PN结物理特性测定2015

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

半导体PN 结的物理特性实验

实验目的

1.测量PN 结电流与电压关系,证明此关系符合指数分布规律。 2.测量玻尔兹曼常数。

3.测量PN 结电压与温度的关系,求出该PN 结温度传感器的灵敏度。 4.计算在0K 温度时,半导体硅材料的近似禁带宽度。

实验原理

1. PN 结伏安特性及玻尔兹曼常数测量

由半导体物理学可知,PN 结的正向电流-电压关系满足:

[]1)/exp(0-=kT eU I I (1)

式中I 是通过PN 结的正向电流,0I 是反向饱和电流,在温度恒定是为常数,T 是热力学温度,e 是电子的电荷量,U 为PN 结正向压降。由于在常温(300K)时,e kT /≈0.026v ,而PN 结正向压降

约为十分之几伏,则)/exp(

kT eU >>1,(1)式括号内-1项完全可以忽略,于是有:

)/exp(0kT eU I I = (2)

也即PN 结正向电流随正向电压按指数规律变化。若测得PN 结I-U 关系值,则利用(1)式可以求出

kT e /。在测得温度T 后,就可以得到k e /常数,把电子电量作为已知值代入,即可求得玻尔兹曼

常数k 。

在实际测量中,二极管的正向I-U 关系虽然能较好满足指数关系,但求得的常数k 往往偏小。这是因为通过二极管电流不只是扩散电流,还有其它电流。一般它包括三个部分:1)扩散电流,

它严格遵循(2)式;2)耗尽层符合电流,它正比于)2/exp(kT eU ;3)表面电流,它是由硅和二氧

化硅界面中杂质引起的,其值正比于)/exp(

mkT eU ,一般m >2。因此,为了验证(2)式及求出准确的e /k 常数,不宜采用硅二极管,而采用硅三极管接成共基极线路,因为此时集电极与基极短接,集电极电流中仅仅是扩散电流。复合电流主要在基极出现,测量集电极电流时,将不包括它。本实验中选取性能良好的硅三极管(TIP31型),实验中又处于较低的正向偏置,这样表面电流影响也完全可以忽略,所以此时集电极电流与结电压将满足(2)式。实验线路如图1所示。

图1 PN 结扩散电源与结电压关系测量线路图

2.PN 结的结电压be U 与热力学温度T 关系测量。

当PN 结通过恒定小电流(通常电流A I μ1000=),由半导体理论可得be U 与T 近似关系:

go be U ST U += (5)

式中S ≈-2.3C mV o

/为PN 结温度传感器灵敏度。由go U 可求出温度0K 时半导体材料的近似禁带宽度go E =go qU 。硅材料的go E 约为1.20eV 。

实验仪器

1. 直流电源、数字电压表、温控仪组合装置(包括±15V 直流电源、0-1.5V 及3.0V 直流电源、三位半数字电压表、四位半数字电压表、温控仪)。

2. TIP31型三极管(带三根引线)1个,3DG 三极管1个。

3. 配件:LF356运算放大器各2块,TIP31型三极管1只,引线9根;用户自配:ZX21型电阻箱1只。

实验过程

1.be c U I -关系测定,并进行曲线拟合求经验公式,计算玻尔兹曼常数。(1U U be =)

1)实验线路如图1所示。图中1U 为三位半数字电压表,2U 为四位半数字电压表,TIP31型为带散热板的功率三极管,调节电压的分压器为多圈电位器,为保持PN 结与周围环境一致,把TIP31型三极管浸没在盛有变压器油干井槽中,变压器油温度用铂电阻进行测量。

2)在室温情况下,测量三极管发射极与基极之间电压1U 和相应电压2U 。在常温下1U 的值约从0.3V 至0.42V 范围每隔0.01V 测一点数据,约测10多数据点,至2U 值达到饱和时(2U 值变化较小或基本不变),结束测量。在记数据开始和记数据结束都要同时记录变压器油的温度θ,取温度平均值θ。 3)改变干井恒温器温度,待PN 结与油温湿度一致时,重复测量1U 和2U 的关系数据,并与室温测得的结果进行比较。

4)曲线拟合求经验公式:运用最小二乘法,将实验数据分别代入线性回归、指数回归、乘幂回归这三种常用的基本函数(它们是物理学中最常用的基本函数),然后求出衡量各回归程序好坏的标准差

δ。对已测得的1U 和2U 各对数据,以1U 为自变量,2U 作因变量,分别代入:(1)线性函数

b aU U +=12;(2)乘幂函数b

aU U 12=;(3)指数函数)exp(12bU a U =。求出各函数相应的a 和b 值,得出三种函数式,究竟哪一种函数符合物理规律必须用标准差来检验。方法是:把实验测得的各个自变量U 1分别代入三个基本函数,得到相应因变量的预期值*

2U ,并由此求出各函数拟合的标准差:

δ=

∑=-n

i i i n U U 12

*/)( 式中n 为测量数据个数,i U 为实验测得的因变量,*

i U 为将自变量代入基本函数的因变量预期值,

最后比较哪一种基本函数为标准差最小,说明该函数拟合得最好。

5)计算k e /常数,将电子的电量作为标准差代入,求出玻尔兹曼常数并与公认值进行比较。 2.T U be -关系测定,求PN 结温度传感器灵敏度S ,计算硅材料0K 时近似禁带宽度go E 值。

图2 图3

1)实验线路如图2所示,测温电路如图3所示。其中数字电压表2V 通过双刀双向开关,既作测温电桥指零用,又作监测PN 结电流,保持电流A I μ100=用。

2)通过调节图3电路中电源电压,使上电阻两端电压保持不变,即电流A I μ100=。同时用电桥测量铂电阻T R 的电阻值,通过查铂电阻值与温度关系表,可得恒温器的实际湿度。从室温开始每隔5C

-10C

测一点be U 值(即1V )与温度θ(C

)关系,求得T U be -关系。(至少测6点以上数据)

3)用最小二乘法对T U be -关系进行直线拟合,求出PN 结测温灵敏度S 及近似求得温度为0K 时硅材料禁带宽度go E 。

实验数据处理

1.be c U I -关系测定,曲线拟合求经验公式,计算玻尔兹曼常数。 室温条件下:1θ = C

,2θ = C

,θ= C

表1

以1U 为自变量,2U 为因变量,分别进行线性函数、乘幂函数和指数函数的拟合,结果见表2 1)线性函数b aU U +=12;(2)乘幂函数b

aU U 12=;(3)指数函数)exp(12bU a U =

表2

由表2可知,指数回归拟和的最好,也就说明PN 结扩散电流-电压关系遵循指数分布规律。 以下计算玻尔兹曼常数: 由表2数据得

bT k e =/ =

k

/e e

k =

= 此结果与公认值K J k /10381.123

-?=相当一致。

2.电流A I μ100=时,T U be -关系测定,求PN 结温度传感器的灵敏度S ,计算0K 时硅材料的近似禁带宽度go E 。

表3 T U be -关系测定

用最小二乘法对T U be -数据进行直线拟合得到: 斜率,即传感器灵敏度K mV S /30.2-=; 截距go U =1.30K (0K 温度); 相关系数r =0.995;

eU E go ==1.30eV

硅在0K 温度时禁带宽度公认值go E =1.205电子伏特,上述结果半定量地反映了此结果。由于PN 结温度传感器的线性范围为-50℃--150℃,在低温时,非线性项将不可完全忽略,所以本实验测得go U =1.30 V 是合理的

PT100铂电阻的温度和阻值对应关系

相关文档
最新文档