高一数学上学期第四次周考试题及答案
2024-2025学年酒泉市高一数学上学期期中考试卷及答案解析

2024—2025学年高一上学期期中考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.考试时间120分钟,满分150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合3{|5}A x x =<,{3,1,0,2,3}B =--,则A B = ( )A. {1,0}- B. {2,3} C. {1,0,2}- D. {3,1,0}--【答案】D 【解析】【分析】求出集合{A x x =,再利用交集运算即可求解.【详解】由题意可得集合{A x x =,因为12<<,且{3,1,0,2,3}B =--,则{}3,1,0A B ⋂=--,故D 正确.故选:D.2. 下列命题中正确的是( )A. 若0a b >>,则22a b > B. 若a b <,则22ac bc <C. 若a b <,则11a b> D. 若a b >,则ac bc>【答案】A 【解析】【分析】根据不等式的性质判断A ;举反例判断BCD.【详解】对于选项A :若0a b >>,由不等式性质可得22a b >,故A 正确;的对于选项BD :例如0c =,可得220ac bc ==,0ac bc ==,故BD 错误;对于选项C :利用1,1a b =-=,可得111,1a b =-=,即11a b<,故C 错误;故选:A.3. 已知命题2:,230p x ax x ∀∈++>R 为真命题,则实数a 的取值范围是( )A. 1|02a a ⎧⎫<≤⎨⎬⎩⎭ B. 1|03a a ⎧⎫<<⎨⎬⎩⎭ C. 1|3a a ⎧⎫≥⎨⎬⎩⎭ D. 1|3a a ⎧⎫>⎨⎬⎩⎭【答案】D 【解析】【分析】问题转化为不等式2230ax x ++>的解集为R ,根据一元二次不等式解集的形式求参数的值.【详解】因为命题2:,230p x ax x ∀∈++>R 为真命题,所以不等式2230ax x ++>的解集为R .所以:若0a =,则不等式2230ax x ++>可化为230x +>⇒32x >-,不等式解集不是R ;若0a ≠,则根据一元二次不等式解集的形式可知:20Δ2120a a >⎧⎨=-<⎩⇒13a >.综上可知:13a >故选:D4. 已知函数()235,1,28,1,x x f x x x +≤⎧=⎨-+>⎩则()()2f f 的值为( )A. 4 B. 5 C. 8 D. 0【答案】B 【解析】【分析】根据分段函数的解析式求得正确答案.【详解】因为f (x )=3x +5,x ≤1,−2x 2+8,x >1,所以()222280f =-⨯+=,所以()()()203055ff f ==⨯+=.故选:B5. 下列函数中,既是奇函数又在区间()0,∞+上单调递增的是( )A. ()1f x x=B. ()exf x =C. ()2f x x = D. ()1f x x x=-【答案】D 【解析】【分析】由常见函数的函数图像即可判断奇偶性和在区间()0,∞+上的单调性,即可得出结论.【详解】函数()1f x x=是奇函数,在区间()0,∞+上单调递减,故A 不符合题意;函数()e xf x =是非奇非偶函数,在区间()0,∞+上单调递增,故B 不符合题意;函数()2f x x =是偶函数,在区间()0,∞+上单调递增,故C 不符合题意;函数()1f x x x=-的定义域为()(),00,-∞+∞ ,且满足()()1f x x f x x -=-+=-,又函数y x =和1y x =-均在区间()0,∞+上单调递增,所以函数()1f x x x =-在区间()0,∞+上单调递增,即函数()1f x x x=-既是奇函数,又在区间()0,∞+上单调递增,符合题意.故选:D.6. 已知定义在R 上的函数()f x 满足()()0f x f x -+=,且当0x ≤时,()22x af x =+,则()1f =( )A. 2 B. 4C. 2-D. 4-【答案】A 【解析】【分析】利用题意结合奇函数的定义判断()f x 是奇函数,再利用奇函数的性质求解即可.【详解】因为定义在R 上的函数()f x 满足()()0f x f x -+=,所以()f x 是奇函数,且()00f =,故0202a+=,解得2a =-,故当0x ≤时,()222x f x =-+,由奇函数性质得()()11f f =--,而()121222f --=-+=-,故()()112f f =--=,故A 正确.故选:A7. 已知2345a ⎛⎫= ⎪⎝⎭,3423b ⎛⎫= ⎪⎝⎭,5349c ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系是( )A. a b c >>B. b a c >>C. a c b >>D. c a b>>【答案】A 【解析】【分析】根据幂函数、指数函数的单调性判定大小即可.【详解】易知3362555422933c ⎡⎤⎛⎫⎛⎫⎛⎫===⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,又23xy ⎛⎫= ⎪⎝⎭定义域上单调递减,36145<<,所以23b c >>,易知()230y xx =>单调递增,432543>>,则223334422533a b ⎛⎫⎛⎫⎛⎫=>>= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,综上a b c >>.故选:A8. 函数()1,4,11x x f x x x x ⎧+≤⎪=⎨+>⎪-⎩的值域为( )A. [)5,5,4⎛⎤-∞+∞ ⎥⎝⎦B. 5,54⎡⎤⎢⎥⎣⎦C. [)3,4,4⎛⎤-∞+∞ ⎥⎝⎦ D. 3,44⎡⎤⎢⎥⎣⎦【答案】A 【解析】【分析】由分段函数解析式,利用换元法可求得1x ≤时函数()f x 的值域为5,4⎛⎤-∞ ⎥⎝⎦,再由基本不等式可求得当1x >时,函数()f x 的值域为[)5,+∞,即可得出结论.【详解】根据题意当1x ≤时,()f x x =t =,可得[)0,t ∈+∞,所以21x t =-,因此可得()2215124f t t t t ⎛⎫=-++=--+ ⎪⎝⎭;由二次函数性质可得当12t =,即34x =时,()1f x x x =≤取得最大值54,此时()1f x x x =+≤的值域为5,4⎛⎤-∞ ⎥⎝⎦;当1x >时,()44111511f x x x x x =+=-++≥+=--,当且仅当411x x -=-,即3x =时,等号成立;此时()4,11f x x x x =+≥-的最小值为5,因此()4,11f x x x x =+≥-的值域为[)5,+∞;综上可得,函数()f x 的值域为[)5,5,4⎛⎤-∞+∞ ⎥⎝⎦.故选:A【点睛】关键点点睛:本题关键在于利用分段函数()f x 的解析式,由各段的函数性质利用换元法和基本不等式即可求得函数值域.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 下列说法正确的有( )A. “1a >”是“11a<”的充分不必要条件B. 命题“21,1x x ∀<<”的否定是“1x ∃≥,21x ≥”C. 若a b >,则22a b c c >D. 若0a >,0b >,且41a b +=,则11a b+的最小值为9【答案】ACD 【解析】【分析】根据充分和必要条件,全称量词命题的否定、不等式、基本不等式等知识对选项进行分析,从而确定正确答案.【详解】选项A ,若1a >,则11a <;若11a<,则a 有可能是负数,此时1a >不成立,故“1a >”是“11a<”的充分不必要条件,正确,符合题意;选项B ,命题“1x ∀<,21x <”的否定是“21,1x x ∃<≥”,错误,不符合题意;选项C ,若a b >,则22a b c c>,正确,符合题意;选项D ,若0a >,0b >,且41a b +=,则()1111441459b a a b a b a b a b ⎛⎫+=++=+++≥+= ⎪⎝⎭,当且仅当4b a a b =,即13a =,16b =时,取等号,故11a b+的最小值为9,正确,符合题意.故选:ACD10. 已知()f x 是定义在R 上的奇函数,且当0x ≥时,()22f x x x =-,则下列结论正确的是( )A. ()f x 的单调递增区间为(),1∞--和()1,+∞B. ()0f x =有3个根C. ()0xf x <的解集为()()2,00,2-⋃D. 当0x <时,()22f x x x=-+【答案】ABC 【解析】【分析】先求得0x <时()f x 的解析式判断选项D ;求得()f x 的单调递增区间判断选项A ;求得()0f x =的根的个数判断选项B ;求得()0xf x <的解集判断选项C.【详解】由()f x 是定义在R 上的奇函数知,对任意x ∈R ,()()f x f x -=-.当0x <时,0x ->,又当0x ≥时,()22f x x x =-,所以()()()()2222f x f x x x x x ⎡⎤=--=----=--⎣⎦,故D 错误.由上可知()222,0,2,0,x x x f x x x x ⎧-≥=⎨--<⎩又抛物线22y x x =-的对称轴为直线1x =,开口向上,抛物线22yx x =--的对称轴为直线1x =-,开口向下,结合二次函数的性质知()f x 的单调递增区间为(),1∞--和()1,+∞,故A 正确.由()0f x =可得2020x x x ≥⎧⎨-=⎩或220x x x <⎧⎨--=⎩解之得,0x =或2x =或2x =-,故B 正确.由()0xf x <,可得2020x x x <⎧⎨-->⎩或220x x x >⎧⎨-<⎩解得20x -<<或02x <<,故C 正确.故选:ABC11. 已知函数2,0()2,0x x x f x x ⎧≥=⎨<⎩,则下列判断错误的是( )A. ()f x 是奇函数B. ()f x 的图像与直线1y =有两个交点C. ()f x 的值域是[0,)+∞D. ()f x 在区间(,0)-∞上是减函数【答案】AB 【解析】【分析】根据分段函数的解析式及基本初等函数的图象与性质逐一分析即可.【详解】如图所示,作出函数图象,显然图象不关于原点中心对称,故A 不正确;函数图象与直线1y =有一个交点,故B 错误;函数的值域为[0,)+∞,且在区间(,0)-∞上是减函数,即C 、D 正确;故选:AB三、填空题:本题共3小题,每小题5分,共15分.12. 能说明“关于x 的不等式220x ax a -+>在R 上恒成立”为假命题的实数a 的一个取值为_________.【答案】0(答案不唯一)【解析】【分析】将关于x 的不等式220x ax a -+>在R 上恒成立问题转化为0∆<,从而得到a 的取值范围,命题为假命题时a 的取值范围是真命题时的补集,即可得a 的取值.【详解】若不等式220x ax a -+>在R 上恒成立,则()2420a a ∆=--⨯<,解得08a <<,所以该命题为假命题时实数a 的取值范围是08a a ≤≥或,.所以实数a 一个取值为0.故答案为:0(答案不唯一,只要满足“0a ≤或8a ≥”即可).13. 已知函数()21,02,6,2,x x f x x x ⎧-≤<=⎨-≥⎩则不等式()12f x x >的解集为______.【答案】()1,4【解析】【分析】在同一直角坐标系中,作出函数y =f (x )及12y x =的图象,即可求得不等式()12f x x >的解集.【详解】在同一直角坐标系中,作出函数y =f (x )及12y x =的图象如下:由图可知不等式()12f x x >的解集为(1,4).故答案为:(1,4)14. 已知正数,x y 满足328x y -=,则3x y+的最小值为______.【答案】9【解析】【分析】先根据指数运算求出33x y =+,代入3x y+中,再利用基本不等式可得最小值.【详解】33282x y y -==,可得33x y =+,又0,0x y >>,所以3333239x y y y +=++≥⨯+=,的当且仅当1y y=,即1y =时取得最小值.故答案为:9四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 设全集R U =,集合{}15A x x =≤≤,集合{}122B x a x a =--≤≤-.(1)若4a =,求A B ,()U A B ⋂ð;(2)若B A ⊆,求实数a 的取值范围.【答案】(1)A ∪B ={x |−9≤x ≤5},(){}U 25A B x x ⋂=<≤ð; (2)13a a ⎧⎫<⎨⎬⎩⎭.【解析】【分析】(1)根据并集与交集,补集的概念直接计算.(2)根据集合间的包含关系,列不等式,解不等式即可.【小问1详解】因为4a =,所以{}92B x x =-≤≤.因为{}15A x x =≤≤,所以{}95A B x x ⋃=-≤≤.因为R U =,所以{9U B x x =<-ð或}2x >,所以(){}25U A B x x ⋂=<≤ð.【小问2详解】因为B A ⊆.①当B =∅时,满足B A ⊆,此时122a a -->-,解得13a <;②当B ≠∅时,要满足B A ⊆,则121,25,122,a a a a --≥⎧⎪-≤⎨⎪--≤-⎩解得a ∈∅综上所述,实数a 的取值范围是13a a ⎧⎫<⎨⎬⎩⎭.16. 已知()y f x =在()0,∞+上有意义,单调递增且满足()()()()21,f f xy f x f y ==+.(1)求证:()()22f xf x =;(2)求不等式的()()32f x f x ++≤的解集..【答案】(1)证明见解析 (2){}|01x x <≤【解析】【分析】(1)根据条件,通过令y x =,即可证明结果;(2)根据条件得到()()()34f x x f +≤,再利用()f x 在区间()0,∞+上的单调性,即可求出结果.【小问1详解】因为()()()f xy f x f y =+,令y x =,得到()()()()22f x f x f x f x =+=,所以()()22f xf x =.【小问2详解】()()()()()()332224f x f x f x x f f ++=+≤== ,又函数()f x 在区间()0,∞+上单调递增,所以()03034x x x x ⎧>⎪+>⎨⎪+≤⎩,解得01x <≤,所以不等式的()()32f x f x ++≤的解集为{}|01x x <≤.17. 已知函数()21x bf x ax +=+,点()1,5A ,()2,4B 是()f x 图象上的两点.(1)求a ,b 的值;(2)求函数()f x 在[]1,3上的最大值和最小值.【答案】(1)18a b =⎧⎨=⎩(2)max ()5f x =,min 7()2f x =【解析】【分析】(1)把图象上的两点代入函数解析式,由方程组求a ,b 的值;(2)定义法求函数单调性,由单调性求最值.小问1详解】因为点()1,5A ,()2,4B 是()f x 图象上的两点,【所以2514421b a b a +⎧=⎪⎪+⎨+⎪=⎪+⎩,解得18a b =⎧⎨=⎩.【小问2详解】设1213x x ≤<≤,则()()()()()2112121212628281111x x x x f x f x x x x x -++-=-=++++,因为1213x x ≤<≤,所以210x x ->,()()12110x x ++>,则()()120f x f x ->,即()()12f x f x >,所以函数()281x f x x +=+在[]1,3上单调递减.故()max ()15f x f ==,()min 7()32f x f ==.18. 已知函数()122x f x =+.(1)求()0f 与()2f ,()1f -与()3f 的值;(2)由(1)中求得的结果,猜想f(x)与()2f x -的关系并证明你的猜想;(3)求()()()()()()()2020201901220212022f f f f f f f -+-+⋅⋅⋅++++⋅⋅⋅++的值.【答案】(1))()103f =,()126f =,()215f -=,()1310f = (2)()()122f x f x +-=,证明见解析 (3)40434【解析】【分析】(1)根据题意代入0,2,-1,3求值即可;(2)根据(1)的结果猜想()()122f x f x +-=,计算()()2f x f x +-的值即可证明;(3)根据(2)的结果可得1(2020)(2022)2f f -+=,根据规律计算即可求解.【小问1详解】解:因为()122x f x =+,故11(0)123f ==+,211(2)226f ==+,112(1)225f --==+,311(3)2210f ==+.【小问2详解】解:猜想:()()122f x f x +-=,证明:∵对于任意的x R ∈,都有2221122(2)2222222(22)22x x x x x x f x --====++⨯++∴221()(2)2(22)2x x f x f x ++-==+.故()()122f x f x +-=.【小问3详解】解:由(2)得()()122f x f x +-=,故(2020)(22022)f f -=-,1(2020)(2022)2f f -+=,1(2019)(2021)2f f -+=,所以()()()()()()()2020201901220212022f f f f f f f -+-+⋅⋅⋅++++⋅⋅⋅++()()()()()()()2020202220192021(1)(3)021f f f f f f f f f =-++-+⋅⋅⋅+-++++1140432021244=⨯+=.19. 已知()f x 满足 ()()()(),f x f y f x y x y +=+∈R ,且0x >时,()0f x < .(1)判断()f x 的单调性并证明;(2)证明:()()f x f x -=-;(3)若()12f =-,解不等式()2260f x x -->.【答案】(1)减函数,证明见解析(2)证明见解析 (3){|1x x <-或}3x >.【解析】【分析】(1)利用函数的单调性定义证明;(2)采用赋值法探索()f x -与()f x 之间的关系;(3)利用单调性及特殊点的函数值解不等式即可.【小问1详解】()f x 是R 上的减函数,证明如下:对任意12,x x ∈R 且12x x <,则210x x ->,所以()210f x x -<;又()()()1212f x f x x f x +-=即()()()21210f x f x f x x -=-<,所以()()21f x f x <.所以()f x 是R 上的减函数.【小问2详解】由()()()f x f y f x y +=+,令y x =-,得()()()0f x f x f +-=;再令0x =可得()()()000f f f +=⇒()00f =;()()0f x f x ∴-+=即()()f x f x -=-.【小问3详解】()()()()122114f f f f =-⇒=+=-,()()()3216f f f =+=-,()2260f x x ∴-->,即()()()2233f x x f f ->-=-,又()f x 是R 上的减函数,所以223x x -<-⇒2230x x -->,解得:1x <-或3x >,所以不等式的解集为{|1x x <-或}3x >.。
浙江四校2024-2025学年高一上学期10月联考数学试题及答案

2024学年第一学期高一年级10月四校联考数学学科试题卷命题人:浦江中学 徐德荣 校对人:浦江中学 于杭君考生须知:1.本卷满分150分,考试时间120分钟;2.答题前,在答题卷指定区域填写班级、姓名、考场、座位号及准考证号(填涂);3.所有答案必须写在答题卷上,写在试卷上无效;一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}1,2,3,4,5,9,A BxA ==,则()AA B ∩= ()A.{}2,3,5 B.{}3,4,9 C.{}1,4,9 D.{}1,2,32.如图,已知全集U =R ,集合{}{}1,2,3,4,5,12A B xx ==−≤≤∣,则图中阴影部分表示的集合的子集个数为()A.3B.4C.7D.83.已知,x y ∈R ,则“0xy =”是“220x y +=”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知0,0a b a +><,那么,,,a b a b −−的大小关系是()A.b a b a >−>−>B.a b a b >−>−>C.b a a b>−>>− D.a b a b>>−>−5.命题“230,x x x ∃>>”的否定是()A.230,x x x ∀>>B.230,x x x ∀>≤C.230,x x x ∀≤≤D.230,x x x ∃>≤6.若命题“[]21,3,20x x x a ∃∈−−−≤”为真命题,则实数a 可取的最小整数值是( )A.1− B.0 C.1 D.37.已知关于x 不等式()()20x ax b x c−+≥−的解集为(](],21,2∞−−∪,则( )A.2c =B.点(),a b 在第二象限C.22y ax bx a +−的最大值为3aD.关于x 的不等式20ax ax b +−≥的解集为[]2,1−8.若数集{}()1212,,,1,2n n A a a a a a a n =≤<<<≥ 具有性质P :对任意的,(1),i j i j i j n a a ≤<≤与j ia a 中至少有一个属于A ,则称集合A 为“权集”,则()A.“权集”中一定有1B.{}1,2,3,6为“权集”C.{}1,2,3,4,6,12为“权集”D.{}1,3,4为“权集”二、多选题:本题3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对得部分分,有错选的得0分.9.中国古代重要的数学著作《孙子算经》下卷有题:“今有物,不知其数.三三数之,剩二.五五数之,剩三;七七数之,剩二.问:物几何?”现有如下表示:已知{}*32,A xx n n ==+∈N ∣,{}{}**53,,72,B xx n n C xx n n ==+∈==+∈N N ∣∣,若()x A B C ∈∩∩,则下列选项中符合题意的整数x 为( )A.23B.133C.233D.33310.根据不等式的有关知识,下列日常生活中的说法正确的是()A.自来水管的横截面制成圆形而不是正方形,原因是:圆的面积大于与它具有相同周长的正方形的面积.B.购买同一种物品,可以用两种不同的策略.第一种是不考虑物品价格的升降,每次购买这种物品的数量一定;第二种是不考虑物品价格的升降,每次购买这种物品所花的钱数一定.用第一种方式购买比较经济.C.某工厂第一年的产量为A ,第二年的增长率为a ,第三年的增长率为b ,则这两年的平均增长率等于2a b+.D.金店使用一架两臂不等长的天平称黄金.一位顾客到店内购买20g 黄金,店员先将10g 的砝码放在天平左盘中,取出一些黄金放在天平右盘中,使天平平衡;再将10g 的砝码放在天平右盘中,再取出一些黄金放在天平左盘中,使得天平平衡;最后将两次称得的黄金交给顾客.记顾客实际购得的黄金为g x ,则20x >.11.若正实数,x y 满足21x y +=,则下列说法正确的是()A.xy 有最大值为18B.14x y+有最小值为6+C.224x y +有最小值为12D.()1x y +有最大值为12三、填空题:本题共3小题,每小题5分,共15分.12.某学校举办秋季运动会时,高一某班共有24名同学参加比赛,有12人参加游泳比赛,有9人参加田赛,有13人参加径赛,同时参加游泳比赛和田赛的有3人,同时参加游泳比赛和径赛的有3人,没有人同时参加三项比赛,借助韦恩图,可知同时参加田赛和径赛的有__________人.13.甲、乙两地相距1000千米,汽车从甲地匀速行驶到乙地,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成.可变部分与速度x (千米/时)的平方成正比,比例系数为2,固定部分为5000元.为使全程运输成本最小,汽车的速度是__________千米/时. 14.若一个三角形的三边长分别为,,a b c ,记()12p a b c =++,则此三角形面积S ,这是著名的海伦公式.已知ABC 的周长为9,2c =,则ABC 的面积的最大值为__________.四、解答题:本题共5小题,共77分.解答题应写出文字说明、证明过程或演算步骤.15.(本题满分13分)用篱笆在一块靠墙的空地围一个面积为2的等腰梯形菜园,如图所示,用墙的一部分做下底AD ,用篱笆做两腰及上底,且腰与墙成60 ,当等腰梯形的腰长为多少时,所用篱笆的长度最小?并求出所用篱笆长度的最小值.16.(本题满分15分)已知集合{}215A xx =−≤−≤∣、集合{}()121B x m x m m =+≤≤−∈R ∣.(1)若4m =,求()A B ∪R ;(2)设命题:p x A ∈;命题:q x B ∈,若命题p 是命题q 的必要不充分条件,求实数m 的取值范围17.(本题满分15分)如图,ABDC 为梯形,其中,AB a CD b ==,设O 为对角线的交点.GH 表示平行于两底且与它们等距离的线段(即梯形的中位线),KL 表示平行于两底且使梯形ABLK 与梯形KLDC 相似的线段,EF 表示平行于两底且过点O 的线段,MN 表示平行于两底且将梯形ABDC 分为面积相等的两个梯形的线段.试研究线段,,,GH KL EF MN与代数式2112a b a b++之间的关系,并据此推测它们之间的一个大小关系.你能用基本不等式证明所得到的猜测吗?18.(本题满分17分)已知二次函数22y ax x c=++(1)若0y >的解集为{23}xx −<<∣,解关于x 的不等式220x ax c +−<;(2)若a c >且1ac =,求22a ca c+−的最小值;(3)若2a <,且对任意x ∈R ,不等式0y ≥恒成立,求442a c a++−的最小值.19.(本题满分17分)已知集合A 为非空数集,定义:{},,S x x a b a b A ==+∈∣,{|,,}T x x a b a b A ==−∈(实数,a b 可以相同)(1)若集合{}2,5A =,直接写出集合S T 、;(2)若集合{}12341234,,,,A x x x x x x x x =<<<,且T A =,求证:1423x x x x +=+;(3)若集合{}02021,,A x x x S T ⊆≤≤∈∩=∅N ,记A 为集合A 中元素的个数,求A 的最大值.2024学年第一学期高一年级10月四校联考数学学科参考答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1 2 3 4 5 6 7 8 ADBCBADB二、多选题:本题3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求全部选对得6分,部分选对得部分分,有错选的得0分.12.4 13.5014.由海伦公式及基本不等式求解即:9,22pc AB ===,则a b +=周长927c −=−=,故()()()2972;p a p b p a b S −+−=−+=−=99222a b−+− ==≤=等号成立时,9922a b −=−,即72a b ==15.设()()m 0AB a a =>,上底()()m 0BC b b =>,分别过点,B C 作下底的垂线,垂足分别为,E F,则,2aBE AE DF ===,则下底22a aAD b a b =++=+,该等腰梯形的面积())22b a b S a b a ++==+=,所以()2300a b a +=,则30022ab a =−,所用篱笆长为300300322302222a a l a b a a a ++−+≥, 当且仅当300322aa =,即()()10m ,10m ab =时取等号.所以,当等腰梯形的腰长为10m 时,所用篱笆长度最小,其最小值为30m . 16.(1)由题意可知{}{}21516A xx x x =−≤−≤=−≤≤∣∣,若{}()4,57,{1,7}m B xx A B x x x ==≤≤∪=<−>R ∣∣ .(2) 命题p 是命题q 的必要不充分条件,∴集合B 是集合A .真子集,当B =∅时,121m m +>−,解得2m <,当B ≠∅时,12111216m m m m +≤−+≥− −≤(等号不能同时成立),解得722m ≤≤, 综上所述,实数m 的取值范围为7,2∞ −17.因为GH 是梯形ABDC 的中位线,所以22AB CD a bGH++==;因为梯形ABLK 与梯形KLDC 相似,所以AB KL KL CD=,所以KL;因为,AEO ACD DOF DAB ∽∽,所以,OE OA OF OD b DA a AD ==,所以1OE OF b a+=,所以111OE OF a b==+,所以211EF a b=+,设梯形,MNDC ABNMABDC 的面积分别为12,,S S S ,高分别为12,,h h h ,则()()()121211,22S S S a b h b MN h a MN h ==+=+=+, 所以()()1122a b h a b h h a MN b MN+++=++,所以()11112a b a MN b MN ++= ++ ,所以MN =由图可知,EF KL GH MN <<<,即2112a b a b+<<<+证明:显然2112a ba b +><+因为222a b ab +>, 所以()2222()a b ab +>+<,所以2112a b a b+<<<+18.(1)由已知220ax x c ++>的解集为{23}x x −<<∣,且0a <,所以2,3−是方程220ax x c ++=的解,所以()223,23ca a−+=−−×=,所以2,12a c =−=,所以不等式220x ax c +−<可化为24120x x −−<,所以26x −<<,故不等式220x ax c +−<的解集为{26}xx −<<∣(2)因为1ac =,所以()222()22a c a c ac a c a c a c a c+−+==−+−−−因为a c >,所以0a c −>,由基本不等式可得()222a c a c a c a c+=−+≥−−当且仅当1a cac −=时等号成立,即当且仅当ac 所以22a c a c+−的最小值为; (3)因为对任意x ∈R ,不等式220ax x c ++≥恒成立,所以0,440a ac >−≤,所以2444411440,1,22211c a c a a a a a ac a a a++++++>≥=≥−−−,令21t a =−,则20,1t t a >=+,所以()2(1)211444482t t a c t a t t++++++≥=++≥−,当且仅当23,1ac a==时等号成立, 即当且仅当23,32a c ==时等号成立,所以442a c a ++−的最小值为8.19.(1)因为集合{}{}2,5,,,,{|,,}A S x x a b a b A T x x a b a b A ===+∈==−∈∣, 所以由224,257,5510+=+=+=,可得{}4,7,10S =,220,550,253−=−=−=,可得{}0,3T =.(2)由于集合{}12341234,,,,A x x x x x x x x =<<<,则T 集合的元素在2131413242430,,,,,,x x x x x x x x x x x x −−−−−−中,且2131414342410,x x x x x x x x x x x x <−<−<−−<−<−,而A T =,故A 中最大元素4x 必在T 中,而41x x −为7个元素中的最大者,故441x x x =−即10x =,故{}2340,,,A x x x =, 故T 中的4个元素为2340,,,x x x ,且324243,,x x x x x x −−−与234,,x x x 重复,而3230x x x <−<,故322x x x −=即322x x =, 而4340x x x <−<,故4340x x x <−<,故432x x x −=或433x x x −=, 若43224x x x ==,则{}2222220,,2,4,43A x x x x x x T =−=∉,与题设矛盾;故432x x x −=即4132x x x x +=+(3)设{}12,,k A a a a = 满足题意,其中12k a a a <<< ,则11213123122k k k k k k a a a a a a a a a a a a a a −<+<+<<+<+<+<<+< ,112131121,,k S k a a a a a a a a T k∴≥−−<−<−<<−∴≥ S T ∩=∅ ,由容斥原理31,S T S T k S T ∪=+≥−∪中最小的元素为0,最大的元素为2k a ,()21,312140431,k k S T a k a k k ∪≤+∴−≤+≤≥∈N ,即314043,1348k k −≤∴≤.实际上当{}674,675,676,2021A = 时满足题意,证明如下:设{},1,2,,2021,A m m m m =++∈N ,则{}2,21,22,,4042S m m m =++ ,{}0,1,2,,2021Tm − ,依题意有20212m m −<,即2673,3m >故m 的最小值为674,于是当674m =时,A 中元素最多,即{}674,675,676,,2021A = 时满足题意,综上所述,集合A 中元素的个数的最大值是1348.。
东北师范大学附属中学2024年高一上学期9月阶段性考试数学试题(解析版)

2024-2025学年东北师大附中 高一年级数学科试卷上学期阶段性考试考试时长:90分钟 试卷总分:120分一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.)1. 下列元素的全体可以组成集合的是( ) A. 人口密度大的国家 B. 所有美丽的城市 C. 地球上四大洋 D. 优秀的高中生【答案】C 【解析】【分析】根据集合的确定性,互异性和无序性即可得出结论.详解】由题意,选项ABD ,都不满足集合元素的确定性,选项C 的元素是确定的,可以组成集合. 故选:C.2. 若全集R U =,集合{}0,1,2,3,4,5,6A =,{|3}B x x =<,则图中阴影部分表示的集合为( )A. {3,4,5,6}B. {0,1,2}C. {0,1,2,3}D. {4,5,6}【答案】A 【解析】【分析】根据图中阴影部分表示()U A B 求解即可. 【详解】由题知:图中阴影部分表示()U A B ,{}|3U Bx x =≥ ,则(){}3,4,5,6U B A = .故选:A3. 命题“[1,3]x ∀∈−,2320x x −+<”的否定为( )的【A. []1,3x ∃∈−,2320x x −+≥B. []1,3x ∃∈−,2320x x −+>C. []1,3x ∀∈−,2320x x −+≥D. []1,3x ∃∉−,2320x x −+≥【答案】A 【解析】【分析】根据给定条件,利用全称量词命题的否定直接写出结论即可.【详解】命题“[1,3]x ∀∈−,2320x x −+<”是全称量词命题,其否定是存在量词命题, 因此命题“[1,3]x ∀∈−,2320x x −+<”的否定是[]1,3x ∃∈−,2320x x −+≥. 故选:A4. 已知集合{}240A x x=−>,{}2430B x xx =−+<,则A B = ( )A. {}21x x −<< B. {}12x x <<C. {}23x x −<<D. {}23x x <<【答案】D 【解析】【分析】解出集合,A B ,再利用交集含义即可.【详解】{}{2402A x xx x =−>=或}2x <−,{}{}2430|13B x xx x x =−+<=<<,则{}23A Bx x ∩=<<.故选:D.5. 若,,a b c ∈R ,0a b >>,则下列不等式正确的是( ) A.11a b> B. a c b c >C. 2ab b >D. ()()2211a c b c −>−【答案】C 【解析】【分析】对BD 举反例即可,对AC 根据不等式性质即可判断. 【详解】对A ,因为0a b >>,则11a b<,故A 错误; 对B ,当0c =时,则a c b c =,故B 错误;对C ,因为0a b >>,则2ab b >,故C 正确; 对D ,当1c =时,则()()2211a c b c −=−,故D 错误. 故选:C.6. “2a <−”是“24a >”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】A 【解析】【分析】解出不等式24a >,根据充分不必要条件的判定即可得到答案. 【详解】24a >,解得2a >或2a <−,则“2a <−”可以推出“24a >”,但“24a >”无法推出“2a <−”, 则“2a <−”是“24a >”的充分不必要条件. 故选:A .7. 关于x 的一元二次方程(1)(4)x x a −−=有实数根12,x x ,且12x x <,则下列结论中错误的说法是( ) A. 当0a =时,11x =,24x = B. 当0a >时,1214x x << C. 当0a >时,1214x x <<< D. 当904a −<<时,122544x x <<【答案】B 【解析】【分析】根据给定条件,借助二次函数的图象,逐项分析判断即可.【详解】对于A ,当0a =时,方程(1)(4)0x x −−=的二实根为121,4x x ==,A 正确; 对于B ,方程(1)(4)x x a −−=,即2540x x a −+−=,254(4)0a ∆=−−>,解得94a >−, 当0a >时,1244x x a =−<,B 错误;对于C ,令()(1)(4)f x x x =−−,依题意,12,x x 是函数()y f x =的图象与直线y a =交点的横坐标, 在同一坐标系内作出函数()y f x =的图象与直线y a =,如图,观察图象知,当0a >时,1214x x <<<,C 正确; 对于D ,当904a −<<时,12254(4,)4x x a =−∈,D 正确.故选:B8. 已知[]x 表示不超过x 的最大整数,集合[]{}03A x x =∈<<Z ,()(){}2220Bx xax x x b =+++=,且 R A B ∩=∅ ,则集合B 的子集个数为( ).A. 4B. 8C. 16D. 32【答案】C 【解析】【分析】由新定义及集合的概念可化简集合{}1,2A =,再由()A B ∩=∅R 可知A B ⊆,分类讨论1,2的归属,从而得到集合B 的元素个数,由此利用子集个数公式即可求得集合B 的子集的个数. 【详解】由题设可知,[]{}{}Z |31,2A x x =∈<<=,又因为()A B ∩=∅R ,所以A B ⊆, 而()(){}22|20B x xax x x b =+++=,因为20x ax 的解为=0x 或x a =−,220x x b ++=的两根12,x x 满足122x x +=−, 所以1,2分属方程20x ax 与220x x b ++=的根,若1是20x ax 的根,2是220x x b ++=的根,则有221+1=02+22+=0a b × × ,解得=1=8a b −− , 代入20x ax 与220x x b ++=,解得=0x 或=1x 与=2x 或4x =−,故{}0,1,2,4B=−;若2是20x ax 的根,1是220x x b ++=的根,则有222+2=01+21+=0a b × × ,解得=2=3a b −− ,代入20x ax 与220x x b ++=,解得=0x 或=2x 与=1x 或3x =−,故{}0,1,2,3B=−;所以不管1,2如何归属方程20x ax 与220x x b ++=,集合B 总是有4个元素, 故由子集个数公式可得集合B 的子集的个数为42=16. 故选:C二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.)9. 已知关于x 的不等式20ax bx c ++<的解集为(1,6)−,则( ) A. 0a < B. 不等式0ax c +>的解集是{|6}x x > C. 0a b c ++< D. 不等式20cx bx a −−<的解集为11(,)32【答案】BC 【解析】【分析】利用一元二次不等式的解集用a 表示,b c ,再逐项分析判断即得.【详解】对于A ,由不等式20ax bx c ++<的解集为(1,6)−,得1,6−是方程20ax bx c ++=的两个根,且0a >,A 错误;对于B ,16,16b ca a−+=−−×=,则5,6b a c a =−=−, 不等式0ax c +>,即60ax a −>,解得6x >,B 正确; 对于C ,56100a b c a a a a ++=−−=−<,C 正确;对于D ,不等式20cx bx a −−<,即2650ax ax a −+−<,整理得()()31210x x −−>,解得13x <或12x >,D 错误. 故选:BC10. 已知x y 、都是正数,且满足2x y +=,则下列说法正确的是( )A. xy 的最大值为1B.+的最小值为2C. 11x y+的最小值为2D. 2211x y x y +++的最小值为1【答案】ACD【解析】【分析】根据给定条件,借助基本不等式及“1”的妙用逐项计算判断即得.【详解】对于A ,由0,0x y >>,2x y +=,得2()12x y xy +≤=,当且仅当1xy ==时取等号,A 正确;对于B2+≤,当且仅当1xy ==时取等号,B 错误; 对于C,1111111()()(2)(22222y x x y x y x y x y +=++=++≥+=, 当且仅当1xy ==时取等号,C 正确; 对于D ,222211111111111111x y x y x y x y x y x y −+−++=+=−++−+++++++ 11111111[(1)(1)]()(2)11411411y x x y x y x y x y ++=+=++++=++++++++1(214≥+=,当且仅当1111y x x y ++=++,即1x y ==时取等号,D 正确. 故选:ACD11. 用()C A 表示非空集合A 中元素的个数,定义()()()()()()()(),,C A C B C A C B A B C B C A C A C B −≥ ∗=−< ,已知集合222{0},{R |()(1)0}A x x x B x x ax x ax =+==∈+++=|,则下面正确结论正确的是( )A. a ∃∈R ,()3C B =B. a ∀∈R ,()2C B ≥C. “0a =”是“1A B ∗=”的充分不必要条件D 若{}R1S a A B =∈∗=∣,则()4C S = 【答案】AC 【解析】【分析】根据集合新定义,结合一元二次方程,逐项分析判断即可. 【详解】对于A ,当2a =时,{}0,2,1B =−−,此时()3C B =,A 正确;对于B ,当0a =时,{}0B =,此时()1C B =,B 错误;.对于C ,当0a =时,{}0B =,则()1C B =,而{}0,1A =−,()2C A =,因此1A B ∗=;当1A B ∗=时,而()2C A =,则()1C B =或3,若()1C B =,满足2Δ40a a ==−< ,解得0a =; 若()3C B =,则方程20x ax 的两个根120,x x a ==−都不是方程210x ax ++=的根,且20Δ40a a ≠ =−=,解得2a =±,因此“0a =”是“1A B ∗=”的充分不必要条件,C 正确; 对于D ,由1A B ∗=,而()2C A =,得()1C B =或3,由C 知:0a =或2a =±,因此{}0,2,2S =−, 3C S ,D 错误.故选:AC三、填空题(本题共3小题,每小题5分,共15分.)12. 已知集合{}A x x a =<,{}13B x x =<<,若A B B = ,则实数a 的取值范围是______.【答案】3a ≥ 【解析】【分析】根据给定条件,利用交集的定义,结合集合的包含关系求解即得.【详解】由A B B = ,得B A ⊆,而{}A x x a =<,{}13B x x =<<,则3a ≥,所以实数a 的取值范围是3a ≥. 故答案:3a ≥13.若一个直角三角形的斜边长等于,当这个直角三角形周长取最大值时,其面积为______. 【答案】18 【解析】【分析】由题意画出图形,结合勾股定理并通过分析得知当()2722AB AC AB AC +=+⋅最大值,这个直角三角形周长取最大值,根据基本不等式的取等条件即可求解. 【详解】如图所示:为在Rt ABC △中,90,A BC ==而直角三角形周长l AB BC CA AB CA =++=++,由勾股定理可知(222272AB CA BC +===,若要使l 最大,只需+AB AC 即()2222722AB AC AB AC AB AC AB AC +=++⋅=+⋅最大即可, 又22272AB AC AB AC ⋅≤+=,等号成立当且仅当6AB AC ==, 所以()2722144AB AC AB AC +=+⋅≤,12AB AC +≤,12l ≤+, 等号成立当且仅当6AB AC ==, 此时,其面积为11661822S AB AC =⋅=××=. 故答案为:18.14. 若不等式22x x a ax +−>+对(]0,1a ∀∈恒成立,则实数x 取值范围是______. 【答案】(]),2∞∞−−∪+【解析】【分析】根据主元法得()2120x a x x +−−+<对(]0,1a ∀∈恒成立,再利用一次函数性质即可得到答案.【详解】由不等式22x x a ax +−>+对(]0,1a ∀∈恒成立, 得()2120x a x x +−−+<对(]0,1a ∀∈恒成立,令()()212g a x a x x =+−−+,得22(0)20(1)120g x x g x x x =−−+≤ =+−−+< , 解得(]),2x ∈−∞−+∞,∴实数x的取值范围是(.故答案为:(]),2∞∞−−∪+.四、解答题(本题共3小题,共47分)15. 设集合U =R ,{}05Ax x =≤≤,{}13B x m x m =−≤≤. (1)3m =,求()U A B ∪ ;(2)若“x B ∈”是“x A ∈”的充分不必要条件,求m 的取值范围.的【答案】(1){|5x x ≤或}9x > (2)12m <−或513m ≤≤. 【解析】【分析】(1)根据 集合的补集定义以及集合的交集运算,即可求得答案;(2)依题意可得B A ,讨论集合B 是否为空集,列出相应的不等式,即可求得结果. 【小问1详解】当3m =时,可得{}|29B x x =≤≤,故可得{|2U B x x =< 或}9x >,而{}|05A x x =≤≤, 所以(){|5U A B x x ∪=≤ 或}9x >. 【小问2详解】由“x B ∈”是“x A ∈”的充分不必要条件可得B A ; 当B =∅时,13m m −>,解得12m <−,符合题意; 当B ≠∅时,需满足131035m m m m −≤−≥ ≤,且10m −≥和35m ≤中的等号不能同时取得,解得513m ≤≤; 综上可得,m 的取值范围为12m <−或513m ≤≤. 16. (1)已知03x <<,求y =的最大值; (2)已知0x >,0y >,且5x y xy ++=,求x y +的最小值; (3)解关于x 的不等式()2330ax a x −++<(其中0a ≥). 【答案】(1)92;(2)2+;(3)答案见解析 【解析】【分析】(1)化简得y,再利用基本不等式即可;(2)利用基本不等式构造出252x y x y + ++≤,解出即可;(3)因式分解为(3)(1)0ax x −−<,再对a 进行分类讨论即可.【详解】(1)()229922x x y +−=≤=,当且仅当229x x =−,即229x x =−,即x =时等号成立.则y =的最大值为92. (2)因为 0,0x y >>, 且 5x y xy ++=, 则252x y x y xy + ++≤,解得2x y +≥ 或 2x y +≤−(舍去),当且仅当1x y ==时等号成立,则x y +的最小值为2+.(3)不等式()2330ax a x −++<化为(3)(1)0ax x −−<,(其中0a ≥), 当0a =时,解得1x >;当0a >时,不等式化为3()(1)0x x a−−<,若0<<3a ,即31a>,解得31x a <<;若3a =,x 无实数解; 若3a >,即31a <,解得31x a<<, 所以当0a =时,原不等式的解集为{|1}x x >; 当0<<3a 时,原不等式的解集为3{|1}x x a<<; 当3a =时,原不等式的解集为∅; 当3a >时,原不等式的解集为3{|1}x x a<<. 17. 已知方程()220,x mx n m n −+−=∈R(1)若1m =,0n =,求方程220x mx n −+−=的解;(2)若对任意实数m ,方程22x mx n x −+−=恒有两个不相等的实数解,求实数n 的取值范围;(3)若方程()2203x mx n m −+−=≥有两个不相等的实数解12,x x ,且()2121248x x x x +−=,求221221128x x x x x x +−+的最小值. 【答案】(1)2x =或1−;(2)2n <(3)【解析】【分析】(1)由题意得到220x x −−=,求出方程的根;(2)由根的判别式大于0得到()21124n m <++,求出()211224m ++≥,从而得到2n <; (3)由韦达定理得到1212,2x x m x x n +==−,代入()2121248x x x x +−=中得到24m n =,结合立方和公式化简得到2212211288328x x m x x x x m m m+−=−++−,令8t m m =−,由单调性得到81333t −=≥,结合基本不等式求出22122112832x x t x x x x t +−=+≥+,得到答案. 【小问1详解】1m =,0n =时,220x x −−=,解得2x =或1−;【小问2详解】()222120x mx n x x m x n −+−=⇒−++−=,故()()2Δ1420m n =+−−>,所以()21124n m <++, 其中()211224m ++≥,当且仅当1m =−时,等号成立, 故2n <;【小问3详解】()2203x mx n m −+−=≥有两个不相等的实数解12,x x ,()2Δ420m n =−−>,由韦达定理得1212,2x x m x x n +==−,故()2212124488x x x x m n +−=−+=,所以24m n =,此时80∆=>, 所以()()2222331211221212211212121212888x x x x x x x x x x x x x x x x x x x x x x +−+++−=−=−+++ ()()()221212121212336882x x x x x x m m n x x x x n m ++−−+ −=−+−,因为24m n =, 所以2222122221126284488883282244m m m m x x m m m x x x x m m m m m +−+ +−=−=−=−++−−−, 令8t m m =−,其在3m ≥上单调递增,故81333t −=≥,故22122112832x x t x x x x t +−=+≥+ 当且仅当32t t=,即=t 时,等号成立, 故221221128x x x x x x +−+的最小值为【点睛】关键点点睛:变形得到2212211288328x x m x x x x m m m+−=−++−,换元后,由函数单调性和基本不等式求最值.。
山东省临沂第一中学2015-2016学年高一上学期期末考试(第四次诊断)数学试题含答案

临沂一中2015级高一上学期第四次教学诊断测试题数学第I 卷(选择题 共60分)一、选择题:本题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设全集{1,2,3,4},U =集合{1,3},{4}S T ==,则()u C S T 等于( )(A){2,4} (B){4} (C)∅ (D){1,3,4}2.已知点(,2)(0)a a >到直线:30l x y -+=的距离为1,则a 等于( )1(B)2(D)1+3.函数1()lg(6)f x x =-的定义域是( ) (A){|6}x x > (B){|36}x x -≤< (C) {|3}x x >- (D){|36x x -≤<且5}x ≠4.直线70x ax +-=与直线(1)2140a x y ++-=互相平行,则a 的值是( )(A)1 (B)-2 (C)1或-2 (D)-1或25.已知函数23,0()log ,0x x f x x x ⎧≤=⎨>⎩,则1(())2f f 的值是( ) (A)-3 (B)3 (C)13 (D) 13- 6.下列函数是偶函数且在(0,)+∞上是增函数的是( ) (A)23y x = (B)1()2xy = (C)ln y x = (D)21y x =-+ 7.正三棱锥的一个侧面面积与地面面积之比为2:3,则此三棱锥的高与斜高之比是( )(C)128.下列命题正确的是( )①平行于同一平面的两直线平行②垂直于同一平面的两直线平行③平行于同一直线的两平面平行④垂直于同一直线的两平面的平行(A)①② (B)③④ (C)①③ (D)②④9.若某几何体的三视图如图所示,则此几何体的表面积为(A)(4π+(B)6(2π+(C)2)π(D)8+10.函数的零点所在的区间为( )(A)(1,0)- (B) (1,2) (C)(0,1) (D)(2,3)11.对于每个实数x ,设()f x 取41,2,24y x y x y x =+=+=-+三个函数中的最小值,则()f x 的最大值 为( ) (A)43 (B)53 (C)73 (D)8312.已知函数2()4,()f x x g x =-是定义在(,0)(0,)-∞+∞ 上的奇函数,当0x >时2()log g x x =,则函数()()y f x g x =⋅的大致图像为( )第II 卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.经过点P (3,1)-,且在x 轴上的截距等于在y 轴上的截距的2倍的直线l 的方程是____.14.已知,lg 2,lg3a b ==则2log 12______________.=(用a ,b 表示).15.已知球的某截面的面积为16π,球心到该截面的距离为3,则球的表面积为____.16.已知函数(),()22x xx xe e e ef xg x ---+==,(其中e=2.71718...),有下列命题:①()f x 是奇函数,()g x 是偶函数;②对任意,x R ∈都有(2)()();f x f x g x =③()f x 在R 上单调递增,()g x 在(,0)-∞上单调递减;④()f x 无最值,()g x 有最小值;⑤()f x 有零点,()g x 无零点.其中正确的命题是_______.(填上所有正确命题的序号)三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)设全集U R =,集合(,3][6,)A =-∞+∞ ,2{|log (2)4}B x x =+<.(1)求如图阴影部分的集合;(2)已知{|21}C x a x a =<<+,若B C B = ,求实数a 的取值范围.18.(本小题满分12分)已知ABC 的顶点(1,3)B --,AB边上的高CE所在直线的方程为310x y --=,BC边上中线AD所在直线的方程为8930x y +-=。
临澧县第一中学2020_2021学年高一数学上学期阶段性考试试题

湖南省临澧县第一中学2020_2021学年高一数学上学期阶段性考试试题湖南省临澧县第一中学2020—2021学年高一数学上学期阶段性考试试题时量:120分钟 总分:150分一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知集合2{|23}A x Z x x =∈-<,{0B =,1,3},则(A B ⋂= )A .{1-,0,1,2,3}B .{0,1,2}C .{0,1,3}D .{0,1} 2.若为实数,则“1a <”是“11a>”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件3.函数1()()22xf x x =+-的零点一定位于下列哪个区间( )A .1(,1)2B .3(1,)2C .3(,2)2D .5(2,)24.已知函数()sin()(0f x x ωϕω=+>,||)2πϕ<的部分图象如图所示,则ω,ϕ的值分别是( ) A .2,6π B .2,3πC .1,6πD .1,3π5.设2log 5a =, 2.15b =,50.2c =,则,b ,的大小关系是( )A .a b c >>B .b a c >>C .b c a >>D .a c b >> 6.函数()||cos f x ln x x =+的图象可能是( )A .B .C .D .7.函数()cos 3sin 22x x f x =-,若要得到奇函数的图象,可以将函数()f x 的图象( )A .向左平移3π个单位B .向左平移23π个单位C .向右平移3π个单位D .向右平移23π个单位8.已知函数2()(f x x x t t =-+为常数)满足2(())4f f x x x -+=,()2sin(2)6g x x π=-,湖南省临澧县第一中学2020_2021学年高一数学上学期阶段性考试试题若(())f g x 在[0,]2π上的最大值和最小值分别为m,,则24m n t ++的值为( )A .5-或15B .9-或11C .11-或9D .5或15-二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的.全部选对的得5分,部分选对的得3分,有选错的得0分)9.下面说法正确的有( )A .角3π与角53π-终边相同.B .终边在直线y x =-上的角α的取值集合可表示为{|36045k αα=︒-︒,}k Z ∈ .α的终边在直线2y x =-上,则sin α的取值为. D .6730︒'化成弧度是38π. 10.下面说法正确的有( )A .若22ac bc >,则a b > B .若a b >,则11a b>C .若0b a << ,则2ab b < D .若,b 为正数,则11()()4a b a b++11.下面说法正确的有( )A .设奇函数()f x 在(0,)+∞上单调递增,且f (3)0=,则不等式()()02f x f x -->的解集为(3,)+∞.B .定义:若函数()f x 同时满足:①对于定义域上的任意,恒有()()0f x f x +-=;②对于定义域上的任意1x ,2x ,当12x x ≠时,恒有1212()()0f x f x x x-<-,则称函数()f x为“爱国函数”.所以3()f x x =能被称为“爱国函数”.C .定义在R 上的奇函数()f x 和偶函数()g x 满足:()()4xf xg x +=,则44()2x xf x --=,且0f <(1)g <(2). D .函数()||1x f x x -=+的值域是(1,1)-. 12.下面说法正确的有( )A .已知2()2cos ()1(0)3f x x πωω=+->,若1()1f x =,2()1f x =-,且12||x x -的最小值为π,则2ω=.湖南省临澧县第一中学2020_2021学年高一数学上学期阶段性考试试题B .设0a >,0b >,21a b +=,则12a b+的最小值为8.C .函数()sin |cos |f x x x =,3[,]22x ππ∈-的最大值为12.D .xxy e e -=+既是偶函数,又在(0,)+∞上单调递增.三、填空题(本大题共4小题,每小题5分,共20分) 13.命题“(0,)2x π∀∈,tan sin x x ≥”的否定是 .14.若1sin 3x =,则cos()2x π+= .15.设函数2||21()log (1)()2x f x x =+-,则使得1()(31)2f f x >-成立的的取值范围是 . 16.《几何原本》中的几何代数法(用几何方法研究代数问题)成了后世西方数学家处理问题的重要依据.通过这一方法,很多代数公理、定理都能够通过图形实现证明,并称之为 “无字证明”.设0a >,0b >,称2ab a b+为,b 的调和平均数.如图,C 为线段AB 上的点,且AC a =,CB b =,O 为AB 的中点,以AB 为直径作半圆.过点C 作AB 的垂线,交半圆于D , 连结OD ,AD ,BD .过点C 作OD 的垂线,垂足为E .则图中线段OD 的长度是,b 的算术平均数2a b +,线段CD 的长度是,b 的几何平ab 线段 的长度是,b 的调和平均数2ab a b +,该图形可以完美证明三者的大小关系为 .四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分) 设命题p :存在实数[1x ∈,2],使不等式2532a a x -->+成立;命题q :对任意实数[1x ∈,2],使2210x ax -+≤恒成立. 若p ⌝为真命题,()p q ∨⌝也为真命题,求实数的取值范围.18.(本小题满分12分) 设函数2()(f x ax bx c a =++,b ,)c R ∈,且(0)1f =.(1)若()0f x <的解集为1(,1)2,求函数()12f x y x +=的值域; (2)若f (1)0=,且1a <,试用含的代数式表示b ,并求此时()0f x >的解集.湖南省临澧县第一中学2020_2021学年高一数学上学期阶段性考试试题19.(本小题满分12分) 已知22sin 2sin 12αα=-.(1)求sin cos cos2ααα+的值; (2)已知(0,)απ∈,(0,)2πβ∈,且2tan 6tan 1ββ-=,求2αβ+的值.20.(本小题满分12分) 心理学家通过研究和实验表明,从开始上课起的30分钟内,学生注意力保持的程度指数()f t 与老师讲解所用的时间t min 之间近似满足: 20.1 2.643,010,()59,1016,3107,1630.t t t f t t t t ⎧-++<≤⎪=<≤⎨⎪-+<≤⎩若()f t 的值越大,表示学生的注意力越集中,按照上述结论,请回答以下问题:(1)讲课开始5min 后和讲课开始20min 后比较,何时学生的注意力更集中?(2)讲课开始后多少分钟,学生的注意力最集中,能持续多久?(3)一道数学难题,需要讲解13min ,并且要求学生的注意力指数至少达到55,那么老师能否在学生达到所需状态下讲授完这道题目?请说明理由.21(本小题满分12分) ①函数211()sin()cos()cos ()(0)22224f x x x x ωωωω=+->;②函数1()sin()(0,||)22f x x πωϕωϕ=+><的图象向右平移12π个单位长度得到()g x 的图象,()g x 的图象关于原点对称.在以上两个条件中任选一个,补充在下面问题中,并解答: “已知_______,函数()f x 图象的相邻两条对称轴之间的距离为2π.” (1)求()6f π的值;湖南省临澧县第一中学2020_2021学年高一数学上学期阶段性考试试题(2)求函数()f x 在[0,]π上的单调递增区间;(3)记1()2()2h x f x =-,将()h x 的图象向左平移3π个单位长度,得到函数()t x 的图象,若对于任意的1x ,2[0x ∈,]m ,当12x x <时,都有1221()()()()h x t x h x t x ->-,求m的取值范围.22.(本小题满分12分) 已知函数2()2f x x x a =-+,且函数()f x 的值域为[0,)+∞.(1)求实数的值;(2)若关于的不等式(3)90xxf m +⋅≥在[1,)+∞上恒成立,求实数m的取值范围;(3)若关于的方程(|31|)230|31||31|xx xf k k -+-=--有三个不同的实数根,求实数k 的取值范围.2020年下学期期考 高一数学 试卷 参考答案(仅供参考,敬请校对后使用)时量:120分钟 总分:150分1~8 DBCB BAAA9.AD 10.ACD11.CD12.CD13.(0,)2x π∃∈,tan sin x x < 14.13-15.1(6,1)2 16.DE;22ab a bab a b ++ 17.解:命题p :存在实数[1x ∈,2],使不等式2532aa x -->+成立,[1x ∈,2],2[3x ∴+∈,5].若p 为真,则2533aa -->成立,得2560aa -->,解得6a >或1a <-.实数的取值范围是(-∞,1)(6-⋃,)+∞. 命题q :任意实数[1x ∈,2],使1a x x≥+ 恒成立,[1x ∈,2], 1522x x ≤+≤,522a ≥⇒54a ≥,p ⌝为真命题,()p q ∨⌝也为真命题,命题p 假q 假,1654a a -≤≤⎧⎪⎨<⎪⎩5[1,)4a ∈- 即:实数的取值范围5[1,)4-.18.解:由(0)1f =,得1c =,所以2()1f x ax bx =++.(1)由()0f x <的解集为1(,1)2,可知12和1是方程210axbx ++=的两根,所以112111.2ba a ⎧+=-⎪⎨⨯=⎪⎩ 解得2a =,3b =-,所以2()231f x xx =-+.所以2()123213222f x x x y x x x x +-+===+-71(,][,)22∈-∞-⋃+∞(2)由f (1)0=,得10a b ++=,即1b a =--,所以2()(1)1f x axa x =-++.当0a =时,()1f x x =-+,得()0f x >的解集为(,1)-∞;当0a >时,21()(1)1(1)(1)()(1)f x ax a x ax x a x x a=-++=--=--. 又1a <,所以当01a <<时,11a>,此时()0f x >的解集为1(,1)(,)a-∞⋃+∞.当0a <时,()0f x >的解集为1(,1)a. 综上:当0a =时,解集为(,1)-∞;当01a <<时,解集为1(,1)(,)a-∞⋃+∞;当0a <时,()0f x >的解集为1(,1)a.19.解:(1)由已知可得2sin cos αα=-,则1tan 2α=-,所以2222sin cos cos2tan 11sin cos cos215tan sin cos tan ααααααααααα++-+===++;(2)由2tan6tan 1ββ-=,可得22tan 1tan 213tan βββ==--,则11tan tan 223tan(2)1111tan tan 2123αβαβαβ--++===---⨯,因为(0,)2πβ∈,所以2(0,)βπ∈,又1tan 203β=-<,则22(,)πβπ∈,因为(0,)απ∈,1tan 02α=-<,则(,)2παπ∈,则2(,2)αβππ+∈,所以724παβ+=.20.解:(1)当010t <时,2()0.1 2.643f t tt =-++,()f t ∴20.152.654353.5=-⨯+⨯+=;当1630t<时,()3107f t t =-+,(20)6010747f ∴=-+=.故上课开始5分钟后,学生的注意力更集中; (2)当010t <时,2()0.1 2.643f t t t =-++,为开口向下的二次函数,对称轴为13t =,故()f t 的最大值为(10)59f =,当1016t <时,()59f t =, 当1630t<时,()3107f x t =-+为减函数,且17()59f t <,因此,开讲10分钟后,学生达到最强接受能力(为59),能维持6分钟时间;(3)令()55f t =,解得6t =或1173t =,且当16173t 时,()55f t ,因此学生达到(含超过)55的接受能力的时间为11176111333-=<,故老师不能在学生一直达到所需接受能力的状态下讲授完这个难题.21.解:(1)选条件①:由题意可得:211())cos()cos ()(0)22224f x x x x ωωωω=+-> 即有:11()cos sin()426f x x x x πωωω=+=+ 又因为()f x 相邻两对称轴之间距离为2π,则周期为π,从而2ω=,从而1()sin(2)26f x x π=+,故1()62f π=;选条件②:依题意,()f x 相邻两对称轴之间距离为2π,则周期为π,从而2ω=,1()sin(2)2f x x φ=+,1()sin(2)26g x x πφ=+-,又()g x 的图象关于原点对称,则(0)0g =,由||2πφ<知6πφ=, 从而1()sin(2)26f x x π=+,故1()62f π=.(2)由(1)知:1()sin(2)26f x x π=+,令222,262k x k k zπππππ-++∈,解得[,],36x k k k z ππππ∈-+∈,故()f x 在[0,]π上的单调递增区间为2[0,],[,]63πππ.(3)11()2()sin(2)262h x f x x π=-=+-,将()h x 的图象向左平移3π个单位长度,可得151sin[2()]sin(2)36262y x x x πππ=++-=+-,即函数51()sin(2)62x x t π=+-,令函数()()()x h x x F t =+5sin(2)sin(2)166x x ππ=+++-cos21x =-, 由题意()F x 在[0x ∈,]m 单调递减, 当[0x ∈,]m 时,2[0x ∈,2]m ,那么2m m π>⎧⎨⎩,可得02m π<,m ∴的取值范围是(0,]2π.22.解:(1)由题意知,f (1)0=,即120a -+=,解得1a =;(2)由(3)90xxf m +⋅在[1,)+∞上恒成立,可化为2(3)231x xm ----⋅+在[1,)+∞恒成立, 令3xt -=,由[1x ∈,)+∞,可得1(0,]3t ∈,则221m t t --+在1(0,]3t ∈上恒成立.记21()21,(0,]3h t tt t =-+∈,函数()h t 在1(0,]3上单调递减, 14()()39min h t h ==.则49m-,得49m -,实数m的取值范围是4[,)9-+∞;(3)方程(|31|)230|31||31|x xx f k k -+-=--有三个不同的实数根,可化为2|31|2|31|123|31|0(|31|0)xx x x k k --⋅-++-⋅-=-≠有三个不同根.令|31|xt =-,则0t >.当0x <时,|31|13xxt =-=-,(0,1)t ∈且单调递减,当30log 2x <<时,|31|31xx t =-=-,(0,1)t ∈且单调递增,当3log 2x =时,1t =,当3log 2x >时,|31|31xx t =-=-,(1,)t ∈+∞且单调递增.设2(32)120tk t k -+++=有两个不同的实数根1t ,2t 且12tt <.原方程有3个不同实数根等价于101t <<,21t >或101t <<,21t =.记2()(32)12g t tk t k=-+++,则(0)120(1)0g k g k =+>⎧⎨=-<⎩或(0)120(1)032012g k g k k ⎧⎪=+>⎪=-=⎨⎪+⎪<<⎩,解得0k >.综上,实数k 的取值范围是(0,)+∞.。
2024-2025学年广州市高一数学上学期期中考试卷及答案解析

天天向上联盟联考高一年级数学学科试卷注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上.用 2B 铅笔在答题卡的相应位置填涂考生号.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑:如需改动,用橡皮擦干净后,再选涂其他答案.答案不能在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上:如需改动,先划掉原来的答案,然后再写上新答案:不准使用铅笔和涂改液.不按以上要求作答无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项、是符合题目要求的.1. 已知集合{N |25}A x x =∈-≤≤,{2,4,6}B =,则A B = ( )A. {0,1,2,3,4,5,6} B. {1,2,3,4,5,6}C. {2,4} D. {|26}x x -≤≤【答案】A 【解析】【分析】利用自然数集N 的定义化简集合A ,再利用集合的并集运算即可得解.【详解】因为{}{N |25}0,1,2,3,4,5A x x =∈-≤≤=,又{2,4,6}B =,所以{0,1,2,3,4,5,6}A B = .故选:A.2. 命题“1x ∀>,20x x ->”的否定是( )A. 01x ∃≤,2000x x -≤ B. 1x ∀>,20x x -≤C. 01x ∃>,2000x x -≤ D. 1x ∀≤,20x x -≤【答案】C 【解析】【分析】根据全称量词命题的否定为特称量词命题判断即可.【详解】命题“1x ∀>,20x x ->”为全称量词命题,其否定为:01x ∃>,2000x x -≤.故选:C3. 下列函数中,既是偶函数又在(0,+∞)上单调递增的是A. y =B. 21y x =-+C. 3y x =D. 1y x =+【答案】D 【解析】【分析】根据偶函数的定义,奇函数的定义,以及二次函数和一次函数的单调性即可判断每个选项的正误,从而找出正确选项.【详解】对于,A y =定义域为[)0,∞+,不关于原点对称,y ∴=A 错误;对于2,1B y x =-+ 是偶函数,但是(0,+∞)是减函数,选项B 错误;对于3,C y x = 是奇函数,选项C 错误;对于(),1D y f x x ==+ 的定义域为R ,满足()()f x f x -=,1y x ∴=+是偶函数,且在(0,+∞)是递增的,选项D 正确,故选D.【点睛】本题主要考查奇函数和偶函数的定义,以及二次函数和一次函数的单调性,属于基础题.4. 给定数集,(0,),,A B x y ==+∞R 满足方程20x y -=,下列对应关系f 为函数的是( )A. :,()f A B y f x →= B. :,()f B A y f x →=C. :,()f A B x f y →= D. :,()f B A x f y →=【答案】B 【解析】【分析】ACD 选项,可举出反例;B 选项,利用函数的定义作出判断.【详解】A 选项,x ∀∈R ,当0x =时,20y x ==,由于0B ∉,故A 选项不合要求;B 选项,()0,x ∀∈+∞,存在唯一确定的y ∈R ,使得2y x =,故B 正确;CD 选项,对于()0,y ∀∈+∞,不妨设1y =,此时21x =,解得1x =±,故不满足唯一确定的x 与其对应,不满足要求,CD 错误.故选:B5. “不等式20mx x m ++>在R 上恒成立”的一个必要不充分条件是( )A. 12m >B. 01m << C. 14m >D. 1m >【答案】C 【解析】【分析】先计算已知条件的等价范围,再利用充分条件和必要条件的定义逐一判断即可.【详解】因为“不等式2+0mx x m +>在R 上恒成立”,所以当0m =时,原不等式为0x>在R 上不是恒成立的,所以0m ≠,所以“不等式2+0mx x m +>在R 上恒成立”,等价于2>0140m m ⎧⎨∆=-<⎩,解得12m >.A 选项是充要条件,不成立;B 选项中,12m >不可推导出01m <<,B 不成立;C 选项中,12m >可推导14m >,且14m >不可推导12m >,故14m >是12m >的必要不充分条件,正确;D 选项中,1m >可推导1>2m ,且1>2m 不可推导1m >,故>1m 是12m >的充分不必要条件,D 不正确.故选:C.【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.6. 已知0,0a b >>,且121a b +=,则2112a b +--的最小值为( )A. 2B.C.D. 1+【答案】A 【解析】【分析】由121a b+=得02ba b =>-,得到2b >,进而12012b a -=>-,所以()2112122b a b b +=-+---,由均值不等式求得最小值.【详解】因为0,0a b >>且121a b+=,所以1221b a b b -=-=,所以02ba b =>-,所以2b >,所以()22110222b b b a b b b ---=-==>---,所以12012b a -=>-,所以()21122122b a b b +=-+≥=---,当且仅当122b b -=-即3b =时,等号成立,所以2112a b +--的最小值为2,故选:A.7. 定义在(0,+∞)上的函数()f x 满足:对()12,0,x x ∞∀∈+,且12x x ≠,都有()()2112120x f x x f x x x ->-成立,且()36f =,则不等式()2f x x>的解集为( )A. ()3,+∞B. ()0,3C. ()0,2D. ()2,+∞【答案】A 【解析】【分析】构造函数()()f x g x x=,运用单调性,结合所给特殊值,得到不等式计算即可.【详解】令()()f x g x x=,因为对()120,x x ∞∀∈+、,且12x x ≠,都有()()2112120x f x x f x x x ->-成立,不妨设120x x <<,则120x x -<,故()()21120x f x x f x -<,则()()1212f x f x x x <,即()()12g x g x <,所以()g x 在(0,+∞)上单调递增,又因为()36f =,所以()()3323f g ==,故()2f x x>可化为()()3g x g >,所以由()g x 的单调性可得3x >,即不等式()2f x x>的解集为3x >.故选:A.8. 已知函数()221f x x x =-+,若[)2,x ∃∈+∞对[]1,1a ∀∈-均有()22f x m am <-+成立,则实数m 的取值范围为( )A. ()3,1-B. 1,13⎛⎫- ⎪⎝⎭C. 11,3⎛⎫- ⎪⎝⎭D. ()1,3-【答案】B 【解析】【分析】分析可知,()min 22f x m am <-+,可得出210am m --≤对[]1,1a ∀∈-恒成立,令()21g a am m =--,由题意可得出()()1010g g ⎧-<⎪⎨<⎪⎩,即可求得实数m 的取值范围.【详解】因为函数()221f x x x =-+,则函数()f x 在[)2,+∞上为增函数,因为[)2,x ∞∃∈+对[]1,1a ∀∈-均有()22f x m am <-+成立,则()2221m am f -+>=,即210am m --<对[]1,1a ∀∈-恒成立,令()21g a am m =--,则()()1310110g m g m ⎧-=--<⎪⎨=-<⎪⎩,解得113m -<<,因此,实数m 的取值范围是1,13⎛⎫- ⎪⎝⎭.故选:B.【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解:(1)x D ∀∈,()()min m f x m f x ≤⇔≤;(2)x D ∀∈,()()max m f x m f x ≥⇔≥;(3)x D ∃∈,()()max m f x m f x ≤⇔≤;(4)x D ∃∈,()()min m f x m f x ≥⇔≥.二、选择题:本题共3小题,每小题6分,共18分,在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分9. 若0a b >>且0c ≠,则下列不等式正确的是( )A. 33a b > B.11a b< C.a a cb b c+<+ D. 22ac bc >【答案】ABD 【解析】【分析】根据不等式的性质即可判断ABD ,利用作差法即可判断C.【详解】对于AB ,因为0a b >>,所以33a b >,11a b<,故AB 正确;对于C ,()()()()()a b c b a c c a b a a c b b c b b c b b c +-+-+-==+++,当2,1,2a b c ===-时,()()20c a b b b c -=>+,此时a a cb b c+>+,故C 错误;对于D ,因为0c ≠,所以20c >,又0a b >>,所以22ac bc >,故D 正确.故选:ABD.10. 我们知道,如果集合A S ⊆,那么S 的子集A 的补集为{|S A x x S =∈ð且}x A ∉,类似地,对于集合,A B 我们把集合{|x x A ∈且}x B ∉,叫作集合A 和B 的差集,记作A B -,例如:{}{}1,2,3,4,5,4,5,6,7,8A B ==,则有{}{}1,2,3,6,7,8A B B A -=-=,下列解答正确的是( )A. 已知{}{}4,5,6,7,9,3,5,6,8,9A B ==,则{}378B A -=,,B. 已知{|1A x x =<-或}{}3,|24x B x x >=-≤<,则{|2A B x x -=<-或x ≥4}C. 如果A B ⊆,那么A B -=∅D. 已知全集、集合A 、集合B 关系如上图中所示,则()U A B A B -= ð【答案】BCD 【解析】【分析】依题意根据A B -的定义可知,可先求出A B ⋂,再求出其以A 为全集的补集,结合具体选项中集合的关系逐项判断,即可得出结论.【详解】根据差集定义B A -即为{|x x B ∈且}x A ∉,由{}{}4,5,6,7,9,3,5,6,8,9A B ==,可得{}3,8B A -=,所以A 错误;由定义可得A B -即为{|x x A ∈且}x B ∉,由{|1A x x =<-或}{}3,|24x B x x >=-≤<,可知{|2A B x x -=<-或x ≥4},即B 正确;若A B ⊆,那么对于任意x A ∈,都满足x B ∈,所以{|x x A ∈且}x B ∉=∅,因此A B -=∅,所以C 正确;易知{|A B x x A -=∈且}x B ∉在图中表示的区域可表示为()A A B ð,也即()U A B ∩ð,可得()U A B A B -= ð,所以D 正确.故选:BCD11. 已知函数()()12,1312,32x x f x f x x ⎧--≤≤⎪=⎨->⎪⎩,则下列说法正确的是( )A. ()164f =B. 关于x 的方程()()*21nf x n =∈N 有23n +个不同的解C. ()f x 在[]()*2,21n n n +∈N上单调递减D. 当[)1,x ∞∈+时,()2xf x ≤恒成立.【答案】ACD 【解析】【分析】求()6f 的值判断选项A ;当1n =时验证结论是否正确去判断选项B ;由()f x 在[]()*2,21n n n +∈N 上的解析式去判断选项C ;分析法证明不等式去判断选项D.详解】选项A :()()()1111642(10)2444f f f ===-=.判断正确;选项B :画出()f x 部分图像如下:当1n =时,由()21f x =,可得131122x x ≤≤⎧⎪⎨--=⎪⎩或311(2)22x f x >⎧⎪⎨-=⎪⎩由131122x x ≤≤⎧⎪⎨--=⎪⎩,可得52x =或32x =;由311(2)22x f x >⎧⎪⎨-=⎪⎩,可得4x =即当1n =时,由()21f x =可得3个不同的解,不是5个. 判断错误;选项C :当*3()n k k =∈N 时,[][]2,216,61n n k k +=+,若[]2,21x n n ∈+即[]6,61x k k ∈+,则()[]622,3x k --∈则()()[]313131111621(6)(16)222k k k f x f x k x k x k ---=-+=--=-++,为减函数;当31()n k k =+∈N 时,[][]2,2162,63n n k k +=++若[]2,21x n n ∈+即[]62,63x k k ∈++,则[]62,3x k -∈则()()[]33311161(62)(36)222k k k f x f x k x k x k =-=---=-++,为减函数;当32()n k k =+∈N 时,[][]2,2164,65n n k k +=++若[]2,21x n n ∈+即[]64,65x k k ∈++,则[]622,3x k --∈则()()[]313131111621(64)(56)222k k k f x f x k x k x k +++=--=---=-++,为减函数;综上,()f x 在[]()*2,21n n n +∈N上单调递减. 判断正确;【选项D :当[)1,x ∞∈+时,()2xf x ≤可化为2()f x x≤,同一坐标系内做出2y x=与()f x 的图像如下:等价于()*11222n n n -≤∈N 即()*1112n n n-≤∈N ,而()1*2n n n -≥∈N 恒成立. 判断正确.故选:ACD【点睛】(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.三、填空题:本题共3小题,每小题5分,共15分12.函数()f x =的定义域为____________.【答案】[)()2,33,⋃+∞【解析】【分析】根据根式以及分式的性质即可求解.【详解】()f x =20x -≥且||30x -≠,解得2x ≥且3x ≠.故答案为:[)()2,33,∞⋃+13 已知幂函数()2233m m y m x+-=-单调递减,则实数m =_________.【答案】2-【解析】【分析】由幂函数的定义及性质列方程求解..【详解】因为幂函数()2233m m y m x+-=-单调递减,所以223130m m m ⎧-=⎨+-<⎩,解得2m =-故答案为:2-14. 已知()()()222f x x xxax b =+++,若对一切实数x ,均有()()2f x f x =-,则()3f =___.【答案】15-【解析】【分析】列方程组解得参数a 、b ,得到()f x 解析式后,即可求得()3f 的值.【详解】由对一切实数x ,均有()()2f x f x =-可知()()()()0213f f f f ⎧=⎪⎨-=⎪⎩,即08(42)(1)15(93)a b a b a b =++⎧⎨--+=++⎩解之得68a b =-⎧⎨=⎩则()()()22268f x x xx x =+-+,满足()()2f x f x =-故()()()223323363815f =+⨯-⨯+=-故答案为:15-四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 集合{}2620A x x x =--+>,{}2560B x x x =-+≥.(1)求A B ,()R A B ⋂ð;(2)若集合{}21C x m x m =<<-,C B ⊆,求m 的取值范围.【答案】(1){3x x ≥或}2x ≤,{3x x ≥或23x ⎫≤-⎬⎭;(2)1m ≥-.【解析】【分析】(1)先求出集合A 、B ,再根据集合的交并补运算即可求解;(2)分C =∅和C ≠∅两种情况进行讨论,然后借助数轴即可求解.【详解】解:(1)因为{}{}222162062032A x x x x x x x x ⎧⎫=--+>=+-<=-<<⎨⎬⎩⎭,{}2560B x x x =-+≥={3x x ≥或}2x ≤,.12R A x x ⎧=≥⎨⎩ð或23x ⎫≤-⎬⎭,所以A B = {3x x ≥或}2x ≤,()R A B = ð{3x x ≥或23x ⎫≤-⎬⎭;(2)当C =∅时,显然C B ⊆,此时21m m ³-,即13m ≥;当C ≠∅时,由题意有2123m m m <-⎧⎨≥⎩或2112m m m <-⎧⎨-≤⎩,解得113m -≤<,综上,1m ≥-.16. 已知函数()f x 是定义在R 上的奇函数,且当0x ≤时,()22f x x x =+.(1)求出当0x >时,()f x 的解析式;(2)如图,请补出函数()f x 的完整图象,根据图象直接写出函数()f x 的单调递减区间;(3)结合函数图象,求当[]3,1x ∈-时,函数()f x 的值域.【答案】(1)()22f x x x =-+ (2)函数图象见解析,()f x 的单调递减区间为:(][),1,1,-∞-+∞(3)[]1,3-【解析】【分析】(1)根据函数的奇偶性即可求解,(2)根据奇函数图象关于原点对称即可作出图象,进而可得单调区间,(3)结合函数图象以及单调性,即可求解.【小问1详解】依题意,设0x >,则0x -<,于是()22()22f x x x x x -=--=-,因为()f x 为R 上的奇函数,因此()()22f x f x x x =--=-+,所以当0x >时,()f x 的解析式()22f x x x =-+.【小问2详解】由已知及(1)得函数()f x 的图象如下:观察图象,得函数()f x 的单调递减区间为:(][),1,1,∞∞--+.【小问3详解】当[]3,1x ∈-时,由(1),(2)知,函数()f x 在[]3,1--上单调递减,在[]1,1-上单调递增,当=1x -时,()f x 有最小值()()21(1)211f -=-+⨯-=-,当3x =-时,()f x 有最大值()()23(3)233f -=-+⨯-=,而当1x =时,有()11f =,所以,当[]3,1x ∈-时,函数()f x 的值域为[]1,3-17. 已知函数()121x a f x =+-为奇函数,其中a 为常数.(1)求()f x 的解析式和定义域;(2)若不等式()222(2)f x x f ++>成立,求实数x 的取值范围.【答案】(1)()2121x f x =+-,定义域为{}0x x ≠; (2)20x -<<【解析】【分析】(1)根据奇函数的定义和分式的定义求解即可;(2)根据函数单调性列不等式求解即可.【小问1详解】由分式的定义可知210x -≠即0x ≠,又因为()121x a f x =+-为奇函数,()2112112x x x a a f x --=+=+--,所以()()()1222021x x a f x f x a -+-=+=-+=-,解得2a =,所以()2121x f x =+-,定义域为{}0x x ≠.【小问2详解】因为()2222110x x x ++=++>,当0t >时,210t y =->,且单调递增,所以()2121t f t =+-单调递减,若不等式()222(2)f x x f ++>成立,则2222x x ++<,即()20x x +<,解得20x -<<.18. 党的二十大报告强调,要加快建设交通强国、数字中国.专家称数字交通让出行更智能、安全、舒适.研究某市场交通中,道路密度是指该路段上一定时间内通过的车辆数除以时间,车辆密度是该路段一定时间内通过的车辆数除以该路段的长度,现定义交通流量为q F x=,x 为道路密度,q 为车辆密度,()10045,040,7120,4080.8x a x F f x x x ⎧-⋅<<⎪==⎨-+≤≤⎪⎩已知当道路密度2x =时,交通流量95F =,其中0a >.(1)求a 的值;(2)若交通流量95F >,求道路密度x 的取值范围;(3)求车辆密度q 的最大值.【答案】(1)13a =(2)()2,40(3)288007【解析】【分析】(1)由题,待定系数解方程21004595a -⋅=即可得答案;(2)根据题意,解不等式95F >即可得答案;(3)由题知2110045,04037120,40808x x x q F x x x x ⎧⎡⎤⎛⎫-⋅⋅<<⎪⎢⎥ ⎪⎪⎝⎭⎢⎥⎣⎦=⋅=⎨⎪-+≤≤⎪⎩,进而分段研究最值即可得答案;【小问1详解】解:依题意,21004595a -⋅=,即219a =,故正数13a =,所以,a 的值为13.【小问2详解】解:当4080x ≤≤时,()71208F x f x -+==单调递减,F 最大为()4085f =,故95F >的解集为空集;当040x <<时,由110045953x⎛⎫-⋅> ⎪⎝⎭,解得2x >,即402x >>所以,交通流量95F >,道路密度x 的取值范围为()2,40.【小问3详解】解:依题意,2110045,04037120,40808x x x q F x x x x ⎧⎡⎤⎛⎫-⋅⋅<<⎪⎢⎥ ⎪⎪⎝⎭⎢⎥⎣⎦=⋅=⎨⎪-+≤≤⎪⎩,所以,当040x <<时,1004000q x <⋅<;当4080x ≤≤时,2748028800288008777q x ⎛⎫=--+≤ ⎪⎝⎭,由于48040807<<,所以,当4807=x 时,q 取得最大值288007.因为2880040007>,所以车辆密度q 的最大值为288007.19. 若存在常数k ,b 使得函数()F x 与()G x 在给定区间上任意实数x 都有()()F x kx b G x ≥+≥,则称y kx b =+是()y F x =与()y G x =的隔离直线函数.已知函数211()1,()12f x x x g x x x ⎛⎫=-+=-+ ⎪⎝⎭.(1)证明:函数()y g x =在区间(0,)+∞上单调递增.(2)当0x >时,()y f x =与()y g x =是否存在隔离直线函数?若存在,请求出隔离直线函数解析式;若不存在,请说明理由.的【答案】(1)证明见解析(2)存在;y x=【解析】【分析】(1)根据函数单调性的定义即可证明结论;(2)求出(),()f x g x 的图象的交点,设y =f (x )与y =g (x )是存在隔离直线函数y kx b =+,可得1y kx k =+-,利用()f x kx b ≥+可求出k 的值,结合证明(),(0)g x x x ≤>,即可得出结论.【小问1详解】任取()12,0,x x ∞∈+,不妨设12x x <,则()()121212111122g x g x x x x x ⎛⎫⎛⎫-=--- ⎪ ⎪⎝⎭⎝⎭()()12121212211212111111222x x x x x x x x x x x x x x ⎡⎤⎛⎫⎡⎤⎛⎫--=-+-=-+=+⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎣⎦⎝⎭⎣⎦,由()1212,0,,x x x x ∞∈+<,则120x x -<,120x x >,故12121102x x x x ⎛⎫-+< ⎪⎝⎭,即()()()()12120,g x g x g x g x -<∴<,故函数()y g x =在区间(0,)+∞上单调递增.【小问2详解】当0x >时,y =f (x )与y =g (x )存在隔离直线函数;令()()f x g x =,即211112x x x x ⎛⎫-+=-+ ⎪⎝⎭,即211022x x x x --+=,即3223102x x x -+=,即()()21210x x -+=,解得1x =或12x =-,由于0x >,故舍去12x =-;当1x =时,()()1f x g x ==,即(),()y f x y g x ==有公共点(1,1),设y =f (x )与y =g (x )存在隔离直线函数y kx b =+,则点(1,1)在隔离直线函数y kx b =+上,则1k b +=,即1b k =-,则1y kx k =+-;若当0x >时有()f x kx b ≥+,即()211x x kx k -+≥+-,则()210x k x k -++≥(0,)+∞上恒成立,即(1)()0x x k --≥,由于1(0,)∈+∞,故此时只有1k =时上式才成立,则10b k =-=,下面证明(),(0)g x x x ≤>,令()11111022y g x x x x ⎛⎫=-=-++≤-⨯+= ⎪⎝⎭,即()0y g x x =-≤,故()g x x ≤,当且仅当1x x =,即1x =时,等号成立,所以1y kx k =+-,即y x =为y =f (x )与y =g (x )的隔离直线函数.在。
2024-2025学年江苏省无锡市高一上学期期中考试数学试卷(含答案)

2024-2025学年江苏省无锡市高一上学期期中考试数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合A ={x|−2≤x ≤3},B ={x|x 2−4>0},则A ∩B =( )A. (−2,2)B. [−2,3]C. (2,3)D. (2,3]2.已知函数f(2x−1)=4x +1,且f(t)=5,则t =( )A. 12B. 1C. 2D. 523.命题“任意x >1,则3x−1>5”的否定是( )A. 任意x ≤1,则3x−1≤5 B. 存在x ≤1,则3x−1≤5C. 存在x >1,则3x−1≤5D. 任意x >1,则3x−1≤54.若1a <1b <0,则下列结论不正确的是( )A. a 2<b 2 B. ab <b 2C. ba +ab ≥2D. |a|+|b|>|a +b|5.设函数f(x)=ax 3+bx−1,且f(−3)=1,则f(3)等于( )A. −5B. −3C. 3D. 56.已知奇函数f(x)满足f(1)=0,且f(x)在(0,+∞)上单调递增,则x 3f(x)−f(−x)<0的解集是( )A. (−1,0)∪(0,1) B. (−1,1)C. (−∞,−1)∪(1,+∞)D. (−1,0)∪(1,+∞)7.已知函数f(x)满足f(a)+f(b)=f(ab),且f(8)=32,则f(12)的值为( )A. −12B. 12C. −3D. 38.已知x⩾0,y⩾0,且x +y =1,则2x +3+12y +1的最小值为( )A. 1B. 2C. 52D. 23二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
9.对于给定的实数a ,关于实数x 的不等式a(x−a)(ax +a)≥0的解集不可能为( )A. RB. {x|a ≤x ≤−1}C. {x|x ≤a 或x ≥−1}D. ⌀10.高斯是德国的天才数学家,享有“数学王子”的美誉.以“高斯”命名的概念、定理、公式很多,如高斯函数y =[x],其中不超过实数x 的最大整数称为x 的整数部分,记作[x].如[2024]=2024,[1.7]=1,[−1.5]=−2,记函数f(x)=x−[x],则( )A. f(−2.1)=0.9B. f(x)的值域为[0,1]C. f(x)在[0,3)上有3个零点D. ∀a ∈R ,方程f(x)+x =a 有两个实根11.对于定义在R 上的函数f(x),下列说法正确的是( )A. 若f(x)是奇函数,则f(x +1)的图象关于点(1,0)对称B. 若函数f(x−1)的图象关于直线x =1对称,则f(x)为偶函数C. 函数f(x)=(x 2+2)+1x 2+2的最小值为52D. 函数f(x)=x|x|+2+1在区间[−2024,2024]上的最大值为M ,最小值为m ,则M +m =2三、填空题:本题共3小题,每小题5分,共15分。
江苏省2020-2021学年高一上学期数学期中试题汇编04:函数的概念与性质【填选题】(答案版)

8.(江苏省南京市第十二中学2020-2021学年上学期期中4)下面各组函数中表示同个函数的是()
A. , B. ,
C. , D. ,
【答案】B
【解析】对于A, 的定义域为 ,而 的定义域为 ,两函数的定义域不相同,所以不是同一函数;
对于B,两个函数的定义域都为 ,定义域相同, ,所以这两个函数是同一函数;
A.0B.2
C.4D.-2
【答案】B
【解析】取 ,则 ,
因为函数为奇函数,则 , 即 ,
整理可得 ,即 .故选:B
10.(江苏省南通市西亭高级中学2020-2021学年上学期期中4)已知函数 ,若 =10,则实数a的值为()
A 5B.9C.10D.11
【答案】B
【解析】由 ,令 ,则 .
因为 ,所以a=9.故选:B
A.-4 B.5 C.14 D.23
【答案】C
【解析】由题意可设 ,则当 时, 单调,且 ≥0恒成立,因为 的对称轴方程为 ,则 或 ,解得6≤a≤17或-3≤a≤-2,即 ,则只有14满足题意,故答案选C.
23.(江苏省南通市西亭高级中学2020-2021学年上学期期中6)已知 是偶函数,且其定义域为 ,则 的值是()
【答案】C
【解析】满足条件的函数的定义域为 、 、 、 、 、 、 、 、 ,共 个.故选:C.
18.(江苏省南京市南师附中2020-2021学年上学期期中5)函数 的值域为( )
A. B. C. D.
【答案】D
19.(江苏省南通市西亭高级中学2020-2021学年上学期期中5)已知函数 的值域是()
C.[-4,-1]∪[0,2]D.(-∞,-1]∪[0,2]
湖北省四校2024-2025学年高一上学期期中考试数学试题(含答案)

2024-2025学年上学期高一期中考试数学试题注意事项:1.答卷前,考生务必将姓名、准考证号等在答卷上填写清楚2.选择题答案用2B 铅笔在答题卷把对应题目的答案标号涂黑,非选择题用0.5mm 黑色签字笔在每题对应的答题区内做答,答在试卷上无效。
第Ⅰ卷(选择题共58分)一、单选题:本题共8个小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.下列说法正确的有( )A .10以内的质数组成的集合是B .与是同一个集合C :方程的解集是D .集合中的元素是的三边长,则一定不是等腰三角形2.命题:p :,的否定为( )A .,B .,C .,D .,3.已知函数的定义域为,则函数的定义域为( )A .B .C .D .4下列函数中,既是奇函数,又在区间上是减函数的是( )A .B .C .D .5下列说法正确的是( )A .若,则B .若a ,b ,,则C .若,则D .若,,则6.不等式的一个必要不充分条件是( )A .B .C .D .7已知,,且恒成立,则实数m 的取值范围是( )A .B .C .D .{}0,2,3,5,7∅{}02210xx -+={}1,1{},,M a b c =ABC ∆ABC ∆x ∀∈R 0x x +≥x ∃∈R 0x x +≥x ∃∈R 0x x +<x ∃∈R 0x x +≤x ∀∈R 0x x +<()f x []0,1()1f x +[]0,1[]1,0-{}0[]1,2()0,+∞y x=3y x =2y x =3y x=-22acbc >a b>()0,m ∈+∞b b m a a m+<+a b >11a b<a b >x y >ax by>22530x x --<132x -<<16x -<<102x -<<132x <<0a >0b >211a b+=a b m +≥(,3-∞(],6-∞(,3-∞+(],7-∞8.今有一台坏天平,两臂长不等,其余均精确,有人要用它称物体的质量,他将物体放在左右托盘各称一次,记两次称量结果分别为a ,b ,设物体的真实质量为G ,则( )A .B .C .D二、选择题:本题共3小题,每小题6分,共18分。
2024-2025学年上海华二附中高一上学期数学开学考试卷及答案(2024.09)

1华二附中2024学年第一学期高一年级数学开学考2024.09一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分) 1.已知集合{}|3A x a x =≤≤,{}|0B x x =<,若A B =∅,a Z ∈,则实数a 的取值集合是________(选填“R ”或“Q ”或“N ”或“Z ”) 2.满足{}{}1,11,0,1A−=−的集合A 共有________个.3.若集合{}2|360M x x x =+−=,{}|60N x kx =+=且N M ⊂,则k 的所有可能值的乘积为________.4.某校有21个学生参加了数学小组,17个学生参加了物理小组,10个学生参加了化学小组,其中同时参加数学、物理小组的有12人,同时参加数学、化学小组的有6人,同时参加物理、化学小组的有5人,同时参加3个小组的有2人,现在这3个小组的学生都要乘车去市里参加数理化竞赛,则需要预购________张车票.5.已知集合{},,A x y z ⊆,x ,y ,z 均属于自然数集,x 没有倒数,y 既不是素数也不是合数,z 是3的因数,若A 中至多有一个奇数,则这样的集合A 的个数共有________个. 6.已知集合{}|13A x x =<<,集合{}|21B x m x m =<<−,若A 是B 的必要不充分条件,则m 的取值范围为________.7.设全集{}1,2,3,4,5U =,{}1,3,5A =,则图中阴影部分表示的集合的真子集个数的最大值与最小值的差为________.8.已知集合()(){}2|10M x x a x ax a =−−+−=各元素之和等于3,则实数a =________. 9.设集合{}1234,,,S a a a a =,若集合S 的所有非空子集的元素之和是64,则1234a a a a +++=________.10.若x A ∈,则1A x ∈,就称A 自倒集合,集合112,1,0,,,1,2,3,423M ⎧⎫=−−⎨⎬⎩⎭的所有非空子2集中,自倒集合的个数为________.11.以集合{},,,U a b c d =的子集中选出两个子集,需同时满足以下两个条件:(1)a 、b 都至少属于其中一个集合;(2)对选出的两个子集,其中一个集合为另一个的子集,那么共有________种不同的选法.12.设集合S 是正整数集的子集,且S 中至少有两个元素,若集合T 满足以下三个条件:①T 是正整数的子集,且T 中至少有两个元素;②对于任意x ,y S ∈,当y x ≠,都有xy T ∈;③对于任意x ,y T ∈,若y x >,则yS x∈;则称集合T 为集合S 的“耦合集”,若集合{}1234,,,S p p p p =,且43212p p p p >>>≥,设1P k =,则集合S 的“耦合集”T =________. 二、选择题(4题共18分,13~14每题4分,15~16每题5分) 13.对于集合A ,B ,若B A ⊆不成立,则下列理解正确的是( )A .集合B 的任何一个元素都属于A B .集合B 的任何一个元素都不属于AC .集合B 中至少有一个元素属于AD .集合B 中至少有一个元素不属于A14.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是1742年哥德巴赫给数学家欧拉的信中提出的猜想:“任意大于2的偶数都可以表示成两个质数之和”,则哥德巴赫猜想的否定为( ) A .任意小于2的偶数都不可以表示成两个质数之和 B .任意大于2的偶数都不可以表示成两个质数之和 C .至少存在一个小于2的偶数不可以表示成两个质数之和 D .至少存在一个大于2的偶数不可以表示成两个质数之和15.设a ,b ,c 分别为ABC 的三边BC ,AC ,AB 的长,则( ) (1)关于x 的方程2220x ax b ++=与2220x cx b +−=没有公共实根 (2)关于x 的方程2220x ax b ++=与2220x cx b +−=有公共实根A .BC AB =是(1)的充分非必要条件 B .90A ∠=︒是(2)的充分非必要条件C .BC AB =是(1)的必要非充分条件D .90A ∠=︒是(2)的充要条件16.已知非空集合A,B满足以下两个条件:(i){}A B =,A B=∅;1,2,3,4,5,6(ii)A的元素个数不是A中的元素,B的元素个数不是B中的元素,则有序集合对(),A B的个数为()A.10 B.12 C.14 D.16三、解答题(共78分,17~19每题14分,20~21每题18分)17.若集合{}=<<−,{}|21A x a x a=<<,且A B|1B x x m⊂,求:a的取值范围.18.设集合{}22==−∈∈.|,,A x x m n m Z n Z(1)求证:所有奇数均属于集合A;(2)用反证法证明:10不是集合A的元素.3419.一辆行驶中的汽车,在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离s (单位:m )与汽车的车速v (单位:/km h )满足下列关系:2100400nv v s =+(n 为常数,且n N ∈),做了两次刹车实验,有关数据如图所示,其中12681417s s <<⎧⎨<<⎩.(1)求n 的值;(2)要使刹车距离不超过12.6m ,则行驶的最大速度是多少?(3)若该型号的汽车在某一限速为80/km h 的路段发生了交通事故,交警进行现场勘查,测得该车的刹车距离超过了25.65m ,请问该车是否超速行驶?说明理由.520.利用反证法,是正面难以进行对真命题进行简单证明的迂回策略,请利用它证明我们初中所学的真命题(1(2)①求证:三角形的内角和为180︒;②求证:三角形至少有一个内角大于等于60︒21.已知集合{}()12,,2k A a a a k =⋯⋯≥,其中()1,2,i a Z i k ∈=⋯⋯,由A 中元素可构成两个点集P 和Q :(){},|P x y x A y A x y A =∈∈+∈且且,(){},|Q x y x A x A x y A =∈∈−∈且且,其中P 中有m 个元素,Q 中有n 个元素新定义1个性质G :若对任意的x A ∈,必有x A −∉,则称集合A 具有性质P(1)已知集合{}0,1,2,3J =与集合{}1,2,3K =−和集合{}2|22L y y x x ==−+,判断它们是否具有性质G ,若有,则直接写出其对应的集合P ,Q ;若无,请说明理由 (2)若2024k =,求:集合A 有几个元素?(3)试判断:集合A 具有性质P 是m n =的什么条件并证明6参考答案一、填空题1.N ;2.4;3.0;4.27;5.6;6.1,2⎡⎫+∞⎪⎢⎣⎭; 7.28; 8.322或;9.8; 10.15; 11.32 12.{}3456711111T P ,P ,P ,P ,P =11.以集合{},,,U a b c d =的子集中选出两个子集,需同时满足以下两个条件:(1)a 、b 都至少属于其中一个集合;(2)对选出的两个子集,其中一个集合为另一个的子集,那么共有________种不同的选法. 【答案】32【解析】不妨设元素少的为A ,元素多的为B ,则B 必包含有,,a b A 为B 的真子集, (1)若{},B a,b A =为B 的真子集,共2213−=种, (2)若{},B a,b,c A =为B 的真子集,共3217−=种, (3)若{},B a,b,d A =为B 的真子集,共3217−=种,(4)若{},B a,b,c,d A =为B 的真子集,共42115−=种,共有3771532+++=种. 故答案为:32.12.设集合S 是正整数集的子集,且S 中至少有两个元素,若集合T 满足以下三个条件:①T 是正整数的子集,且T 中至少有两个元素;②对于任意x ,y S ∈,当y x ≠,都有xy T ∈;③对于任意x ,y T ∈,若y x >,则yS x∈;则称集合T 为集合S 的“耦合集”,若集合{}1234,,,S p p p p =,且43212p p p p >>>≥,设1P k =,则集合S 的“耦合集”T =________. 【答案】{}3456711111T P ,P ,P ,P ,P =【解析】因为43212p p p p >>>…,由上一问知21p S p ∈,得211Pp P =即221p p =, 同理可得342311,P Pp p P P ==,所以343141,p p p p ==,7又因为T 的可能元素为:12131423,,,P P P P P P P P ,2434,P P P P ,所以{}3456711111T P ,P ,P ,P ,P = 二、选择题13.D 14.D 15. D 16.A 16.已知非空集合A ,B 满足以下两个条件:(i ){}1,2,3,4,5,6AB =,AB =∅;(ii )A 的元素个数不是A 中的元素,B 的元素个数不是B 中的元素, 则有序集合对(),A B 的个数为( )A .10B .12C .14D .16 【答案】A【解析】若集合A 中有1个元素,则集合B 中有5个元素,则1,5A B ∉∉即5,1A B ∈∈,此时有序集合对()A,B 有041C =种若集合A 中有2个元素,则集合B 中有4个元素,则2,4A B ∉∉即4,2A B ∈∈,此时有序集合对()A,B 有144C =种若集合A 中有3个元素,则集合B 中有3个元素,则3,3A B ∉∉,不满足题意 若集合A 中有4个元素,则集合B 中有2个元素,则4,2A B ∉∉即2,4A B ∈∈,此时有序集合对()A,B 有344C =种若集合A 中有5个元素,则集合B 中有1个元素,则5,1A B ∉∉即1,5A B ∈∈,此时有序集合对()A,B 有441C =种故有序集合对()A,B 的个数是144110+++=,故选:A. 三.解答题17.1,2m a +⎛⎤∈−∞ ⎥⎝⎦; 18.(1)(2)证明略19.(1)6n = (2)60/km h(3)是20.【答案】(1)假设根号3是有理数,先证明若2n 为3倍数,n 为3倍数(再次利用反证法),8(2)过定点做平行线,利用平角与同位角(内错角亦可) (3)利用反证法,推出三角形内角和小于180的矛盾21.【答案】(1)J,L 不是,K 是,()(){}(){}1331,2123S ,,,T ,,,=−−=−() (2)2047276 (3)充分非必要。
广东省东莞市四校2023-2024学年高一上学期12月期中联考数学试题及答案

2023-2024学年上学期期中考试四校联考高一数学试题注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上,并用2B 铅笔将考生号填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须填写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效考试时间:120分钟满分:150分.第I 卷(选择题共60分)一、单选题(本题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,一个选项符合要求,选对得5分,错选得0分.)1.若集合{}0,1,2A =,则下列结论正确的是( ) A.{}0A ∈ B.0A ∉ C.{}0,1,1,2A −⊆ D.A ∅⊆2.命题“[)30,,0x x x ∞∀∈++≥”的否定是( )A.()3,0,0x x x ∞∀∈−+< B.()3,0,0x x x ∞∀∈−+≥C.[)30000,,0x x x ∞∃∈++< D.[)30000,,0x x x ∞∃∈++≥3.设x R ∈,则“1x <”是“21x <”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件4.函数()lg 2y x =−的定义域为( ) A.()1,2− B.(]1,2− C.[)1,2− D.[]1,2−5.设函数()()22,03,0x x x f x f x x −≤ = −>,则()9f 的值为( )A.-7B.-1C.0D.126.设0.80.70.713,,log 0.83ab c − ==,则,,a b c 的大小关系为( )A.a b c <<B.b a c <<C.b c a <<D.c a b << 7.下列可能是函数21exx y −=的图象的是( )A. B.C. D.8.已知函数()()131,22,2xa x a x f x a x −++<=≥ 满足对任意的12x x ≠,都有()()12120f x f x x x −<−成立,则实数a 的取值范围为( )A.10,2B.11,32C.1,12D.1,13二、多项选择题(本题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合要求.全部选对得5分,部分选对得2分,错选得0分.)9.以下结论正确的是( )A.不等式a b +≥恒成立B.存在a ,使得不等式12a a+≤成立 C.若(),0,a b ∞∈+,则2b a a b+≥ D.若正实数,x y 满足21x y +=,则2110x y+≥ 10.已知0,0a b c d >><<,则下列不等式中错误的是( ) A.11a b−<− B.2c cd <C.a c b d +<+D.a b d c< 11.函数()()21,(1)f x x g x x =+=+,用()M x 表示()(),f x g x 中的较大者,记为()()(){}max ,M x f x g x =,则下列说法正确的是( )A.()23M =B.()1,4x M x ∀≥≥C.()M x 有最大值D.()M x 最小值为012.已知函数()f x 是偶函数,()1f x +是奇函数,当[]2,3x ∈时,()12f x x =−−,则下列选项正确的是( )A.()f x 在()3,2−−上为减函数B.()f x 的最大值是1C.()f x 的图象关于直线2x =−对称D.()f x 在()4,3−−上()0f x <第II 卷(非选择题共90分)三、填空题(本题共4小题,每题5分,共20分)13.不等式2280x x −++>的解集是__________.14.设全集U 是实数集,{2R M x x =<−∣或2},{13}x N x x >=<<∣,则图中阴影部分所表示的集合是__________.15.已知奇函数()f x 是定义在()1,1−上的减函数,则不等式()()1130f x f x −+−<的解集为__________. 16.定义:函数()f x 在区间[],a b 上的最大值与最小值的差为()f x 在区间[],a b 上的极差,记作(),d a b . ①若()222f x x x =−+,则()1,2d =__________.②若()mf x x x=+,且()()()1,221d f f ≠−,则实数m 的取值范围是__________.四、解答题(本大题共6小题,第17题10分,18、19、20、21、22题各12分,共70分.解答应写出文字说明、证明过程或演算步骤.必须把解答过程写在答题卡相应题号指定的区域内,超出指定区域的答案无效.)17.(本小题满分10分)已知集合{32},{121}A x x B x m x m =−<<=−<<+∣∣. (1)若2m =,求A B ∪;(2)若A B B ∩=,求实数m 的取值范围. 18.(本小题满分12分)已知幂函数()()2133m f x mm x +=−+为偶函数.(1)求幂函数()f x 的解析式; (2)若函数()()1f x g x x+=,根据定义证明()g x 在区间()1,∞+上单调递增.19.(本小题满分12分)已知()f x 为R 上的奇函数,当0x ≥时,()()12log 4f x x m =++. (1)求m 的值并求出()f x 在R 上的解析式; (2)若()1f a >,求a 的取值范围.20.(本小题满分12分)已知函数()()22691f x x a a x a =−++++.(1)若0a >,且关于x 的不等式()0x <的解集是{}xm x n <<∣,求11m n+的最小值; (2)设关于x 的不等式()0f x <在[]0,1上恒成立,求a 的取值范围.21.(本小题满分12分)某企业为积极响应国家垃圾分类号召,在科研部门的支持下进行技术创新,新上一个把厨余垃圾加工处理为可重新利用的化工产品的项目.已知该企业日加工处理量x (单位:吨)最少为70吨,最多为100吨.日加工处理总成本y (单位:元)与日加工处理量x 之间的函数关系可近似地表示为214032002y x x =++,且每加工处理1吨㕑余垃圾得到的化工产品的售价为110元. (1)该企业日加工处理量为多少吨时,日加工处理每吨厨余垃圾的平均成本最低?此时该企业处理1吨㕑余垃圾处于亏损还是盈利状态?(2)为了使该企业可持续发展,政府决定对该企业进行财政补贴,补贴方案共有两种: ①每日进行定额财政补贴,金额为2300元; ②根据日加工处理量进行财政补贴,金额为30x 元.如果你是企业的决策者,为了获得最大利润,你会选择哪种补贴方案?为什么? 22.(本小题满分12分)已知函数()f x 对任意实数,x y 恒有()()()f x y f x f y +=+,当0x >时,()0f x <,且()12f =−.(1)判断()f x 的奇偶性;(2)判断函数单调性,求()f x 在区间[]3,3−上的最大值;(3)若()222f x m am <−+对所有的][1,1,1,1x a ∈−∈− 恒成立,求实数m 的取值范围.2023-2024学年上学期期中考试四校联考高一数学参考答案一、单项选择题(本大题共8小题,每小题5分,共40分)题号 1 2 3 4 5 6 7 8 答案DCBABDCB二、多项选择题(本大题共4小题,每小题5分,共20分)题号 9 101112 答案BCABC BDBCD三、填空题(本大题共4小题,每小题5分,共20分)13.()2,4− 14.{12}x x <≤∣ 15.102xx<<∣ 16.1,()1,4 四、解答题(本大题共6小题,共70分)17.(本小题10分)解:(1)由题意{32},2,{15}A x x m B x x =−<<=∴=<< ∣∣, {35}A B x x ∴∪−<<∣(2),A B B B A ∩=∴⊆ ,∴当B =∅,即121m m −≥+,即2m ≤−时满足题意;当B ≠∅,即2m >−时,13212m m −≥−+≤ ,即122m −<≤综上,实数m 的取值范围为12mm≤∣. 18.(本小题12分) 解:(1)因为()()2133m f x mm x +=−+是幂函数,所以2331m m −+=,解得1m =或2m =.当1m =时,()2f x x =为偶函数,满足题意;当2m =时,()3f x x =为奇函数,不满足题意.故()2f x x =.(2)由(1)得()2f x x =,故()()11f xg x x x x+==+. 任取211x x >>,则()()()12212121212112121111,x x g x g x x x x x x x x x x x x x −−=+−−=−+=−−因为211x x >>,所以21120,1x x x x −>>,所以12110x x −>, 所以()()210g x g x −>,即()()21g x g x >, 故()g x 在区间()1,∞+上单调递增. 19.(本小题12分)解:(1)由题可知()020f m =−+=,即2m =,经检验符合题意, 则0x ≥时,()()12log 42f x x =++ 当0x <时,则()()120,log 42x f x x −>−=−++, 又()f x 为奇函数,所以()()f x f x −=−, 所以()()()12log 42,0f x f x x x =−−=−−+−< 故()f x 在R 上的解析式为()()()1212log 42,0log 42,0x x f x x x ++≥ =−−+−<. (2)(法一)若()1f a >,则()120log 421a a ≥ ++> 或()120log 421a a <−−+−>解得4a <−,所以a 的取值范围为(),4∞−−.(法二)由函数性质可知()f x 在[)0,∞+上单调递减,则()f x 在R 上单调递减.又因为()124log 821f −=−−=,所以()1f a >,即()()4f a f >−, 所以当4a <−时,()1f a >,即a 的取值范围为(),4∞−−. 20.(本题12分)解:(1)因为0a >,且关于x 的不等式()0f x <的解集是{}xm x n <<∣, 所以x m =和x n =是方程()226910x a a x a −++++=的两根, 所以269,1m n a a mn a +=++=+,所以()()()22(1)4141169414448,111a a m n a a a m n mn a a a ++++++++====+++≥+=+++当且仅当1a =时等号成立, 所以11m n+的最小值为8. (2)因为关于x 的不等式()0f x <在[]0,1上恒成立,结合二次函数的图象和性质可得()()0010f f < < ,所以()21016910a a a a +< −++++<, 解得1a <−,所以a 的取值范围为(),1∞−−. 21.(本题12分)解:(1)由题意可知,日加工处理每吨厨余垃圾的平均成本为[]320040,70,1002y x x x x=++∈又320040401202x x ++≥+=, 当且仅当32002x x=,即80x =,等号成立, 所以该企业日加工处理量为80吨时,日加工处理每吨厥余垃圾的平均成本最低. 因为110120<,所以此时该企业处理1吨厨余垃圾处于亏损状态. (2)若该企业采用第一种补贴方案,设该企业每日获利为1y 元,由题可得221111102300403200(70)155022y x x x x=+−++=−−+,因为[]70,100x ∈所以当70x =时,企业获利最大,最大利润为1550元, 若该企业采用第二种补贴方案,设该企业每日获利为2y 元,由题可得2221111030403200(100)180022y x x x x x=+−++=−−+,因为[]70,100x ∈所以当100x =时,企业获利最大,最大利润为1800元, 因为18001550>,所以选择第二种补贴方案. 22.(本题12分)解:(1)取0xy ==,则()()()0020,00f f f +=∴=, 取y x =−,则()()()()00f x x f x f x f −=+−==,()()f x f x ∴−=−对任意x R ∈恒成立,所以函数()f x 为奇函数;(2)任取12,x x R ∈且12x x <,则()()()()()212121210,0x x f x f x f x f x f x x −>−=+−=−<,()()21f x f x ∴<,故()f x 为R 上的减函数.[]3,3x ∴∈− ()()3f x f ∴<−,()()331236f f ==−×=− , ()()336f f ∴−=−=,故()f x 在区间[]3,3−上的最大值为6; (3)()f x 在[]1,1−上的减函数,()()()112f x f f ∴≤−=−=,()222f x m am <−+ 对所有的][1,1,1,1x a ∈−∈− 恒成立,2222m am ∴−+>对任意[]1,1a ∈−恒成立,即220m am −>对任意[]1,1a ∈−恒成立,令()22g a am m =−+,则()()1010g g −> >,即222020m m m m +> −+> , 解得:2m >或2m <−.∴实数m 的取值范围为()(),22,∞∞−−∪+.。
2024-2025学年淄博市实验高一数学上学期期中模拟考试卷及答案解析

,解得 m 5 或 m 1 ,
所以实数 m 的取值范围为 ,1 5, .
故选:C.
8. 已知定义在 R 上的函数 f x 满足 f x f x 0 , x1 , x2 0, ,当 x1 x2 时,都有
f x1 f x2
5 2x 0
【详解】由题意可得 ln(5 2 x) 0 ,解得 0 x 2 ,
ex 1 0
故选:D.
1
1
2
3
5. 已知 a log 3 2 , b 1 , c 1 ,则实数 a, b, c 的大小关系正确的是(
5
【详解】 A { y | y lg( x 2 x 2)} 为函数 y lg( x 2 x 2) 的值域,
令 t x 2 x 2 0 x 2 或 x 1 , t (0, ) y lg t y R ,
B {x | y x 2 x 2} 为函数 y x 2 x 2 的定义域,
D. 1,5
【答案】C
【解析】
【分析】根据题意,问题可转化为
得到 ( x 1) y 4 ,进而得到
到
m
y2 x 1
y
1
对任意的 x 0, y 0 恒成立,由题设条件
m 1 x 1 y x 1 y
y
1
y
x 1 1
y
1
,接着结合基本不等式求得
)
, 2
故选:D
7. 已知 x 0, y 0 ,且 x y 3 ,若
四川省成都市2024-2025学年高一上学期期中考试数学试题含答案

成都市2024-2025学年上学期半期考试高一年级数学试题(答案在最后)考试时间120分钟满分150分一、单选题1.已知集合A ={1,2,3,4,5},{},|15B x x =<<,则A ∩B 的元素个数为()A.2B.3C.4D.5【答案】B 【解析】【分析】直接根据集合的交集运算求解即可.【详解】因为集合A ={1,2,3,4,5},{}|15B x x =<<所以{}2,3,4A B = ,即A ∩B 的元素个数为3个.故选:B2.函数221y x mx =++在[2,+∞)单调递增,则实数m 的取值范围是()A.[2,)-+∞B.[2,+∞)C.(,2)-∞ D.(,2]-∞【答案】A 【解析】【分析】直接由抛物线的对称轴和区间端点比较大小即可.【详解】函数221y x mx =++为开口向上的抛物线,对称轴为x m =-函数221y x mx =++在[2,+∞)单调递增,则2m -≤,解得2m ≥-.故选:A.3.若函数的定义域为{}22M x x =-≤≤,值域为{}02N y y =≤≤,则函数的图像可能是()A. B.C. D.【答案】B 【解析】【分析】根据函数的定义域与值域,结合函数的性质判断即可.【详解】对A ,该函数的定义域为{}20x x -≤≤,故A 错误;对B ,该函数的定义域为{}22M x x =-≤≤,值域为{}02N y y =≤≤,故B 正确;对C ,当()2,2x ∈-时,每一个x 值都有两个y 值与之对应,故该图像不是函数的图像,故C 错误;对D ,该函数的值域不是为{}02N y y =≤≤,故D 错误.故选:B.4.已知函数()af x x =,则“1a >”是“()f x 在()0,∞+上单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】由幂函数的单调性结合充分必要条件的定义判断.【详解】当0a >时,函数()af x x =在()0,∞+上单调递增,则1a >时,一定有()f x 在()0,∞+上单调递增;()f x 在()0,∞+上单调递增,不一定满足1a >,故“1a >”是“()f x 在()0,∞+上单调递增”的充分不必要条件.故选:A.5.已知0,0x y >>,且121y x+=,则12x y +的最小值为()A.2B.4C.6D.8【答案】D 【解析】【分析】利用不等式的乘“1”法即可求解.【详解】由于0,0x y >>,故111122244428x y x xy y x y xy ⎛⎫⎛⎫+=++=++≥+ ⎪ ⎪⎝⎭⎝⎭,当且仅当14,121,xy xyy x⎧=⎪⎪⎨⎪+=⎪⎩即2,14x y =⎧⎪⎨=⎪⎩时,等号成立,故12x y +的最小值为8.故选:D6.已知定义域为R 的函数()f x 不是偶函数,则()A.()(),0x f x f x ∀∈-+≠RB.()(),0x f x f x ∀∈--≠RC.()()000,0x f x f x ∃∈-+≠RD.()()000,0x f x f x ∃∈--≠R 【答案】D 【解析】【分析】根据偶函数的概念得()(),0x f x f x ∀∈--=R 是假命题,再写其否定形式即可得答案.【详解】定义域为的函数()f x 是偶函数()(),0x f x f x ⇔∀∈--=R ,所以()f x 不是偶函数()()000,0x f x f x ⇔∃∈--≠R .故选:D .7.若函数()22f x ax bx c=++的部分图象如图所示,则()1f =()A.23-B.112-C.16-D.13-【答案】D 【解析】【分析】利用函数图象求得函数定义域,利用函数值可得出其解析式,代入计算即求得函数值.【详解】根据函数图象可知2x =和4x =不在函数()f x 的定义域内,因此2x =和4x =是方程20ax bx c ++=的两根,因此可得()()()224f x a x x =--,又易知()31f =,所以可得2a =-;即()()()124f x x x =---,所以()113f =-.故选:D8.奇函数()f x 在(),0-∞上单调递增,若()10f -=,则不等式()0xf x <的解集是().A.()()101,∪,-∞-B.()()11,∪,-∞-+∞C.()()1001,∪,- D.()()101,∪,-+∞【答案】C 【解析】【分析】由()f x 奇偶性,单调性结合题意可得答案.【详解】因奇函数()f x 在(),0∞-上单调递增,()10f -=则()f x 在()0,∞+上单调递增,1=0.得()()()01,01,f x x ⋃∞>⇒∈-+;()()()0,10,1f x x ∞⋃<⇒∈--.则()()000x xf x f x <⎧<⇒⎨>⎩或()()()01,00,10x x f x ⋃>⎧⇒∈-⎨<⎩.故选:C二、多选题9.下列关于集合的说法不正确的有()A.{0}=∅B.任何集合都是它自身的真子集C.若{1,}{2,}a b =(其中,a b ∈R ),则3a b +=D.集合{}2yy x =∣与{}2(,)x y y x =∣是同一个集合【答案】ABD 【解析】【分析】根据集合的定义,真子集的定义,集合相等的定义判断各选项.【详解】{0}中含有一个元素,不是空集,A 错;任何集合都是它自身的子集,不是真子集,B 错;由集合相等的定义得2,1a b ==,3a b +=,C 正确;集合{}2yy x =∣中元素是实数,集合{}2(,)x y y x =∣中元素是有序实数对,不是同一集合,D 错,故选:ABD .10.已知二次函数()2223y m x mx m =-++-的图象与x 轴有两个交点()()12,0,,0x x ,则下面说法正确的是()A.该二次函数的图象一定过定点()1,5--;B.若该函数图象开口向下,则m 的取值范围为:625m <<;C.当2m >,且12x ≤≤时,y 的最大值为45m -;D.当2m >,且该函数图象与x 轴两交点的横坐标12,x x 满足1232,10x x -<<--<<时,m 的取值范围为:21114m <<【答案】ABD 【解析】【分析】代入1x =-,解得5y =-,即可求解A ,根据判别式即可求解B ,利用二次函数的单调性即可求解C ,利用二次函数的图象性质即可列不等式求解.【详解】由()2223y m x mx m =-++-可得()22123y m x x =+--,当1x =-时,5y =-,故二次函数的图象一定过定点()1,5--,A 正确,若该函数图象开口向下,且与x 轴有两个不同交点,则()()220Δ44230m m m m -<⎧⎨=--->⎩,解得:625m <<,故B 正确,当2m >,函数开口向上,对称轴为02mx m =-<-,故函数在12x ≤≤时,单调递增,当2x =时,911y m =-,故y 的最大值为911m -;C 错误,当2m >,则开口向上,又1232,10x x -<<--<<时,则3,4210x y m =-=->,且2,110x y m =-=-<,且1,50x y =-=-<,且0,30x y m ==->,解得21114m <<,m 的取值范围为:21114m <<,D 正确,故选:ABD11.已知幂函数()()293mf x m x =-的图象过点1,n m ⎛⎫-⎪⎝⎭,则()A.23m =-B.()f x 为偶函数C.364n =D.不等式()()13f a f a +>-的解集为(),1-∞【答案】AB 【解析】【分析】利用幂函数的定义结合过点1,n m ⎛⎫- ⎪⎝⎭,可求,m n 判断AC ;进而可得函数的奇偶性判断B ;解不等式可求解集判断D.【详解】因为函数()()293mf x m x =-为幂函数,所以2931m -=,解得23m =±,当23m =时,幂函数()23f x x =的图象不可能过点3,2n ⎛⎫- ⎪⎝⎭,故23m ≠,当23m =-,幂函数()23f x x -=的图象过点3,2n ⎛⎫ ⎪⎝⎭,则2332n -=,解得3232629n -⎛⎫=±=±⎪⎝⎭,故A 正确,C 错误;()23f x x -=的定义域为{|0}x x ≠,且()2233()()f x x x f x ---=-==,故()f x 为偶函数,故B 正确;函数()23f x x-=在(0,)+∞上单调递减,由()()13f a f a +>-,可得()()13fa f a +>-,所以1310a a a ⎧+<-⎪⎨+≠⎪⎩,解得1a <且1a ≠-,故D 错误.故选:AB.三、填空题12.满足关系{2}{2,4,6}A ⊆⊆的集合A 有____________个.【答案】4【解析】【分析】由题意可得集合A 为{}2,4,6的子集,且A 中必包含元素2,写出满足条件的集合,即可得答案.【详解】即集合A 为{}2,4,6的子集,且A 中必包含元素2,又因为{2,4,6}的含元素2的子集为:{}2,{}2,4,{}2,6,{2,4,6}共4个.故答案为:4.13.已知()f x 满足()()()2f x y f x f y +=++,且()22f =,则()3f =______.【答案】4【解析】【分析】令1x y ==得()10f =,再令1x =,2y =即可求解.【详解】令1x y ==得()()()21122f f f =++=,所以()10f =,令1x =,2y =得()()()31224f f f =++=.故答案为:4.14.已知函数()()()22223124,,4f x x ax ag x x x a a =-+-=-+-∈R ,若[]10,1x ∀∈,[]20,1x ∃∈,使得不等式()()12f x g x >成立,实数a 的取值范围是__________.【答案】(),6-∞【解析】【分析】由题意将问题转化为()(),min max f x g x >[]0,1x ∈,成立,利用二次函数的性质求解即可.【详解】若对任意[]10,1x ∈,存在[]20,1x ∈,使得不等式()()12f x g x >成立,即只需满足[]min min ()(),0,1f x g x x >∈,()22314g x x x a =-+-,对称轴()1,2x g x =在10,2⎡⎫⎪⎢⎣⎭递减,在,1,12⎛⎤ ⎥⎝⎦递增,()2min 18,2g x g a ⎛⎫==- ⎪⎝⎭()[]2224,0,1f x x ax a x =-+-∈,对称轴4a x =,①04a≤即0a ≤时,()f x 在0,1递增,()22min min ()04()8f x f a g x a ==->=-恒成立;②014a<<即04a <<时,()f x 在0,4a ⎡⎫⎪⎢⎣⎭递减,在,14a ⎛⎤ ⎥⎝⎦递增,22min min 7()4,()848a f x f a g x a ⎛⎫==-=- ⎪⎝⎭,所以227488a a ->-,故04a <<;③14a≥即4a ≥时,()f x 在[0,1]递减,()22min min ()12,()8f x f a a g x a ==--=-,所以2228a a a -->-,解得46a ≤<,综上(),6a ∞∈-.故答案为:(),6∞-【点睛】方法点睛:本题首先需要读懂题意,进行转化;其次需要分类讨论,结合二次函数的性质最后进行总结,即可求出结果.四、解答题15.设全集R U =,集合{|23}P x x =-<<,{|31}.Q x a x a =<≤+(1)若1a =-,求集合()U P Q ð;(2)若P Q =∅ ,求实数a 的取值范围.【答案】(1){|03}x x <<(2)][132,,⎛⎫-∞-+∞ ⎪⎝⎭【解析】【分析】(1)先求出U Q ð,再求()U P Q ⋂ð即可;(2)分Q =∅和Q ≠∅两种情况求解即可【小问1详解】解:当1a =-时,{|31}{|30}Q x a x a x x =<≤+=-<≤;{|3U C Q x x =≤-或0}x >,又因为{}23P x x =-<<,所以(){|03}.U P Q x x ⋂=<<ð【小问2详解】解:由题意知,需分为Q =∅和Q ≠∅两种情形进行讨论:当Q =∅时,即31a a ≥+,解得12a ≥,此时符合P Q =∅ ,所以12a ≥;当Q ≠∅时,因为P Q =∅ ,所以1231a a a +≤-⎧⎨<+⎩或3331a a a ≥⎧⎨<+⎩,解之得3a ≤-.综上所述,a 的取值范围为][1,3,.2∞∞⎛⎫--⋃+ ⎪⎝⎭16.已知二次函数()()20f x ax bx c a =++≠满足()()14f x f x x -+=,且()0 1.f =(1)求函数()f x 的解析式;(2)解关于x 的不等式()()2641f x t x t ≤-+-+.【答案】(1)()2221f x x x =-+(2)答案见解析.【解析】【分析】(1)利用待定系数法计算即可求解析式;(2)根据(1)的结论含参讨论解一元二次不等式即可.【小问1详解】因为()01f =,1c =,所以()21f x ax bx =++,又因为()()14f x f x x -+=,所以()(()22[1)1114a x b x ax bx x ⎤++++-++=⎦,所以24ax a b x ++=,所以240a a b =⎧⎨+=⎩,所以22a b =⎧⎨=-⎩,即()222 1.f x x x =-+【小问2详解】由()()2641f x t x t ≤-+-+,可得不等式()222440x t x t +++≤,即()2220x t x t +++≤,所以()()20x x t ++≤,当2-=-t ,即2t =时,不等式的解集为{|2}x x =-,当2t -<-,即2t >时,不等式的解集为{|2}x t x -≤≤-,当2t ->-,即2t <时,不等式的解集为{|2}x x t -≤≤-,综上所述,当2t =时,不等式的解集为{|2}x x =-,当2t >时,不等式的解集为{|2}x t x -≤≤-,当2t <时,不等式的解集为{|2}.x x t -≤≤-17.已知函数()221x f x x -=.(1)用单调性的定义证明函数()f x 在()0,∞+上为增函数;(2)是否存在实数λ,使得当()f x 的定义域为11,m n ⎡⎤⎢⎥⎣⎦(0m >,0n >)时,函数()f x 的值域为[]2,2m n λλ--.若存在.求出λ的取值范围;若不存在说明理由.【答案】(1)证明见详解;(2)存在,()2,+∞.【解析】【分析】(1)设()12,0,x x ∞∈+,且12x x <,然后作差、通分、因式分解即可判断()()12f x f x <,得证;(2)根据单调性列不等式组,将问题转化为210x x λ-+=存在两个不相等的正根,利用判别式和韦达定理列不等式组求解可得.【小问1详解】()222111x f x x x-==-,设()12,0,x x ∞∈+,且12x x <,则()()()()22121212122222222212211212111111x x x x x x f x f x x x x x x x x x -+⎛⎫--=---=-== ⎪⎝⎭,因为120x x <<,所以221212120,0,0x x x x x x <-+>>,所以()()120f x f x -<,即()()12f x f x <,所以函数()f x 在0,+∞上为增函数.【小问2详解】由(1)可知,()f x 在11,m n ⎡⎤⎢⎥⎣⎦上单调递增,若存在λ使得()f x 的值域为[]2,2m n λλ--,则22112112f m m m f n n n λλ⎧⎛⎫=-=- ⎪⎪⎪⎝⎭⎨⎛⎫⎪=-=- ⎪⎪⎝⎭⎩,即221010m m n n λλ⎧-+=⎨-+=⎩,因为0m >,0n >,所以210x x λ-+=存在两个不相等的正根,所以21212Δ40100x x x x λλ⎧=->⎪=>⎨⎪+=>⎩,解得2λ>,所以存在()2,λ∞∈+使得()f x 的定义域为11,m n ⎡⎤⎢⎥⎣⎦时,值域为[]2,2m n λλ--.18.习总书记指出:“绿水青山就是金山银山”.淮安市一乡镇响应号召,因地制宜的将该镇打造成“生态水果特色小镇”.调研过程中发现:某珍稀水果树的单株产量W (单位:千克)与肥料费10x (单位:元)满足如下关系:()252,02()48,251x x W x x x x ⎧+≤≤⎪=⎨<≤⎪+⎩其它成本投入(如培育管理等人工费)为20x (单位:元).已知这种水果的市场售价大约为10元/千克,且供不应求.记该单株水果树获得的利润为()f x (单位:元).(1)求()f x 的函数关系式;(2)当投入的肥料费用为多少时,该单株水果树获得的利润最大?最大利润是多少?【答案】(1)25030100,02()48030,251x x x f x x x x x⎧-+≤≤⎪=⎨-<≤⎪+⎩;(2)当投入的肥料费用为30元时,获得的利润最大,最大利润是270元.【解析】【分析】(1)由单株产量W 乘以售价减去肥料费和其它成本投入可得出的函数关系式;(2)利用二次函数的单调性求出当02x ≤≤时,()f x 的最大值,由基本不等式求出当25x <≤时,()f x 的最大值,即可得出答案.【小问1详解】(1)由题意可得()()()1020101030f x W x x x W x x=--=-()22105230,025030100,024804830,251030,2511x x x x x x x x x x x x x x ⎧⨯+-≤≤⎧-+≤≤⎪⎪==⎨⎨-<≤⨯-<≤⎪⎪+⎩+⎩.故()f x 的函数关系式为25030100,02()48030,251x x x f x x x x x⎧-+≤≤⎪=⎨-<≤⎪+⎩.【小问2详解】(2)由(1)22319150,025030100,02102()48030,251651030(1),2511x x x x x f x x x x x x x x ⎧⎧⎛⎫-+≤≤⎪-+≤≤⎪ ⎪⎪⎪⎝⎭==⎨⎨-<≤⎡⎤⎪⎪-++<≤+⎢⎥⎪⎪+⎣⎦⎩⎩,当02x ≤≤时,()f x 在30,10⎡⎤⎢⎥⎣⎦上单调递减,在3,210⎛⎤ ⎥⎝⎦上单调递增,且(0)100(2)240f f =<=,max ()(2)240f x f ∴==;当25x <≤时,16()51030(1)1f x x x ⎡⎤=-++⎢⎥+⎣⎦,16181x x ++≥=+ 当且仅当1611x x=++时,即3x =时等号成立.max ()510308270f x ∴=-⨯=.因为240270<,所以当3x =时,max ()270f x =.当投入的肥料费用为30元时,该单株水果树获得的利润最大,最大利润是270元.19.已知集合,A B 中的元素均为正整数,且,A B 满足:①对于任意,i j a a A ∈,若i j a a ≠,都有i j a a B ∈;②对于任意,m k b b B ∈,若m k b b <,都有k mb A b ∈.(1)已知集合{}1,2,4A =,求B ;(2)已知集合{}()2,4,8,8A t t =>,求t ;(3)若A 中有4个元素,证明:B 中恰有5个元素.【答案】(1){}2,48B =,(2)16t =(3)证明见解析【解析】【分析】(1)根据①可得2,4,8都是B 中的元素,进而证明B 中除2,4,8外没有其他元素即可求解,(2)根据条件①②,即可求解,(3)根据题意可得41a a ,3324421123,,,,a a a a a a a a a a ,4321a a a a 是A 中的元素,进而根据11a =和12a ≥可得{}2341111,,,A a a a a =,进而{}3456711111,,,,a a a a a B ⊆,接下来假设B 中还有其他元素,且该元素为k ,利用k 与31a 的关系得矛盾求解.【小问1详解】由①可得2,4,8都是B 中的元素.下面证明B 中除2,4,8外没有其他元素:假设B 中还有其他元素,分两种情况:第一种情况,B 中最小的元素为1,显然81不是A 中的元素,不符合题意;第二种情况,B 中最小的元素为2,设B 中除2,4,8外的元素为()2k k b b >,因为2k b 是A 中的元素,所以k b 为4或8,而4,8也是B 中的元素,所以B 中除2,4,8外没有其他元素.综上,{}2,4,8B =.【小问2详解】由①可得,8,16,32,2,4,8t t t 都是B 中的元素.显然84,82,162t t t <<<,由(2)可得,422,,8816t t t 是A 中的元素,即,,248t t t 是A 中的元素.因为842t t t t <<<,所以2,4,8842t t t ===,解得16t =.【小问3详解】证明:设{}12341234,,,,A a a a a a a a a =<<<.由①可得,1224,a a a a 都是B 中的元素.显然1224a a a a <,由②可得,2412a a a a 是A 中的元素,即41a a 是A 中的元素.同理可得3324421123,,,,a a a a a a a a a a ,4321a a a a 是A 中的元素.若11a =,则34344122a a a a a a a a =>,所以3412a a a a 不可能是A 中的元素,不符合题意.若12a ≥,则32311a a a a a <<,所以321211,a a a a a a ==,即23213121,a a a a a a ===.又因为44443211a a a a a a a <<<<,所以444123321,,a a a a a a a a a ===,即441a a =,所以{}2341111,,,A a a a a =,此时{}3456711111,,,,a a a a a B ⊆.假设B 中还有其他元素,且该元素为k ,若31k a <,由(2)可得71a A k ∈,而7411a a k >,与{}2341111,,,A a a a a =矛盾.若31k a >,因为31k A a ∈,所以131,1,2,3,4i k a i a ==,则31,1,2,3,4i k a i +==,即{}45671111,,,k a a a a ∈,所以B 中除3456711111,,,,a a a a a 外,没有其他元素.所以{}3456711111,,,,B a a a a a =,即B 中恰有5个元素.【点睛】方法点睛:对于以集合为背景的新定义问题的求解策略:1、紧扣新定义,首先分析新定义的特点,把心定义所叙述的问题的本质弄清楚,应用到具体的解题过程中;2、用好集合的性质,解题时要善于从试题中发现可以使用的集合的性质的一些因素.3、涉及有交叉集合的元素个数问题往往可采用维恩图法,基于课标要求的,对于集合问题,要熟练基本的概念,数学阅读技能、推理能力,以及数学抽象和逻辑推理能力.。
2022-2023学年河北省石家庄四十一中高一上学期第四次考试数学试题(解析版)

【详解】解:由题意
中,图像如下图所示
在 中,有四个不同的零点
∴
则 或
由函数图像可知, 有1解,
∴ 有3解
∴
∴ 的取值范围为
故选:B.
8.关于函数 的图像与直线 为常数)的交点情况,下列说法正确的是( )
A.当 或 ,有0个交点
【答案】ABC
【解析】
【分析】首先根据 与 的距离,建立关于周期的等式,可求 ,再根据 与 的距离,建立关于周期的不等式,即可求 的范围,即可求解.
【答案】C
【解析】
【分析】逐项带入分析即可求解.
【详解】例如, ,所以选项A错;
第四象限的角可表示为 ,故选项B错误;
表示终边在y轴上的角的集合,所以选项C正确;
若α,β都是第一象限角,如 ,则 ,故选项D错误;
故选:C.
4.在下列四个函数中,以π为最小正周期,且在区间 上单调递增的是()
A. B.
C. D.
【答案】C
【解析】
【分析】
依次判断选项的周期和单调性即可得到答案.
【详解】对于A: ,将 在x轴下方的图象翻折到上方,
可知最小正周期 ,在区间 上单调递减,故A不符合题意;
对于B: 的最小正周期 ,故B不符合题意;
对于C: 的最小正周期 ,且在区间 上单调递增,故C符合题意;
对于D: 的最小正周期 ,故D不符合题意.
B.当 或 ,有1个交点
C.当 ,有2个交点
D.当有两个交点时,设两个交点的横坐标为 ,则
【答案】B
【解析】
【分析】注意到 , , , ,据此可做出 在 上图像,即可得答案.
浙江省宁波2024-2025学年高一上学期期中考试数学试卷含解析

宁波2024年度第一学期期中高一数学试卷(答案在最后)(满分150分,考试时间120分钟)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,2,4,7M =,{}4,6,7N =,则M N = ()A.{}1,2,4,6,7B.{}1,2,6C.{}4,7 D.{}2,4【答案】C 【解析】【分析】利用集合的交集运算即可得解.【详解】因为{}1,2,4,7M =,{}4,6,7N =,所以M N = {}4,7.故选:C.2.命题“N n ∀∈,22Z n n ++∈”的否定为()A.N n ∀∈,22Z n n ++∉B.N n ∀∉,22Z n n ++∉C.N n ∃∈,22Z n n ++∈D.N n ∃∈,22Zn n ++∉【答案】D 【解析】【分析】利用量词命题的否定方法即可得解.【详解】因为量词命题的否定方法为:改量词,否结论,所以命题“N n ∀∈,22Z n n ++∈”的否定为N n ∃∈,22Z n n ++∉.故选:D.3.已知0.23a =,0.33b =,0.22c =,则()A.b a c >>B.a b c >>C.b c a >>D.a c b >>【答案】A 【解析】【分析】利用指数函数的单调性与幂函数的单调性即可判断得解.【详解】因为3x y =为单调递增函数,所以0.30.233>,则b a >,因为0.2y x =为增函数,所以0.20.232>,则a c >,综上,b a c >>.故选:A.4.已知正实数a ,b 满足2a b +=,则312a b+的最小值为()A.272B.14C.15D.27【答案】A 【解析】【分析】利用基本不等式“1”的妙用即可得解.【详解】因正实数a ,b 满足2a b +=,所以31213121312127()15152222b a a b a b a b a b ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当312b a a b=,即24,33a b ==时取等号,所以312a b+的最小值为272.故选:A 5.函数3(e)x f xx =的图象大致为()A. B.C. D.【答案】D 【解析】【分析】先利用奇偶函数的定义判断得()f x 的奇偶性排除AB ,再利用指数函数的性质分析得()f x 的正负情况,从而排除C ,由此得解.【详解】对于3()ex xf x =,其定义域为R ,又33()()e ex xx xf x f x ---==-=-,则()f x 是奇函数,排除AB ,当0x >时,30x >,e e 0x x =>,所以()0f x >,排除C ,又选项D 的图象满足上述性质,故D 正确.故选:D.6.设m ∈R ,“12m <-”是“方程22(3)40m x m x -++=在区间(2,)+∞上有两个不等实根”的()条件.A.充分必要B.充分不必要C.必要不充分D.既不充分也不必要【答案】C 【解析】【分析】举反例说明充分性,利用二次方程根的分布说明必要性,从而得解.【详解】当12m <-时,取3m =-,则方程22(3)40m x m x -++=为2940x +=,显然无解,即充分性不成立;当方程22(3)40m x m x -++=在区间(2,)+∞上有两个不等实根时,则()22222Δ344032242(3)40m m m m x m m m ⎧>⎪=+-⨯>⎪⎪⎨+=>⎪⎪⎪-++>⎩,即0315********m m m m m m ≠⎧⎪⎪-<<⎪⎪⎨-<<<<⎪⎪⎪-⎪⎩或或,则3152m -<<-,此时12m <-成立,即必要性成立;所以前者是后者的必要不充分,故C 正确.故选:C.7.中国5G 技术领先世界,其数学原理之一便是香农公式:2log 1S C W N⎛⎫=+⎪⎝⎭,它表示:在受噪音干扰的信道中,最大信息传递速率C 取决于信道带宽W 、信道内信号的平均功率S 、信道内部的高斯噪声功率N 的大小,其中S N 叫信噪比.按照香农公式,若不改变带宽W ,将信噪比SN从2000提升至10000,则C 大约增加了(lg 20.3010)≈()A .18%B.21% C.23% D.25%【答案】B 【解析】【分析】由已知公式,将信噪比SN看作整体,分别取2000,10000求出相应的C 值,再利用对数运算性质与换底公式变形即可得解.【详解】由题意,将信噪比SN从2000提升至10000,则最大信息传递速率C 从()12log 12000C W =+增加至()22log 110000C W =+,所以2212212210001log log 10001log 20012001log 2001log 2001C C W W C W --==3100011000010lglg lg10.3012001200020.2121%lg 2001lg 2000lg 2lg100.3013-=≈==≈=++.故选:B.8.已知函数()f x 为R 上的奇函数,当0x ≥时,2()2f x x x =-,若函数()g x 满足(),0()(),0f x x g x f x x ≥⎧=⎨-<⎩,且(())0g f x a -=有8个不同的解,则实数a 的取值范围为()A.1a <-B.10a -<<C.01a <<D.1a >【答案】B 【解析】【分析】先利用函数的奇偶性与题设条件得到()f x 与()g x 的解析式,设()t f x =,作出函数()g t 的图象,数形结合,分类讨论函数1a <-、10a -<<与0a >三种情况,得到对应情况下(())0g f x a -=的解的个数,从而得解.【详解】因为函数()f x 为R 上的奇函数,当0x ≥时 ,令0x <,则0x ->,则()22f x x x -=+,又()()22f x f x x x=--=--所以()222,02,0x x x f x x x x ⎧-≥=⎨--<⎩,则()222,02,0x x x g x x x x ⎧-≥=⎨+<⎩,设()t f x =,作出函数()g t 的图象,对于A ,当1a <-时,函数()g t a =没有实数根,不满足题意;对于B ,当10a -<<时,函数()g t a =有四个根1234,,,t t t t ,其中1(2,1)t ∈--,2(1,0)t ∈-,3(0,1)t ∈,4(1,2)t ∈;作出()f x 与1y t =、2y t =、3y t =与4=y t 的图象,如图,显然几个函数恰有8个交点,则(())0g f x a -=有8个不同的解,故B 正确;对于CD ,当0a >时,函数()g t a =有两个根12,t t ,其中1(,2)t ∈-∞-,2(2,)t ∈+∞,与选项B 同理可知()f x 与1y t =、2y t =各有一个交点,则(())0g f x a -=只有2个不同的解,不满足题意,故CD 错误.故选:B.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知a ,b ,c 为实数,且0a b >>,则下列不等式正确的是()A.11a b< B.11a cb c<--C.ac bc > D.22a b c c >【答案】AD 【解析】【分析】根据不等式的性质,作差逐一判断即可.【详解】因为0a b >>,选项A :110b aa b ab --=<,所以11a b<,故A 说法正确;选项B :()()11b aa cbc a c b c --=----,当a b c >>或c a b >>时,()()0b aa cbc -<--,即11a c b c<--;当a c b >>时,()()0b a a c b c ->--,即11a c b c>--,故B 说法错误;选项C :当0c =时,ac bc =,故C 说法错误;选项D :因为210c >,所以22a b c c >,故D 说法正确;故选:AD10.已知函数)()lg 1f x x =-+,则下列说法正确的是()A.()f x 的值域为RB.(1)f x +关于原点对称C.()f x 在(1,)+∞上单调递增D.()f x 在[1,1]x m m ∈-+上的最大值、最小值分别为M 、N ,则0M N +=【答案】ABD 【解析】【分析】利用作差法,结合对数函数的性质判断A ,构造函数())lg k x x =,研究()k x 的性质判断B ,利用()k x 的单调性与奇偶性判断CD ,从而得解.【详解】对于A ,()2222110x x x -+--=>,所以()222210x x x -+>-≥1x >-,10x -+>恒成立,所以()f x 的定义域为R ,且当x 趋于无穷大时,1y x =+接近于0,当x 趋于无穷小时,1y x =+=趋于无穷大,所以()f x 的值域为R ,故A 正确;对于B ,因为))(1)lg (1)1lgf x x x +=-++=,令())lgk x x =,则()(1)f x k x +=,易知()k x 的定义域为R ,又()()))lglglg10k x k x x x -+=+==,所以()k x 为奇函数,关于原点对称,即(1)f x +关于原点对称,故B 正确;对于C ,因为())1gk x x =-=在()0,∞+上递减,而将()k x 的图象向右平移一个单位可得()f x 的图象,所以()f x 在(1,)+∞上单调递减,故C 错误;对于D ,因为()k x 在()0,∞+上递减,且())1gk x x =为奇函数,则()00k =,())k x x =-∴在(),-∞+∞上为减函数,而将()k x 的图象向右平移一个单位可得()f x 的图象,()f x ∴在(),-∞+∞上为减函数,即()f x 在[1,1]m m -+上单调递减,则()()()()110M N f m f m k m k m +=-++=-+=,故D 正确.故选:ABD.11.已知函数()f x 满足:对于,x y ∈R ,都有()()()(1)(1)f x y f x f y f x f y -=+++,且(0)(2)f f ¹,则以下选项正确的是()A.(0)0f = B.(1)0f =C.(1)(1)0f x f x ++-= D.(4)()f x f x +=【答案】BCD 【解析】【分析】利用赋值法,结合条件分析得()()1,0f f 的值,从而判断AB ,利用赋值法,结合AB 中的结论、抽象函数的奇偶性和周期性的判定方法判断CD ,从而得解.【详解】对于B :令0x y ==,则()()()22001,f f f ⎡⎤⎡⎤=+⎣⎦⎣⎦令1x y ==,则()()()22012,f f f ⎡⎤⎡⎤=+⎣⎦⎣⎦所以()()2202,f f ⎡⎤⎡⎤=⎣⎦⎣⎦因为()()02f f ≠,所以()()02f f =-,令1,0x y ==,则()()()()()110210f f f f f =+=,故B 正确;对于A :由选项B 可得()()200f f ⎡⎤=⎣⎦,所以()00f =或()01f =,若()00f =,则()()()220120f f f ⎡⎤⎡⎤=+=⎣⎦⎣⎦,所以()20f =,这与()()02f f ≠矛盾,舍去;若()01f =,则()()()220120f f f ⎡⎤⎡⎤=+=⎣⎦⎣⎦,解得()21f =±,因为()()02f f ≠,所以()21f =-,()01f =,故A 错误;对于C :令0x =,则()()()()()011f y f f y f f y -=++,因为 ,()01f =,所以()()f y f y -=,所以()f x 为偶函数,令1x =,则()()()()()()11211f y f f y f f y f y -=++=-+,即()()11f x f x -=-+,所以(1)(1)0f x f x ++-=,故C 正确;对于D :由选项C 知()()11f x f x -=-+,所以()()2f x f x -=-+,又()f x 为偶函数,所以()()()2f x f x f x =-=-+,即 t ,所以 t 䁝 t ,故D 正确.故选:BCD.【点睛】方法点睛:抽象函数求值问题,一般是通过赋值法,即在已知等式中让自变量取特殊值求得一些特殊的函数值,解题时注意所要求函数值的变量值与已知的量之间的关系,通过赋值还可能得出函数的奇偶性、周期性,这样对规律性求值起到决定性的作用.三、填空题:本题共3小题,每小题5分,共15分.12.函数3()log (31)f x x =+的定义域为______.【答案】13x x ⎧⎫-⎨⎬⎩⎭【解析】【分析】根据对数式的意义即可求解.【详解】要使函数有意义,则13103x x +>⇒>-,所以函数的定义域为13x x ⎧⎫-⎨⎬⎩⎭.故答案为:13x x ⎧⎫-⎨⎬⎩⎭.13.定义()f x x =⎡⎤⎢⎥(其中⎡⎤⎢⎥x 表示不小于x 的最小整数)为“向上取整函数”.例如 1.11-=-⎡⎤⎢⎥,2.13=⎡⎤⎢⎥,44=⎡⎤⎢⎥.以下描述正确的是______.(请填写序号)①若()2024f x =,则(2023,2024]x ∈,②若27120x x -+≤⎡⎤⎡⎤⎢⎥⎢⎥,则(2,4]x ∈,③()f x x =⎡⎤⎢⎥是R 上的奇函数,④()f x 在R 上单调递增.【答案】①②【解析】【分析】利用对“向上取整函数”定义的理解,结合定义域与二次不等式的求解可判断①②,举反例,结合函数奇偶性与单调性的定义可判断③④,从而得解.【详解】因为⎡⎤⎢⎥x 表示不小于x 的最小整数,则有x x ≥⎡⎤⎢⎥且1x x -<⎡⎤⎢⎥,即1x x x -<⎡⎤⎡⎤⎢⎥⎢≤⎥,对于①,()2024f x x ==⎡⎤⎢⎥,则20232024x <≤,即(2023,2024]x ∈,故①正确;对于②,令t x =⎡⎤⎢⎥,则不等式可化为27120t t -+≤,解得34t ≤≤,又t x =⎡⎤⎢⎥为整数,则3t =或4t =,当3t =时,即3x =⎡⎤⎢⎥,则23x <≤;当4t =时,即4x =⎡⎤⎢⎥,则34x <≤,所以24x <≤,则(2,4]x ∈,故②正确;对于③,因为()f x x =⎡⎤⎢⎥,则(0.5)1f =,(0.5)0(0.5)f f -=≠-,则()f x x =⎡⎤⎢⎥不是R 上的奇函数,故③错误;对于④,因为()f x x =⎡⎤⎢⎥,则(0.5)1f =,(0.6)1f =,即(0.5)(0.6)f f =,所以()f x 在R 上不单调递增,故④错误.故答案为:①②.14.已知a ,b 满足2221a ab b +-=,则232a ab -的最小值为______【答案】2【解析】【分析】变形给定等式,换元2a b m +=,用m 表示,a b ,再代入,利用基本不等式求出最小值.【详解】由2221a ab b +-=,得(2)()1a b a b +-=,令2a b m +=,则1a b m-=,解得233m a m =+,8322()33m a b a a b m-=+-=+,因此22228116132(32)()()(10)(1022333399m m a ab a a b m m m m -=-=++=++≥+=,当且仅当2216m m=,即24m =时取等号,所以232a ab -的最小值为2.故答案为:2【点睛】关键点点睛:将2221a ab b +-=变形为(2)()1a b a b +-=,令2a b m +=,再表示出,a b 是求出最小值的关键.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.求值(110232ln 2024+-(2)()()24525log 5log 0.2log 2log 0.5++【答案】(1)152(2)14【解析】【分析】(1)根据根式与指数式的互化将根式化为同底的指数式,再结合对数运算性质和指数幂性质即可计算得解.(2)根据对数性质、运算法则和换底公式即可计算求解.【小问1详解】原式()()111125253424211115221222222⨯+⨯=⨯+-=-=-=.【小问2详解】原式225511log 5log 0.2log 2log 0.522⎛⎫⎛⎫=++ ⎪⎪⎝⎭⎝⎭225525log 5log log 2log log log ⎛=++= ⎝11lg5lg 2122lg 2lg5lg 2lg54=⨯=⨯=.16.已知集合{}121A x m x m =+≤≤-,11|288x B x -⎧⎫⎨⎬⎩⎭=≤≤.(1)求B ;(2)若A B ⊆,求实数m 的取值范围.【答案】(1){}|24B x x =-≤≤(2)5,2⎛⎤-∞ ⎥⎝⎦【解析】【分析】(1)利用指数函数的单调性解不等式,从而化简集合B ;(2)利用集合间的包含关系,分类讨论A =∅与A ≠∅两种情况,得到关于m 的不等式(组),解之即可得解.【小问1详解】由11288x -≤≤,得313222x --≤≤,所以313x -≤-≤,解得24x -≤≤,所以{}|24B x x =-≤≤.【小问2详解】因为A B ⊆,{}121A x m x m =+≤≤-,当A =∅时,121m m +>-,得2m <,满足条件;当A ≠∅时,2m ≥且21214m m -≤+⎧⎨-≤⎩,解得522m ≤≤;综上所述,m 的取值范围是5,2⎛⎤-∞ ⎥⎝⎦.17.某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍惜水果树的单株产量W (单位:千克)与使用肥料x (单位:千克)满足如下关系:210(3),02()100100,251x x W x x x ⎧+≤≤⎪=⎨-<≤⎪+⎩,肥料成本投入为11x 元,其他成本投入(如培育管理、施肥等人工费)25x 元.已知这种水果的市场售价为20元/千克,且销路畅通供不应求.记该水果树的单株利润为()f x (单位:元).(1)求()f x 的函数关系式;(2)当使用肥料为多少千克时,该水果树单株利润最大,最大利润是多少?【答案】(1)220036600,02()2000200036,251x x x f x x x x ⎧-+≤≤⎪=⎨--<≤⎪+⎩;(2)当使用肥料为5千克时,该水果树单株利润最大,最大利润是44603元.【解析】【分析】(1)根据单株产量W 与施用肥料x 满足的关系,结合利润的算法,即可求得答案.(2)结合二次函数的最值以及对勾函数求最值,分段计算水果树的单株利润,比较大小,即可求得答案.【小问1详解】依题意,2200(3)36,02()20()251120()3610020(10036,251x x x f x W x x x W x x x x x ⎧+-≤≤⎪=--=-=⎨--<≤⎪+⎩220036600,022*********,251x x x x x x ⎧-+≤≤⎪=⎨--<≤⎪+⎩.【小问2详解】当02x ≤≤时,2()20036600f x x x =-+,则当2x =时,()f x 取得最大值(2)1328f =;当25x <≤时,500()203636(1)20364[9(1)]112000f x x x x x =--+=-++++令1(3,6]x t +=∈,5005009(1)91x t x t ++=++,函数5009t t y +=在(3,6]上单调递减,当6t =时,min 4123y =,此时5x =,()f x 取得最大值4460(5)3f =,而446013283<,因此当5x =时,max 4460()3f x =,所以当使用肥料为5千克时,该水果树单株利润最大,最大利润是44603元.18.已知函数()42x xa f x -=为奇函数,(1)求a 的值;(2)判断()f x 的单调性,并用单调性定义加以证明;(3)求关于x 的不等式()22(4)0f x x f x ++-<的解集.【答案】(1)1a =(2)()f x 在R 上单调递增,证明见解析(3){}41x x -<<【解析】【分析】(1)利用奇函数的性质()00f =求得a ,再进行检验即可得解;(2)利用函数单调性的定义,结合作差法与指数函数的性质即可得解;(3)利用()f x 的奇偶性与单调性,将问题转化为224x x x +<-,从而得解.【小问1详解】因为()42x x a f x -=为奇函数,且定义域为R ,所以()00f =,则00402a -=,解得1a =,此时()411222x x x x f x -==-,则()()112222x x x x f x f x --⎛⎫-=-=--=- ⎪⎝⎭,即()f x 为奇函数,所以1a =.【小问2详解】()f x 在R 上单调递增,证明如下:任取12,R x x ∈,且12x x <,则12220x x -<,12220x x ⋅>则()()1222211112111122222222x x x x x x x x f x f x ⎛⎫-=---=-+- ⎪⎝⎭()12121212122212222102222x x x x x x x x x x -⎛⎫=-+=-+< ⎪⋅⋅⎝⎭,所以()()12f x f x <,故()f x 在R 上单调递增.【小问3详解】因为()22(4)0f x x f x ++-<,所以()()22(4)4f x x f x f x +<--=-,则224x x x +<-,即2340x x +-<,解得41x -<<,所以()22(4)0f x x f x ++-<的解集为{}41x x -<<.19.已知函数3()f x x a a x=--+,(R)a ∈,(1)若1a =,求关于x 的方程()1f x =的解;(2)若关于x 的方程2()f x a =有三个不同的正实数根1x ,2x ,3x 且123x x x <<,(i )求a 的取值范围;(ii )证明:1333x x x >.【答案】(1)11322x =+(2)(i)732⎛ ⎝;(ii )证明见解析【解析】【分析】(1)根据题意得由31x x-=,分类讨论1x ≥与1x <两种情况去掉绝对值即可得解;(2)(i )分段讨论()f x 的解析式,结合对勾函数的性质分析得()f x 的单调性,进而得到关于a 的不等式,解之即可得解;(ii )利用(i )中结论,分析得123x x =与3x 关于a 的表达式,进而得解.【小问1详解】当1a =时,3()11f x x x =--+,则由()1f x =,得31x x -=,当1x ≥时,则31x x -=,即230x x --=,解得11322x =+或11322x =-(舍去);当1x <时,则31x x -=,即230x x -+=,无实数解,综上,11322x =+.【小问2详解】(i )因为3()f x x a a x=--+,当x a ≤时,33()2f x x a a a x x x ⎛⎫=-+-+=-+ ⎪⎝⎭,当x a >时,33()f x x a a x x x=--+=-,由对勾函数的性质可知,32y a x x ⎛⎫=-+⎪⎝⎭在(上单调递增,在)+∞上单调递减,易知3y x x =-在()0,∞+上单调递增,当)0a a ≤≠时,则32y a x x ⎛⎫=-+ ⎪⎝⎭在()0,a 上单调递增,3y x x =-在(),a +∞上单调递增,又当x a =时,332a x x x x ⎛⎫-+=- ⎪⎝⎭,所以()f x 在()0,∞+上单调递增,故方程2()f x a =不可能存在3个不同正实根,所以a ≥32y a x x ⎛⎫=-+ ⎪⎝⎭在(上单调递增,在)a 上单调递减,3y x x=-在(),a +∞上单调递增,故2322a a a a a <<-⎛⎫-+ ⎪⎝⎭,解得732a <<即a 的取值范围为2⎛ ⎝;(ii )12x x 、是方程322a x x a ⎛⎫-+= ⎪⎝⎭,即22230x a x a ⎛⎫--+= ⎪⎝⎭的两个根,故123x x =,3x 是方程32x x a -=的较大根,即2230x x a--=的较大根,则31x a =+且在区间732⎛+ ⎝上单调递减,所以1233333x x x x ⎛=>=.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.。
2024-2025学年安徽省芜湖市第一中学高一上学期期中考试数学题(含答案)

2024-2025学年安徽省芜湖市第一中学高一上学期期中考试数学题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知x ∈R ,y ∈R ,则“x >1且y >1”是“x +y >2”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件2.已知集合A ={x |x 2−1≥0},集合B ={x |x−12≤0},则(∁R A )∪B =( )A. {x |x ≤12或 x ≥1}B. {x |−1<x ≤12}C. {x |12≤x <1}D. {x∣x <1}3.已知函数y =f (x )的定义域为[−1,4],则y =f (2x +1) x−1的定义域为( ).A. [−1,4] B. (1,32] C. [1,32] D. (1,9]4.设a ,b ∈R ,且a >b ,则下列不等式一定成立的是( ).A. 1a <1bB. ac 2>bc 2C. |a |>|b |D. a 3>b 35.不等式ax +1x +b >0的解集为{x|x <−1或x >4},则(x +a )(bx−1)≥0的解集为( )A. [14,1] B. (−∞,14]∪[1,+∞)C. [−1,−14] D. (−∞,−1]∪[−14,+∞)6.已知a >0,b >0,a +b =ab−3,若不等式a +b ≥2m 2−12恒成立,则m 的最大值为( )A. 1 B. 2 C. 3 D. 77.“曼哈顿距离”是十九世纪的赫尔曼−闵可夫斯基所创词汇,用以标明两个点在标准坐标系上的绝对轴距总和,其定义如下:在直角坐标平面上任意两点A (x 1,y 1),B (x 2,y 2)的曼哈顿距离d (A,B )=|x 1−x 2|+|y 1−y 2|,若点M (2,1),点P 是直线y =x +3上的动点,则d (M,P )的最小值为( )A. 2B. 3C. 4D. 58.已知f(x),g(x)是定义域为R 的函数,且f(x)是奇函数,g(x)是偶函数,满足f(x)+g(x)=ax 2+x +2,若对任意的1<x 1<x 2<2,都有g (x 1)−g (x 2)x 1−x 2>−5成立,则实数a 的取值范围是( )A. [0,+∞) B. [−54,+∞) C. (−54,+∞) D. [−54,0]二、多选题:本题共3小题,共18分。
浙江省金兰教育合作组织2024-2025学年高一上学期期中考试数学试题含答案

浙江省金兰教育合作组织2024学年第一学期期中考试高一年级数学学科试题(答案在最后)考生须知:1.本卷共4页满分150分,考试时间120分钟.2.答题前,在答题卷指定区域填写班级、姓名、考场号、座位号及准考证号并填涂相应数字.3.所有答案必须写在答题纸上,写在试卷上无效.4.考试结束后,只需上交答题纸.选择题部分一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.已知全集{1,2,3,4,5}U =,集合{1,2,3}M =,{2,3,4}N =,则()U M N = ð()A.{5}B.{2,3}C.{1,4}D.{1,4,5}【答案】D【解析】【分析】根据交集和补集的概念计算即可.【详解】∵集合{1,2,3}M =,{2,3,4}N =,∴{,}M N 23= ,又全集{1,2,3,4,5}U =,∴()U M N = ð{1,4,5}.故选:D.2.下列说法正确的是()A.R x ∀∈,|1|1x +> B.“2x >且3y >”是“5x y +>”的充要条件C.0x ∃>,3x x=- D.“20x x -=”是“1x =”的必要不充分条件【答案】D【解析】【分析】根据绝对值的性质可判断A ;根据充分条件与必要条件的概念可判断B ,D ;解方程可判断C.【详解】对于A ,R x ∀∈,|1|0x +≥,当=−1时,取等号,故A 错误;对于B ,当2x >且3y >时,可得5x y +>,充分性成立;当5x y +>时,不一定有“2x >且3y >”,如1,6x y ==,则“2x >且3y >”是“5x y +>”的充分不必要条件,故B 错误;对于C ,由3x x =-得2(1)0x x +=,因为210x +≠,所以0x =,则不存在0x >,使3x x =-成立,故C 错误;对于D ,()2010x x x x -=⇔-=⇔0x =或1x =,则当20x x -=时不一定有1x =,充分性不成立;当1x =时,一定有20x x -=,必要性成立,则“20x x -=”是“1x =”的必要不充分条件,故D 正确.故选:D.3.已知集合{}21,,0,,b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20242024a b +的值为()A.0B.1C.1- D.1或1-【答案】B【解析】【分析】利用集合相等和集合中元素的互异性,以已知的0,1为突破口,分类讨论求出,a b 的值.【详解】集合{}21,,0,,b a a a b a ⎧⎫=+⎨⎬⎩⎭,两个集合中元素完全相同,由0a ≠,则有0b a=,得0b =,有a b a +=,所以210a b aa a b⎧=⎪⎪=⎨⎪=+⎪⎩,由集合中元素的互异性,有1a ≠,得1,0a b =-=,则有202420241a b +=.故选:B.4.设函数1()22x x f x =-,则()f x ()A.是奇函数,且在(,)-∞+∞上单调递增B.是奇函数,且在(,)-∞+∞上单调递减C.是偶函数,且在(,)-∞+∞上单调递增D.是偶函数,且在(,)-∞+∞上单调递减【答案】A【解析】【分析】由奇偶性的定义和指数函数的单调性可得结论.【详解】函数1()22x x f x =-的定义域为R ,111()222()222x x x x x x f x f x --⎛⎫-=-=-=--=- ⎪⎝⎭,可得()f x 为奇函数,函数2x y =和12x y =-在(,)-∞+∞上都单调递增,可得()f x 单调递增,故选:A .5.下列函数中最小值为4的是()A.224y x x =++ B.4y x x =+C.2y 22x x -=+ D.y =【答案】C【解析】【分析】根据二次函数的性质可判断A ;当0x <时,即可判断B ;利用基本不等式可判断C ;根据对勾函数的性质可判断D.【详解】对于A ,224y x x =++为二次函数,其对称轴为1x =-,则1x =-时,y 取最小值3,故A 错误;对于B ,当0x <时,40y x x=+<,故B 错误;对于C ,2220,0x x ->>,则2242x x y -≥==+=,当且仅当222x x -=,即1x =时等号成立,则2y 22x x -=+的最小值为4,故C 正确;对于D ,t t =≥1y t t=+,根据对勾函数的性质可知,当t ≥时,1y t t=+单调递增,则t =y 取最小值5,故D 错误.故选:C .6.函数262x y x -=+的图象大致为()A. B.C. D.【答案】B【解析】【分析】利用函数的奇偶性及特值法可判定选项.【详解】令26()()2x f x x x -=∈+R ,则()2266()()22x x f x f x x x -===-+-+,则262x y x -=+为奇函数,其图象关于原点对称,可排除C 、D ;当1x =时,62012y -==-<+,可排除A ,从而B 正确.故选:B.7.下列命题为真命题的是()A.若0a b >>,则22ac bc > B.若a b >,则22a b >C.若0a b <<,则22a ab b >> D.若a b <,则11a b >【答案】C【解析】【分析】对于ABD :举反例分析判断;对于C :根据不等式的性质分析判断.【详解】对于选项A :若0c =,则220ac bc ==,故A 错误;对于选项B :若1,1a b ==-满足a b >,则221a b ==,故B 错误;对于选项C :若0a b <<,则22,a ab ab b >>,即22a ab b >>,故C 正确;对于选项D :若1,1a b =-=满足a b <,则1111a b=-<=,故D 错误;故选:C.8.若定义在R 上的偶函数()f x 在(,0]-∞上单调递减,且(2)0f =,则满足(1)(2)0x f x --≥的x 的取值范围是()A.[0,1][4,)+∞B.(,2][2,)-∞-+∞ C.[0,1][2,)⋃+∞ D.[0,1][2,4] 【答案】A【解析】【分析】根据奇偶性和单调性得出()f x 取值情况,进而解不等式即可.【详解】因为定义在R 上的偶函数()f x 在(,0]-∞上单调递减,且(2)0f =,所以()f x 在[0,)+∞上单调递增,且(2)0f -=,所以,当2x ≤-或2x ≥时,()0f x ≥;当22x -≤≤时,()0f x ≤.不等式(1)(2)0x f x --≥可变形为10(2)0x f x -≥⎧⎨-≥⎩,或10(2)0x f x -≤⎧⎨-≤⎩,所以102222x x x -≥⎧⎨-≤--≥⎩或,或10222x x -≤⎧⎨-≤-≤⎩,解得4x ≥或01x ≤≤,即x 的取值范围是[0,1][4,)+∞ .故选:A.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.少选得部分分,错选得0分.9.已知幂函数12()f x x =,则以下结论正确的是()A.()f x 的定义域为[0,)+∞ B.()f x 是减函数C.()f x 的值域为[0,)+∞ D.()f x 是偶函数【答案】AC【解析】【分析】由幂函数的性质,判断12()f x x =的定义域值域单调性和奇偶性.【详解】幂函数12()f x x ==,函数定义域为[0,)+∞,A 选项正确;由幂函数的性质可知,12()f x x =在[0,)+∞上单调递增,值域为[0,)+∞,B 选项错误,C 选项正确;函数定义域不关于原点对称,()f x 不是偶函数,D 选项错误.故选:AC.10.已知集合{}1,2,3,4,5A =,{}(,),,B x y x A y A x y A =∈∈-∈,则下列选项中正确的是()A.集合A 有32个子集B.(2,1)B ∈C.B 中所含元素的个数为10个D.(2,3)B ∈【答案】ABC【解析】【分析】A 选项由公式计算集合的子集个数;由定义列举集合B 中的元素,判断选项BCD.【详解】集合A 中有5个元素,则集合A 有5232=个子集,A 选项正确;由{}(,),,B x y x A y A x y A =∈∈-∈,则()()()()()()()()()(){}2,1,31,3,2,4,1,4,2,4,3,5,1,5,2,5,3,5,4,B =,B 中所含元素的个数为10个,C 选项正确;(2,1)B ∈,(2,3)B ∉,B 选项正确,D 选项错误.故选:ABC.11.下列说法正确的是()A.函数1()f x x =在定义域内是减函数B.若12x <,则函数4221y x x =+-的最大值为3-C.若不等式23208kx kx +-<对一切实数x 恒成立,则30k -<≤D.若0x >,0y >,3x y xy ++=,则x y +的最小值为2【答案】BCD【解析】【分析】对于A 取反例否定;对于B 、D 运用基本不等式逐一判断即可;对于C 分两种情况0k =与0k ≠判断是否恒成立即可【详解】对于A :取121,1,x x ==-显然12()()f x f x >,所以A 不正确;对于B :∵12x <,∴120x ->,4421212112y x x x x ⎛⎫=+=--++ ⎪--⎝⎭,因为412412x x -+≥=-,当且仅当41212x x -=-时取等号,当12x =-时取等号,所以412412x x ⎛⎫--+≤- ⎪-⎝⎭所以44212132112y x x x x ⎛⎫=+=--++≤- ⎪--⎝⎭,所以B 正确;对于C :当0k =时,308-<恒成立;当0k ≠时,则220Δ30k k k <⎧⎨=+<⎩,∴30k -<<.所以30k -<≤,故C 正确;对于D :因为0x >,0y >,所以由()()()23362022x y x y xy x y xy x y x y x y +⎛⎫++=⇒-+=≤⇒+++-≥⇒+≥ ⎪⎝⎭,当且仅当1x y ==时取等号,故D 正确.故选:BCD.非选择题部分三、填空题:本题共3小题,每小题5分,共15分.12.已知()f x 的定义域为[1,3]-,则()2f x 的定义域是__________.【答案】⎡⎣【解析】【分析】利用抽象函数定义域的解法求解即可.【详解】因为()f x 的定义域为[1,3]-,对于函数()2f x,需使[]21,3x ∈-,解得x ⎡∈⎣,即()2f x 的定义域是⎡⎣,故答案为:⎡⎣13.计算3110.7535=64162---⎛⎫++ ⎪⎝⎭__________.【答案】414【解析】【分析】根据分数指数幂和指数运算可得.【详解】3110.753564162---⎛⎫++ ⎪⎝⎭()()()13113133425345327=4222464---⎛⎫⎛⎫+-+++⨯ ⎪ ⎪⎝⎭⎝⎭132********=422244-⎛⎫⎛⎫+-+++⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭331=24844-+++41=4故答案为:41414.设0,0,22x y x y >>+=的最大值为__________.【答案】29【解析】【分析】利用已知条件化简,再根据换元法转化后根据基本不等式解答即可.【详解】22x y +=,=,令t =又22x y =+≥,202t ∴<=,当且仅当21x y ==时等号成立,2144t t t t+==+,4y t t =+在0,2⎛ ⎝⎦上单调递减,2t ∴=时min min 4(2t t y =+=,max 19(4t t ∴=+的最大值为9.故答案为:9【点睛】关键点点睛:本题考查了换元法和基本不等式的知识点,通过“对勾函数”求解最值.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步器.15.已知集合{}21A x x =-≤≤,{}12B x x a =-<<.(1)若1a =,求A B ⋂,()U A B ð;(2)若A B B = ,求实数a 的取值范围.【答案】(1){}11A B x x ⋂=-<≤,(){2U A B x x ⋃=<-ð或}1x >-(2)12a ≤【解析】【分析】(1)直接利用集合的运算求解即可;(2)由A B B = ,得B A ⊆,分两种情况讨论求a 的取值范围.【小问1详解】若1a =,则{}12B x x =-<<,又{}21A x x =-≤≤,∴{}11A B x x ⋂=-<≤;∵{2U A x x =<-ð或>1,∴(){2U A B x x ⋃=<-ð或}1x >-.【小问2详解】若A B B = ,则B A ⊆.当B =∅时,有12a -≥,解得12a ≤-,符合题意;当B ≠∅,由B A ⊆得1221a a -<⎧⎨≤⎩,解得1122a -<≤综上,a 的取值范围为12a ≤.16.已知()||(2)().(R)f x x a x x x a a =--+-∈(1)当1a =时,求不等式()0f x <的解集;(2)若()f x 在R 上为增函数,求a 的取值范围.【答案】(1)(),1-∞(2)[)1,+∞【解析】【分析】(1)1a =代入()f x ,零点分段去绝对值,解不等式()0f x <;(2)零点分段去绝对值,把()f x 表示成分段函数,利用()f x 在R 上为增函数,求a 的取值范围.【小问1详解】当1a =时,222,1()1(2)(1)242,1x x f x x x x x x x x -<⎧=--+-=⎨-+≥⎩,()0f x <等价于1220x x <⎧⎨-<⎩或212420x x x ≥⎧⎨-+<⎩,解得1x <.不等式()0f x <的解集为(),1-∞.【小问2详解】()222,()(2)()2222,x a x a f x x a x x x a x a x a x a -<⎧=--+-=⎨-++≥⎩,()f x 在R 上为增函数,且()f x 的图象是连续曲线,函数22y x a =-在(),a -∞上单调递增,符合题意;函数()22222y x a x a =-++在[),a +∞上单调递增,则有12a a +≤,解得1a ≥.所以a 的取值范围为[)1,+∞.17.某工厂生产某种玩具车的固定成本为15000元,每生产一辆车需增加投入80元.已知总收入R (单位:元)关于月产量x (单位:辆)满足函数:21380(0500),()275000(500).x x x R x x ⎧-≤≤⎪=⎨⎪>⎩(1)将利润P (单位:元)表示为月产量x (单位:辆)的函数;(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收入=总成本+利润)【答案】(1)()()2130015000,0500,26000080,(500).x x x P x x x ⎧-+-≤≤⎪=⎨⎪->⎩(2)当月产量为300辆时,利润最大,最大利润为30000元.【解析】【分析】(1)利用题中给出的总收入关于月产量的关系式,由利润=总收入-总成本即可得到答案;(2)分段函数()P x ,分别利用二次函数的性质以及函数的单调性求出定义区间内的最值,比较即可得到答案.【小问1详解】由题可知总成本为1500080x +,∴利润()2130015000(0500),()150008026000080(500).x x x P x R x x x x ⎧-+-≤≤⎪=--=⎨⎪->⎩.【小问2详解】当0500x ≤≤,()()21300300002P x x =--+,∴当300x =时,()f x 有最大值30000;当500x >时,()6000080P x x =-是减函数,∴()600008050020000P x <-⨯=.∴当300x =时,有最大值30000,即当月产量为300辆时,利润最大,最大利润为30000元.18.(1)已知0a >,0b >,且1ab =,求114a b a b+++的最小值;(2)设0a >,1b >,若2a b +=,求211a b +-的最小值;(3)求函数()2f x x =+的最大值.【答案】(1)4;(2)3+;(3)3.【解析】【分析】(1)由题可将114a b a b +++化简为4a b a b+++,再利用基本不等式求解即可;(2)利用换元思想,原式可化为2212112132ba b b b b b +=+=----+-,再利用基本不等式即可;(3)由()f x 定义域[]1,1-可得()2f x x ==+()221()2x g x x -=+在区间[]1,1-上的最大值,令[]21,3x t +=∈,利用二次函数的性质求解,【详解】(1)因为0a >,0b >,且1ab =,所以()114444a b a b a b a b ab a b a b+++=+=++≥=+++,当且仅当4a b a b+=+,即1a b ==时,等号成立,所以114a b a b+++的最小值为4.(2)设0a >,1b >,若2a b +=,则2a b =-,22121132121323b a b b b b b b b+=+==≥+----+---+当且仅当2b b=,即b =时等号成立,所以2a b ==时,211a b+-的最小值为3+;(3)函数()2f x x =+有意义,则有21020x x ⎧-≥⎨+≠⎩,解得11x -≤≤,即函数1()2f x x =+的定义域为[]1,1-,有()2f x x ==+求函数()2f x x =+的最大值,可先求()221()2x g x x -=+在区间[]1,1-上的最大值,令[]21,3x t +=∈,则2x t =-,故()()2224311341t t g x h t t t t -+-⎛⎫⎛⎫===-+- ⎪ ⎪⎝⎭⎝⎭,再令11,13s t ⎡⎤=∈⎢⎥⎣⎦,则()()()()2341311h t s s s s s ϕ==-+-=---,结合二次函数的图象,当23s =时,得()s ϕ有最大值2133ϕ⎛⎫= ⎪⎝⎭,则32t =时()h t 有最大值13,从而12x =-时()2f x x =+的最大值为33.19.已知定义在R 上的奇函数2()1ax bf x x +=+,且13310f ⎛⎫= ⎪⎝⎭.(1)求函数()f x 的解析式;(2)判断()f x 在[1,1]-上的单调性,并证明你的结论;(3)设()()()()21112g x x f x m x =++++-⎡⎤⎣⎦,若[]11,2x ∃∈,对[]21,1x ∀∈-,有()()122g x f x ≤成立,求实数m 的取值范围.【答案】(1)2()1xf x x =+(2)单调递增,证明见解析(3)(],1-∞-【解析】【分析】(1)利用函数为奇函数且13310f ⎛⎫=⎪⎝⎭,求出,a b 的值得函数()f x 的解析式;(2)定义法判断并证明()f x 在[1,1]-上的单调性;(3)依题意有()()12min min 2g x f x ≤,分类讨论函数在定义区间内的最小值即可.【小问1详解】定义在R 上的奇函数2()1ax bf x x +=+,有(0)0f b ==,133131019af ⎛⎫== ⎪⎝⎭+,解得1a =,得2()1x f x x =+,函数2()1x f x x =+定义域为R ,()22()()11x x f x f x x x --==-=-+-+,()f x 是奇函数,所以2()1xf x x =+.【小问2详解】()f x 在[1,1]-上的单调递增,理由如下,任取1211x x -£<£,则()()()()()()()()22122121211212222222121212111()()111111x x x x x x x x x x f x f x x x x x x x +-+---=-==++++++,由1211x x -£<£,有211x x <,2110x x -<,210x x ->,()()2212110xx++>,得12())0(f x f x -<,即12()()f x f x <,所以()f x 在[1,1]-上的单调递增.【小问3详解】()()()()()22111211g x x f x m x x m x m ⎡⎤=++++-=+++-⎣⎦,若[]11,2x ∃∈,对[]21,1x ∀∈-,有()()122g x f x ≤,则需要()()12min min 2g x f x ≤,()f x 在[1,1]-上的单调递增,()()2min 2211f x f =-=-,()()211g x x m x m =+++-,函数图象抛物线开口向上,对称轴为12m x +=-,当122m +-≥,即5m ≤-时,()g x 在1,2上单调递减,()()()1min 242111g x g m m ==+++-≤-,解得2m ≤-,则有5m ≤-;当1122m +<-<,即53m -<<-时,()g x 在11,2m +⎡⎤-⎢⎥⎣⎦上单调递减,在1,22m +⎡⎤-⎢⎥⎣⎦上单调递增,()()21min111111222m m m g x g m m +++⎛⎫⎛⎫⎛⎫=-=-++-+-≤- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,得()210m -≥恒成立,则有53m -<<-;当112m +-≤,即3m ≥-时,()g x 在1,2上单调递增,()()()1min 11111g x g m m ==+++-≤-,解得1m ≤-,则有31m -≤≤-;综上可知,实数m 的取值范围为(],1-∞-。
湖南省长沙市2024-2025学年高一上学期10月月考数学试题含答案

2024年下学期10月份考试试卷高一数学(答案在最后)时量:120分钟分值:150分命题人:一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列表示集合6N N A x x ++⎧⎫=∈∈⎨⎬⎩⎭和(){}22536B x x x=+=关系的Venn 图中正确的是()A.B.C.D.【答案】A 【解析】【分析】依题意可求得集合,A B ,根据集合中的元素可判断两集合之间的关系.【详解】根据题意由6N ,N x x++∈∈可得1,2,3,6x =,即{}1,2,3,6A =;解方程()22536x x+=可得256x x +=或256x x +=-,解得1x =或6x =-或2x =-或3x =-,即可得{}1,2,3,6B =---;因此可得集合,A B 有交集,但没有包含关系.故选:A2.如果对于任意实数x ,[]x 表示不超过x 的最大整数,例如[]π3=,[]0.60=,[]1.62-=-,那么“1x y -<”是“[][]x y =”的().A.充分条件B.必要条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】举出反例得到充分性不成立,再设[][]x y k ==,得到1k x k ≤<+,1k y k ≤<+,故1x y -<,必要性成立,得到答案.【详解】不妨设 1.6, 2.5x y ==,满足1x y -<,但[][]1,21.6 2.5==,不满足[][]x y =,充分性不成立,若[][]x y =,不妨设[][]x y k ==,则1k x k ≤<+,1k y k ≤<+,故1x y -<,必要性成立,故“1x y -<”是“[][]x y =”的必要条件.故选:B3.已知命题p :x ∀∈R ,01xx >-,则p ⌝为().A.x ∀∈R ,01xx ≤- B.x ∃∈R ,01xx ≤-C.x ∀∈R ,01xx ≤-或10x -= D.x ∃∈R ,01xx ≤-或10x -=【答案】D 【解析】【分析】利用全称命题的否定求解即可.【详解】由全称命题的否定是特称命题知:原命题的否定为x ∃∈R ,01xx ≤-或10x -=.故选:D4.若正实数x ,y 满足40x y xy +-=,则t xy =的取值范围为()A.{|04}t t <≤B.{|2}t t ≥C.{|4}t t ≥D.{|16}t t ≥【答案】D 【解析】【分析】由基本不等式得到4x y +≥,求出答案.【详解】正实数x ,y 满足40x y xy +-=,则4x y +≥,当且仅当x y =时取等号,所以t xy =,即xy ≥,即t ≥,两边平方,结合0t >,解的16t ≥.故选:D.5.已知命题2:,230p x ax x ∀∈++>R 为真命题,则实数a 的取值范围是()A.1|02a a ⎧⎫<≤⎨⎩⎭B.1|03a a ⎧⎫<<⎨⎬⎩⎭C.1|3a a ⎧⎫≥⎨⎬⎩⎭D.1|3a a ⎧⎫>⎨⎬⎩⎭【答案】D 【解析】【分析】问题转化为不等式2230ax x ++>的解集为R ,根据一元二次不等式解集的形式求参数的值.【详解】因为命题2:,230p x ax x ∀∈++>R 为真命题,所以不等式2230ax x ++>的解集为R .所以:若0a =,则不等式2230ax x ++>可化为230x +>⇒32x >-,不等式解集不是R ;若0a ≠,则根据一元二次不等式解集的形式可知:20Δ2120a a >⎧⎨=-<⎩⇒13a >.综上可知:13a >故选:D6.若实数αβ,满足1312αβ-<<<-,则αβ-的取值范围是()A.1312αβ-<-<-B.250αβ-<-<C.10αβ-<-<D.11αβ-<-<【答案】C 【解析】【分析】根据不等式的性质及题中条件即可得到结果.【详解】因为αβ<,所以0αβ-<,又1312α-<<-,1312β-<<-,所以1213β<-<所以11αβ-<-<,故10αβ-<-<,故选:C7.关于x 的一元二次不等式()()()2120x a x a --+->⎡⎤⎣⎦,当01a <<时,该不等式的解集为()A.2|21a x x x a -⎧⎫><⎨⎬-⎩⎭或 B.2|21a x x a -⎧⎫<<⎨⎬-⎩⎭C.2|21a x x x a -⎧⎫<>⎨⎬-⎩⎭或 D.2|21a x x a -⎧⎫<<⎨⎬-⎩⎭【答案】B 【解析】【分析】由01a <<,知10a -<,原不等式等价于()2201a x x a -⎛⎫--< ⎪-⎝⎭,再确定相应二次方程的根的大小得不等式的解集.【详解】由01a <<,则10a -<,原不等式等价于不等式()2201a x x a -⎛⎫--< ⎪-⎝⎭的解集,又由01a <<,则方程()2201a x x a -⎛⎫--= ⎪-⎝⎭的两根分别为1222,1a x x a -==-,当01a <<时,221a a -<-,故原不等式的解集为2|21a x x a -⎧⎫<<⎨⎬-⎩⎭.故选:B8.已知长为a ,宽为b 的长方形,如果该长方形的面积与边长为1k 的正方形面积相等;该长方形周长与边长为2k 的正方形周长相等;该长方形的对角线与边长为3k 的正方形对角线相等;该长方形的面积和周长的比与边长为4k 的正方形面积和周长的比相等,那么1k 、2k 、3k 、4k 大小关系为()A.1423k k k k ≤≤≤B.3124k k k k ≤≤≤C.4132k k k k ≤≤≤D.4123k k k k ≤≤≤【答案】D 【解析】【分析】先求出21ab k =,22a b k +=3=,2442k aba b k =+,然后利用基本不等式比较大小即可.【详解】由题意可得,21ab k=①,22a b k +=3=③,2442k aba b k =+④,且,0a b >,由基本不等式的关系可知,a b +≥a b =时等号成立,由①②得,2122k k ≥,所以21k k ≥⑤,因为()22222()22+=++≤+a b a b ab a b,所以222()2a b a b ++≥,当且仅当a b =时等号成立,由②③得,2223422k k ≥,所以32k k ≥⑥,又2ab aba b ≤=+,当且仅当a b =时等号成立,由①④得,241422k kk ≤,所以41k k ≤⑦,综合⑤⑥⑦可得,4123k k k k ≤≤≤.故选:D .二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,部分选对得部分分,有选错的得0分.9.下列说法不正确的是()A.“a b <”是“11a b>”的必要不充分条件B.若1x y +=,则xy 的最大值为2C.若不等式20ax bx c ++>的解集为{|13}x x <<,则230a b c ++<D.命题“R x ∃∈,使得210x +=.”的否定为“R x ∀∉,使得210x +≠.”【答案】ABD 【解析】【分析】根据充分条件和必要条件的定义判断A ,消元,根据二次函数性质判断B ,根据一元二次不等式的解集与二次方程的关系求,,a b c 的关系,由此判断23a b c ++的正负,判断C ,根据含量词的命题的否定方法判断D.【详解】对于A ,取1a =-,1b =,则a b <,但11a b<,取1a =,1b =-,则11a b>,但a b >,所以“a b <”是“11a b>”的既不充分也不必要条件,A 错误;对于B ,因为1x y +=,所以()2211124xy x x x x x ⎛⎫=-=-+=--+ ⎪⎝⎭,所以xy 的最大值为14,B 错误;因为不等式20ax bx c ++>的解集为{|13}x x <<,所以0a <,且1,3为方程20ax bx c ++=的根,所以13b a +=-,13c a⨯=,所以4b a =-,3c a =,所以238920a b c a a a a ++=-+=<,C 正确;命题“R x ∃∈,使得210x +=.”的否定为“R x ∀∈,使得210x +≠.”D 错误;故选:ABD.10.已知正数a ,b 满足238a b +=,则下列说法正确的是()A.83ab ≤ B.227a b +>C.224932a b +≥ D.11126436a b a b +≥++【答案】ACD 【解析】【分析】由已知条件结合基本不等式及相关结论检验选项A,C,D ,举出反例检验选项B ,即可判断.【详解】对于A ,因为823a b =+≥,故83ab ≤,当且仅当23,238a b a b =+=,即42,3a b ==时等号成立,故A 正确;对于B ,当2,1b a ==时,2267a b +=<,B 显然错误;对于C ,因为22249(23)12641232a b a b ab ab +=+-=-≥,当且仅当42,3a b ==时等号成立,故C 正确;对于D ,由238a b +=可得()6932324a b a b +=+=,即()264324a b a b +++=,所以111264326432643242643a b a b a b a b a b a b a b a b ++++++⎛⎫+=+ ⎪++++⎝⎭143261122242643246a b a b a b a b ⎛++⎛⎫=++≥+= ⎪ ++⎝⎭⎝当且仅当2643a b a b +=+,即42,3a b ==时等号成立,故D 正确.故选:ACD.11.对于一个非空集合B ,如果满足以下四个条件:①(){},,B a b a A b A ⊆∈∈,②(),,a A a a B ∀∈∈,③,a b A ∀∈,若(),a b B ∈且(),b a B ∈,则a b =,④,,a b c A ∀∈,若(),a b B ∈且(),b c B ∈,则(),a c B ∈,就称集合B 为集合A 的一个“偏序关系”,以下说法正确的是()A.设{}1,2A =,则满足是集合A 的一个“偏序关系”的集合B 共有3个B.设{}1,2,3A =,则集合()()()()(){}1,1,1,2,2,1,2,2,3,3B =是集合A 的一个“偏序关系”C.设{}1,2,3A =,则含有四个元素且是集合A 的“偏序关系”的集合B 共有6个D.(){},R,R,R a b a b a b =∈'∈≤是实数集R 的一个“偏序关系”【答案】ACD 【解析】【分析】A 选项,分析出()()1,1,2,2B ∈,分析③可知,()1,2和()2,1只能二选一,或两者均不能在B 中,从而得到足是集合A 的一个“偏序关系”的集合B 共有3个;B 选项,()1,2B ∈且()2,1B ∈,但12≠,B 错误;C 选项,分析出()()()1,1,2,2,3,3B ∈,再添加一个元素即可,从而得到答案;D 选项,通过分析均满足四个条件,D 正确.【详解】A 选项,{}1,2A =,则(){}()()()(){},,1,1,1,2,2,1,2,2a b a A b A ∈∈=,通过分析②可知,()()1,1,2,2B ∈,分析③可知,()1,2和()2,1只能二选一,或两者均不能在B 中,取()(){}1,1,2,2B =,或()()(){}1,1,2,2,1,2B =,或()()(){}1,1,2,2,2,1B =,故满足是集合A 的一个“偏序关系”的集合B 共有3个,A 正确;B 选项,集合()()()()(){}1,1,1,2,2,1,2,2,3,3B =,()1,2B ∈且()2,1B ∈,但12≠,故②不成立,故BC 选项,{}1,2,3A =,通过分析②可知,()()()1,1,2,2,3,3B ∈,结合③和④,可再添加一个元素,即()()()()()()1,2,2,1,1,3,3,1,2,3,3,2中任选一个,即取()()()(){}1,1,2,2,3,3,1,2B =,或()()()(){}1,1,2,2,3,3,1,3B =,或()()()(){}1,1,2,2,3,3,2,3B =,或()()()(){}11,1,2,2,3,3,,2B =,或()()()(){}11,1,2,2,3,3,,3B =,或()()()(){}21,1,2,2,3,3,,3B =,共6个,C 正确;D 选项,(){},R,R,R a b a b a b =∈'∈≤是R 的子集,满足①,且当a b =时,()R,,a a a R '∀∈∈,满足②,当a b =时,满足③,,,R a b c ∀∈,若(),a b R '∈且(),b c R '∈,则,a b b c ≤≤,所以a c ≤,则(),a c R ∈',满足④,故(){},R,R,R a b a b a b =∈'∈≤是实数集R 的一个“偏序关系,D 正确.故选:ACD三、填空题:本题共3小题,每小题5分,共15分.12.设,a b ∈R ,集合{}1,,0,b a b a a ⎧⎫+⊇⎨⎬⎩⎭,则a b +=______【答案】0【解析】【分析】根据ba可知0a ≠,故0a b +=.【详解】由ba可知0a ≠,又{}1,,0,b a b a a ⎧⎫+⊇⎨⎬⎩⎭,故0a b +=.故答案为:013.已知条件:30p x ⌝-<<,条件:q x a ⌝>,且q 是p 的充分不必要条件,则a 的取值范围是_________.【答案】(],3-∞-.【分析】根据充分、必要条件的定义及命题的否定形式计算参数范围即可.【详解】由题设得:0p x ≥或3x ≤-,设P ={0x x ≥或3x ≤-},同理可得:q x a £,设{}Q x x a =≤,因为q 是p 的充分不必要条件,所以Q P ⊆,因此3a ≤-.故答案为:(],3-∞-.14.出入相补是指一个平面(或立体)图形被分割成若干部分后面积(或体积)的总和保持不变,我国汉代数学家构造弦图,利用出入相补原理证明了勾股定理,我国清代的梅文鼎、李锐、华蘅芳、何梦瑶等都通过出入相补原理创造了不同的面积证法证明了勾股定理.在下面两个图中,若AC b =,()BC a b a =≥,AB c =,图中两个阴影三角形的周长分别为1l ,2l ,则12l l a b++的最小值为________.【答案】12+【解析】【分析】根据图形中的相似关系先表示出12l l +,然后利用基本不等式求解出最小值.【详解】如图1,易知BDE V ∽ACB △,且BD CD BC b a =-=-,所以1l BD b a AC b a b c -==++,所以()1b al a b c b-=⨯++;如图2,易知GFH ∽ACB △,且FG a =,所以2l FG a AC b a b c ==++,所以()2al a b c b=⨯++,所以22221222112l l a b c a b a b a b a b a b a b ab+++++==+=++++++221121ab a b =+++,又因为222a b ab +≥,所以2221ab a b +≤,当且仅当a b =时取等号,所以121211112l l a b +≥+=+++,所以最小值为212+,故答案为:212+.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知{|23}A x x =-≤≤,{|53}B x a x a =-<<,全集R U =.(1)若12a =,求A B ,A B ⋂;(2)若()U B A B =ðI ;求实数a 的取值范围.【答案】(1)9|32A B x x ⎧⎫⋃=-<≤⎨⎬⎩⎭,3|22A B x x ⎧⎫⋂=-≤<⎨⎬⎩⎭,(2)283a a a ⎧⎫≤-≥⎨⎬⎩⎭或【解析】【分析】(1)由条件根据集合运算法则求A B ,A B ⋂即可;(2)由条件可得U B A ⊆ð,根据集合包含关系列不等式可求a 的取值范围.【小问1详解】因为12a =,所以93{|53}|22B x a x a x x ⎧⎫=-<<=-<<⎨⎬⎩⎭,又{|23}A x x =-≤≤,所以9|32A x x B ⎧⎫-<≤=⎨⎬⎩⎭ ,3|22A B x x ⎧⎫=-≤<⎨⎬⎩⎭ ,【小问2详解】因为()U B A B =ðI ,所以U B A ⊆ð,因为{|23}A x x =-≤≤,所以{2U A x x =<-ð或}3x >,又{|53}B x a x a =-<<,当B =∅时,U B A ⊆ð,此时35a a ≤-,接的52a ≤-,当B ≠∅时,由U B A ⊆ð,可得3532a a a >-⎧⎨≤-⎩或3553a a a >-⎧⎨-≥⎩,所以5223a -<≤-或8a ≥,综上23a ≤-或8a ≥.所以a 的取值范围23a a ⎧≤-⎨⎩或}8a ≥.16.(1)设a b c d ,,,均为正数,且a b c d +=+,证明:若ab cd >>(2)已知,,a b c 为正数,且满足1abc =,证明:222111a b c a b c ++≤++.【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)先对(2)利用基本不等式结合1abc =可证得结论【详解】(1)因为222a b c d =++=++又因为,0a b c d ab cd +=+>>,,,a b c d >为正数,所以22>,>(2)因为2222222,2,2a b ab b c bc c a ac +≥+≥+≥,当且仅当a b c ==时,取等号,又1abc =,故有222111ab bc ca a b c ab bc ca abc a b c++++≥++==++.所以222111a b c a b c ++≤++,当且仅当1a b c ===时取等号.17.已知p :2280x x +-≤,q :()22210x m x m m -+++≤.(1)若q 是p 的充分不必要条件,求实数m 的取值范围;(2)若q 是p 的既不充分也不必要条件,求实数m 的取值范围.【答案】(1)41m -≤≤(2)1m >或4m <-【解析】【分析】(1)解不等式化简命题,p q ,由充分不必要条件列出不等式求解;(2)根据命题,p q 的关系,可得对应集合互不包含,列出不等式求解.【小问1详解】由2280x x +-≤,可得42x -≤≤,则p :42x -≤≤,又由()22210x m x m m -+++≤,可得1m x m +≤≤,则q :1m x m +≤≤,若q 是p 的充分不必要条件,可得[],1m m +是[]4,2-的真子集,有412m m ≥-⎧⎨+≤⎩,解可得41m -≤≤;【小问2详解】若q 是p 的既不充分也不必要条件,则[],1m m +和[]4,2-互不包含,可得12m +>或4m <-,解得1m >或4m <-.18.某蛋糕店推出两款新品蛋糕,分别为薄脆百香果蛋糕和朱古力蜂果蛋糕,已知薄脆百香果蛋糕单价为x 元,朱古力蜂果蛋糕单位为y 元,现有两种购买方案:方案一:薄脆百香果蛋糕购买数量为a 个,朱古力蜂果蛋糕购买数量为b 个,花费记为1S ;方案二:薄脆百香果蛋糕购买数量为b 个,朱古力蜂果蛋糕购买数量为a 个,花费记为2S .(其中4,4y x b a >>>>)(1)试问哪种购买方案花费更少?请说明理由;(2)若a ,b ,x ,y 同时满足关系4224y x b a a =-=+-,求这两种购买方案花费的差值S 最小值(注:差值S =花费较大值-花费较小值).【答案】(1)采用方案二;理由见解析(2)24【解析】【分析】(1)列出两种方案的总费用的表达式,作差比较,即可求解;(2)根据题意,得到214((4S S x a a -=-⋅+-,利用换元法和基本不等式,即可求解.【小问1详解】解:方案一的总费用为1S ax by =+(元);方案二的总费用为2S bx ay =+(元),由21()()()()()S S bx ay ax by a y x b x y y x a b -=+-+=-+-=--,因为4,4y x b a >>>>,可得0,0y x a b ->-<,所以()()0y x a b --<,即210S S -<,所以21S S <,所以采用方案二,花费更少.【小问2详解】解:由(1)可知()()(1244S S y x b a x a a ⎛⎫-=--=-⋅+⎪-⎝⎭,令t =,则24x t =+,所以2224(1)33x t t t -=-+=-+≥,当1t =时,即5x =时,等号成立,又因为4a >,可得40a ->,所以44(4)44844a a a a +=-++≥=--,当且仅当444a a -=-时,即6,14a b ==时,等号成立,所以差S 的最小值为2483=⨯,当且仅当5,8,6,14x y a b ====时,等号成立,所以两种方案花费的差值S 最小为24元.19.已知集合{}()*1,2,3,,2N ,4n S n n n =∈≥ ,对于集合n S 的非空子集A ,若n S 中存在三个互不相同的元素,,a b c ,使得,,+++a b b c c a 均属于A ,则称集合A 是集合n S 的“期待子集”.(1)试判断集合{}{}123,4,5,3,5,7A A ==是否为集合4S 的“期待子集”;(直接写出答案,不必说明理由)(2)如果一个集合中含有三个元素,,x y z ,同时满足①x y z <<,②x y z +>,③x y z ++为偶数.那么称该集合具有性质P .对于集合n S 的非空子集A ,证明:集合A 是集合n S 的“期待子集”的充要条件是集合A 具有性质P .【答案】(1)1A 是集合4S 的“期待子集”,2A 不是集合4S 的“期待子集”(2)证明见解析【解析】【分析】(1)根据所给定义判断即可.(2)先证明必要性,再证明充分性,结合所给“期待子集”的定义及性质P 的定义证明即可;【小问1详解】因为{}41,2,3,4,5,6,7,8S =,对于集合{}13,4,5A =,令345a b b c c a +=⎧⎪+=⎨⎪+=⎩,解得213a b c =⎧⎪=⎨⎪=⎩,显然41S ∈,42S ∈,43S ∈所以1A 是集合4S 的“期待子集”;对于集合2{3,5,7}A =,令111111357a b b c c a +=⎧⎪+=⎨⎪+=⎩,则111152a b c ++=,因为4111,,a b c S ∈,即111N *a b c ++∈,故矛盾,所以2A 不是集合4S 的“期待子集”【小问2详解】先证明必要性:当集合A 是集合n S 的“期待子集”时,由题意,存在互不相同的,,n a b c S ∈,使得,,a b b c c a A +++∈,不妨设a b c <<,令x a b =+,y a c =+,z b c =+,则x y z <<,即条件P 中的①成立;又()()()20x y z a b c a b c a +-=+++-+=>,所以x y z +>,即条件P 中的②成立;因为()()()()2x y z a b c a b c a b c ++=+++++=++,所以x y z ++为偶数,即条件P 中的③成立;所以集合A 满足条件P .再证明充分性:当集合A 满足条件P 时,有存在A ∈x,y,z ,满足①x y z <<,②x y z +>,③x y z ++为偶数,记2x y z a z ++=-,2x y z b y ++=-,2x y z c x ++=-,由③得,,Z a b c ∈,由①得a b c z <<<,由②得02x y z a z ++=->,所以,,n a b c S ∈,因为a b x +=,a c y +=,b c z +=,所以a b +,b c +,c a +均属于A ,即集合A 是集合n S 的“期待子集”【点睛】关键点睛:涉及集合新定义问题,关键是正确理解给出的定义,然后合理利用定义,结合相关的其它知识,分类讨论,进行推理判断解决.。
2024-2025学年高一上学期期中模拟考试数学试题(苏教版2019,必修第一册第1-5章)含解析

2024-2025学年高一数学上学期期中模拟卷(苏教版2019)(时间:120分钟满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:苏教版2019必修第一册第1章~第5章。
5.难度系数:0.65。
第一部分(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}()14,2,5A x x B =-<<=,则()R B A = ð()A .(]1,2-B .()1,2-C .()[),45,-∞⋃+∞D .()[),15,-∞-+∞ 【答案】A【解析】()2,5B =,则R (,2][5,)B =-∞+∞ ð,则()(]R 1,2B A =- ð.故选:A.2.已知集合{}{}2,,42,A xx k k B x x k k ==∈==+∈Z Z ∣∣.设:,:p x A q x B ∈∈,下列说法正确的是()A .p 是q 的充分不必要条件B .p 是q 的必要不充分条件C .p 是q 的充要条件D .p 是q 的既不充分也不必要条件【答案】B【解析】由(){}221,B xx k k ==+∈Z ∣,{}2,A x x k k ==∈Z ∣,故B 为A 的真子集,又:,:p x A q x B ∈∈,故p 是q 的必要不充分条件.故选:B.3.,,,a b c b c ∈>R ,下列不等式恒成立的是()A .22a b a c +>+B .22a b a c +>+C .22ab ac >D .22a b a c>【答案】B【解析】对于A ,若0c b <<,则22b c <,选项不成立,故A 错误;对于B ,因为b c >,故22a b a c +>+,故B 成立,对于C 、D ,若0a =,则选项不成立,故C 、D 错误;故选:B.4.已知实数a 满足14a a -+=,则22a a -+的值为()A .14B .16C .12D .18【答案】A【解析】因为()212212a a a a a a ---=+++⋅,所以()22211216214a a a a a a ---+=+-⋅=-=.故选:A.5.早在西元前6世纪,毕达哥拉斯学派已经知道算术中项,几何中项以及调和中项,毕达哥拉斯学派哲学家阿契塔在《论音乐》中定义了上述三类中项,其中算术中项,几何中项的定义与今天大致相同.若221a b +=,则()()2121a b++的最大值为()A .916B .2516C .94D .254【答案】C【解析】因为()()212122221a b a b a b++=⋅+++,又221a b +=,所以()()22292121222(224a b aba b+++=⋅+≤+=,当且仅当1222ab==,即1a b ==-时取等号,故选:C6.已知函数()25,1,1x ax x f x a x x⎧-+≤⎪=⎨>⎪⎩满足对任意实数12x x ≠,都有()()21210f x f x x x -<-成立,则a 的取值范围是()A .(]0,3B .[)2,+∞C .()0,∞+D .[]2,3【答案】D【解析】因为函数()f x 满足对任意实数12x x ≠,都有2121()()0f x f x x x -<-成立,不妨假设12x x <,则210x x ->,可得()()210f x f x -<,即()()12f x f x >,可知函数()f x 在R 上递减,则1206a a a a ⎧≥⎪⎪>⎨⎪-+≥⎪⎩,解得23a ≤≤,所以a 的取值范围是[]2,3.故选:D.7.已知函数()221x f x x x =-+,且()()1220f x f x ++<,则()A .120x x +<B .120x x +>C .1210x x -+>D .1220x x ++<【答案】A【解析】由函数单调性性质得:y x x =,21x y =+在R 上单调递增,所以()221x f x x x =-+在R 上单调递增,令函数222121()||1||||21212121x x x x x x g x x x x x x x +-=-+=-+=+++++,则2112()||||()2121x xxx g x x x x x g x -----=-+=-+=-++,所以()()0g x g x +-=,则函数()g x 为奇函数,且在R 上单调递增,故()()()()12121212200f x f x g x g x x x x x ++<⇔<-⇔<-⇔+<.故选:A .8.已知关于x 的不等式20(,,)ax bx c a b c ++>∈R 的解集为(4,1)-,则29c a b++的取值范围为()A .[)6,-+∞B .(,6)-∞C .(6,)-+∞D .(],6∞--【答案】D【解析】由不等式20(,,)ax bx c a b c ++>∈R 的解集为(4,1)-,可知1和4-是方程20ax bx c ++=的两个实数根,且0a <,由韦达定理可得4141b ac a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,即可得3,4b a c a ==-,所以()222499169994463444a c a a a a b a a a a a -+++⎛⎫===+=--+≤-=- ⎪++-⎝⎭.当且仅当944a a -=-时,即34a =-时等号成立,即可得(]29,6c a b∞+∈--+.故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.若集合{1,1,3,5}M =-,集合{3,1,5}N =-,则正确的结论是()A .,x N x M ∀∈∈B .,x N x M ∃∈∈C .{1,5}M N ⋂=D .{1,5}M N = 【答案】BC【解析】对于A ,3N -∈,但是3M -∉,A 错误,对于B ,1N ∈,1M ∈,B 正确,对于CD ,{1,1,3,5}{3,1,5}{1,5}M N =--= ,{1,1,3,5}{3,1,5}{3,1,1,3,5}M N =--=-- ,C 正确,D 错误.故选:BC .10.已知0a >,0b >,且2a b +=,则()A .222a b +≥B .22log log 0a b +≤C .1244a b -<<D .20a b ->【答案】ABC【解析】对于A ,有()()()()2222222222111122222222a b a ab b a ab b a b a b a b ⎡⎤+=+++-+=++-≥+=⋅=⎣⎦,当且仅当a b =时取等号,故A 正确;对于B ,0a >,0b >,有()22112144ab a b ≤+=⋅=,当且仅当a b =时取等号,故1ab ≤,从而()2222log log log log 10a b ab +=≤=,故B 正确;对于C ,由,0a b >,知0ab >,所以()()()()()()222222222042224ab a ab b a ab b a b a b a b a b <=++--+=+--=--=--,故()24a b -<,从而22a b -<-<,所以22122244a b --=<<=,故C 正确;对于D ,由于当1a b ==时,有,0a b >,2a b +=,但2110a b -=-=,故D 错误.故选:ABC.11.对于任意的表示不超过x 的最大整数.十八世纪,[]y x =被“数学王子”高斯采用,因此得名为高斯函数,人们更习惯称为“取整函数”.下列说法正确的是()A .函数[]()y x x =∈R 为奇函数B .函数[]y x =的值域为ZC .对于任意的,x y +∈R ,不等式[][][]x y x y +≤+恒成立D .不等式[]2[]430x x -+<的解集为{}23x x ≤<【答案】BCD【解析】对于A ,当01x ≤<时,[]0y x ==,当10x -<<,[]1y x ==-,所以[]()y x x =∈R 不是奇函数,所以A 错误,对于B ,因为[]x 表示不超过x 的最大整数,所以当x ∈R 时,[]Z x ∈,所以函数[]y x =的值域为Z ,所以B 正确,对于C ,因为,x y +∈R 时,[][],x x y y ≤≤,所以[][][][][]x y x y x y x y ⎡⎤+=+≤+≤+⎣⎦,所以C 正确,对于D ,由[]2[]430x x -+<,得[]13x <<,因为[]x 表示不超过x 的最大整数,所以23x ≤<,所以D 正确.故选:BCD第二部分(非选择题共92分)三、填空题:本题共3小题,每小题5分,共15分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开化中学高一年级数学周考(4)
班级 学号 姓名
一、选择题:(本大题共10小题,每小题5分,共50分.)
1.已知全集U=R ,集合A =,B =,则A ∩B 等于 ( ) A . B . C . D . 2.如图所示,是全集,是的子集,则阴影部分所表示的集合是…………( ) A . B .
C .
D .
3.下列判断正确的是…………………………( ) A . B . C . D .
4.
函
数
的
定
义
域
为………………………………………………………( )
A. B. C. D. 5 若函数在上为减函数,则实数的取值范围为……( ) A. B. C. D.
6.函数在其定义域内是…………………………………………………( )
A.奇函数
B.偶函数
C.既奇又偶函数
D.非奇非偶函数
7. 函数y =ax 2
+a 与y =(a ≠0)在同一坐标系中的图象可能是……………………( )
8. 已知g (x )=1-2x , f [g (x )]=,则f ()等于………………………………
}{32<≤-x x {}
41≥-<或x x x {}
31<<-x x {}
31>-≤或x x x {}12-<≤-x x {}
31<≤-x x U ,A B U A B A B ()U B C A ()U A
C B 35
.27.17.1>328.08.0<2
2π
π<3.03
.09.07
.1>x
y --=
113]1,(-∞]1,0()0,( -∞)1,0()0,( -∞),1[+∞k kx x x f 24)(2
+-=]2,1[-k ),16[+∞]8,(--∞]16,8[-]8,(--∞ ),16[+∞1
212)(-+=x x x f x
a
)0(12
2
≠-x x x 21 A
B
( ) A .1 B .3 C .15 D .30
9
.
函
数
f (x )
=
⎩⎪⎨⎪⎧
x 2
-x +1,x <1,1
x
,x >1,的值域
是……………………………………………( )
A .(0,+∞) B.(0,1) C.⎣⎢⎡⎭⎪⎫34,1 D . ⎣⎢⎡⎭
⎪⎫34,+∞ 10.已知函数,则对于任意实数,函数不可能是....
( ) A .奇函数 B. 偶函数 C. 单调递增函数 D. 单调递减函数 二、填空题:(本大题共5小题,每小题5分,共25分.) 11.设,则 . 12.计算:= .
13.已知函数(a >0且a ≠1)满足f (-2)>f (-3),则函数的单调
增区间是 .
14. 已知,则 .
15.定义在上的函数满足,则
.
三、解答题:(本大题共5小题,共75分)
16.(1)设全集,集合,若,
求;
(2)求函数的定义域和值域.
()x
x a x f -⋅+=22()R x ∈a ()x f 2
||
{|0},{
|,0}x A x x x B x R x x
=-==∈≠=B A 21 0232
13(2)(9.6)(3)(1.5)48
-----+x
a
x f -=)(2
1)(x a
x g -=322=+-x x =+-x
x 44R )(x f 2)1(),,(2)()()(=∈++=+f R y x xy y f x f y x f =-)3(f U Z =2{,21,4},{5,1,9}A x x B x x =--=--{9}A
B =,()
U A
B C A B 4
22)2
1()(+-=x x x f
17.已知二次函数f (x )的最小值为1,且f (0)=f (2)=3. (1)求f (x )的解析式;
(2)若f (x )在区间[2a ,a +1]上不单调,求实数的取值范围;
(3)在区间[-1,1]上,y =f (x )的图象恒在y =2x +2m +1的图象上方,试确定实数m
的取值范围.
18 .已知函数. (1)当时,求的值域;
(2)当时,判断并证明在上的单调性.
a ()1
2++=
x b
ax x f 1,0==b a ()x f 0,0=<b a ()x f ()+∞,1
19.已知函数,其中.
(1)当时,把函数写成分段函数的形式,并画出函数的图象; (2)指出a =2时函数单调区间,并求函数在[1,3]最大值和最小值.
20.已知指数函数满足: ,定义域为R 的函数是
奇函数.
(1)求的解析式;
(2)判断在其定义域上的单调性,并求函数的值域; (3)若不等式:对恒成立,求实数的取值范围.
2
()3f x x x x a =+-a R ∈2a =()f x ()f x ()f x ()x
g x a =138
()g -=1()()()g x f x g x m -=+()f x ()f x 2423()x x t f x +≥-+12[,]x ∈t
开化中学2013学年高一年级数学周考(4)
参考答案
一、选择题:本大题共10小题,每小题5分,共50分.
二.填空题:本大题共5小题,每小题5分,共25分. 11. 12. 13. [0,+∞) (写成(0,+∞)也可以) 14. 7 15. 6
三.解答题:本大题共5小题,共75分,解题应写出文字说明,证明过程或演算步骤. 16.解:(1) , ……..8分
(2)定义域为R (10分) 值域为
(15分) 17.解:(1)由已知,设,由,得,
故. (5分)
(2)要使函数不单调,则,则. (10分) (3)由已知,即,化简得,
设,则只要, 而,得. (15分)
{}1,1,0-2
1
{}8,7,4,4,9---=B A (){}4,8-=B A C U 1
0,]8
(2
()(1)1f x a x =-+(0)3f =2a =2
()243f x x x =-+211a a <<+1
02
a <<
2243221x x x m -+>++2
310x x m -+->2
()31g x x x m =-+-min ()0g x >min ()(1)1g x g m ==--1m <-
18.解: (1) 的值域为 (6分) (2) , 设,则 ,在上是增函数 (15分) 19解:(1)当时,,( 2分)
此时的图象如右图所示: (7分)
(2)增区间为为,,减区间为(11最大值为18,最小值为4 (15分
20.解:(1)由
,
又为奇函数,,即
化简得对恒成立,
故 (4分)
(2),其定义域为, 由为增函数可知是上的增函数(6分)
()1
1
2
+=
x x f (0,1]()1
2+=
x ax
x f 211x x <<()0)
1)(1(1)(11)()(2221211222221121<++--=+-+=
-x x x x x x a x ax x ax x f x f )()(21x f x f <∴()x f ()+∞,12a =22
2
46,2()
3|2|
26,2
x x x f x x
x x x
x x
()f x 3(,]2-∞[2,)+∞3(,2)2
3
113288
()g a a --=⇒=⇒=21
2()x x f x m
-∴=+()f x ()()f x f x ∴-=-2121
22x x x x m m
----=-++122x x
m m +=+x R ∈1m ∴=21
21
()x x f x -=+2
121
()x
f x =-
+R 2x
()f x R 12
1210120112121
,,,()x x x
f x -<+∴<
<-<<∴-<<++
即函数的值域为(9分) (3)对恒成立等价于
对恒成立 (11分)
而在上的最大值为5 . (13分) 故 (15分)
()f x 11(,)-2
42
3()x
x t f x +≥-+12[,]x ∈22223()x x t ≥--12[,]x ∈12[,]2
2
2223214()()x x
x
--=--5t ≥。