土壤有机质的测定
土壤有机质的测定(重铬酸钾容量法)
土壤有机质的测定(重铭酸钾容量法)土壤有机质既是植物矿质营养和有机营养的源泉,又是土壤中异养型微生物的能源物质,同时也是形成土壤结构的重要因素。
测定土壤有机质含量的多少,在一定程度上可说明土壤的肥沃程度。
因为土壤有机质直接影响着土壤的理化性状。
测定原理在加热的条件下,用过量的重格酸钾一硫酸(K202O7—H2SO4)溶液,来氧化土壤有机质中的碳,CnO方等被还原成Cr÷3,剩余的重格酸钾(K2Cr2O7)用硫酸亚铁(FeSO4)标准溶液滴定,根据消耗的重铭酸钾量计算出有机碳量,再乘以常数1.724,即为土壤有机质量。
其反应式为:重铭酸钾一硫酸溶液与有机质作用:2K2Cr2O7+3C+8H2SO4=2K2SO4+2Cr2(SO4)3÷3CO2t+8H2O硫酸亚铁滴定剩余重铭酸钾的反应:κ2cr207÷6Fes047H2SO4=K2SO4cr2(s04)3÷3Fe2(s04)3+7H20测定步骤:1.在分析天平上准确称取通过60目筛子(V0.25mm)的土壤样品0.1—0.5g(精确到0.0001g),用长条腊光纸把称取的样品全部倒入干的硬质试管中,用移液管缓缓准确加入0.136mol∕L重格酸钾一硫酸(K2Cr2O7-H2SO4)溶液10ml,(在加入约3ml时,摇动试管,以使土壤分散),然后在试管口加一小漏斗。
2.预先将液体石蜡油或植物油浴锅加热至185—190℃,将试管放入铁丝笼中,然后将铁丝笼放入油浴锅中加热,放入后温度应控制在170—180℃,待试管中液体沸腾发生气泡时开始计时,煮沸5分钟,取出试管,稍冷,擦净试管外部油液。
3.冷去后,将试管内容物小心仔细地全部洗入25Oml的三角瓶中,使瓶内总体积在60—70ml,保持其中硫酸浓度为1一L5mol∕l,此时溶液的颜色应为橙黄色或淡黄色。
然后加邻啡罗啾指示剂3—4滴,用0.2mol∕l的标准硫酸亚铁(FeSO4)溶液滴定,溶液由黄色经过绿色、淡绿色突变为棕红色即为终点。
土的有机质含量测定方法
土的有机质含量测定方法土壤有机质含量是指土壤中有机物的含量,通常以有机碳的含量作为有机质含量的指标。
有机质含量的测定对于土壤质量评价和农作物生长具有重要意义。
下面将介绍几种常用的土壤有机质含量测定方法。
一、重碳法重碳法是一种简便、经济的土壤有机碳含量测定方法。
该方法基于有机碳含量越高,土壤越重。
具体操作步骤如下:1.取一定重量的干燥土壤样品(通常为10~20g)。
2.将土壤样品加入预先称好的铁皿中,并在105℃下烘干至恒重。
3.记录土壤样品的质量。
重碳含量(g/kg)= 烘干土样质量(g)/ 烘干前土样质量(kg)二、光谱法近红外光谱法(NIRS)是一种非破坏性的土壤有机碳含量测定方法。
该方法基于土壤中有机碳的光谱特征,通过测量光谱反射率或吸收率来预测土壤有机碳含量。
具体操作步骤如下:1.收集一定数量的土壤样品,并进行干燥和研磨处理。
2.使用近红外光谱仪测量土壤样品的光谱特征。
3.使用经过训练的模型预测土壤有机碳含量。
三、铁氰化钾法铁氰化钾法是一种经典的土壤有机质含量测定方法。
该方法基于土壤中有机碳与铁氰化钾的反应生成氰化合物,通过测量氰化合物的吸光度来确定土壤有机碳含量。
具体操作步骤如下:1.取一定重量的土壤样品(通常为10g)。
2.将土壤样品与铁氰化钾试剂混合,并在70℃环境温度下反应30分钟。
3.使用紫外可见分光光度计测量反应溶液的吸光度。
4.使用标准曲线法根据吸光度确定有机碳含量。
四、酸碱滴定法酸碱滴定法是一种常用的土壤全有机碳含量测定方法。
该方法基于有机碳与酸或碱反应,通过滴定酸或碱的用量来确定土壤有机碳含量。
1.取土壤样品(通常为5g)。
2.在氮气保护下,使用酸或碱溶液与土壤样品进行反应。
3.使用酸或碱溶液进行滴定,直到溶液颜色变化。
4.根据滴定酸或碱的用量计算土壤有机碳含量。
以上是几种常用的土壤有机质含量测定方法,每种方法都有其适用的特定情况,根据实际需求选择合适的方法进行分析。
土壤有机质含量的测定方法
土壤有机质含量的测定方法
土壤有机质含量的测定方法有多种,以下是常用的几种方法:
1. Walkey-Black法:该方法是目前使用最广泛的土壤有机质测定方法之一。
它是通过将土壤样品和浓盐酸共处理,使有机物质分解为二氧化碳,然后用酸性铁(III)氯化物溶液滴加到处理后的土壤中,通过观察溶液的颜色变化来间接测定有机质的含量。
2. 建议土壤试验和肥料应用方法学(SNTIA)中的湿燃法:该方法将土壤样品经过干燥和研磨后,用高温(550-600°C)燃烧样品,燃烧过程中有机物质被氧化为二氧化碳和水蒸气,通过测定产生的二氧化碳的质量来计算有机质含量。
3. 容重法:该方法是通过测定一定体积(通常为100cm³)的土壤样品的质量,然后将土壤样品在105°C下干燥至恒定质量,通过计算干土壤样品的质量和湿土壤样品的质量之比来计算有机质含量。
4. 光谱法:近年来,光谱技术在土壤有机质含量测定中得到了广泛应用。
通过测量土壤样品在紫外-可见光谱范围内的吸收特征,采用多元回归等数学模型将吸收特征与有机质含量进行相关。
需要注意的是,不同方法对于土壤有机质的定义和测定原理有所不同,因此在不同的研究领域和应用需求中可能会选择不同的测定方法。
土壤 有机质的测定
土壤有机质的测定最常用的是以下办法:1.称土样:用减量法称取0.1~0.5g(精确到0.0001 g)通过0.25mm()的风干土样于硬质大试管中。
再用吸管加入5ml 0.8000mol/L的1/6 K2Cr2O7标准溶液;然后用注射器(或移液管)注入5ml浓硫酸,并小心旋转摇匀。
(本次实验土样称取量:<0.2000 g) 2.消煮:预先将油浴锅加热至185~190℃,将盛土样的大试管插入铁丝笼架中,然后将其放入油浴锅中加热,此时应控制锅内温度在170~180℃之间,并使溶液保持沸腾5min,然后取出铁丝笼架,待试管稍冷,用干净纸擦净试管外部的油液3.滴定:如消煮后的溶液呈橙黄色或黄绿色,则冷却后,将试管内混合物洗入250ml锥形瓶(或三角瓶)中,使瓶内体积在60~80ml左右,加邻啡罗林指示剂3~4滴,用0.2mol/L的硫酸亚铁滴定,溶液由橙黄色或黄绿色经蓝绿色到棕红色为终点;若用N-苯基邻氨基苯甲酸指示剂,则变色过程由棕红色经紫至蓝绿色为终点。
终点时,记录硫酸亚铁的用量(V)。
分析每批土样时,必须做3~5个空白标定,空白标定不加土样,仅加0.1~0.5g粉状石英砂,其它步骤与测定土样时完全相同,记录硫酸亚铁的用量(V),取测定结果的平均值。
最常用的是以下办法:1.称土样:用减量法称取0.1~0.5g(精确到0.0001 g)通过0.25mm ()的风干土样于硬质大试管中。
再用吸管加入5ml 0.8000mol/L的1/6 K2Cr2O7标准溶液;然后用注射器(或移液管)注入5ml浓硫酸,并小心旋转摇匀。
(本次实验土样称取量:<0.2000 g)2.消煮:预先将油浴锅加热至185~190℃,将盛土样的大试管插入铁丝笼架中,然后将其放入油浴锅中加热,此时应控制锅内温度在170~180℃之间,并使溶液保持沸腾5min,然后取出铁丝笼架,待试管稍冷,用干净纸擦净试管外部的油液3.滴定:如消煮后的溶液呈橙黄色或黄绿色,则冷却后,将试管内混合物洗入250ml锥形瓶(或三角瓶)中,使瓶内体积在60~80ml左右,加邻啡罗林指示剂3~4滴,用0.2mol/L的硫酸亚铁滴定,溶液由橙黄色或黄绿色经蓝绿色到棕红色为终点;若用N-苯基邻氨基苯甲酸指示剂,则变色过程由棕红色经紫至蓝绿色为终点。
土壤有机质含量如何测定?土壤有机质测定方法
土壤有机质含量如何测定?土壤有机质测
定方法
【常见问题】土壤有机质测定方法有哪些?
【专家解答】土壤有机质是土壤的重要组成部分,对土壤形成、土壤肥力、环境保护及农林业可持续发展等方面都有着极其重要作用的意义,下面本人为您介绍几个土壤有机质测定方法:
1、容量法(外加热法)重铬酸钾氧化一油浴加热法来测定土壤有机质含量。
2、重铬酸钾容量法测定土壤中的有机质是用氧化性强的重铬酸钾硫酸溶液与土壤中的有机碳发生氧化还原反应,它们之间存在定量关系。
再用标准还原剂(硫酸亚铁)滴定剩余的重铬酸钾。
3、目视比色法。
测定原理。
用不同浓度的葡萄糖标准溶液作出一系列浓度的标准对照品,并用重铬酸钾氧化土壤有机质,氧化后的溶液颜色与有机质含量成直线相关关系,通过与标准对照品比色对照直接得出结果。
4、灼烧法(重量法)测定原理。
通过测定土壤灼烧前后重量的变化情况,计算出土壤有机质的含量。
5、光度比色法。
测定原理。
该方法是以硫酸亚铁为标准溶液进行土壤有机质的分光光度测定。
【本人结语】土壤有机质与土壤肥力密切相关,呈正对比,土壤有机质含量也可以提高土壤肥力,想知道怎么提高土壤有机质含量的方法可以关注我们网站《提高土壤有机质含量的方法》等文,感谢您的支持。
土壤有机质的测量方法
土壤有机质的测量方法
土壤有机质是土壤中的一种重要组成部分,对于土壤生物活性、水分保持能力和养分供应具有重要的影响。
因此,准确测量土壤有机质含量对于土壤质量评价和农田管理至关重要。
下面将介绍几种常用的土壤有机质测量方法。
1. 燃烧法
燃烧法是最常用的土壤有机质测量方法之一。
该方法通过将土壤样品在高温(约550°C)条件
下加热,将有机物氧化为CO2和H2O,然后使用气体分析仪测量气体体积,从而计算出土壤
中有机物的含量。
2. 红外光谱法
红外光谱法是一种非破坏性的土壤有机质测量方法。
该方法通过将土壤样品置于红外光谱仪中,利用土壤中有机物特定的红外光谱吸收特征,通过对比样品的光谱图和标准光谱图,测量出土壤样品中的有机物含量。
3. 溶解有机碳测量法
溶解有机碳测量法是一种直接测定土壤中溶解态有机碳含量的方法。
该方法将土壤样品置于水中浸泡,通过过滤和酸化等处理,将有机碳转化为溶解态有机碳,再使用专业仪器测定溶解态有机碳的含量。
4. 棕色化测定法
棕色化测定法是一种间接测定土壤有机质含量的方法。
该方法利用土壤中有机质分解的过程中,产生的棕色化物质的形成与土壤样品中有机质含量相关。
通过测定土壤样品中棕色化物质的浓度,可以估计土壤有机质的含量。
需要注意的是,不同的土壤有机质测量方法适用于不同的土壤类型和研究目的。
因此,在选择测量方法时,需要考虑到实际情况和研究需求,并根据标准操作程序进行测试和分析。
此外,为了确保测量结果的准确性,还应注意样品处理和实验条件的控制。
土壤有机质的测定
土壤有机质的测定土壤有机质是鉴别土壤肥力的重要指标,是肥力的标志。
有机质的含量、组成和性质,随气候生物条件呈有规律的变化,所以,在土壤分析中常是必测项目,它对探讨土壤的形成、分布、分类以及肥力等,都重要的理论和实践意义。
一、实验目的1、了解土壤有机质测定的基本原理。
2、初步掌握土壤有机质测定的基本方法。
二、实验原理稀释热法(水合热法)是利用浓硫酸和重铭酸钾迅速混合是所产生的热来氧化有机质,剩余的重辂酸钾以邻菲罗琳为指示剂,用硫酸亚铁标准溶液进行滴定,以氧化耗去重铭酸钾的量来计算出碳的含量。
该法操作方便,但由于产生的热温度较低,所以对有机质氧化程度较低,只有77%。
其反应式如下:IK2Cr2O1+SH2SO4÷3C→2K2SO4+2Cr2(SO4)3+3CO2+SH2OK2Cr2O1+6FeSO4+7H2SO4→K2SO^1Cr2(SO4)y÷3Fe2(SO1)3+7H2O三、实验试剂(1)UZdKao7)溶液:准确称取KgO?(分析纯,105C6烘干)49.04g,溶于水中,稀释至I1。
(2)0.4〃7。
/.1(打℃)的基准溶液:准确称取“码(分析6纯,13OC烘干3∕ι)19.6132g于250/泣烧杯中,以少量水溶解,全部洗入IoOO,泣容量瓶中,加入浓乩5。
4约70m,冷却后用水定容至刻度,充分摇匀备用。
(其中含硫酸浓度约为2.5mo1∙E-1(^H2SO4))。
(3)05mo1∙1FeSO4溶液:称取尸W〃小。
140g溶于水中,加入浓乩SO,15神,冷却稀释至I1。
此溶液的准确浓度以OAmo111(^K2Cr2O7)的基准溶液标定之。
即准确分别吸取3份04〃H11(∖K2Cr2O1)基准溶液各25m1于150m1三角瓶中,加入邻菲罗咻指示剂2~3滴,然后用0∙5∕M∕∙1"eSθ4溶液滴定至终点,并计算出FeSO4的准确浓度。
硫酸亚铁(反SO4)溶液在空气中易被氧化需新鲜配制或以标准的KQaQ溶液每天标定。
土壤有机质的测定
土壤有机质的测定一、目的和意义土壤有机质含量是衡量土壤肥力高低的重要指标之一,它能促使土壤形成结构,改善土壤物理、化学及生物学过程的条件,提高土壤的吸收性能和缓冲性能,同时它本身又含有植物所需要的各种养分,如碳、氮、磷、硫等。
因此,要了解土壤的肥力状况,必须进行土壤有机质含量的测定。
本实验所指的有机质是土壤有机质的总量,包括半分解的动植物残体、微生物生命活动的各种产物及腐殖质,另外还包括少量能通过0.25毫米筛孔的未分解的动植物残体。
如果要测定土壤腐殖质含量,则样品中的植物根系及其它有机残体应尽可能地去除。
二、方法原理在加热条件下,用一定量的氧化剂(重铬酸钾—硫酸溶液)氧化土壤中的有机碳,剩余的氧化剂用还原剂(硫酸亚铁铵或硫酸亚铁)滴定,这样,可从所消耗的氧化剂数量计算出有机碳的含量。
氧化及滴定时的化学反应如下:2K2Cr2O7+3C+8H2SO4→2K2SO4+2Cr2(SO4)3+3CO2+8H2OK2Cr2O7+6FeSO4+7H2SO4→2K2SO4+Cr2(SO4)3+3Fe2(SO4)3+7H2O 三、主要试剂1.0.4mol/L(1/6 K2Cr2O7)溶液:称取化学纯重铬酸钾20.00克,溶于500毫升蒸馏水中(必要时可加热溶解),冷却后,缓缓加入化学纯硫酸500毫升于重铬酸钾溶液中,并不断搅动,冷却后定容至1000毫升,贮于棕色试剂瓶中。
2、0.2mol/L硫酸亚铁铵或硫酸亚铁溶液:称取化学纯硫酸亚铁铵[(NH4)2SO4•FeSO4•6H2O]80克或硫酸亚铁(FeSO4•7H2O)56克,溶于500毫升蒸馏水中,加6mol/L(1/2 H2SO )30毫升搅拌至溶解,然后再加蒸馏水稀释至1升,贮于棕色瓶中,此溶液的准确浓度用0.1000mol/L(1/6 K2Cr2O7)的标准溶液标定。
3.0.1000 mol/L(1/6 K2Cr2O7)准溶液:准确称取分析纯重铬酸钾(在130℃下烘3小时)4.9033克,以少量蒸馏水溶解,然后慢慢加入浓硫酸70毫升,冷却后入1升容量瓶,定容至刻度,摇匀备用(其中含硫酸的浓度约2. 5 mol/L(1/2 H2SO ))。
土壤有机质(有机碳)的测定
土壤有机质的测定[以风干基表示]油浴加热重铬酸钾氧化——容量法1 方法提要在加热条件下,用过量的重铬酸钾-硫酸溶液氧化土壤有机碳,多余的重铬酸钾用硫酸亚铁铵标准溶液滴定,以样品和空白消耗重铬酸钾的差值计算出有机碳量。
因本方法与干烧法对比只能氧化90%的有机碳,因此,将测得的有机碳乘以校正系数1.1,再乘以常数1.724(按土壤有机质平均含碳58%计算),即为土壤有机质含量。
2 适用范围本方法适用于有机质含量低于150g·kg-1的土壤有机质的测定。
3 主要仪器设备3.1 油浴锅:用紫铜皮做成或用高度约20cm~26cm的不锈钢锅代替,内装固体石蜡(工业用)。
3.2 硬质试管:18~25mm×200mm;3.3 铁丝笼:大小和形状与油浴锅配套,内有若干小格,每格内可插入一支试管;3.4 滴定管:10.00、25.00mL;3.5 温度计:300o C3.6 电炉:1000W;4 试剂4.1重铬酸钾-硫酸溶液[C(1/6K2Cr2O7)= 0.4mol·L-1]:称取40.0g重铬酸钾溶于600mL~800mL水中,用滤纸过滤到1L量筒内,用水洗涤滤纸,并加水至1L。
将此溶液转移至3L 大烧杯中;另取1L密度为1.84的浓硫酸,慢慢地倒入重铬酸钾水溶液中,不断搅动。
为避免溶液急剧升温,每加约100mL浓硫酸后可稍停片刻,并把大烧杯放在盛有冷水的大塑料盆内冷却,当溶液温度降到不烫手时再加另一份浓硫酸,直到全部加完为止。
4.2 重铬酸钾标准溶液[c(1/6K2Cr2O7)= 0.2000mol·L-1]:准确称取130o C烘2~3小时的重铬酸钾(优级纯)9.807g,先用少量水溶解,然后无损地移入1000mL容量瓶中,加水定容。
4.3硫酸亚铁铵溶液[c(Fe(NH4)2(SO4)2·6H2O)= 0.2mol·L-1]:称取硫酸亚铁铵78.4g,溶解于600mL ~800 mL 水中,加浓硫酸20mL ,搅拌均匀,加水定容至1000mL (必要时过滤),贮于棕色瓶中保存。
土壤有机质测定标准
土壤有机质测定标准
一般来说,土壤有机质含量的测定标准是根据土壤有机质对土壤
质量和农田生产的影响进行制定的。
以下是一些常见的土壤有机质测
定标准:
1. 比重法:根据有机质的比重差异进行测定,一般要求在干燥
状态下测定,有机质含量通常以百分比表示。
2. 酸化法:通过将土壤样品酸化后,采用酸碱滴定或化学分析
的方法测定有机质含量。
3. 温和的氧化法:通过使用温和的氧化剂(如二氧化氯或过氧
化氢)将有机质氧化为二氧化碳,然后用化学分析的方法测定二氧化
碳的量来测定有机质含量。
4. 光谱法:利用紫外光、荧光光谱、红外光谱等技术对土壤样
品进行光谱分析,通过光谱特征来测定有机质含量。
不同测定方法和标准适用于不同的土壤类型和研究目的。
一般来说,有机质含量在0.5%到10%之间被认为是较好的土壤质量指标,但
具体的标准可以根据当地的土壤类型、气候条件和农业需求进行调整。
这些标准通常由农业部门、环境保护机构或国际标准化组织制定。
土壤有机质测定
土壤有机质测定
1、检测方法
油浴加热?重铬酸钾氧化法
2、技术要点
1)先测定土壤全氮的含量,根据全氮量的多少来确定土壤称样量,一般全N<1.0g?Kg-1;土样称0.5g;全N在1.0~1.5g?Kg-1;土样称0.45~0.35g;全N在1.5~2.0g?Kg-1;土样称0.35~0.25g;全N在2.0~2.5g?Kg-1;土样称0.25~0.15g;最少不低于0.1g;以减少称量误差。
2)0.8000mol?L-1重铬酸钾标准溶液必须准确配制。0.2mol?L-1硫酸亚铁标准溶液每做一批样品时,可用空白试验(两个取平均值)标定其准确的含量。
3)消煮温度要控制在170~180℃,加浓硫酸时会发生大量热量,应好的溶液颜色,一般是黄色或黄中带绿。如果以绿色为主,则说明重铬酸钾用量不足,可采用0.8000mol?L-1重铬酸钾标准溶液加10.0ml,浓硫酸加10.0ml,同时带空白另做。在滴定时消耗量小于空白用量的1/3时,有氧化不完全的可能。应减少称样量重做。
5)一般耕作土壤的碳氮比在9~13之间,若土壤的C/N比不在9~13之间,应重新进行测定。
6)由于此法与干烧法对比只能氧化约90%的有机质,所以在计算分析结果时应乘上氧化校正系数1.1。
7)测定土壤有机质必须采用风干样品,因为水稻土及一些长期淹水的土壤,由于有较多的还原性物质存在,会消耗重铬酸钾,使结果偏高。
8)开始加热时,产生的CO2气泡不是真正沸腾,只有正真正沸腾时才能开始计算时间消煮时间对测定结果影响很大,应严格控制试管内溶液沸腾时间为5min。
9)试管的厚薄、口径的大小要求一致。油锅中间和边沿温度差异较大,不宜插试管。
土壤有机质的测定
实验三土壤有机质的测定一、实验的目的意义有机质含量是衡量土壤肥力上的重要指标,对了解土壤肥力状况,进行培肥、改土有指导意义。
通过实验,了解土壤有机质測定的原理,初步掌握重铬酸钾容量法测定土壤有机质的方法。
二、实验的测定方法土壤的有机质含量通常作为土壤肥力水平高低的一个重要指标。
它不仅是植物矿质营养和有机营养的源泉,又是土壤中异养微生物的能源物质,并对土壤理化性质如土壤的结构性、保肥性和缓冲性等都有着积极的影响。
测定土壤有机质的方法很多,本实验用重铬酸钾容量法。
三、方法原理在170-180℃条件下,用过量的标准重铬酸钾的硫酸溶液氧化土壤有机质(碳),剩余的重铬酸钾以硫酸亚铁溶液滴定,从所消耗的重铬酸钾量计算有机质含量。
测定过程的化学反应式如下① 2K2Cr2O7+3C+8H2SO4+2K2SO4→2Cr2(S04)3+3CO2+8H2O② K2Cr2O7+6FeSO4+7H2SO4→K2SO4+Cr2(SO4)3+3Fe2(SO4)3+7H2O四、仪器试剂1.仪器用具:电砂浴、分析天平、酸式滴定管、滴定台、150ml三角瓶、250ml三角瓶、5ml移液管、吸耳球、弯颈漏斗。
2.药品试剂:0.8000mol/L(K2Cr2O7)标准溶液、浓H2S04溶液、0.2mol/L FeS04溶液、SiO2、邻啡罗林指示剂。
五、操作步骤1.准确称取通过0.25mm筛孔的风干土样0.500g,倒入150m1三角瓶中,准确移入0.800mol/L (K2Cr2O7)5.00ml,再用移液管注入5ml浓H2S04,充分摇匀,盖上弯颈漏斗,以冷凝蒸出的水汽。
2.在预热的电砂浴上加热(170-180℃条件),待其真正沸腾时开始计时,煮沸5±0.5min。
3.取出三角瓶,待其冷却后将小三角瓶(试管)内溶液小心倾入250ml三角瓶中,并用蒸馏水冲洗小漏斗和三角瓶(试管)内壁,洗入液倒入大三角瓶中,并使三角瓶的液体总体积控制在60-80ml左右,然后加入邻啡罗林指示剂3滴,用0.2mol/L FeSO4滴定,溶液先由橙黄变蓝绿,再突变到砖红色时即为滴定终点,记录FeSO4用量V=15,重复三次。
土壤有机质测定
土壤有机质测定土壤有机质测定在环境质量越来越被重视的今天,我们除了需要对环境中的水、气、声、渣进行测定外,对土壤的测定也逐渐被提上议事日程。
有机质是土壤中的重要组成成份,其含量水平是衡量土壤肥力的重要指标之一。
土壤有机质的测定方法中,“油浴法”是沿用多年的经典方法,但其存在着表面有机物挥发导致实验室空气的污染;温度波动性较大,不易调控;消解管外壁附着油污难以清洗等缺点。
为此,笔者查阅了大量资料,找到了三个常见的测定方法,进行对比。
(一)目视比色法1. 测定原理该法是通过以葡萄糖溶液为标准物质做参比,用重铬酸钾溶液氧化土壤有机质,氧化后的溶液颜色与有机质成直线相关,可直接目视比色得出结果。
2. 试剂C(1/6K2Cr2O7)=1 mol/L的重铬酸钾溶液;含碳0.36%的葡萄糖溶液:称取含1个结晶水的葡萄糖1. 000 g溶于水后,移入100 mL容量瓶中定容(每1.OmL葡萄糖含碳为0.36%)。
3. 测定方法1) 标准系列在10支洁净的25 mL比色管中,分别加入含碳0. 36%的葡萄糖溶液0, 0.25,0. 50、0. 75、1.00、1.25、1.50、1.75、2. 00、2.25mL,用蒸馏水定容到2. 25 mL,加入1 mol/L重铬酸钾溶液2. 5 mL,再加入5 mL浓H2S04,摇匀,20min后用蒸馏水定溶至25mL。
2) 样品测定称取通过0. 25mm筛孔风干土样0. 25 ~ 1. 00 g于比色管中,加入1 mol龙重铬酸钾溶液2. 5 mL,再加入5 mL浓H2S04,摇匀,20min后用蒸馏水定溶至25 mL。
静置2h,样品管上部溶液澄清后与标准系列对照比色,查得样品相应的碳含量。
4. 计算土壤有机质%=查得的C%×1.724×倍数×(1+吸湿水含量)式中:1. 724-碳换算成有机质的经验系数;倍数一称土样1.00 g时倍数为1倍,0.50 g时倍数为2倍,0.25 g时倍数为4倍。
土壤有机质测定方法
土壤有机质测定方法土壤有机质是土壤中的重要组成部分,对土壤的肥力、结构和水分保持起着重要作用。
因此,准确测定土壤有机质含量对于土壤肥力评价和土壤改良具有重要意义。
本文将介绍几种常用的土壤有机质测定方法,希望能对大家有所帮助。
一、蒸发法。
蒸发法是一种常用的土壤有机质测定方法。
具体操作步骤如下:1. 取一定质量的土壤样品,放入干燥的容器中,并记录容器的重量为W1;2. 将土壤样品在105℃下干燥至恒重,记录容器和干燥后的土壤样品的总重量为W2;3. 计算土壤有机质含量的百分比,有机质含量(%)=(W2-W1)/W1100。
蒸发法操作简单,成本低,但在测定含有机质较多的土壤时,可能会出现误差较大的情况。
二、酸碱滴定法。
酸碱滴定法是一种较为准确的土壤有机质测定方法。
具体操作步骤如下:1. 取一定质量的土壤样品,用氢氧化钠溶液浸泡后,用盐酸滴定至中性为止,记录所需盐酸的体积为V1;2. 在同样条件下,取另一份土壤样品,不加氢氧化钠溶液,用盐酸滴定至中性为止,记录所需盐酸的体积为V2;3. 计算土壤有机质含量的百分比,有机质含量(%)=(V1-V2)0.0585/土壤样品质量。
酸碱滴定法准确度高,适用于各种类型的土壤样品。
三、热蒸法。
热蒸法是一种常用的土壤有机质测定方法,操作简单,成本低。
具体操作步骤如下:1. 取一定质量的土壤样品,放入烤瓷容器中,加热至450℃下,保持2小时;2. 冷却后,将土壤样品放入干燥器中干燥至恒重,记录容器和干燥后的土壤样品的总重量为W3;3. 计算土壤有机质含量的百分比,有机质含量(%)=(W2-W3)/W3100。
热蒸法操作简单,但在测定含有机质较少的土壤时,可能会出现误差较大的情况。
综上所述,不同的土壤有机质测定方法各有优缺点,选择合适的方法需要根据具体情况来确定。
希望本文所介绍的方法能够对大家有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
土壤有机质的测定3.1概述3.1.1土壤有机质含量及其在肥力上的意义土壤有机质是土壤中各种营养特别是氮、磷的重要来源。
它还含有刺激植物生长的胡敏酸等物质。
由于它具有胶体特征,能吸附较多的阳离子,因而使土壤具有保肥力和缓冲性。
它还能使土壤疏松和形成结构,从而可改善土壤的物理性状。
它也是土壤微生物必不可少的碳源和能源。
因此,除低洼地土壤外,一般来说,土壤有机质含量的多少,是土壤肥力高低的一个重要指标。
华北地区不同肥力等级的土壤有机质含量约为:高肥力地>15.0g·kg-1,中等肥力地10.0~14.0 g·kg-1,低肥力地5.0~10.0 g·kg-1,薄砂地<5.0 g·kg-1。
南方水稻土肥力高低与有机质含量也有密切关系。
据浙江省农业科学院土壤肥料研究所水稻高产土壤研究组报道,浙江省高产水稻土的有机质含量大部分为23.6~48g·kg-1,均较其邻近的一般田高。
上海郊区高产水稻土的有机质含量也在25.0~40有机质含量范围之内。
我国东北地区雨水充足,有利于植物生长,而气温较低,有利于土壤有机质的积累。
因此,东北的黑土有机质含量高达40~50g·kg-1以上。
由此向西北,雨水减少,植物生长量逐年减少,土壤有机质含量亦逐渐减少,如栗钙土为20~30g·kg-1,棕钙土为20g·kg-1左右,灰钙土只有10~20g·kg-1。
向南雨水多、温度高,虽然植物生长茂盛,但土壤中有机质的分解作用增强,黄壤和红壤有机质含量一般为20~30g·kg-1。
对耕作土壤来讲,人为的耕作活动则起着更重要的影响。
因此,在同一地区耕种土壤有机质含量比未耕种土壤要低得多。
影响土壤有机质含量的另一重要因素是土壤质地,砂土有机质含量低于粘土。
土壤有机质的组成很复杂,包括三类物质:①分解很少,仍保持原来形态学特征的动植物残体。
②动植物残体的半分解产物及微生物代谢产物。
③有机质的分解和合成而形成的较稳定的高分子化合物——腐植酸类物质。
分析测定土壤有机质含量,实际包括了上述全部2、3两类及第1类的一部分有机物质,以此来说明土壤肥力特性是合适的。
因为从土壤肥力角度来看,上述有机质三个组成部分,在土壤理化性质和肥力特性上,都起重要作用。
但是,在土壤形成过程中,研究土壤腐殖质中碳氮比的变化时则需严格剔除未分解的有机物质。
全国和地的大量资料分析结果表明[2](表3-1),土壤有机质含量与土壤总氮量之间呈正相关。
例如浙江省对水稻255个样品统计分析,其相关系数r=0.943,达极显著水平(图3-1)。
又如吉林省东部山区的通化对115个旱地土壤样品进行的回归分析,其回归方程为:ý=0.0062+0.573χr=0.939**表3-1 耕地土壤全土壤有机质含量*的比值福建新疆广东15.913.914.90.790.790.804.975.685.27*为全省(区)统计的平均值。
摘自《中国土壤》1998年,中国农业出版社,P875土壤全氮总量与土壤有机质含量的比值,随着土壤所处的环境因素和利用状况而变化。
如表3-2所示,安徽省位于南北过渡带,成土母质复杂,土壤类型众多,而各类土壤开垦利用情况不同,全氮含量与有机质含量的比值(%)有一定差别。
从高地的山地草甸土的4.05%至低洼地的砂姜黑土的7.05%,但总体上看二者的回归相关性仍显著,ý=0.0364+0.0371χr=0.9916**(n=15),相关系数r2=0.9833,说明土壤全氮的变异有98.33%可由土壤有机质变异所引起。
-1土壤类型有机质全氮全氮量/有机质(%)样品数土壤变幅平均值样品数土壤变幅平均值红壤黄壤黄棕壤棕壤(酸性)黄褐土砂姜黑土石灰性(岩)土紫色土山地草甸土潮土粗骨土石质土水稻土4684232164618640369446893117415642515042123185715.2~44.212.3~61.012.5~85.028.4~104.19.5~20.29.0~13.230.3~47.813.5~22.84.2~24.827.3~44.034.2~63.814.2~33.728.653.118.637.913.312.633.718.899.214.029.648.621.7467323216461864265945888211791563901426207314550.88~2.02.04~2.80.75~3.884.69~10.31.26~6.00.59~0.941.72~2.590.97~1.230.28~1.461.24~1.601.64~2.720.90~2.321.342.360.841.660.840.891.860.994.020.931.452.191.314.694.444.524.386.327.055.525.274.056.644.904.516.04总的看来,土壤有机质一般约含氮5%左右,故可以从有机质测定结果来估计土壤全氮的近似值。
土壤全氮量(g·kg-1)=土壤有机质(g·kg-1)g·kg-1有机质含量土壤有机质g·kg-1有机质含量土壤有机质土壤有机质含量含量ý=0.0062+0.573χr=0.939** 土壤全氮量(g·kg-1)=土壤有机质(g·kg-1)×0.05(或0.06)3.1.2土壤有机碳不同测定方法的比较和选用关于土壤有机碳的测定,有关文献中介绍很多,根据目的要求和实验室条件可选用不同方法。
经典测定的方法有干烧法(高温电炉灼烧)或湿烧法(重铬酸钾氧化),放出的CO2,一般用苏打石灰吸收称重,或用标准氢氧化钡溶液吸收,再用标准酸滴定。
用上述方法测定土壤有机碳时,也包括土壤中各元素态碳及无机碳酸盐。
因此,在测定石灰性土壤有机碳时,必须先除去CaCO3。
除去CaCO3的方法,可以在测定前用亚硫酸处理去除之,或另外测定无机碳和总碳的含量,从全碳结果中减去无机碳。
干烧法和湿烧法测定CO2的方法均能使土壤有机碳全部分解,不受还原物质的影响,可获得准确的结果,可以作为标准方法校核时用。
由于测定时须要一些特殊的仪器设备,而且很费时间,所以一般实验室都不用此法。
近年来高温电炉灼烧和气相色谱装置相结合制成碳氮自动分析仪,已应用于土壤分析中,但由于仪器的限制,所以未能被广泛采用。
目前,各国在土壤有机质研究领域中使用得比较普遍的是容量分析法。
虽然各种容量法所用的氧化剂及其浓度或具体条件有差异,但其基本原理是相同的。
使用最普遍的是在过量的硫酸存在下,用氧化剂重铬酸钾(或铬酸)氧化有机碳,剩余的氧化剂用标准硫酸亚铁溶液回滴,从消耗的氧剂量来计算有机碳量。
这种方法,土壤中的碳酸盐无干扰作用,而且方法操作简便、快速、适用于大量样品的分析。
采用这一方法进行测定时,有的直接利用浓硫酸和重铬酸钾(2:1)溶液迅速混和时所产生的热(温度在120℃左右)来氧化有机碳,称为稀释热法(水合热法)。
也有用外加热(170~180℃)来促进有机质的氧化。
前者操作方便,但对有机质的氧化程度较低,只有77%,而且受室温变化的影响较大,而后者操作较麻烦,但有机碳的氧化较完全,可达90%~95%,不受室温变化的影响。
此外,还可用比色法测定土壤有机质所还原的重铬酸钾的量来计算,即利用土壤溶液中重铬酸钾被还原后产生的绿色铬离子(Cr3+)或剩余的重铬酸钾橙色的变化,作为土壤有机碳的速测法。
以上方法主要是通过测定氧化剂的消耗量来计算出土壤有机碳的含量,所以土壤中存在氯化物、亚铁及二氧化锰,它们在铬酸溶液中能发生氧化还原反应,导致有机碳的不正确结果。
土壤中Fe2+或Cl-的存在将导致正误差,而活性的MnO2存在将产生负误差。
但大多数土壤中活性的MnO2的量是很少的,因为仅新鲜沉淀的MnO2,奖参加氧化还原反应,即使锰含量较高的土壤,存在的MnO2中很少部分能与Cr2O72-发生氧化还原作用,所以,对绝大多数土壤中MnO2的干扰,不致产生严重的误差。
测定土壤有机质含量除上述方法外,还可用直接灼烧法,即在350~400℃下灼烧,从灼烧后失去的重量计算有机质含量。
灼烧失重,包括有机质和化合水的重量,因此本法主要用于砂性土壤。
3.1.3有机碳的校正系数经典的干烧法或湿烧法,均为彻底氧化的方法。
因为土壤中所有的有机碳均氧化为CO2,而不需要一个校正系数。
而上述外加热重铬酸盐法,不能完全氧化土壤中的有机化合物,需要用一个校正系数去校正未反应的有机碳,Schollenberger法的校正系数为1.15。
Tyurin(1931)法的校正系数不加Ag2SO4时为1.1,加Ag2SO4时为1.04。
表3-3 不同研究者用Walkley and Black方法测定了一些表土,有机碳未回收的校正系数从表3-3可以看出,Walkley and Black的稀释热法(水合热法)有机碳回收率有很大变化(44%~92%),所以适合于各种土壤校正系数变化范围为 1.09~2.27。
对各类土壤合适平均校正系数的变化范围为1. 19~1.33。
因此,应用1.3校正系数(有机碳平均回收率为77%)在一定范围土壤上看来是最合适的,但应用于各类土壤将会带来误差。
3.1.4 有机质含量的计算土壤中有机质含量可以用土壤中一般的有机碳比例(即换算因数)乘以有机碳百分数而求得。
其换算因数随土壤有机质的含碳率而定。
各地土壤有机质组成不同,含碳量亦不一致,因此根据含碳量计算有机质含量时,如果都用同一换算因数,势必造成一些误差。
Van Bemmelen因数为1.724,是假定土壤有机质含碳58%计算的。
然而许多研究指出,对许多土壤此因数太低,因此低估了有机质的含量。
Broadbent(1953)概括了许多早期工作,确定换算因数为1.9和2.5,将分别选用于表土和底土。
其它工作者发现(Ponomareva&Platnikova,1967),1.9~2.0的换算因数对于表层矿物土壤是令人满意的。
尽管这样,我国目前仍沿用“Van Benmmelen因数”1.724。
在国外常用有机碳而不用有机质含量表示。
3.2 土壤有机质测定3.2.1重铬酸钾容量法——外加热法3.2.1.1方法原理在外加热的条件下(油浴的温度为180,沸腾5分钟),用一定浓度的重铬酸钾——硫酸溶液氧化土壤有机质(碳),剩余的重铬酸钾用硫酸亚铁来滴定,从所消耗的重铬酸钾量,计算有机碳的含量。
本方法测得的结果,与干烧法对比,只能氧化90%的有机碳,因此将得的有机碳乘以校正系数,以计算有机碳量。
在氧化滴定过程中化学反应如下:2K2Cr2O7+8H2SO4+3C→2K2SO4+2Cr2(SO4)3+3CO2+8H2OK2Cr2O7+6FeSO4→K2SO4+Cr2(SO4)3+3Fe2(SO4)3+7H20在1mol·L-1H2SO4溶液中用Fe2+滴定Cr2O72-时,其滴定曲线的突跃范围为1.22~0.85V。