2-2 离散型随机变量及其分布

合集下载

第二章 随机变量及其分布(第2讲)

第二章  随机变量及其分布(第2讲)
分布函数还具有相当好的性质,有利于用数 学分析方法来处理;
引入随机变量和分布函数,在随机现象与数 学分析之间搭起了桥梁。
学习内容
§2.1 随机变量 §2.2 离散型随机变量及其分布 §2.3 随机变量的分布函数 §2.4 连续型随机变量及其分布 §2.5 随机变量函数的分布
引言
连续型随机变量(random variables of continuous type)
四、几种重要的连续型分布 均匀分1. 布均的匀实分际布背景是: 并概f ( x率且)随=与取⎪⎩⎪⎨⎧机0b这值−1变a个在量小(其x ∈X它区a取[a,,间bb值)] 的在中是 记长区一 为任度个间意成概X(小正~率aU区比密,[ab间度。,)b上内]函,的数.
利用分布函数与概率密度函数之间的关系,可以求得服从均匀 分布的随机变量 X 的分布函数
f
(x)
=
⎪⎧ ⎨
1 3
,
⎪⎩0 ,
0≤ x≤3 其它
∫ ∫ 所求概率 P{0 ≤ X ≤ 2}=
2 f (x )dx =
0
2 0
1 3
dx
=
2 3
四、几种重要的连续型分布
2.指数分布
定义: 若随机变量X的概率密度函数
X
~
f
(
x)
=
⎧λ

e−λ
x
⎩0
x>0 x≤0
称 X 服从参数为λ的指数分布,记为X~E(λ) (λ>0),
学习内容
§2.1 随机变量 §2.2 离散型随机变量及其分布 §2.3 随机变量的分布函数 §2.4 连续型随机变量及其分布 §2.5 随机变量函数的分布
引言
§2.2节学习的分布律对于非离散型型随 机变量失效

2离散型随机变量的分布列

2离散型随机变量的分布列

X的所有可能取值是0,1,2,3.
P(X=0)=
C36 C130
=
20 120
=
1 6
,
P(X=1)=
C62C14 C130
=
60 120
=
1 2
,
P(X=2)=
C
2 4
C16
C130
=
36 120
=
3 10
,
P(X=3)=
C34 C130
=
4 120
=
1 30
.
∴X的分布列为
X
0
1
2
3
1
1
3
1
P
6
栏目索引
X
x1
x2

xi

xn
P
p1
p2

pi

pn
此表称为离散型随机变量X的概率分布列,简称为X的分布列,有时
也用等式P(X=xi)=pi,i=1,2,…,n表示X的分布列.
(2)分布列的性质
(i)pi③ ≥0 ,i=1,2,3,…,n;
n
(ii) pi 1. i 1
栏目索引
3.常见的离散型随机变量的概率分布
η
0
1
2
P
0.1
0.3
0.3
栏目索引
3 0.3
栏目索引
1-2 (2015北京朝阳一模改编)如图所示,某班一次数学测试成绩的茎叶 图和频率分布直方图都受到了不同程度的污损,其中,频率分布直方图 的分组区间分别为[50,60),[60,70),[70,80),[80,90),[90,100],据此解答以 下问题. (1)求全班人数及分数在[80,100]之间的频率; (2)现从分数在[80,100]之间的试卷中任取3份分析学生的失分情况,设 抽取的试卷分数在[90,100]的份数为X,求X的分布列.

2-2离散型随机变量及其分布律

2-2离散型随机变量及其分布律

松定理(第二章)和中心极限定理(第五章),利用这些定理
可以近似计算出它们的值.
3.泊松分布
定义 2.5 如果随机变量 X 的分布律为
P{X k} k e , k 0,1, 2,L , 0 ,
k!
就称 X 服从参数为 的泊松分布,记为 X ~ P() .
【注 1】 P{X
k
k}
e
0 , k 0,1, 2,L
一般地,在随机试验 E 中,如果样本空间 只包含两个
样本点
{1,2},且
X
0, 1,
若 =1 , 若 =2 ,
则 X ~ B(1, p) ,其中 p P{X 1} P({2}) .
在现实生活中,0 1两点分布有着广泛的应用.例如某产品 合格与不合格;某课程的考试及格与不及格;某事件 A 发生与 不发生等许多现象都能够刻划成 0 1两点分布.
§2 离散型随机变量及其分布律
一、离散型随机变量及其分布律的概念 定义 2.1 若随机变量 X 的取值为有限个或可列无限多个,就 称 X 为离散型随机变量.
定义 2.2 设 X 为离散型随机变量,其所有可能的取值为 x1, x2 ,L , xi ,L ,且
P{X xi} pi , i 1, 2,L .
的概率为 0.6 ,求该射手在 4 次射击中,命中目标次数 X 的
分布律,并问 X 取何值时的概率最大. 解 将每次射击看成一次随机试验,所需考查的试验结果只
有击中目标和没有击中目标,因此整个射击过程为 4 重的贝
努里试验.故由题意知, X ~ B(4, 0.6) ,即
P{X k} C4k 0.6k 0.44k , k 0,1, 2,3, 4 .
P{X
10}

2-2离散型随机变量的概率分布

2-2离散型随机变量的概率分布
实例2 抛一颗骰子n次,观察是否 “出现 1 点”, 就是 n重伯努利试验.
(3) 二项概率公式 若 X 表示 n 重伯努利试验中事件 A 发生的次数, 则 X 所有可能取的值为
0, 1, 2, , n.
当 X k (0 k n) 时, 即 A 在 n 次试验中发生了 k 次.
AAA AAA ,
泊松资料
泊松分布的图形
泊松分布随机数演示
上面我们提到
二项分布 np ( n )泊松分布
单击图形播放/暂停 ESC键退出
合理配备维修工人问题
例5 为了保证设备正常工作, 需配备适量的维修 工人 (工人配备多了就浪费 , 配备少了又要影响生 产),现有同类型设备300台,各台工作是相互独立的, 发生故障的概率都是0.01.在通常情况下一台设备 的故障可由一个人来处理(我们也只考虑这种情况 ) ,问至少需配备多少工人 ,才能保证设备发生故障 但不能及时维修的概率小于0.01?
把检查一只元件是否为一级品看成是一次试 验, 检查20只元件相当于做20 重伯努利试验.
解 以 X 记 20 只元件中一级品的只数, 则 X ~ b(20, 0.2), 因此所求概率为
P{ X k} 20(0.2)k (0.8)20k , k 0,1,,20. k
P{ X 0} 0.012 P{ X 4} 0.218 P{ X 8} 0.022 P{ X 1} 0.058 P{ X 5} 0.175 P{ X 9} 0.007 P{ X 2} 0.137 P{ X 6} 0.109 P{ X 10} 0.002 P{ X 3} 0.205 P{ X 7} 0.055
一、离散型随机变量的分布律
定义 设离散型随机变量X 所有可能取的值为 xk (k 1,2,), X 取各个可能值的概率, 即事件 { X xk } 的概率, 为

第二节 离散型随机变量及其分布

第二节 离散型随机变量及其分布
说明: 1) 泊松分布与二项分布的关系:这两个分布的数学模 型都是Bernoulli概型。Poisson分布是二项分布当n很大 p 很小时的近似计算。 2) Poisson分布主要用于描述一些稀有事件,如地震、 火山爆发、特大洪水等等。
例3.1.3 (进货问题)由某商店过去的销售记录知
道,海尔彩电每月的销售数可用参数为λ =5的泊 松分布来描述,为了以95%以上的把握保证月底不 脱销,问商店在月底至少应进多少台? 解:设每月的销售数为X,月底进N台,则
其概率分布为 P ( X 1) 3 10 即X服从两点分布。
7 P( X 0) 10
(2) 二项分布 B ( n, p )
背景:n 重Bernoulli 试验中,每次试验感兴 趣的事件A 在 n 次试验中发生的次数 —— X是一离散型随机变量
若P ( A ) = p , 则
Pn ( k ) P ( X k ) C p (1 p)
P{ X 1} 1 P{ X 0} =1 0.99
成功次数服从二项概率
400
0.9820
B(400, 0.01)
有百分之一的希望,就要做百分之百的努力!
(3) Poisson 分布 ( ) 或 P ( )
k! 其中 0 是常数,则称 X 服从参数为 的Poisson 分布,记作 ( ) 或 P ( )
k n k
n k
, k 0,1,, n
称 X 服从参数为n, p 的二项分布(也叫Bernolli 分布).记作
X ~ B( n, p)
0 – 1 分布是 n = 1 的二项分布.
例3.1.1 一大批产品的次品率为0.1,现从中取
出15件.试求下列事件的概率: B ={ 取出的15件产品中恰有2件次品 } C ={ 取出的15件产品中至少有2件次品 }

2-2离散型随机变量及其分布律

2-2离散型随机变量及其分布律
解: 如果新药无效, 则任一病人自动痊愈的概率为p=0.3 设X表示10名病人中自动痊愈的人数 则 X ~ b (10, 0.3)
9 P ( X 9 ) C10 (0.3)9 (0.7)109 0.00138
P ( X 9) P ( X 9 ) P ( X 10 )
(3)二项分布的图形特点:X∽b(n,p)
Pk Pk
0
...
n=10, p=0.7
n
0
..
n=20, p=0.5
.. n
说明:
a. 对于固定n及p,随着k的增加 ,概率P(X=k) 先是随之增加, 并在(n+1)p或者[(n+1)p] 达到最大值,随后单调减少。 b. 如果p>0.5,图形高峰右偏;如果p<0.5,图形高峰左偏。
说明:
k P ( X k ) C n p k (1 p )n k 0 a. 可验证二项分布满足概率充分条件 n k k C n p (1 p )n k ( p+1-p )n 1 k 0
k b. 式Cn pk (1 p)nk 为二项式( p 1 p)n 一般项,故二项分布.
c. n 1, B(n, p)即为0 1分布, P( X k ) pk qnk (k 0,1)
k d . n次试验中至多出现m次( m n): P (0 X m ) C n p k q n k k 0 m
np p或np p 1 np p N e. 事件A最可能发生次数k 其它 [np p] k (即使概率P ( X k ) C n p k (1 p)n k 达到最大值的k .
启示:一次试验中概率很小,但在大量重复试验中几乎必然发生

2-2离散型随机变量及其分布律

2-2离散型随机变量及其分布律

P(X=2)=C (0.05) (0.95) = 0.007125
思考:本例中的“有放回”改为”无放回” 思考: 本例中的“有放回”改为”无放回”? 不是伯努利试验。 各次试验条件不同,此试验就不是伯努利试验 此时, 各次试验条件不同,此试验就不是伯努利试验。此时, 1 2 只能用古典概型求解. 古典概型求解 只能用古典概型求解. C C
3. 泊松分布
定义 若一个随机变量 X 的概率分布为 λke−λ P{ X = k} = , k = 0,1,2,⋯, k! 则称 X 服从参数为 λ 的泊松分布, 泊松分布, 记为 X ~ P (λ ) 或 X ~ π (λ ). 易见, 易见,1) P { X = k } ≥ 0; ( k −λ ∞ ∞ ∞ λk λe −λ (2)∑P{X = k} = ∑ =e ∑ k! k=0 k ! k=0 k=0
泊松分布是常见的一种分布: 泊松分布是常见的一种分布: 地震 火山爆发 特大洪水
商场接待的顾客数 电话呼唤次数 交通事故次数
4. 二项分布的泊松近似
很大时, 对二项分布 b( n, p ), 当试验次数 n 很大时, 计 算其概率很麻烦. 例如, 算其概率很麻烦 例如,b(5000, 0.001), 要计算
.
二、几种常见分布
1. 两点分布 只可能取x 设随机变量 X 只可能取 1与x2两个值 , 它的 分布律为 x x
X pi
p 1− p
1
2
0< p<1
则称 X 服从x1 , x2处参数为 的两点分布。 处参数为p的两点分布。
说明: 只可能取0与 两个值 说明:若随机变量 X 只可能取 与1两个值 , 它的 分布律为 0 1
则随机变量 X的分布律为 X 的分布律为

概率论§2.1 随机变量-§2.2离散型随机变量

概率论§2.1 随机变量-§2.2离散型随机变量

0, w = (b1 , b2 ), (b1 , b3 ), (b2 , b3 ) 1, w = (a1 , b1 ), (a1 , b2 ), (a1 , b3 ) X = X (w ) = (a2 , b1 ), (a2 , b2 ), (a2 , b3 ) 2, w = (a1 , a2 )
18
分布函数的性质
(1) F(x)是x的不减函数 ,即
x1 x2 , F ( x1 ) F ( x2 )
(2)
F ( ) = lim F ( x ) = 0
x
F ( ) = lim F ( x ) = 1
x
理解:当x→+时,{X≤x}愈来愈趋于必然事件. (3)右连续性: 对任意实数 x0 ,
P ( X x ) = 1 P ( X x ) = 1 F ( x );
21
例1 设F1 ( x )与F2 ( x )分别为随机变量X 1与X 2
的分布函数,为了使 ( x ) = aF1 ( x ) bF2 ( x ) F
是某一随机变量的分布函数,则下列各组值 中应取(A)
3 2 ( A) a = , b = 5 5
连续型随机变量
如:“电视机的使用寿命”,实际中常遇到 的 24 “测量误差”等。
§2.2 离散型随机变量及其分布
定义 如果随机变量X 只取有限个或可列无限 多个不同可能值,则称X 为离散型随机变量. 例如, 抛一枚硬币,X 可取0,1有限个值。 可知X为一个离散型随机变量。 例如,电话交换台一天内接到的电话个数
F ( x0 0) = lim F ( x ) = F ( x0 )
x x0
19
如果一个函数满足上述三条性质,则一 定是某个随机变量 X 的分布函数。也就是说, 性质(1)-(3)是判别一个函数是否是某个随机 变量的分布函数的充分必要条件。

2-2离散型随机变量及其分布律

2-2离散型随机变量及其分布律
k P{ X k } C10 0.2k 0.810k , k 0,1,10
即P
X
0
1
2 0.30
3 0.20
4 0.09
5 0.03
6
7
8 0.00
9 0.00
10 0.00
0.11 0.27
0.01 0.00
P ( X 1) P ( X 0) P ( X 1)
1 0.2 0.89 =0.38. 0.810 +C10
第二章 一维随机变量及其分布
第二节 离散型随机变量及其分布律
一、离散型随机变量的分布律
对于离散型随机变量,我们所关心的问题: (1)随机变量所有可能的取值有哪些? (2)取每个可能值的概率是多少? 定义 设x1,x2,…为离散型随机变量X的可能取值, p1,p2,…为 X 取 x1,x2,… 的概率,即 P(X=xi ) = pi (i=1,2,…) (1)
(0 p 1) ,则在n重伯努利试验中事件A出现k次 的概率为
C pq
k n
k
n k
其中p q 1
k 0,1,, n.
k k n k pq 若随机变量 X 的分布律为 PX k Cn
其中 k 0,1,, n; 0 p 1; q 1 p. 即 X p
k e xk e x,易知 1. 利用级数 k 0 k ! k 0 k!
历史上,泊松分布是作为二项分布的 近似,于1837年由法国数学家泊松引入的 . 近数十年来,泊松分布日益显示其重要性 , 成为概率论中最重要的几个分布之一 . 在 实际中,许多随机现象服从或近似服从泊 松分布. 二十世纪初罗瑟福和盖克两位科学家在 观察与分析放射性物质放出的 粒子个数 的情况时,他们做了2608 次观察(每次时 间为7.5 秒)发现放射性物质在 规定的一段时间内, 其放射的粒 子数X 服从泊松分布.

概率论与数理统计第2章随机变量及其分布

概率论与数理统计第2章随机变量及其分布

1 4
)0
(
3 4
)10
C110
(
1 4
)(
3 4
)9
0.756.
(2)因为
P{X
6}
C160
(
1)6 4
(
3 4
)4
0.016
,
即单靠猜测答对 6 道题的可能性是 0.016,概率很小,所
以由实际推断原理可推测,此学生是有答题能力的.
二项分布 b(n, p) 和 (0 1) 分布 b(1, p ) 还有一层密切关
P{X 4} P(A1 A2 ) P(A1)P(A2 ) 0.48 ,
P{X 6} P(A1A2 ) P(A1)P(A2 ) 0.08 , P{X 10} P(A1A2 ) P(A1)P(A2 ) 0.32 , 即 X 的分布律为
X 0 4 6 10
P 0.12 0.48 0.08 0.32
点 e, X 都有一个数与之对应. X 是定义在样本空间 S 上的
一个实值单值函数,它的定义域是样本空间 S ,值域是实数
集合 {0,1,2},使用函数记号将 X写成
0, e TT , X=X (e) 1, e HT 或TH ,
2, e HH.

例2.2 测试灯泡的寿命.

样本空间是 S {t | t 0}.每一个灯泡的实际使用寿命可
(2)若一人答对 6 道题,则推测他是猜对的还是有答 题能力.
解 设 X 表示该学生靠猜测答对的题数,则
X
~
b(10,
1) 4
.
(1) X 的分布律为
P{X
k}
C1k0
(
1)k 4
(
3 4

最新概率论与数理统计第二章随机变量及其分布

最新概率论与数理统计第二章随机变量及其分布

X
x1
x2

xn

pk
p1
p2

pn

在离散型随机变量的概率分布中,事件“X=x1〞, “X=x2〞....“X=xk〞,...构成一个完备事件组。因此, 上述概率分布具有以下两个性质:
(1) pk 0,k 1,2,
(2)pk 1 k
满足上两式的任意一组数pk ,k 1,2, 都可以成为 离散型随机变量的概率分布。对于集合xk ,k 1,2,
解 按第一种方法。以X记“第1人维护的20台中同一时刻发 生故障的台数〞,以Ai(i=1,2,3,4)表示事件“第i人 维护的20台中发生故障不能及时维修〞,那么知80台中 发生故障而不能及时维修的概率为
P(A1UA2UA3UA4)≥P(A1)=P{X≥2}.
而X~b(20,0.01),故有 1 P{X2}1P{Xk} k0
b (k 1 ;n ,p ) kq
kq
当k<(n+1)p时,b(k;n,p)>b(k-1;n,p)
当k=(n+1)p时,b(k;n,p)=b(k-1;n,p)
当k>(n+1)p时,b(k;n,p)<b(k-1;n,p)
因为(n+1)p不一定是正整数,所以存在正整数m,使 得(n+1)p-1<m≤(n+1)P,当k=m时达到极大值。
k=1,2, …
P{X=k}= (1-p)k-1p,
并称X服从参数为p的几何分布。
几何分布的无记忆性
在贝努利试验中,等待首次成功的时间 服从几何 分布。现在假定在前m次试验中没有出现成功,那么为 了到达首次成功所再需要的等待时间 ′也还是服从几 何分布,与前面的失败次数m无关,形象化地说,就是 把过去的经历完全忘记了。因此无记忆性是几何分布所 具有的一个有趣的性质。但是更加有趣的是,在离散型 分布中,也只有几何分布才具有这样一种特殊的性质。

《概率论》第2章2离散型随机变量-24页文档资料

《概率论》第2章2离散型随机变量-24页文档资料
C n k p k ( 1 p ) n k ( k 0 ,1 ,2 ,,n )
第二章 随机变量及其分布
§2 离散型随机变量及其分布律 11/23

P{X1}P(A1) p
P{X2}P(A1A2)P(A2| A1)P(A1) p(1 p)
P{X3}P(A1A2A3) P (A 3|A 1A 2)P (A 2|A 1 )P (A 1 ) p(1 p)2
P{X 4} P (A 1 A 2A 3A 4) P (A 1 A (12 A 3 pA )4 3)
故 X的分布律为
P{X 0} 1 8
P{X
1}
3 8
P{X 2} 3 8
所有样本点 遍历一次
全部和为1
P{X 3} 1 8
分布律有什么特点
第二章 随机变量及其分布
§2 离散型随机变量及其分布律 3/23
pk0, k1,2,
pk 1
k 1
pk P{X xk}
k1
k1
P
U{X
k 1
xk }
P(S) 1
第二章 随机变量及其分布
§2 离散型随机变量及其分布律 8/23
只产生两个结果 A , 的A 试验 伯努利试验产生什么样的随机变量
将伯努利试验独立重复进行 n 次的试验
某战士用步枪对目标进行射击,记
Байду номын сангаас
A { 击中目标 } ,A { 没击中目标 } 每射击一次就是一个伯努利试验 ,如果对目标进行 n 次射
第二章 随机变量及其分布
§2 离散型随机变量及其分布律 6/23
如果 r.v 的X 分布律为
P{X c}1
则称 r.v 服X 从 单点,分其布中 为常数c

高中数学第二章 2.1.2离散型随机变量的分布列(一)课件

高中数学第二章 2.1.2离散型随机变量的分布列(一)课件

答案 是.离散型随机变量的各个可能值表示的事件不会同时发生,是 彼此互斥的.
答案
返回
题型探究
重点突破
题型一 求离散型随机变量的分布列 例1 一个箱子里装有5个大小相同的球,有3个白球,2个红球,从中 摸出2个球. (1)求摸出的2个球中有1个白球和1个红球的概率; (2)有X表示摸出的2个球中的白球个数,求X的分布列.
解析 根据所给的分布列,
由离散型随机变量的性质得12+13+p=1,解得 p=16.故选 B.
解析答案
1234
2.设随机变量 ξ 的分布列为 P(ξ=i)=a(13)i,i=1,2,3,则 a 的值为( C )
9
27
11
A.1
B.13
C.13
D.13
解析 由分布列的性质,得 a(13+19+217)=1, ∴a=1237.
假设身高在175 cm以上(包括175 cm)定义为“高个子〞,身高在175 cm 以下定义为“非高个子〞,且只有“女高个子〞才能担任“礼仪小姐
(1)如果用分层抽样的方法从“高个子〞和“非高个子〞中抽取5人,再从 这5人中选2人,那么至少有1人是“高个子〞的概率是多少?
解析答案
(2)假设从所有“高个子〞中选3名志愿者,用ξ表示所选志愿者中能担任 “礼仪小姐〞的人数,试写出ξ的分布列. 解 依题意,ξ的可能取值为0,1,2,3,那么 P(ξ=0)=CC31382=1545,P(ξ=1)=CC14C31228=2585, P(ξ=2)=CC24C31218=1525,P(ξ=3)=CC31342=515. 因此,ξ的分布列为
P
1 10
3 10
3 5
解析答案
易错点 无视分布列的性质致误

第二节 离散型随机变量及其分布1

第二节 离散型随机变量及其分布1
概率论与数理统计
广



广
大 学
东 工 业
主讲教师:
大 学
上页 下页 返回
第二章 随机变量
§1 随机变量及其分布函数 §2 离散型随机变量及其分布 §3 连续型随机变量及其分布 §4 随机变量函数的分布
广 东 工 业 大 学
上页 下页 返回
§2 离散型随机变量及分布
一、离散型随机变量的定义
有些随机变量,它全部可能取的值只有有限 个,或者,虽然有无限多个可能的值,但这些值 可以无遗漏地一个接一个地排列出来(即可列 个),称这种随机变量为离散型随机变量。
二项分布描述的是n重贝努里试验中出现
“成功”(事件A发生)次数ξ的概率分
布.
在解应用题时需要注意判断问题是否
为贝努利概型,可否用二项分布求解. 广 东 工 业 大 学
上页 下页 返回
例 医生对5个人作某疫苗接种试验,设已知对试验反应呈阳性的
概率为p=0.45,且各人的反应相互独立。若以 记反应为阳性的人数。 (1)写出 的分布律;(2)恰有3人反应为阳性的概率;(3)至少有2
0.453(1
0.45)2
0.276;
广
(3)至 少 有2人 反 应 呈 阳 性 的 概 率 是
东 工
P( 2) 1 p( 0) p( 1)
业 大
1
(1
0.45)
5
C
1 5
0.45(1
0.45)4 0.744.
上页 下页
返回

若X : b(n,p),则明显地成立以下公式:
1.在n重贝努利 试验中,事件A发生的次 数在k1与k2之间的概 率是
下面求P{ξ=k}

概率与数理统计 第二章-2-离散型随机变量及其分布律

概率与数理统计 第二章-2-离散型随机变量及其分布律

(0–1)分布的分布律也可以写成:
P{X k} pk (1 p)1k , k 0,1,0 p 1.
两点分布的模型为:
(1)Ω= {1, 2}, 只有两个基本事件。
P({1}) = p , P({2}) = 1-p =q.

X
()
1, 0,
1, 2,
(2) W A A ,有两个结果。
1
2
P 0.04 0.32 0.64
PX 0 0.2 0.2 0.04
PX 1 0.80.2 0.20.8 0.32
PX 2 0.8 0.8 0.64
(2) ∵是并联电路 ∴ P{线路接通} =P{只要一个继电器接通} =P{X≥1} =P{X=1}+P{X=2}=0.32+0.64=0.96
所以,X 的概率分布为
P{X k } C4k p k (1 p )4k ,
k 0, 1, 2, 3, 4 .
(1) 伯努利试验 若随机试验E只有两个可能的结果: 事件A发生与事件A不发生,则称这样的 试验为伯努利(Bermourlli)试验。记
P(A) p, P(A) 1 p q (0 p 1),
P{X=1}:o o o Co41 p1(1 p)41
P{X=2}:o o oo oo oo C42opo2(1oop)42
P{X=3}:ooo oo o o oo oooC43 p3(1 p)43 P{X=4}:oooo C44 p4(1 p )44 p4
其中“×”表示未中,“○”表示命中。
P(A) p, P(A) 1 p ;
③ 各次试验相互独立。
我们关心的问题是:
n次的独立伯努利试验中,事件A发生的次数 及A发生k次的概率。

概率论与数理统计-第3章-第2讲-二维离散型随机变量及其分布

概率论与数理统计-第3章-第2讲-二维离散型随机变量及其分布

求分布律方法:先定值再求概率
Y
X
0
1
2
3
0
0
0
1
0
2
0
取4只球 P{X 0,Y 0} P{X 0,Y 1} P{X 1,Y 0} P{X 3,Y 2} 0
14
03 二维离散型随机变量的边缘分布律
例 盒子里装有3只黑球, 2只红球, 2只白球, 在其中任取4只球, 以 X 表示取 到黑球的只数, 以 Y 表示取到红球的只数, 求(X, Y)的联合分布律.
主讲教师 |
18
由此得 X , Y 的联合分布律为
X Y
0
1
0
0
0
6
1
0
35
1
6
2
35
35
2
3
3
2
35
35
12
2
35
35
3 0
35
16
第2讲 二维离散型随机变量及其分布
本节我们认识了二维离散型随机变量, 以及联合分布律和边 缘分布律, 要求理解它们概念和性质, 并且会求相应的概率.
17
概率论与数理统计
学海无涯, 祝你成功!
3
本讲内容
01 二维离散型随机变量 02 联合分布律 03 二维离散型随机变量的边缘分布律
4
02 联合分布律
2.联合分布律
设( X ,Y )的所有可能的取值为
(xi , y j ), i, j 1,2,
则称
P( X xi ,Y y j ) pij , i, j 1,2,
为二维随机变量( X ,Y ) 的联合概率分布, 简称概率分布或分布律.
7
02 联合分布律 已知联合分布律可以求概率
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) 对于发生概率低的事件, 如果试验独立进行多次, 事件必然发生; 不能轻视小概率事件.
(2) 若本例中400次射击中中靶不到两次, 可以认为 命中率不到0.02.
例4 80台同类型设备, 各台工作相互独立,发生故障 的概率都是0.01, 且一台设备的故障能由一人处理. 考虑两种配备维修工人的方法: 其一由4人维护, 每 人负责20台; 其二由三人共同维护80台. 比较这两种 方法在设备发生故障时不能及时维修的概率.
第二节 离散型随机变量 及其分布律
一、离散型随机变量的分布律 二、常见离散型随机变量的概率分布 三、小结
一、离散型随机变量的分布律
定义 设离散型随机变量X 所有可能取的值为 xk (k 1,2, ), X 取各个可能值的概率, 即事件 { X xk } 的概率, 为
P{ X xk } pk , k 1,2, . 称此为离散型随机变量X 的分布律.
的次品数,X~b( 1000 , 0.001 )
解 P{ X 2} 1 P{ X 0} P{ X 1}
1
(0.999)1000
C1 1000
(0.999)999
(0.001)
1 0.3676954 0.3680635 0.2642411
也可用泊松分布近似计算,得: np 1
P{ X 2} 1 P{ X 0} P{ X 1}
们做了2608次观察(每次时间为7.5秒)发现放射 性物质在规定的一段时间内, 其放射的粒子数X 服从泊松分布.
在生物学、医学、工业统计、保险科学及 公用事业的排队等问题中 , 泊松分布是常见的. 例如地震、火山爆发、特大洪水、交换台的电 话呼唤次数等, 都服从泊松分布.
地震
火山爆发
特大洪水
商场接待的顾客数 电话呼唤次数 交通事故次数
解 第一种方式. 记 X 为“第一人维护的20台中同 一时刻发生故障的台数”, Ai 表示事件“第 i 人维 护的20台中发生故障不能及时维修” (i = 1, 2, 3, 4),
则 X ~ b(20, 0.01), 且80台中发生故障不能及时维修的概率为
P( A1 A2 A3 A4 ) P( A1 ) P{ X 2}
P{X = 8} = 0.022 P{X = 9} = 0.007 P{X = 10} = 0.002
P{X = k} < 0.001, k > 10
图形:
规律: 当 k 增加时, 概 率 P{X = k} 先增并达 到最大值, 随后单调减 少.
例3 某人进行射击,设每次射击的命中率为0.02, 独立射击 400 次,试求至少击中两次的概率. 解 设击中的次数为 X ,
因此,当n很大时,有近似式:
n pk (1 p)nk ke (其中 np)
k
k!
即:n很大时,二项分布的概率值可以由泊松分布 的概率值近似计算。
例5 计算机硬件公司制造某种特殊型号的微型芯片,
次 品 率 达 0.1% , 各 芯 片 成 为 次 品 相 互 独 立 。 求 在
1000只产品中至少有2只次品的概率。以X记产品中
1
C
k 80
(0.01)k
(0.99)80
k
k0
= 0.0087
因此第二种方式更科学. 工作效率提高了.
另解 按第一种方法
而 X ~ b(20,0.01), 又 np 0.2,
故有 P{ X 2} (0.2)k k 0.2 0.0175.
k2
k!
即有 P( A1 A2 A3 A4 ) 0.0175.
上面我们提到
二项分布 np ( n )泊松分布
单击图形播放/暂停 ESC键退出
泊松定理 设 0是一个常数,n是任意正整数,设
npn ,则对于任一固定的非负整数 k ,有:
lim n
n k
pnk
(1
pn )nk
k e
k!
证明 由 npn ,有:
n k
pnk (1
pn
)nk
X ~ b(1000, 0.0001),
故所求概率为 P{X 2} 1 P{X 0} P{X 1}
1 0.99991000 1000 0.0001 0.9999999 1
二项分布 np ( n )泊松分布
可利用泊松定理计算 1000 0.0001 0.1,
P{ X 2} 1 e0.1 0.1 e0.1 0.0047.
设 X 为20只产品中一级品的数量,
则 X ~ b(20, 0.2). 于是
P{ X
k}
C
k 20
(0.2)k
(0.8)20k
,k
0,1,
,20.
计算结果如下:
P{X = 0} = 0.012 P{X = 1} = 0.058 P{X = 2} = 0.137 P{X = 3} = 0.205
P{X = 4} = 0.218 P{X = 5} = 0.175 P{X = 6} = 0.109 P{X = 7} = 0.055
若 X 表示 n 重伯努利试验中事件 A 发生的次数, 则 X 所有可能取的值为
0, 1, 2, , n.
当 X k (0 k n) 时, 即 A 在 n 次试验中发生了 k 次.
AAA AAA ,
k次
nk 次
AAA A A AAA
k1 次
nk1 次
得 A 在 n 次试验中发生 k 次的方式共有 n 种, k
0!
1!
4. 泊松分布
设随机变量所有可能取的值为0, 1, 2, ,而取各个
值的概率为
ke
P{X k}
, k 0,1,2, ,
k!
其中 0是常数.则称 X 服从参数为 的泊松分
布,记为 X ~ π( ).
泊松分布的图形
泊松分布的背景及应用
二十世纪初卢瑟福和盖克两位科学家在观察
与分析放射性物质放出的粒 子个数的情况时,他
1 e1 e1 0.2642411
结论:当n≥20,p≤0.05时,用
k e
k!
n pk (1 k
pn )nk
近似效果好。
5. 几何分布
若随机变量 X 的分布律为
X 1 2 k , p q 1, pk p qp qk1 p
则称 X 服从几何分布.
实例 设某批产品的次品率为 p,对该批产品做有放 回的抽样检查 , 直到第一次抽到一只次品为止 ( 在 此之前抽到的全是正品 ), 那么所抽到的产品数 X 是 一个随机变量 , 求X 的分布律. 解 X 所取的可能值是 1, 2, 3, .
则 X ~ b(400,0.02).
X 的分布律为
P{ X k} 400(0.02)k (0.98)400k , k 0,1, ,400. k
因此 P{X 2} 1 P{X 0} P{X 1} 1 (0.98)400 400(0.02)(0.98)399 0.9972.
说明: 对于本例的结果在实际中反映出这样两个问题:
设 P( A) p (0 p 1),此时P( A) 1 p.
将 E 独立地重复地进行n 次,则称这一串重 复的独立试验为n 重伯努利试验.
实例1 抛一枚硬币观察得到正面或反面. 若将硬 币抛 n 次,就是n重伯努利试验.
实例2 抛一颗骰子n次,观察是否 “出现 1 点”, 就 (3) 二项是概n重率伯公努式利试验.
1
1
1
P{ X
k}
1
C
k 20
(0.01)k
(0.99)20
k
k0
k0
= 0.0169
即 P( A1 A2 A3 A4 ) 0.0169.
第二种方式: 记 Y 为“80台中同一时刻发生故障的 台数”, 则 Y ~ b(80, 0.01) .
则80台中发生故障不能及时维修的概率为
3
P{Y
4}
2
0.125
3
4
0.0625 0.0625
二、常见离散型随机变量的概率分布
1.两点分布
设随机变量 X 只可能取0与1两个值 , 它的分布 律为
P{X = k} = pk(1p)1k k =0Hale Waihona Puke 1 0< p < 1.
表格形式为:
X
0
1
pk 1 p
p
则称 X 服从 (0—1) 分布或两点分布.
实例1 “抛硬币”试验,观察正、反两面情况.
说明
(1) pk 0, k 1,2, ;
(2) pk 1. k 1
离散型随机变量的分布律也可表示为 X ~ x1 x2 xn p1 p2 pn
X x1 x2 xn
pk
p1 p2 pn
例1 设一汽车在开往目的地的道路上需经过四 组信号灯,每组信号灯以1 2的概率允许或禁止汽 车通过.以 X 表示汽车首次停下时,它已通过的信 号灯的组数(设各组信号灯的工作是相互独立的), 求 X 的分布律.
n(n
1) (n k!
k
1)
n
k
(1
)nk
n
k [1 (1 1) (1 k 1)](1 )n (1 )k
k!
n
n
n
n
对任意固定的k,当n→∞时,
1 (1 1 ) (1 k 1) 1 (1 )n e
n
n
n
(1 )k 1
n
得证。
说明:
在 npn (常数)中,当n很大时,pn必定很小。
按第二种方法
以Y 记 80台中同一时刻发生故 障的台数.
则有 Y ~ b(80,0.01), 又 np 0.8,
故 80 台中发生故障而不能及时维修的概率为
相关文档
最新文档