,a=2 3 ,b=2 2 ,B=45°,则A 等于( C )A.30°B.60°C.60°或120°D.30°或150°3、△ABC 的内角A,B,C 的对边分别为a,b,c,若c2,b 6,B 120,则a1等于()A.B.2 C.D.6 3 2 4、已知△ABC中,A 30 ,C 105 ,b 8 ,则 a 等于( B )A.4 B.4 2 C.4 3 D. 4 5 5、在△ABC中,a=10,B=60°,C=45°,则c等于( B )A.10 3 B.10 3 1 C. 3 1 D.10 36、已知ABC 的内角 A ,B ,C 所对的边分别为a,b ,c,若1s i n A ,b 3sin B ,33则a等于.()37、△ABC中,B 45 ,C 60 ,c 1,则最短边的边长等于( A )A .63B.62C .12D .328、△ABC中,A:B1: 2,C 的平分线CD 把三角形面积分成3: 2 两部分,则cos A ( C )A . 13B .12C .34D .0cos 2A cos2 B 1 19、在△ABC中,证明: 2 2 2 2a b a b。
解三角形上课讲义
解三角形讲义摘要:高考对解三角形内容的考察主要涉及三角形的边角转化、三角形形状的判断、三角形内三角函数的求值以及三角恒等式的证明问题,立体几何体的空间角以及解析几何中的有关角等问题。
今后高考的命题会以正弦定理、余弦定理为知识框架,以三角形为主要依托,结合实际应用问题考察正弦定理、余弦定理及应用。
题型一般为选择题、填空题,也可能是中、难度的解答题。
一.正弦定理:1.正弦定理:(其中R是三角形外接圆的半径)2.变形:①②角化边③边化角如:△ABC中,①,则△ABC是等腰三角形或直角三角形②,则△ABC是等腰三角形。
3.三角形内角平分线定理:如图△ABC中,AD是的角平分线,则4.△ABC中,已知锐角A,边b,则①时,无解;②或时,有一个解;③时,有两个解。
如:①已知,求(有一个解)②已知,求(有两个解)注意:由正弦定理求角时,注意解的个数。
二.三角形面积1.2.,其中是三角形内切圆半径.注:由面积公式求角时注意解的个数三.余弦定理1.余弦定理:2.变形:注意整体代入,如:3.三角形中线:△ABC中, D是BC的中点,则4.三角形的形状①若时,角是锐角②若时,角是直角③若时,角是钝角如:锐角三角形的三边为,求x的取值范围; 钝角三角形的三边为,求x的取值范围;5.应用①用余弦定理求角时只有一个解②已知,求边题型1:正、余弦定理1、在△ABC中,由已知条件解三角形,其中有两解的是()A.b=20,A=45°,C=80° B.a=30,c=28,B=60°C.a=14,b=16,A=45° D.a=12,c=15,A=1202、3、已知求的边长以及外接圆的面积。
4、在中,若其面积,则=_______。
5、边长为5,7,8的三角形的最大角与最小角的和是()A.B.C.D.6、在中,7..(1)在ABC中,已知,,,求b及A;题型2:三角形面积1.在中,,,,求的值和的面积。
解三角形PPT演示课件
04 三角形在实际问 题中的应用
测量问题中的三角形解法
角度测量
通过测量三角形的两个角,利用 三角形内角和为180度的性质,可
以求出第三个角的大小。
距离测量
在无法直接测量两点间距离的情况 下,可以通过构造三角形,利用已 知边长和角度,通过三角函数求解 未知距离。
高程测量
在测量地形高度时,可以通过构造 三角形并测量相关角度和距离,利 用三角函数求解未知高程。
物理学中的三角形解法
01 02
力的合成与分解
在物理学中,力是矢量,可以通过构造三角形来表示力的合成与分解。 例如,已知两个分力的大小和方向,可以构造三角形求解合力的大小和 方向。
运动学问题
在解决匀变速直线运动等问题时,可以通过构造速度、加速度和时间等 物理量的三角形关系,利用三角函数求解未知量。
03
解等腰三角形的方法
通过已知的两边和夹角,利用余弦定 理或正弦定理求解第三边和其余两个 角。
等边三角形的解法
等边三角形的定义和性质
01
三边长度都相等的三角形,三个内角均为60度。
解等边三角形的方法
02
通过已知的一边长度,利用三角函数或特殊角度的三角函数值
求解其余两边和三个角。
典型例题解析
03
展示一道等边三角形的求解问题,并详细解析解题步骤和思路
几何图形中的三角形解法
01
02
03
三角形面积计算
通过已知三角形的底和高 ,或者通过海伦公式等方 法,可以计算三角形的面 积。
三角形边长求解
在已知三角形部分边长和 角度的情况下,可以利用 正弦定理、余弦定理等方 法求解未知边长。
三角形形状判断
通过已知三角形的边长或 角度,可以判断三角形的 形状,如等边、等腰、直 角等。
解三角形PPT教学课件
采用数值积分方法对定积分进行近 似计算,并讨论积分误差。
04
数值稳定性和精度保持策略
避免大数相除
在计算过程中,尽量避免大数除以小数的情 况,以减少舍入误差。
选择合适的数据类型
根据计算需求选择合适的数据类型,如单精 度浮点数、双精度浮点数等。
逐步细化计算步骤
将复杂计算分解为多个简单步骤,逐步细化 以提高计算精度。
三角形重要性质
三角形的稳定性
01
三角形具有稳定性,是建筑、工程等领域常用的结构形状。
三角形的面积公式
02
包括底乘高的一半、海伦公式等多种计算方法。
三角形的中线、角平分线、高线等性质
03
中线平分对应边、角平分线平分对应角、高线垂直于对应底边
等。
相似与全等三角形
相似三角形定义及性质
对应角相等、对应边成比例的三角形 为相似三角形,具有相似比等性质。
高度测量
解三角形也可以用于测量山峰、建筑物等高度。例如,通过在山脚和山 顶各设置一个观测点,测量两个观测点之间的水平距离和仰角,再利用 三角函数公式求解高度。
角度测量
在地理学中,角度测量也是非常重要的。解三角形可以通过已知三边或 已知两边和夹角等条件,利用三角函数公式求解未知角度。
航海学:航向、航速、航程计算
注意事项
需确保两角为夹边的两角
应用场景
在三角形求解、角度计算等方面有广泛应用
已知三边求角度(SSS)
已知条件
三边a、b、c
求解方法
利用余弦定理cosA=(b²+c²-a²)/2bc求解角度A,同理可求B、C
注意事项
需注意余弦定理中边长的对应关系
应用场景
在几何、测量等领域中广泛应用
解三角形讲义
[探索研究] 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系.如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有a sin A c =,sin b B c =,又sin 1c C c==, 则a b c c sin A sinB sinC === ,从而在直角三角形ABC 中,sin sin sin a b c A B C== 思考:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况: 如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =, 则sin sin abA B =, 同理可得sin sin cbC B =, 从而sin sin a bA B =sin cC =思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题.(证法二):过点A 作j AC ⊥, 由向量的加法可得 AB AC CB =+则 ()j AB j AC CB ⋅=⋅+ ∴j AB j AC j CB ⋅=⋅+⋅ ()()00cos 900cos 90-=+-j AB A j CB C ∴sin sin =c A a C ,即sin sin =a c A C 同理,过点C 作⊥j BC ,可得 sin sin =b c B C ,从而 a b c sin A sinB sinC== 类似可推出,当∆ABC 是钝角三角形时,以上关系式仍然成立.(由学生课后自己推导)从上面的研探过程,可得以下定理正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即a b c sin A sinB sinC== [理解定理](1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =,sin b k B =,sin c k C =;(2)a b c sin A sinB sinC ==等价于sin sin a b A B =,sin sin c b C B =,sin a A =sin c C从而知正弦定理的基本作用为: ①已知三角形的任意两角及其一边可以求其他边,如sin sin b A a B=; ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A B b=.一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形.(1)定理的表示形式: sin sin a b A B =sin c C==()0sin sin sin a b c k k A B C ++=>++;或sin a k A =,sin b k B =,sin c k C =(0)k > c b a C B A (图1.1-2) c b a C B A (图1.1-3) c ba C BAj(2)正弦定理的应用范围:①已知两角和任一边,求其它两边及一角;②已知两边和其中一边对角,求另一边的对角.联系已经学过的知识和方法,可用什么途径来解决这个问题?用正弦定理试求,发现因A 、B 均未知,所以较难求边c .由于涉及边长问题,从而可以考虑用向量来研究这个问题.如图1.1-5,设CB a =,CA b =,AB c =,那么c a b =-,则 ()()c c c a b a b a a b b a b a b a b =⋅=--=⋅+⋅-⋅=+-⋅22222从而 2222cos c a b ab C =+-同理可证2222cos a b c bc A =+-,2222cos b a c ac B =+- 于是得到以下定理余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即2222cos a b c bc A =+-,2222cos b a c ac B =+-,2222cos c a b ab C =+-思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角?(由学生推出)从余弦定理,又可得到以下推论:222cos 2+-=b c a A bc ,222cos 2+-=a c b B ac ,222cos 2+-=b a c C ba [理解定理]从而知余弦定理及其推论的基本作用为:①已知三角形的任意两边及它们的夹角就可以求出第三边;②已知三角形的三条边就可以求出其它角.思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?(由学生总结)若∆ABC 中,C=090,则cos 0=C ,这时222=+c a b由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例.[例题分析]例1.在∆ABC 中,已知23=a ,62=+c ,060=B ,求b 及A⑴解:∵2222cos =+-b a c ac B=22(23)(62)223(62)++-⋅⋅+cos 045=212(62)43(31)++-+=8∴2 2.=b求A 可以利用余弦定理,也可以利用正弦定理:⑵解法一:∵cos 222222(22)(62)(23)1,22222(62)+-++-===⨯⨯+b c a A bc ∴060.=Ac ba C B A (图1.1-5)解法二:∵sin 023sin sin45,22==⋅a A B b 又∵62+>2.4 1.4 3.8,+= 23<21.8 3.6,⨯=∴a <c ,即00<A <090, ∴060.=A评述:解法二应注意确定A 的取值范围.例2.在∆ABC 中,已知134.6=a cm ,87.8=b cm ,161.7=c cm ,解三角形(见课本第8页例4,可由学生通过阅读进行理解)解:由余弦定理的推论得: cos 2222+-=b c a A bc 22287.8161.7134.6287.8161.7+-=⨯⨯0.5543,≈05620'≈A ; cos 2222+-=c a b B ca 222134.6161.787.82134.6161.7+-=⨯⨯ 0.8398,≈03253'≈B ;0000180()180(56203253)''=-+≈-+C A B 课题: §1.1.3解三角形的进一步讨论例1.在∆ABC 中,已知,,a b A ,讨论三角形解的情况 分析:先由sin sin b A B a =可进一步求出B ;则0180()C A B =-+ 从而sin a C c A= 1.当A 为钝角或直角时,必须a b >才能有且只有一解;否则无解. 2.当A 为锐角时,如果a ≥b ,那么只有一解;如果a b <,那么可以分下面三种情况来讨论:(1)若sin a b A >,则有两解;(2)若sin a b A =,则只有一解;(3)若sin a b A <,则无解.(以上解答过程详见课本第910页)评述:注意在已知三角形的两边及其中一边的对角解三角形时,只有当A 为锐角且 sin b A a b <<时,有两解;其它情况时则只有一解或无解.[随堂练习1](1)在∆ABC 中,已知80a =,100b =,045A ∠=,试判断此三角形的解的情况.(2)在∆ABC 中,若1a =,12c =,040C ∠=,则符合题意的b 的值有_____个. (3)在∆ABC 中,a xcm =,2b cm =,045B ∠=,如果利用正弦定理解三角形有两解,求x 的取值范围.(答案:(1)有两解;(2)0;(3)222x <<)例2.在∆ABC 中,已知7a =,5b =,3c =,判断∆ABC 的类型.分析:由余弦定理可知222222222是直角ABC 是直角三角形是钝角ABC 是钝角三角形是锐角a b c A a b c A a b c A =+⇔⇔∆>+⇔⇔∆<+⇔⇔ABC 是锐角三角形∆(注意:是锐角A ⇔ABC 是锐角三角形∆) 解:222753>+,即222a b c >+,∴ABC 是钝角三角形∆.[随堂练习2](1)在∆ABC 中,已知sin :sin :sin 1:2:3A B C =,判断∆ABC 的类型.(2)已知∆ABC 满足条件cos cos a A b B =,判断∆ABC 的类型.(答案:(1)ABC 是钝角三角形∆;(2)∆ABC 是等腰或直角三角形)例3.在∆ABC 中,060A =,1b =,面积为32,求sin sin sin a b c A B C++++的值 分析:可利用三角形面积定理111sin sin sin 222S ab C ac B bc A ===以及正弦定理 sin sin abA B =sin cC ==sin sin sin a b c A B C++++ 解:由13sin 22S bc A ==得2c =, 则2222cos a b c bc A =+-=3,即3a =,从而sin sin sin a b c A B C ++++2sin a A == Ⅲ.课堂练习(1)在∆ABC 中,若55a =,16b =,且此三角形的面积2203S =,求角C(2)在∆ABC 中,其三边分别为a 、b 、c ,且三角形的面积2224a b c S +-=,求角C(答案:(1)060或0120;(2)045)Ⅳ.课时小结(1)在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;(2)三角形各种类型的判定方法;(3)三角形面积定理的应用.Ⅴ.课后作业(1)在∆ABC 中,已知4b =,10c =,030B =,试判断此三角形的解的情况.(2)设x 、x+1、x+2是钝角三角形的三边长,求实数x 的取值范围.(3)在∆ABC 中,060A =,1a =,2b c +=,判断∆ABC 的形状.(4)三角形的两边分别为3cm ,5cm,它们所夹的角的余弦为方程25760x x --=的根, 求这个三角形的面积.●板书设计●授后记课题: §1.2.1解三角形应用举例(1)●教学目标知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语过程与方法:首先通过巧妙的设疑,顺利地引导新课,为以后的几节课做良好铺垫.其次结合学生的实际情况,采用“提出问题——引发思考——探索猜想——总结规律——反馈训练”的教学过程,根据大纲要求以及教学内容之间的内在关系,铺开例题,设计变式,同时通过多媒体、图形观察等直观演示,帮助学生掌握解法,能够类比解决实际问题.对于例2这样的开放性题目要鼓励学生讨论,开放多种思路,引导学生发现问题并进行适当的指点和矫正 情感态度与价值观:激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力●重点:实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解 ●难点:根据题意建立数学模型,画出示意图●教学过程Ⅰ.课题导入1、[复习旧知]复习提问什么是正弦定理、余弦定理以及它们可以解决哪些类型的三角形?2、[设置情境]请学生回答完后再提问:前面引言第一章“解三角形”中,我们遇到这么一个问题,“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借助解直角三角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能实施.如因为没有足够的空间,不能用全等三角形的方法来测量,所以,有些方法会有局限性.于是上面介绍的问题是用以前的方法所不能解决的.今天我们开始学习正弦定理、余弦定理在科学实践中的重要应用,首先研究如何测量距离.Ⅱ.讲授新课解决实际测量问题的过程一般要充分认真理解题意,正确做出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解[例题讲解]例1.如图,设A 、B 两点在河的两岸,要测量两点之间的距离,测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离是55m ,∠BAC=︒51,∠ACB=︒75.求A 、B 两点的距离(精确到0.1m) 启发提问1:∆ABC 中,根据已知的边和对应角,运用哪个定理比较适当?启发提问2:运用该定理解题还需要那些边和角呢?请学生回答.分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题,题目条件告诉了边AB 的对角,AC 为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC 的对角,应用正弦定理算出AB 边.解:根据正弦定理,得ACB AB ∠sin = ABCAC ∠sin AB =ABC ACB AC ∠∠sin sin =ABCACB ∠∠sin sin 55 = )7551180sin(75sin 55︒-︒-︒︒ = ︒︒54sin 75sin 55 ≈ 65.7(m) 答:A 、B 两点间的距离为65.7米变式练习:两灯塔A 、B 与海洋观察站C 的距离都等于a km,灯塔A 在观察站C 的北偏东30︒,灯塔B 在观察站C 南偏东60︒,则A 、B 之间的距离为多少? 老师指导学生画图,建立数学模型.解略:2a km例2.如图,A 、B 两点都在河的对岸(不可到达),设计一种测量A 、B 两点间距离的方法. 分析:这是例1的变式题,研究的是两个不可到达的点之间的距离测量问题.首先需要构造三角形,所以需要确定C 、D 两点.根据正弦定理中已知三角形的任意两个内角与一边既可求出另两边的方法,分别求出AC 和BC ,再利用余弦定理可以计算出AB 的距离.解:测量者可以在河岸边选定两点C 、D ,测得CD=a ,并且在C 、D 两点分别测得∠BCA=α,∠ ACD=β,∠CDB=γ,∠BDA =δ,在∆ADC 和∆BDC中,应用正弦定理得AC =)](180sin[)sin(δγβδγ++-︒+a =)sin()sin(δγβδγ+++aBC =)](180sin[sin γβαγ++-︒a =)sin(sin γβαγ++a计算出AC 和BC 后,再在∆ABC 中,应用余弦定理计算出AB 两点间的距离 AB = αcos 222BC AC BC AC ⨯-+分组讨论:还没有其它的方法呢?师生一起对不同方法进行对比、分析.变式训练:若在河岸选取相距40米的C 、D 两点,测得∠BCA=60︒,∠ACD=30︒,∠CDB=45︒,∠BDA =60︒(略解:将题中各已知量代入例2推出的公式,得AB=206)评注:可见,在研究三角形时,灵活根据两个定理可以寻找到多种解决问题的方案,但有些过程较繁复,如何找到最优的方法,最主要的还是分析两个定理的特点,结合题目条件来选择最佳的计算方式.学生阅读课本4页,了解测量中基线的概念,并找到生活中的相应例子.Ⅲ.课堂练习 课本第14页练习第1、2题Ⅳ.课时小结解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解Ⅴ.课后作业 课本第22页第1、2、3题●板书设计●授后记课题: §1.2.2解三角形应用举例(2)●教学目标知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题过程与方法:本节课是解三角形应用举例的延伸.采用启发与尝试的方法,让学生在温故知新中学会正确识图、画图、想图,帮助学生逐步构建知识框架.通过3道例题的安排和练习的训练来巩固深化解三角形实际问题的一般方法.教学形式要坚持引导——讨论——归纳,目的不在于让学生记住结论,更多的要养成良好的研究、探索习惯.作业设计思考题,提供学生更广阔的思考空间情感态度与价值观:进一步培养学生学习数学、应用数学的意识及观察、归纳、类比、概括的能力●教学重点:结合实际测量工具,解决生活中的测量高度问题●教学难点:能观察较复杂的图形,从中找到解决问题的关键条件●教学过程Ⅰ.课题导入提问:现实生活中,人们是怎样测量底部不可到达的建筑物高度呢?又怎样在水平飞行的飞机上测量飞机下方山顶的海拔高度呢?今天我们就来共同探讨这方面的问题Ⅱ.讲授新课[范例讲解]例1、AB 是底部B 不可到达的一个建筑物,A 为建筑物的最高点,设计一种测量建筑物高度AB 的方法.分析:求AB 长的关键是先求AE ,在∆ACE 中,如能求出C 点到建筑物顶部A 的距离CA ,再测出由C 点观察A 的仰角,就可以计算出AE 的长.解:选择一条水平基线HG ,使H 、G 、B 三点在同一条直线上.由在H 、G 两点用测角仪器测得A 的仰角分别是α、β,CD = a ,测角仪器的高是h ,那么,在∆ACD 中,根据正弦定理可得AC =)sin(sin βαβ-aAB = AE + h = AC αsin + h =)sin(sin sin βαβα-a + h例2、如图,在山顶铁塔上B 处测得地面上一点A 的俯角α=5404'︒,在塔底C 处测得A 处的俯角β=501'︒.已知铁塔BC 部分的高为27.3 m,求出山高CD(精确到1 m)师:根据已知条件,大家能设计出解题方案吗?(给时间给学生讨论思考)若在∆ABD 中求CD ,则关键需要求出哪条边呢?生:需求出BD 边.师:那如何求BD 边呢?生:可首先求出AB 边,再根据∠BAD=α求得.解:在∆ABC 中, ∠BCA=90︒+β,∠ABC =90︒-α,∠BAC=α- β,∠BAD=α.根据正弦定理, )sin(βα-BC = )90sin(β+︒AB ,所以 AB =)sin()90sin(βαβ-+︒BC =)sin(cos βαβ-BC 解Rt ∆ABD 中,得 BD =ABsin ∠BAD=)sin(sin cos βααβ-BC 将测量数据代入上式,得BD = )1500454sin(0454sin 150cos 3.27'-'''︒︒︒︒ =934sin 0454sin 150cos 3.27'''︒︒︒ ≈177 (m) CD =BD -BC ≈177-27.3=150(m)答:山的高度约为150米.师:有没有别的解法呢?生:若在∆ACD 中求CD ,可先求出AC .师:分析得很好,请大家接着思考如何求出AC ?生:同理,在∆ABC 中,根据正弦定理求得.(解题过程略)例3、如图,一辆汽车在一条水平的公路上向正东行驶,到A 处时测得公路南侧远处一山顶D 在东偏南15︒的方向上,行驶5km 后到达B 处,测得此山顶在东偏南25︒的方向上,仰角为8︒,求此山的高度CD.师:欲求出CD ,大家思考在哪个三角形中研究比较适合呢?生:在∆BCD 中师:在∆BCD 中,已知BD 或BC 都可求出CD,根据条件,易计算出哪条边的长?生:BC 边解:在∆ABC 中, ∠A=15︒,∠C= 25︒-15︒=10︒,根据正弦定理,A BC sin = CAB sin , BC =C A AB sin sin =︒︒10sin 15sin 5 ≈ 7.4524(km) CD=BC ⨯tan ∠DBC ≈BC ⨯tan8︒≈1047(m)答:山的高度约为1047米Ⅲ.课堂练习:课本第17页练习第1、2、3题Ⅳ.课时小结:利用正弦定理和余弦定理来解题时,要学会审题及根据题意画方位图,要懂得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化.Ⅴ.课后作业1、 课本第23页练习第6、7、8题2、 为测某塔AB 的高度,在一幢与塔AB 相距20m 的楼的楼顶处测得塔顶A 的仰角为30︒,测得塔基B 的俯角为45︒,则塔AB 的高度为多少m ?答案:20+3320(m) ●板书设计●授后记课题: §1.2.3解三角形应用举例(3)●教学目标知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关计算角度的实际问题 过程与方法:本节课是在学习了相关内容后的第三节课,学生已经对解法有了基本的了解,这节课应通过综合训练强化学生的相应能力.除了安排课本上的例1,还针对性地选择了既具典型性有具启发性的2道例题,强调知识的传授更重能力的渗透.课堂中要充分体现学生的主体地位,重过程,重讨论,教师通过导疑、导思让学生有效、积极、主动地参与到探究问题的过程中来,逐步让学生自主发现规律,举一反三.情感态度与价值观:培养学生提出问题、正确分析问题、独立解决问题的能力,并在教学过程中激发学生的探索精神.●教学重点:能根据正弦定理、余弦定理的特点找到已知条件和所求角的关系●教学难点:灵活运用正弦定理和余弦定理解关于角度的问题●教学过程Ⅰ.课题导入[创设情境]提问:前面我们学习了如何测量距离和高度,这些实际上都可转化已知三角形的一些边和角求其余边的问题.然而在实际的航海生活中,人们又会遇到新的问题,在浩瀚无垠的海面上如何确保轮船不迷失方向,保持一定的航速和航向呢?今天我们接着探讨这方面的测量问题.Ⅱ.讲授新课[范例讲解]例1.如图,一艘海轮从A 出发,沿北偏东75︒的方向航行67.5 n mile 后到达海岛B,然后从B 出发,沿北偏东32︒的方向航行54.0 n mile 后达到海岛C.如果下次航行直接从A 出发到达C,此船应该沿怎样的方向航行,需要航行多少距离?(角度精确到0.1︒,距离精确到0.01n mile)学生看图思考并讲述解题思路,教师根据学生的回答归纳分析:首先根据三角形的内角和定理求出AC 边所对的角∠ABC ,即可用余弦定理算出AC 边,再根据正弦定理算出AC 边和AB 边的夹角∠CAB .解:在∆ABC 中,∠ABC=180︒- 75︒+ 32︒=137︒,根据余弦定理, AC=ABC BC AB BC AB ∠⨯⨯-+cos 222 =︒⨯⨯⨯-+137cos 0.545.6720.545.6722 ≈113.15根据正弦定理, sin ∠CAB = AC ABC BC ∠sin = 15.113137sin 0.54︒≈0.3255, 所以 ∠CAB =19.0︒, 75︒- ∠CAB =56.0︒答:此船应该沿北偏东56.1︒的方向航行,需要航行113.15n mile例2.在某点B 处测得建筑物AE 的顶端A 的仰角为θ,沿BE 方向前进30m ,至点C 处测得顶端A 的仰角为2θ,再继续前进103m 至D 点,测得顶端A 的仰角为4θ,求θ的大小和建筑物AE 的高.师:请大家根据题意画出方位图.生:上台板演方位图(上图)教师先引导和鼓励学生积极思考解题方法,让学生动手练习,请三位同学用三种不同方法板演,然后教师补充讲评.解法一:(用正弦定理求解)由已知可得在∆ACD 中,AC=BC=30, AD=DC=103, ∠ADC =180︒-4θ,∴θ2sin 310=)4180sin(30θ-︒ . 因为 sin4θ=2sin2θcos2θ ∴ c os2θ=23,得 2θ=30︒∴ θ=15︒, ∴在Rt ∆ADE 中,AE=ADsin60︒=15答:所求角θ为15︒,建筑物高度为15m解法二:(设方程来求解)设DE= x ,AE=h在 Rt ∆ACE 中,(103+ x)2 + h 2=302在 Rt ∆ADE 中,x 2+h 2=(103)2两式相减,得x=53,h=15∴在 Rt ∆ACE 中,tan2θ=x h+310=33∴2θ=30︒,θ=15︒ 答:所求角θ为15︒,建筑物高度为15m解法三:(用倍角公式求解)设建筑物高为AE=8,由题意,得∠BAC=θ, ∠CAD=2θ, AC = BC =30m , AD = CD =103m在Rt ∆ACE 中,sin2θ=30x --------- ① 在Rt ∆ADE 中,sin4θ=3104, --------- ②②÷① 得 cos2θ=23,2θ=30︒,θ=15︒,AE=ADsin60︒=15 答:所求角θ为15︒,建筑物高度为15m例3.某巡逻艇在A 处发现北偏东45︒相距9海里的C 处有一艘走私船,正沿南偏东75︒的方向以10海里/小时的速度向我海岸行驶,巡逻艇立即以14海里/小时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才追赶上该走私船?师:你能根据题意画出方位图?教师启发学生做图建立数学模型分析:这道题的关键是计算出三角形的各边,即需要引入时间这个参变量.解:如图,设该巡逻艇沿AB 方向经过x 小时后在B 处追上走私船,则CB=10x, AB=14x,AC=9,∠ACB=︒75+︒45=︒120∴(14x) 2= 92+ (10x) 2 -2⨯9⨯10xcos ︒120∴化简得32x 2-30x-27=0,即x=23,或x=-169(舍去)所以BC = 10x =15,AB =14x =21, 又因为sin ∠BAC =AB BC ︒120sin =2115⨯23=1435 ∴∠BAC =3831'︒,或∠BAC =14174'︒(钝角不合题意,舍去),∴3831'︒+︒45=8331'︒答:巡逻艇应该沿北偏东8331'︒方向去追,经过1.4小时才追赶上该走私船.评注:在求解三角形中,我们可以根据正弦函数的定义得到两个解,但作为有关现实生活的应用题,必须检验上述所求的解是否符合实际意义,从而得出实际问题的解Ⅲ.课堂练习 课本第18页练习Ⅳ.课时小结 解三角形的应用题时,通常会遇到两种情况:(1)已知量与未知量全部集中在一个三角形中,依次利用正弦定理或余弦定理解之.(2)已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优先研究,再逐步在其余的三角形中求出问题的解. Ⅴ.课后作业1、课本第23页练习第9、10、11题2、我舰在敌岛A 南偏西︒50相距12海里的B 处,发现敌舰正由岛沿北偏西︒10的方向以10海里/小时的速度航行.问我舰需以多大速度、沿什么方向航行才能用2小时追上敌舰?(角度用反三角函数表示)●板书设计●授后记课题: §1.2.3解三角形应用举例(4)●教学目标知识与技能:能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题, 掌握三角形的面积公式的简单推导和应用过程与方法:本节课补充了三角形新的面积公式,巧妙设疑,引导学生证明,同时总结出该公式的特点,循序渐进地具体运用于相关的题型.另外本节课的证明题体现了前面所学知识的生动运用,教师要放手让学生摸索,使学生在具体的论证中灵活把握正弦定理和余弦定理的特点,能不拘一格,一题多解.只要学生自行掌握了两定理的特点,就能很快开阔思维,有利地进一步突破难点.情感态度与价值观:让学生进一步巩固所学的知识,加深对所学定理的理解,提高创新能力;进一步培养学生研究和发现能力,让学生在探究中体验愉悦的成功体验●教学重点:推导三角形的面积公式并解决简单的相关题目●教学难点:利用正弦定理、余弦定理来求证简单的证明题●教学过程Ⅰ.课题导入[创设情境]师:以前我们就已经接触过了三角形的面积公式,今天我们来学习它的另一个表达公式.在 ∆ABC 中,边BC 、CA 、AB 上的高分别记为h a 、h b 、h c ,那么它们如何用已知边和角表示? 生:h a =bsinC=csinB,h b =csinA=asinC,h c =asinB=bsinaA师:根据以前学过的三角形面积公式S=21ah,应用以上求出的高的公式如h a =bsinC 代入,可以推导出下面的三角形面积公式,S=21absinC ,大家能推出其它的几个公式吗? 生:同理可得,S=21bcsinA, S=21acsinB 师:除了知道某条边和该边上的高可求出三角形的面积外,知道哪些条件也可求出三角形的面积呢?生:如能知道三角形的任意两边以及它们夹角的正弦即可求解Ⅱ.讲授新课[范例讲解] 例1.在∆ABC 中,根据下列条件,求三角形的面积S (精确到0.1cm 2)(1)已知a=14.8cm,c=23.5cm,B=148.5︒;(2)已知B=62.7︒,C=65.8︒,b=3.16cm;(3)已知三边的长分别为a=41.4cm,b=27.3cm,c=38.7cm分析:这是一道在不同已知条件下求三角形的面积的问题,与解三角形问题有密切的关系,我们可以应用解三角形面积的知识,观察已知什么,尚缺什么?求出需要的元素,就可以求出三角形的面积.解:(1)应用S=21acsinB ,得 S=21⨯14.8⨯23.5⨯sin148.5︒≈90.9(cm 2) (2)根据正弦定理,B b sin =C c sin c = B C b sin sin S = 21bcsinA = 21b 2BA C sin sin sinA = 180︒-(B + C)= 180︒-(62.7︒+ 65.8︒)=51.5︒ S = 21⨯3.162⨯︒︒︒7.62sin 5.51sin 8.65sin ≈4.0(cm 2) (3)根据余弦定理的推论,得cosB =ca b a c 2222-+=4.417.3823.274.417.38222⨯⨯-+ ≈0.7697 sinB = B 2cos 1-≈27697.01-≈0.6384应用S=21acsinB ,得S ≈21⨯41.4⨯38.7⨯0.6384≈511.4(cm 2) 例 2.如图,在某市进行城市环境建设中,要把一个三角形的区域改造成室内公园,经过测量得到这个三角形区域的三条边长分别为68m,88m,127m,这个区域的面积是多少?(精确到0.1cm 2)?师:你能把这一实际问题化归为一道数学题目吗?生:本题可转化为已知三角形的三边,求角的问题,再利用三角形的面积公式求解.由学生解答,老师巡视并对学生解答进行讲评小结.解:设a=68m,b=88m,c=127m,根据余弦定理的推论, cosB=ca b a c 2222-+ =6812728868127222⨯⨯-+≈0.7532 sinB=≈-27532.010.6578应用S=21acsinB S ≈21⨯68⨯127⨯0.6578≈2840.38(m 2) 答:这个区域的面积是2840.38m 2.例3.在∆ABC 中,求证:(1);sin sin sin 222222CB A c b a +=+(2)2a +2b +2c =2(bccosA+cacosB+abcosC ) 分析:这是一道关于三角形边角关系恒等式的证明问题,观察式子左右两边的特点,联想到用正弦定理来证明证明:(1)根据正弦定理,可设 A a sin = B b sin = Cc sin = k 显然 k ≠0,所以左边=C k B k A k c b a 222222222sin sin sin +=+ =CB A 222sin sin sin +=右边(2)根据余弦定理的推论,右边=2(bc bc a c b 2222-++ca ca b a c 2222-++ab abc b a 2222-+) =(b 2+c 2- a 2)+(c 2+a 2-b 2)+(a 2+b 2-c 2)=a 2+b 2+c 2=左边变式练习1:已知在∆ABC 中,∠B=30︒,b=6,c=63,求a 及∆ABC 的面积S提示:解有关已知两边和其中一边对角的问题,注重分情况讨论解的个数.答案:a=6,S=93;a=12,S=183变式练习2:判断满足下列条件的三角形形状,(1)acosA = bcosB, (2)sinC =BA B A cos cos sin sin ++ 提示:利用正弦定理或余弦定理,“化边为角”或“化角为边”师:大家尝试分别用两个定理进行证明. 生1:(余弦定理)得a ⨯bc a c b 2222-+=b ⨯cab ac 2222-+ ∴c 44222)(b a b a -=-=))((2222b a b a -+,∴22222b a c b a +==或∴根据边的关系易得是等腰三角形或直角三角形生2:(正弦定理)得sinAcosA=sinBcosB,∴sin2A=sin2B, ∴2A=2B, ∴A=B∴根据边的关系易得是等腰三角形师:根据该同学的做法,得到的只有一种情况,而第一位同学的做法有两种,请大家思考,谁的正确呢?生:第一位同学的正确.第二位同学遗漏了另一种情况,因为sin2A=sin2B,有可能推出2A 与2B 两个角互补,即2A+2B=180︒,A+B=90︒(2)(解略)直角三角形Ⅲ.课堂练习 课本第21页练习第1、2题Ⅳ.课时小结 利用正弦定理或余弦定理将已知条件转化为只含边的式子或只含角的三角函数式,然后化简并考察边或角的关系,从而确定三角形的形状.特别是有些条件既可用正弦定理也可用余弦定理甚至可以两者混用.Ⅴ.课后作业 课本第23页练习第12、14、15题●板书设计●授后记。
高中数学解三角形ppt课件
证明几何定理
如勾股定理、正弦定理、余弦定理等 ,可以通过面积公式进行证明
计算三角形的内角和
利用面积公式和三角形内角和定理, 可以求出三角形的内角和
面积公式在物理问题中的应用
1 2
计算物体的受力面积
在物理学中,经常需要计算物体在某个方向上的 投影面积或受力面积,可以通过面积公式进行计 算
计算物体的体积和表面积
02 余弦定理
在任意三角形中,任何一边的平方等于其他两边 平方的和减去这两边与它们夹角的余弦的积的两 倍。
03 三角形的面积公式
S=1/2absinC,其中a、b为两边长,C为两边夹 角。
02
正弦定理及其应用
正弦定理的推导与证明
推导过程
通过三角形的外接圆和正弦函数的定义,推导出正弦定理的表达式。
一些几何性质。
最值问题
通过解三角形的方法,可以求解一 些与三角形相关的最值问题,如最 大面积、最小周长等。
存在性问题
在数学竞赛中,有时需要判断满足 某些条件的三角形是否存在,这可 以通过解三角形的方法来实现。
THANKS
感谢观看
对于一些规则或不规则的物体,可以通过计算其 各个面的面积,进而求出物体的体积和表面积
3
解决光学问题
在光学中,经常需要计算光线通过某个形状的面 积或光斑的大小,可以通过面积公式进行求解
05
解三角形综合应用举例
解直角三角形问题举例
已知两边求角度
通过正弦、余弦定理求解 直角三角形中的角度。
三角形的面积
解决三角形中的边长问题
利用正弦定理求出三角形中的未知边长。
正弦定理在物理问题中的应用
解决力学问题
在力学中,正弦定理可用于解决 涉及三角形的问题,如力的合成 与分解等。
解直角三角形(坡度和坡角)讲义
解直角三角形(坡度和坡角)一、知识点讲解1、坡角:坡面与水平面的夹角叫做坡角,记作α。
2、坡度(或坡比):坡面的铅垂高度(h )和水平长度(l )的比叫做坡面的坡度(或坡比),记作i ,即 lh i =,坡度通常写成1∶m 的形式。
3、坡度与坡角的关系: αtan ==lh i 坡度等于坡角的正切值二、典例分析题型一:利用解直角三角形解决坡度、坡角问题例1 水库大坝的横断面是梯形,坝顶宽6m ,坝高23m ,斜坡AB 的坡度i =1∶3,斜坡CD 的坡度i =1∶2.5,求:(1)坝底AD 与斜坡AB 的长度(精确到0.1m );(2)斜坡CD 的坡角α(精确到 1°)。
变式练习:1、如图,一人滑雪沿坡度为1:2斜坡滑下,下滑了距离s =100米,则此人下降的高度为( )A 、50米B 、350米C 、520米D 、550米第1题 第2题 第3题2、如图是人民广场到重百地下通道的手扶电梯示意图,其中AB 、CD 分别表示地下通道、人发广场电梯口处地面的水平线,已知∠ABC =135°,BC 的长约为25m ,则乘电梯从点B 到点C 上升的高度h 是。
3、如图,某拦河坝截面的原设计方案为:AH ∥BC ,坡角∠ABC =74°,坝顶到坝脚的距离AB =6 m .为了提高拦河坝的安全性,现将坡角改为55°,由此,点A 需向右平移至点D ,请你计算AD 的长(精确到0.1 m ).题型二:利用解直角三角形解决其它例2 如图所示,我市某中学课外活动小组的同学利用所学知识去测量釜溪河沙湾段的宽度.小宇同学在A处观测对岸C点,测得∠CAD=45°,小英同学在距A处50米远的B处测得∠CBD=30°,请你根据这些数据算出河宽.(精确到0.01米,参考数据≈1.414,≈1.732)变式练习:1、如图1是小志同学书桌上的一个电子相框,将其侧面抽象为如图2所示的几何图形,已知BC=BD=15cm,∠CBD=40°,则点B到CD的距离为cm(参考数据sin20°≈0.342,cos20°≈0.940,sin40°≈0.643,cos40°≈0.766,结果精确到0.1cm,可用科学计算器).第1题第2题2、小强和小明去测得一座古塔的高度,如图,他们在离古塔60m处(A)用测角仪测得塔顶的仰角为30°,已知测角仪高AD=1.5m,则古塔的高BE为。
初中数学解直角三角形综合讲义
1 B 初中数学解直角三角形综合讲义一、理解概念1.产生的背景:直角三角形中三边和三角的数量关系2 明确概念:解直角三角形阐述概念:在直角三角形中,除直角外,一共有5个元素,即三条边和2个锐角。
由直角三角形中除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形定对象:特殊的求解过程定角度:已知元素新事物:求出未知元素举例:在△举例:在△ABC ABC 中,∠中,∠C C 为直角,∠为直角,∠A A ,∠,∠B B ,∠,∠C C 所对的边分别为a ,b ,c ,且c=287.4c=287.4,,∠B=42B=42°°6′,解这个直角三角形。
解:(1)∠)∠A=90A=90A=90°°- 42- 42°°6′=47=47°°5454′′(2)∵)∵ cosB= cosB=c a, , ∴∴a=c cosB=287.4a=c cosB=287.4××0.74200.7420≈≈213.3 (3)∵)∵ sinB= sinB=cb, , ∴∴b=c sinB=287.4b=c sinB=287.4××0.67040.6704≈≈192.7二、研究概念1.1.条件:条件:直角三角形2.2.构成和本质构成和本质 [ [边边] ] 两条直角边两条直角边 [ [角角] ] 有一个直角有一个直角 [ [角角]] 两锐角互余两锐角互余3.3.特征:特征: [[角角] ] 两锐角互余,∠两锐角互余,∠两锐角互余,∠A+A+A+∠∠B=90B=90°°[边] ] 勾股定理,勾股定理,勾股定理,a a 2+b 2=c2[等式的性质等式的性质] a ] a 2 =c 2—b2b 2=c 2—a2勾股定理逆定理[ [边、角边、角边、角] ] ] 锐角三角函数锐角三角函数 [ [重要线段重要线段重要线段] ] ] 直角三角形斜边上的中线等于斜边的一半直角三角形斜边上的中线等于斜边的一半[圆] ] 直角三角形三顶点共圆,圆心是斜边的中点直角三角形三顶点共圆,圆心是斜边的中点 [ [特殊角特殊角特殊角] 30] 30] 30°角所对的直角边是斜边的一半°角所对的直角边是斜边的一半 45 45°角所对的直角边是斜边的°角所对的直角边是斜边的22倍4.4.下位下位无5.5.应用:应用:三、例题讲解1、在R t R t△△ABC 中,中,AD AD 是斜边BC 上的高,如果BC= a BC= a,∠,∠,∠B=B=α,那么AD 等于等于 (( )) ((A 级)级) A A、、 asin 2α B B、、acos 2α C C、、asin αcos α D D、、asin αtan α 对象:对象:对象:R t R t R t△△ABC 中,中,AD AD AD 角度:角度:角度: 三角函数三角函数三角函数分析:分析:R t R t R t△△ABC cosB=BC AB cos α= aAB AB= a AB= a··cos αR t R t△△ABD sin α=ABADAD= sin α·AB AD= asin αcos α2、 正方形ABCD 中,对角线BD 上一点P ,BP∶PD=1∶2,且P 到边的距离为2,则正方形的边长是,则正方形的边长是 ,BD=对象:正方形ABCD 对角线BD 上的点P P 角度:角度:角度: 直角三角形直角三角形 分析:设P 到边的距离为PE PE。
最全面的解三角形讲义
解三角形【高考会这样考】1.考查正、余弦定理的推导过程.2.考查利用正、余弦定理判断三角形的形状. 3.考查利用正、余弦定理解任意三角形的方法.4.考查利用正弦定理、余弦定理解决实际问题中的角度、方向、距离及测量问题.基础梳理1.正弦定理:a sin A =b sin B =csin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形为:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ; (2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R等形式,以解决不同的三角形问题.2.余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形为:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.3.面积公式:S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (R 是三角形外接圆半径,r 是三角形内切圆的半径),并可由此计算R ,r .4.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a ,b ,A ,则A 为锐角A 为钝角或直角图形关系 式 a <b sin A a =b sin A b sin A <a <b a ≥b a >b a ≤b解的 个数无解 一解 两解 一解 一解 无解5.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等. 6.实际问题中的常用角 (1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图(1)). (2)方位角指从正北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图(2)). (3)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏东60°等. (4)坡度:坡面与水平面所成的二面角的度数.考向探究题型一 正弦余弦定理运用【例题1】在△ABC 中,已知a=3,b=2,B=45°,求A 、C 和c. 【例题2】 在△ABC 中,a 、b 、c 分别是角A ,B ,C 的对边,且C B cos cos =-ca b+2.(1)求角B 的大小;(2)若b=13,a+c=4,求△ABC 的面积.【例题3】 (14分)△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且b 2+c 2-a 2+bc=0. (1)求角A 的大小;(2)若a=3,求bc 的最大值; (3)求cb C a --︒)30sin(的值.【变式】1.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c=2,b=6,B=120°,则a= .2.(1)△ABC 中,a=8,B=60°,C=75°,求b; (2)△ABC 中,B=30°,b=4,c=8,求C 、A 、a.3.在△ABC 中,A=60°,AB=5,BC=7,则△ABC 的面积为 .4.已知△ABC 中,三个内角A ,B ,C 的对边分别为a,b,c,若△ABC 的面积为S ,且2S=(a+b )2-c 2,求tanC 的值.5. 在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c.若(3b-c )cosA=acosC ,则cosA= .6. 在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tanB=3ac ,则角B 的值为 . 7. 在△ABC 中,内角A 、B 、C 对边的边长分别是a 、b 、c.已知c=2,C=3π. (1)若△ABC 的面积等于3,求a 、b 的值; (2)若sinC+sin(B-A)=2sin2A,求△ABC 的面积. 题型二 判断三角形形状【例题】在△ABC 中,a 、b 、c 分别表示三个内角A 、B 、C 的对边,如果(a 2+b 2)sin (A-B )=(a 2-b 2)sin (A+B ),判断三角形的形状.【变式】 已知△ABC 的三个内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等差数列,且2cos2B-8cosB+5=0,求角B 的大小并判断△ABC 的形状. 题型三 测量距离问题 【例题】如图所示,为了测量河对岸A ,B 两点间的距离,在这岸定一基线CD ,现已测出CD =a 和∠ACD =60°,∠BCD =30°,∠BDC =105°,∠ADC =60°,试求AB 的长.【变式】 如图,A ,B ,C ,D 都在同一个与水平面垂直的平面内,B 、D 为两岛上的两座灯塔的塔顶,测量船于水面A 处测得B 点和D 点的仰角分别为75°,30°,于水面C 处测得B 点和D 点的仰角均为60°,AC =0.1 km.试探究图中B 、D 间距离与另外哪两点间距离相等,然后求B ,D 的距离. 题型四 测量高度问题【例题】如图,山脚下有一小塔AB ,在塔底B 测得山顶C 的仰角为60°,在山顶C 测得塔顶A 的俯角为45°,已知塔高AB =20 m ,求山高CD .【变式】如图所示,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D ,现测得∠BCD =α,∠BDC =β,CD =s ,并在点C 测得塔顶A 的仰角为θ,求塔高AB . 题型五 正、余弦定理在平面几何中的综合应用【例题】如图所示,在梯形ABCD 中,AD ∥BC ,AB =5,AC =9,∠BCA =30°,∠ADB =45°,求BD 的长. 【变式】 如图,在△ABC 中,已知∠B =45°,D 是BC 边上的一点,AD =10,AC =14,DC =6,求AB 的长.巩固训练1.在△ABC 中,若2cosBsinA=sinC,则△ABC 一定是 三角形.2.在△ABC 中,A=120°,AB=5,BC=7,则CB sin sin 的值为 .3.已知△ABC 的三边长分别为a,b,c,且面积S △ABC =41(b 2+c 2-a 2),则A= .4.在△ABC 中,BC=2,B=3π,若△ABC 的面积为23,则tanC 为 .5.在△ABC 中,a 2-c 2+b 2=ab,则C= .6.△ABC 中,若a 4+b 4+c 4=2c 2(a 2+b 2),则C= .7.在△ABC 中,角A ,B ,C 所对的边分别为a,b,c ,若a=1,b=7,c=3,则B= . 8.某人向正东方向走了x 千米,他右转150°,然后朝新方向走了3千米,结果他离出发点恰好3千米,那么x 的值是 .9.下列判断中不正确的结论的序号是 . ①△ABC 中,a=7,b=14,A=30°,有两解 ②△ABC 中,a=30,b=25,A=150°,有一解 ③△ABC 中,a=6,b=9,A=45°,有两解 ④△ABC 中,b=9,c=10,B=60°,无解10. 在△ABC 中,角A ,B ,C 所对的边分别为a,b,c ,并且a 2=b(b+c). (1)求证:A=2B ;(2)若a=3b,判断△ABC 的形状. 11. 在△ABC 中,cosB=-135,cosC=54.(1)求sinA 的值;(2)△ABC 的面积S △ABC =233,求BC 的长.12.已知a 、b 、c 是△ABC 的三边长,关于x 的方程ax 2-222b c - x-b=0 (a >c >b)的两根之差的平方等于4,△ABC 的面积S=103,c=7. (1)求角C ; (2)求a ,b 的值. 13. 在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知a+b=5,c=7,且4sin 22B A +-cos2C=27.(1)求角C 的大小; (2)求△ABC 的面积.14.(人教A 版教材习题改编)如图,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为( ). A .50 2 m B .50 3 m C .25 2 m D.2522 m15.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为( ). A .α>β B .α=β C .α+β=90° D .α+β=180° 16.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( ). A .北偏东15° B .北偏西15° C .北偏东10° D .北偏西10°17.一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时( ). A .5海里 B .53海里C .10海里 D .103海里18.海上有A ,B ,C 三个小岛,测得A ,B 两岛相距10海里,∠BAC =60°,∠ABC =75°,则B ,C 间的距离是________海里.19.如图,甲船以每小时302海里的速度向正北方航行,乙船按固定方向匀速直线航行.当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里,当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距102海里.问:乙船每小时航行多少海里? 参考答案例题答案题型一 正弦、余弦定理 【例题1】 解 ∵B=45°<90°且asinB <b <a,∴△ABC 有两解.由正弦定理得sinA=b B a sin =245sin 3︒ =23, 则A 为60°或120°.①当A=60°时,C=180°-(A+B)=75°, c=BCb sin sin =︒︒45sin 75sin 2=︒︒+︒45sin )3045sin(2=226+.②当A=120°时,C=180°-(A+B)=15°, c=B C b sin sin =︒︒45sin 15sin 2=︒︒-︒45sin )3045sin(2=226-. 故在△ABC 中,A=60°,C=75°,c=226+或 A=120°,C=15°,c=226-. 【例题2】 解(1)由余弦定理知:cosB=ac b c a 2222-+,cosC=ab c b a 2222-+.将上式代入C B cos cos =-ca b+2得:ac b c a 2222-+·2222cb a ab -+=-c a b +2 整理得:a 2+c 2-b 2=-ac∴cosB=acb c a 2222-+=ac ac2- =-21∵B 为三角形的内角,∴B=32π.(2)将b=13,a+c=4,B=32π代入b 2=a 2+c 2-2accosB,得b 2=(a+c)2-2ac-2accosB ∴b 2=16-2ac ⎪⎭⎫ ⎝⎛-211,∴ac=3.∴S △ABC =21acsinB=433. 【例题3】解(1)∵cosA=bca cb 2222-+=bc bc2-=-21, 又∵A ∈(0°,180°),∴A=120°.(2)由a=3,得b 2+c 2=3-bc,又∵b 2+c 2≥2bc (当且仅当c=b 时取等号),∴3-bc ≥2bc(当且仅当c=b 时取等号). 即当且仅当c=b=1时,bc 取得最大值为1.(3)由正弦定理得:===CcB b A a sin sin sin 2R, ∴CR B R C A R c b C a sin 2sin 2)30sin(sin 2)30sin(--︒=--︒=C B C A sin sin )30sin(sin --︒ =CC C C sin )60sin()sin 23cos 21(23--︒- C C C C sin 23cos 23)sin 43cos 43--==21【变式】1.22. 解(1)由正弦定理得BbA a sin sin =. ∵B=60°,C=75°,∴A=45°,∴b=︒︒⨯=45sin 60sin 8sin sin A B a =46. (2)由正弦定理得sinC=430sin 8sin ︒=b B c =1. 又∵30°<C <150°,∴C=90°.∴A=180°-(B+C)=60°,a=22b c -=43. 3. 1034. 解 依题意得absinC=a 2+b 2-c 2+2ab, 由余弦定理知,a 2+b 2-c 2=2abcosC. 所以,absinC=2ab(1+cosC), 即sinC=2+2cosC,所以2sin2C cos 2C =4cos 22C 化简得:tan 2C=2.从而tanC=2tan 12tan22C C -=-34. 5.336. 3π或32π7. 解 (1)由余弦定理及已知条件,得a 2+b 2-ab=4.又因为△ABC 的面积等于3, 所以21absinC=3,所以ab=4. 联立方程组⎪⎩⎪⎨⎧==-+,4,422ab ab b a 解得⎩⎨⎧==22b a .(2)由题意得sin(B+A)+sin(B-A)=4sinAcosA,即sinBcosA=2sinAcosA, 当cosA=0时,A=2π,B=6π,a=334,b=332. 当cosA ≠0时,得sinB=2sinA,由正弦定理得b=2a,联立方程组⎪⎩⎪⎨⎧==-+,2,422a b ab b a 解得⎪⎪⎩⎪⎪⎨⎧==.334332b ,a所以△ABC 的面积S=21absinC=332. 题型二 判断三角形形状【例题】 解方法一 已知等式可化为a 2[sin (A-B )-sin (A+B )]=b 2[-sin (A+B )-sin(A-B)] ∴2a 2cosAsinB=2b 2cosBsinA 由正弦定理可知上式可化为:sin 2AcosAsinB=sin 2BcosBsinA ∴sinAsinB(sinAcosA-sinBcosB)=0 ∴sin2A=sin2B,由0<2A,2B <2π 得2A=2B 或2A=π-2B, 即A=B 或A=2π-B,∴△ABC 为等腰或直角三角形. 方法二 同方法一可得2a 2cosAsinB=2b 2sinAcosB 由正、余弦定理,可得a 2b bca cb 2222-+= b 2a ac b c a 2222-+∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2)即(a 2-b 2)(a 2+b 2-c 2)=0 ∴a=b 或a 2+b 2=c 2∴△ABC 为等腰或直角三角形.【变式】 解 方法一 ∵2cos2B-8cosB+5=0, ∴2(2cos 2B-1)-8cosB+5=0. ∴4cos 2B-8cosB+3=0, 即(2cosB-1)(2cosB-3)=0.解得cosB=21或cosB=23(舍去).∴cosB=21. ∵0<B <π,∴B=3π.∵a ,b ,c 成等差数列,∴a+c=2b. ∴cosB=acbc a 2222-+=acc a c a 2)2(222+-+=21, 化简得a 2+c 2-2ac=0,解得a=c. 又∵B=3π,∴△ABC 是等边三角形. 方法二 ∵2cos2B-8cosB+5=0, ∴2(2cos 2B-1)-8cosB+5=0. ∴4cos 2B-8cosB+3=0, 即(2cosB-1)(2cosB-3)=0.解得cosB=21或cosB=23(舍去). ∴cosB=21,∵0<B <π,∴B=3π,∵a,b,c 成等差数列,∴a+c=2b. 由正弦定理得sinA+sinC=2sinB=2sin 3π=3. ∴sinA+sin ⎪⎭⎫⎝⎛-A 32π=3, ∴sinA+sin A cos 32π-cos A sin 32π=3. 化简得23sinA+23cosA=3,∴sin ⎪⎭⎫ ⎝⎛+6πA =1. ∴A+6π=2π,∴A=3π, ∴C=3π,∴△ABC 为等边三角形.题型三 测量距离问题【例题】解 在△ACD 中,已知CD =a ,∠ACD =60°,∠ADC =60°,所以AC =a .∵∠BCD =30°,∠BDC =105°∴∠CBD =45°在△BCD 中,由正弦定理可得BC =a sin 105°sin 45°=3+12a .在△ABC 中,已经求得AC 和BC ,又因为∠ACB =30°,所以利用余弦定理可以求得A ,B 两点之间的距离为AB =AC 2+BC 2-2AC ·BC ·cos 30°=22a . 【变式】解 在△ACD 中,∠DAC =30°,∠ADC =60°-∠DAC =30°,所以CD =AC =0.1 km.又∠BCD =180°-60°-60°=60°,故CB 是△CAD 底边AD 的中垂线,所以BD =BA . 又∵∠ABC =15°在△ABC 中,AB sin ∠BCA =ACsin ∠ABC ,所以AB =AC sin 60°sin 15°=32+620(km),同理,BD =32+620(km).故B 、D 的距离为32+620 km.题型四 测量高度问题【例题】解 如图,设CD =x m , 则AE =x -20 m , tan 60°=CD BD,∴BD =CD tan 60°=x 3=33x (m).在△AEC 中,x -20=33x , 解得x =10(3+3) m .故山高CD 为10(3+3) m. 【变式】解 在△BCD 中,∠CBD =π-α-β, 由正弦定理得BC sin ∠BDC =CDsin ∠CBD ,所以BC =CD sin ∠BDCsin ∠CBD =s ·sin βsin α+β在Rt △ABC 中,AB =BC tan ∠ACB =s tan θsin βsin α+β.题型五 正、余弦定理在平面几何中的综合应用 【例题】解 在△ABC 中,AB =5,AC =9,∠BCA =30°. 由正弦定理,得AB sin ∠ACB =ACsin ∠ABC,sin ∠ABC =AC ·sin ∠BCA AB =9sin 30°5=910.∵AD ∥BC ,∴∠BAD =180°-∠ABC , 于是sin ∠BAD =sin ∠ABC =910.同理,在△ABD 中,AB =5,sin ∠BAD =910,∠ADB =45°,由正弦定理:AB sin ∠BDA =BDsin ∠BAD,解得BD =922.故BD 的长为922.【变式】解 在△ADC 中,AD =10,AC =14,DC =6,由余弦定理得cos ∠ADC =AD 2+DC 2-AC 22AD ·DC=100+36-1962×10×6=-12,∴∠ADC =120°,∴∠ADB =60°.在△ABD 中,AD =10,∠B =45°,∠ADB =60°, 由正弦定理得AB sin ∠ADB =ADsin B,∴AB =AD ·sin ∠ADB sin B =10sin 60°sin 45°=10×3222=5 6巩固训练1. 等腰;2.53;3. 45°;4. 33;5. 60°;6. 45°或135°;7. 65π; 8. 3或23;9. ①③④10.(1)证明 因为a 2=b(b+c),即a 2=b 2+bc, 所以在△ABC 中,由余弦定理可得,cosB=acb c a 2222-+=ac bc c 22+=a cb 2+=ab a 22=b a 2=BA sin 2sin , 所以sinA=sin2B,故A=2B. (2)解 因为a=3b,所以ba=3, 由a 2=b(b+c)可得c=2b,cosB=ac b c a 2222-+=22223443b b b b -+=23,所以B=30°,A=2B=60°,C=90°. 所以△ABC 为直角三角形.11. 解 (1)由cosB=-135,得sinB=1312, 由cosC=54,得sinC=53.所以sinA=sin(B+C)=sinBcosC+cosBsinC=6533. (2)由S △ABC =233,得21×AB×AC×sinA=233. 由(1)知sinA=6533,故AB×AC=65.又AC=CB AB sin sin ⨯=1320AB,故1320AB 2=65,AB=213. 所以BC=CA AB sin sin ⨯=211.12. 解 (1)设x 1、x 2为方程ax 2-222b c -x-b=0的两根,则x 1+x 2=ab c 222-,x 1·x 2=-a b .∴(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=222)(4a b c -+ab4=4. ∴a 2+b 2-c 2=ab. 又cosC=abc b a 2222-+=ab ab 2=21, 又∵C ∈(0°,180°),∴C=60°. (2)S=21absinC=103,∴ab =40 ……① 由余弦定理c 2=a 2+b 2-2abcosC, 即c 2=(a+b)2-2ab(1+cos60°). ∴72=(a+b)2-2×40×⎪⎭⎫⎝⎛+211.∴a+b=13.又∵a >b ……②∴由①②,得a=8,b=5.13. 解 (1)∵A+B+C=180°,由4sin 22B A +-cos2C=27, 得4cos 22C-cos2C=27,∴4·2cos 1C +-(2cos 2C-1)=27,整理,得4cos 2C-4cosC+1=0,解得cosC=21, ∵0°<C <180°,∴C=60°.(2)由余弦定理得c 2=a 2+b 2-2abcosC, 即7=a 2+b 2-ab,∴7=(a+b)2-3ab , 由条件a+b=5,得7=25-3ab,ab=6, ∴S △ABC =21absinC=21×6×23=233. 14.解析 由正弦定理得AB sin ∠ACB =ACsin B ,又∵B =30°∴AB =AC ·sin ∠ACBsin B =50×2212=502(m).答案 A15.解析 根据仰角与俯角的定义易知α=β. 答案 B 16.解析 如图. 答案 B17.解析 如图所示,依题意有∠BAC =60°,∠BAD =75°,所以∠CAD =∠CDA =15°,从而CD =CA =10(海里),在Rt △ABC 中,得AB =5(海里),于是这艘船的速度是50.5=10(海里/时). 答案 C18.解析 由正弦定理,知BC sin 60°=ABsin 180°-60°-75.解得BC =56(海里).答案 5 619.如图,连接A 1B 2由已知A 2B 2=102,A 1A 2=302×2060=102,∴A 1A 2=A 2B 2.又∠A 1A 2B 2=180°-120°=60°, ∴△A 1A 2B 2是等边三角形,∴A 1B 2=A 1A 2=10 2.由已知,A 1B 1=20, ∠B 1A 1B 2=105°-60°=45°,(8分) 在△A 1B 2B 1中,由余弦定理得B 1B 22=A 1B 21+A 1B 22-2A 1B 1·A 1B 2·cos 45°=202+(102)2-2×20×102×22=200, ∴B 1B 2=10 2.因此,乙船的速度为10220×60=302(海里/时).(12分)11。
解三角形PPT演示课件
振动分析
在振动分析中,经常需要研究物体的振动规律。通过使用三角函数和解三角形的方法, 可以分析出物体的振动频率、振幅和相位等参数,进而对物体的振动特性进行分析和预
测。
06
总结与展望
解三角形的意义
三角形是几何学中最基础、最重要的图形之一,解三角形是 研究三角形的重要手段之一。通过解三角形,我们可以了解 三角形的性质、特点、变化规律等,为几何学、物理学、工 程学等领域提供重要的理论支撑和实践指导。
解三角形的方法
解三角形的方法有很多种, 包括正弦定理、余弦定理、 勾股定理等。
三角形的重要性
三角形在日常生活中的应用
三角形在日常生活中的应用非常广泛,如建筑、工程、航海、航 空等领域。
三角形在数学中的地位
三角形是几何学中最基础和最重要的图形之一,对于几何学的发展 和应用具有重要意义。
三角形在物理学中的应用
角度和为180度
三角形的三个内角之和为180度。
边与角之间的关系
正弦定理
在一个三角形中,任意一边与其对应 角的正弦值的比等于三角形的外接圆 直径。
余弦定理
在一个三角形中,任意一边的平方等 于其他两边平方和减去两倍的这两边 与它们夹角的余弦的积。
03
解三角形的工具
三角函数
三角函数是解三角形的重要工具,用于描述三角形中各角度和边长之间的关系。 常用的三角函数包括正弦、余弦、正切等,它们在解三角形问题中发挥着关键作用。
掌握三角函数的性质和公式,能够快速解决各种解三角形问题。
余弦定理
余弦定理是解三角形的一个重要 定理,用于计算三角形各边的长
度。
定理公式为:c²=a²+b²2abcosC,其中a、b、c分别代 表三角形的三条边边和夹角,或者已 知的三边,利用余弦定理可以求
高中数学竞赛第七章 解三角形【讲义】
第七章 解三角形一、基础知识在本章中约定用A ,B ,C 分别表示△ABC 的三个内角,a, b, c 分别表示它们所对的各边长,2cb a p ++=为半周长。
1.正弦定理:CcB b A a sin sin sin ===2R (R 为△ABC 外接圆半径)。
推论1:△ABC 的面积为S △ABC =.sin 21sin 21sin 21B ca A bc C ab ==推论2:在△ABC 中,有bcosC+ccosB=a. 推论3:在△ABC 中,A+B=θ,解a 满足)sin(sin a ba a -=θ,则a=A. 正弦定理可以在外接圆中由定义证明得到,这里不再给出,下证推论。
先证推论1,由正弦函数定义,BC 边上的高为bsinC ,所以S △ABC =C ab sin 21;再证推论2,因为B+C=π-A ,所以sin(B+C)=sinA ,即sinBcosC+cosBsinC=sinA ,两边同乘以2R 得bcosC+ccosB=a ;再证推论3,由正弦定理BbA a sin sin =,所以)sin()sin(sin sin A a A a --=θθ,即sinasin(θ-A)=sin(θ-a)sinA ,等价于21-[cos(θ-A+a)-cos(θ-A-a)]=21-[cos(θ-a+A)-cos(θ-a-A)],等价于cos(θ-A+a)=cos(θ-a+A),因为0<θ-A+a ,θ-a+A<π. 所以只有θ-A+a=θ-a+A ,所以a=A ,得证。
2.余弦定理:a 2=b 2+c 2-2bccosA bca cb A 2cos 222-+=⇔,下面用余弦定理证明几个常用的结论。
(1)斯特瓦特定理:在△ABC 中,D 是BC 边上任意一点,BD=p ,DC=q ,则AD 2=.22pq qp qc p b -++ (1)【证明】 因为c 2=AB 2=AD 2+BD 2-2AD ·BDcos ADB ∠, 所以c 2=AD 2+p 2-2AD ·pcos .ADB ∠ ① 同理b 2=AD 2+q 2-2AD ·qcos ADC ∠, ② 因为∠ADB+∠ADC=π,所以cos ∠ADB+cos ∠ADC=0, 所以q ×①+p ×②得qc 2+pb 2=(p+q)AD 2+pq(p+q),即AD 2=.22pq qp qc p b -++ 注:在(1)式中,若p=q ,则为中线长公式.222222a c b AD -+=(2)海伦公式:因为412=∆ ABC S b 2c 2sin 2A=41b 2c 2(1-cos 2A)=41b 2c 21614)(1222222=⎥⎦⎤⎢⎣⎡-+-c b a c b [(b+c)2-a 2][a 2-(b-c) 2]=p(p-a)(p-b)(p-c). 这里.2cb a p ++=所以S △ABC =).)()((c p b p a p p ---二、方法与例题1.面积法。
解三角形完整讲义
正余弦定理知识要点:1、正弦定理:2sin sin sin a b c R A B C===或变形:::sin :sin :sin a b c A B C =. 2、余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩ 或 222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩. 3、解斜三角形的常规思维方法是:(1)已知两角和一边(如A 、B 、C ),由A+B+C = π求C ,由正弦定理求a 、b ;(2)已知两边和夹角(如a 、b 、c ),应用余弦定理求c 边;再应用正弦定理先求较短边所对的角,然后利用A+B+C = π,求另一角;(3)已知两边和其中一边的对角(如a 、b 、A ),应用正弦定理求B ,由A+B+C = π求C ,再由正弦定理或余弦定理求c 边,要注意解可能有多种情况;(4)已知三边a 、b 、c ,应余弦定理求A 、B ,再由A+B+C = π,求角C 。
4、判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.5、解三角形问题可能出现一解、两解或无解的情况,这时应结合“三角形边对大角定理及几何作图来帮助理解”。
6、已知三角形两边a,b,这两边夹角C ,则S =1/2 * absinC7、三角学中的射影定理:在△ABC 中,A c C a b cos cos ⋅+⋅=,…8、两角与其正弦值:在△ABC 中,B A B A sin sin <⇔<,…【例题】在锐角三角形ABC 中,有 ( B )A .cosA>sinB 且cosB>sinA B .cosA<sinB 且cosB<sinAC .cosA>sinB 且cosB<sinAD .cosA<sinB 且cosB>sinA9、三角形切圆的半径:2S r a b c ∆=++,特别地,2a b c r +-=斜直正弦定理专题:公式的直接应用1、已知ABC △中,a =b =60B =,那么角A 等于( )A .135B .90C .45D .30 2、在△ABC 中,a =32,b =22,B =45°,则A 等于( C ) A .30° B .60° C .60°或120° D . 30°或150°3、ABC △的角A B C ,,的对边分别为a b c ,,,若120c b B ===,则等于( )AB .2 CD4、已知△ABC 中,30A =,105C =,8b =,则a 等于( B )A .4 B. C. D.5、在△ABC 中,a =10,B=60°,C=45°,则c 等于 (B )A .310+B .()1310-C .13+D .3106、已知ABC ∆的角A ,B ,C 所对的边分别为a ,b ,c ,若31sin =A ,B b sin 3=,则a 等于 . (33) 7、△ABC 中,45B =,60C =,1c =,则最短边的边长等于( A )A .3 B. 2 C . 12 D . 2a8、△ABC 中,:1:2A B =,C 的平分线CD 把三角形面积分成3:2两部分,则cos A =( C ) A .13 B .12 C .34D .0 9、在△ABC 中,证明:2222112cos 2cos b a b B a A -=-。
(完整版)解三角形完整讲义
正余弦定理知识要点:3、解斜三角形的常规思维方法是:(1)已知两角和一边(如 A 、 B 、 C ),由 A+B+C = π求 C ,由正弦定理求 a 、b ; (2)已知两边和夹角(如 a 、b 、c ),应用余弦定理求 c 边;再应用正弦定理先求较短边所 对的角,然后利用 A+B+C = π,求另一角;(3)已知两边和其中一边的对角(如 a 、b 、A ),应用正弦定理求 B ,由 A+B+C = π求 C , 再由正弦定理或余弦定理求 c 边,要注意解可能有多种情况;(4)已知三边 a 、b 、c ,应余弦定理求 A 、B ,再由 A+B+C = π,求角 C 。
4、判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式5、解三角形问题可能出现一解、两解或无解的情况,这时应结合“三角形中大边对大角定 理及几何作图来帮助理解” 。
6、已知三角形两边 a,b,这两边夹角 C ,则 S =1/2 * absinC7、三角学中的射影定理:在△ ABC 中, b a cosC c cosA ,⋯8、两内角与其正弦值:在△ ABC 中, A B sin A sinB ,例题】在锐角三角形 ABC 中,有 (A . cosA>sinB 且 cosB>sinAC . cosA>sinB 且 cosB<sinA正弦定理专题:公式的直接应用1、已知 △ ABC 中, a2,b 3, B 60o ,那么角 A 等于( )A . 135oB . 90oC .45oD .30o2、在△ ABC 中, a = 2 3 ,b = 2 2 , B = 45°,则 A 等于( C )A .30°B . 60°C .60°或 120°D . 30°或 150°3、△ABC 的内角 A ,B ,C 的对边分别为 a , b ,c ,若 c 2,b 6,B 120o ,则 a1、 正弦定理a sin Ab sin B 2R 或变形: a:b:c sinCsin A :sin B :sin C .2a b 22c 2bc cos AcosA2、余弦定理:b 22a 2 c 2accosB 或 cosB2cb 2 2 a 2ba cosCcosCb 22c 2 a2bc222a cb 22ac222b 2a c2abB )B . cosA<sinB 且 cosB<sinA D . cosA<sinB 且 cosB>sinA9、三角形内切圆的半径:2S bc,特别地, r 直a b c 斜616、已知 ABC 的内角 A , B ,C 所对的边分别为 a ,b ,c ,若sin A ,b3sinB ,33则 a 等于 . ( 3 )336 12 6,12 6 24)2、已知 △ ABC 的周长为 2 1,且sinA sinB 2sinC .(1)求边 AB 的长;1(2)若 △ ABC 的面积为 sin C ,求角 C 的度数.专题:三角形个数4、已知△ ABC中,A 30o , C 105o , b 8,则 a 等于(B )A . 4B.4 2C.4 3D.4 55、在△ ABC 中,a=10,B=60°,C=45° ,则 c 等于 ( B)A . 10 3B . 10 3 1C . 3 1D . 10 3C . 3D . 2等于( )A . 6B .27、△ ABC 中, B 45o,C60o , c 1,则最短边的边长等于(B.3: 2两部分,则 cosA ( C )1 13 A .B .C .324cos2Acos2B119、在△ ABC 中,证2222ab 2a 2b 2D .0证明:cos2Acos2B 1 2sin 2 Ab 21 2sin2 Bb 21 1 sin2 A sin 2 B 222 2 2a b a b由正弦定理得:sin 2 Aa 22sinb 2cos2A 2a专题:两边之和1、在△ ABC 中,A =60°, B =45°, cos2B b 21b 2ab 12, a =;b = .8、△ ABC 中,A:B1: 2,C 的平分线 CD 把三角形面积分成1、△ ABC中,∠ A=60°, a= 6 , b=4, 那么满足条件的△ ABC ( C ) A.有一个解 B.有两个解C.无解D.不能确定2、Δ ABC中,a=1,b= 3 , ∠ A=30° ,则∠ B等于( B )A.60°B.60°或120° C.30°或150° D.120°3、在△ ABC 中,根据下列条件解三角形,则其中有两个解的是( D )A.b = 10,A = 45°, B = 70°B.a = 60,c = 48,B = 100°C.a = 7,b = 5,A = 80°D.a = 14,b = 16,A = 45°4、符合下列条件的三角形有且只有一个的是( D )A.a=1,b=2 ,c=3 B.a=1,b= 2 ,∠ A=30°专题:等比叠加D. 32专题:变式应用1、在△ ABC中,若∠ A:∠ B:∠C=1:2:3,则a : b : c 1: 3:22、已知△ABC中,a∶b∶c=1∶3 ∶2,则A∶B∶C等于( A )A.1∶2∶3B.2∶3∶1C.1:3:2D.3:1:23、在△ ABC 中,周长为7.5cm ,且sinA :sinB:sinC=4:5:6,下列结论:① a:b:c4:5:6② a:b:c 2: 5 : 6 ③a2cm,b 2.5cm,c 3cm④ A: B:C 4:5:6其中成立的个数是( C )A.0 个B. 1 个C.2个D.3个5、C.a=1,b=2,∠ A=100°C.b=c=1, ∠B=45°在△ ABC中,a=12,b=13,C=60°,此三角形的解的情况是(A.无解B.一解C.二解B)D.不能确定6、满足A=45 ,c= 6 ,a=2 的△ ABC 的个数记为m, 则 a m 的值为( A )7、8、A.4 B.2 C.1 D.不定已知△ ABC 中,a181,b 209,A 121 ,则此三角形解的情况是无解在△ ABC中,已知50 3 ,c 150 ,B 30o,则边长a。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正余弦定理知识要点:1、正弦定理:或变形:2、余弦定理:或3、解斜三角形的常规思维方法是:(1 )已知两角和一边(如A、B C),由A+B+C = n求C,由正弦定理求a、b;(2)已知两边和夹角(如a、b、c),应用余弦定理求c边;再应用正弦定理先求较短边所对的角,然后利用A+B+C = n求另一角;(3)已知两边和其中一边的对角(如a、b、A),应用正弦定理求B,由A+B+C = n求C, 再由正弦定理或余弦定理求c边,要注意解可能有多种情况;(4)已知三边a、b、c,应余弦定理求A、B,再由A+B+C = n求角C。
4、判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式•5、解三角形问题可能出现一解、两解或无解的情况,这时应结合三角形中大边对大角定理及几何作图来帮助理解”。
6、已知三角形两边a,b,这两边夹角C,则S = 1/2 * absinC7、三角学中的射影定理:在△ ABC中,,… &两内角与其正弦值:在△ ABC中,,…【例题】在锐角三角形ABC中,有(B )A. cosA>sinB 且cosB>sinAB. cosA<sinB且cosB<sinAC. cosA>sinB 且cosB<sinAD. cosA<sinB且cosB>sinA9、三角形内切圆的半径:,特别地,正弦定理专题:公式的直接应用1、已知中,,,,那么角等于()A. B. C. D.2、在厶AB(中, a=, b =, B= 45°贝U A 等于(C )A. 30 °B. 60 °C. 60 或120 ° D 30 或1503、的内角的对边分别为,若,则等于()A. B. 2 C. D.4、已知△ AB(中,,,则a等于(B )A. B. C. D.5、在△ AB(中, = 10 , B=60° ,C=4则等于(B )A. B. C. D.6、已知的内角,,所对的边分别为,,,若,,则等于.()7、△ AB(中,,,,则最短边的边长等于(A )A . B. C . D .& △ AB(中,,的平分线把三角形面积分成两部分,则( C )A .B .C .D .9、在△ AB(中,证明:。
证明:由正弦定理得:专题:两边之和1、在厶AB(中, A= 60 ° B= 45 则a = (,)2、已知的周长为,且.(1 )求边的长;(2)若的面积为,求角的度数.专题:三角形个数1、△ AB(中, △ A=60 °,a=, 么满足条件的△ ABC( ( )A•有一个解B•有两个解C无解 D.不能确定2、△ AB(中,a=1,b=,△ A则0°等于(B )A. 60 °B. 60 或120 °C. 30。
或150 °D. 120 °3、在△ AB(中,根据下列条件解三角形,则其中有两个解的是(D )A.b = 10,A = 45 ,°B = 70 °B.a = 60,c = 48,B = 100 °C.a = 7,b = 5,A = 80 °D.a = 14,b = 16,A = 45 °4、符合下列条件的三角形有且只有一个的是(D )A.a=1,b=2 ,c=3B.a=1,b= , △A=30°C.a=1,b=2, △A=100° C.b=c=1, △B=45°5、在△ AB(中, a= 12, b = 13, C= 60°此三角形的解的情况是( B )A.无解B. —解C.二解D.不能确定6、满足A=45 ° ,c= ,a=的△ ABC勺个数记为m,则a m的值为(A )A. 4B. 2C. 1D.不定7、已知△ AB(中, 121 °则此三角形解的情况是无解&在△ AB(中,已知,,,则边长。
或专题:等比叠加1、△ AB(中,若,,则等于(A )A .2B .C . D.2、在△ AB(中, A=60 ° , b=1 面积为,则= .专题:变式应用1、在厶AB(中,若△ A: △ B: △ C=ft2:3,2、已知△ AB (中, a△ b△—1 △△则A A B△等于(A)A.2^3B. 2^ 3^1 (.1:3:2D. 3:1:23、在厶AB(中,周长为7.5cm ,且si nA: si nB: si nC—4:5:6,下列结论:①②③④其中成立的个数是( ( )A.0 个B.1 个(.2 个D.3 个4、在△ AB(中,已知边,,求边a、b的长。
解:由,,可得,变形为sinAcosA=sinBcosB, △ sin2A=sin2B,又厶b, △ 2A=2B, △ A+B=. △△ AB直角三角形.由a2+b2=102 和,解得a=6, b=8。
5、在△ AB(中,角A、B、C所对的边分别为、b、c ,若,贝U _________________6、设锐角三角形的内角的对边分别为,.(1)求的大小;A. B. C. D.9、 三角形的两边分别为 5和 3,它们夹角的余弦是方程的根,A .52B .(.16D .410、 在厶AB (中,已知 AB=4, AC=7, BC 边的中线,那么 11、 设 A 、B C 为三角形的三内角,且方程(sinB —sinA)x2+(sinA — sinC)x +(sinC — sinB)=0有等 根,那么角 B ( D )A . B>60°B . B > 60 ° C. B<60° D . B < 60 °(sinA-sin( )2-4 (sinB-sinA)(sin(-sinB) =sin2A-2sinAsin( +sin2(-4(sinBsin(-sinAsin(-sin2B+sinAsinB) =(sinA+sin( )2-4sinB(sinA+sin( )+4sin2B=(sinA+sin(-2sinB)2 专题:判断三角形 1、 若,^U △( A )A. 一定是锐角三角形B. 可能是钝角三角形C. 一定是等腰三角形D. 可能是直角三角形2、 在厶AB (中,角均为锐角,且则 △ ABC 勺形状是( C )2)求的取值范围. 专题:求取值范围△ AB (中,已知60 °,如果△ ABC 两组解,贝U x 的取值范围(C ) B . (. D . 已知锐角三角形的边长分别为 B . C .D .1、A .2、 A .3、在锐角中,则的值等于 答案:设由正弦定理得 由锐角得, 又,故,所以2、3、x ,贝U x 的取值范围是(,的取值范围为余弦定理专题:公式应用1、 在厶 AB (中, a = 3, b =, c = 2, A . 30° B .45°2、 在三角形中,,则的大小为( A .3、 长为 5、7、 那么 C . ) B 等于(60°) D . 1204、 5 A. 90在△ AB (中,在△ AB(中,B . (. 8 的三角形的最大角与最小角之和为 D .B. 120150°,则若,则(B.C. 135)D. 150D.(. ,则的值为( 37A 为(C ) (. ,则最大边的取值范围是在△中,三边长分别为 A .38B . 在厶AB (中,已知,则角 A . B .&在钝角△ AB (中,已知, 9、设a 、b 、c 是的三边长,对任意实数 乂,有(6、7、D C .)36 D . 35D .贝三角形的另一边长为( B )BC=8、勺内角勺对边分别为,根据下列条件判断三角形形状: 9、若(a+b+c )(b+c — a )=3abc,且 sinA=2sinBcosC,那么△ AB (是 ( B )A .直角三角形 B.等边三角形C.等腰三角形 D .等腰直角三角形10、在厶AB (中,已知,那么△ AB 一定是)等腰直角三角形D . 正三角形A .直角三角形B .等腰三角形C . 11、 在厶AB (中,若,贝U△ ABC 勺形状是(D )A .等腰三角形B .直角三角形C . 等腰直角三角形D . 等腰或直角三角形12 在中,,,分别为角, , 所对边,若,贝此三角形一 定是( C )A •等腰直角三角形 B. 直角三角形C. 等腰三角形D. 等腰或直角三角形13、 在厶AB (中,若,贝U △ ABC 勺形状是(B )A. 直角三角形B. 等腰或直角三角形C. 不能确定D. 等腰三角形14 、 已知锐角三角形的边长分别为 1, 3, a , 贝 a 勺范围是(B )A .B . (. D .15、 A 为△ ABC 勺一个内角,且sinA+cosA=,则 △ AB (是 三角形 钝角 16、 在厶AB (中,已知,,试判断△ ABC 勺形状。
解:由正弦定理得: ,,。
所以由可得: ,即:。
又已知,所以,所以,即, 因而。
故由得: ,。
所以, △ABC 为等边三角形。
17、 已知的三个内角 A 、B 、C 所对的边分别为,向量 ,且. ( 1 )求角 A 的大小;( 2 )若,试求当取得最大值时的形状 . 9.解:( 1 )由又因为 解得分A. 直角三角形B. 锐角三角形 3、△ AB (中,,,则厶AB 一定是A. 锐角三角形B. 钝角三角形C. 钝角三角形D. 等腰三角形 ( D )C. 等腰三角形D. 等边三角形 4、如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为A. 锐角三角形B. 直角三角形 5、 △ AB (中,,贝U △ ABC 定是A. 直角三角形B. 钝角三角形 6、 在△ AB (中,若,贝U △ AB 是( B A .有一内角为30 °勺直角三角形 ( .有一内角为 30°的等腰三角形 7、 若勺内角勺对边分别为,且则((. 钝角三角形D. 由增加勺长度决定( D )(. 等腰三角形 D. 等边三角形)B. 等腰直角三角形 D .等边三角形A .为等腰三角形B. 为直角三角形( .为等腰直角三角形D.为等腰三角形或直角三角形△)在, ・ ? 即,又由( △)知所以,为正三角形18、在△ ABC 中,求分别满足下列条件的三角形形状: ① B=60° ,b2=a ;c ①由余弦定理.由a=c 及B=60°可知△ AB 为等边三角形. ② b2tanA=a2tanB ;②由△人=或 A+B=90°, △△ ABC 等腰△或 Rt △. ③ sinC=③,由正弦定理:再由余弦定理:④ (a2 -b2)sin (A+B )=(a2+b2)sin (A -B ). ④由条件变形为 △ △ AB 是等腰△或 Rt △.专题:1、 在厶AB (中,如果,那么等于 。