信号检测与估计理论第一章习题讲解
信号检测与估计-第一章 信号检测与估计 教学课件
![信号检测与估计-第一章 信号检测与估计 教学课件](https://img.taocdn.com/s3/m/947cbaa2a26925c52dc5bfa6.png)
下, 平均错误概率为
Pe P(D0 / H1) P(D1 / H0 ) erfc[
E(1 r) ]
N0
E为两个信号的平均能量,r两信号之间的相关系数 E/N0为信噪比
计算三种常用的二元通信系统的性能:
1 相干相移键控系统(CPSK)
s0 (t) Asin ct (0 t T ) s1(t) Asin( ct ) Asin ct (0 t T )
若代价因子与随机参量矢量无关, 则其判决规 则与简单假设下的贝叶斯准则判决式相同
在代价因子与随机参量无关的条件下,求 似然比的步骤: 1 计算 p(x / α, H1 )
2 计算 p(x / H1 ) p(x / α, H1 ) p(α)d α {α}
3 计算似然比 (x) p(x / H1 ) p(x / H 0 )
大, 所付出的代价越大
2 几种常用的代价函数
| ˆ |
a
ˆ
(a)
( ˆ )2
( ˆ )2
ˆ
a (b)
C( ,ˆ ) K ,| | C( ,ˆ ) 0,| |
a1
a2
ˆ
( c)
ˆ
( d)
(a)误差绝对值代价函数 (b)误差平方代 价函数(c)相对误差的平方代价函数 (d) 均匀代价函数
H0—无信号,没有随机参量,简单假设 H1---有信号,有随机参量,复合假设
§1.5.1 贝叶斯准则
设 α (1,2,,m )T 是与H1有关的随机参量矢 量
p(α) 是随机参量矢量的m维联合先验概率 密度
代价因子为 C00 , C10 , C01(α), C11(α)
似然函数为 p(x / H0 ),
唯一
p(x / α, H1) 不唯一
信号检测与估计 01
![信号检测与估计 01](https://img.taocdn.com/s3/m/b4fdef86bed5b9f3f80f1c68.png)
量,其概率密度函数为
g( y) f [h( y)] h '( y)
式中h(ζ)是φ(ξ)的反函数。
1.2 随机过程的基本概念
X (t)
t
• 随机过程的分布函数
若X(t)是一个随机过程,对于给定的时刻 t1 ,T 其分布函数记为
若随机过程X(t)和Y(t)的互协方差函数等于零,或互相关系数等于零, 则称X(t)和Y(t) 不相关。
无论是随机变量还是随机过程,统计独立比不相关的要求更严,所谓不相关是 指两者之间没有线性相关关系,但并非完全没有关系。不独立的随机变量(或过 程)不一定就是相关的。但相关的随机变量(或过程)则一定不是统计独立的。
T
XT () xT (t)e jt dt x(t)e jt dt
T
样本函数x(t)的功率谱为
Ss
()
lim
T
1 2T
XT () 2
随机过程的功率谱密度(PSD)
SX
()
E{Ss ()}
lim
T
1 2T
E{
XT
()
2}
功率谱密度表示随机过程的功率在不同的频率上的概率分布。即单位频带 宽度上功率的概率分布,通常用对数方式表示为dBm/Hz或dBW/Hz。
0
erfc(x) 1 erf(x)
(x) 1 1 erfc( x )
2
2
1
0.5
(x)
0
erf(x)
-0.5
-1
-4
-3
-2
-1
0
1
2
3
4
信号检测与估计答案1
![信号检测与估计答案1](https://img.taocdn.com/s3/m/d77f6926876fb84ae45c3b3567ec102de2bddf6d.png)
信号检测与估计答案15-2 若观测方程为i i x s n =+()1,2,,i N =,其中信号()2~0,s s N σ,噪声()()2~0,1,2,,i n n N i N σ=独立同分布,且信号与噪声满足{}0i E sn =。
求s 的最大后验概率估计ˆMAP s。
解:依题意,以信号s 为条件的观测样本的概率密度函数为()()()2112221,,|exp 22N i i N Nnnx s f x x s σπσ=⎡⎤-⎢⎥⎢⎥=-⎢⎥⎢⎥⎣⎦∑信号s 的概率密度函数为()222ss f s σ⎛⎫=- ⎪⎝⎭则由上面两式可得()()()()()211222212221ln ,,|ln exp 221ln 22N i i N N nn Ni i N n n x s f x x s ss x s s σπσσπσ==⎧⎫⎡⎤⎧⎫-⎪⎪⎢⎥⎪⎪∂∂⎪⎪⎪⎪⎢⎥=-⎨⎨⎬⎬∂∂⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎩⎭⎣⎦⎩⎭⎡⎤-⎢⎥∂⎢⎥=-∂⎢⎥⎢⎥⎣⎦∑∑()22222ln ln 22s s s s f s s s s s s⎧⎫⎡⎤⎛⎫∂∂⎪⎪=-⎥⎨⎬ ⎪∂∂⎥⎝⎭⎪⎪⎦⎩⎭⎡⎤∂=-⎢⎥∂⎢⎥⎣⎦=-σσσ最大后验概率准则为()ˆmax |MAP f θθθ=x ,即()ˆ|0MAPf θθθθ=∂⎡⎤=⎢⎥∂⎣⎦x ,又可表示为()()ˆln |ln 0MAPf f θθθθθθ=∂∂⎡⎤+=⎢⎥∂∂⎣⎦x ,将之前结果带入其中可得2221ˆNs MAP ii ns sx N σσσ==+∑ 。
5-4已知观测信号0()cos()()x t A t n t ωθ=++(0)t T ≤≤,式子中()n t 是零均值,功率谱为2N 的高斯白噪声,θ是在[0,2)π上均匀分布的随机变量,求A 的最大似然估计和估计量的均方误差。
解:0()cos()()x t A t n t ωθ=++()x t 的似然函数为:020002220000022000000()cos()()1(|,)exp [()cos()]1exp [()2()cos()cos ()]12exp [()()cos()2TTTTTT x t A t n t f x A F x t A t dt N F x t dt x t A t dt At dt N A A T F x t dt x t t dt N N N ωθθωθωθωθωθ=++⎧⎫=⋅--+⎨⎬⎩⎭⎧⎫=⋅--+++⎨⎬⎩⎭⎧⎫=⋅-++-⎨⎬⎩⎭⎰⎰⎰⎰⎰⎰因为1(),022f θθππ=≤≤ 所以202200000(|)(|,)()12exp{}exp [()()2Tf x A f x A f d A TAq F x t dt I N N N πθθθ=⎧⎫=⋅--⎨⎬⎩⎭⎰⎰ 其中22200002200000()sin ()cos 12ln (|)ln ()ln ()2T TT q x t tdt x t tdt A T Aqf x A F x t dt I N N N ωω⎡⎤⎡⎤=+⎢⎥⎢⎥⎣⎦⎣⎦=--+⎰⎰⎰令000ln (|)20()0f x A AT AqI A N A N ∂∂=⇒-++∂∂ (1)假设SNR,即02Aq N 足够大,则00022()Aq AqI N N ≈0022ˆ(1)0MLAT q q A N N T⇒-+=⇒=由2220000()sin ()cos T Tq x t tdt x t tdt ωω⎡⎤⎡⎤=+⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰知22202221()exp(())()242T T TqA T qATf q q I σσσ=-+所以222323240001()2T T qq x x q T q E qf q dq AT e dq e AT x e dx AT σσσ=-+∞+∞+∞-⎛⎫−−−→ ⎪==←−−− ⎪⎝⎭⎰⎰⎰ 所以221ˆ()()2MLE A E q AT A T T ==⋅= (无偏估计) 200024ˆvar(),var()44T ML N T N T N q A T T σ====5-11. 假定已知信号112()cos cos 2...cos p s t a t a t a p t ωωω=+++212()sin sin 2...sin p s t b t b t b p tωωω=+++观测信号12()()()()x t s t s t n t =++,()n t 是均值为0、均方差为1的高斯白噪声。
信号检测与估计第一章课后答案
![信号检测与估计第一章课后答案](https://img.taocdn.com/s3/m/94eb24f650e2524de4187e27.png)
两边求微分得 =1/2 为判决门限 =
解得 =1/2值时达到极大极小化风险?
(2)根据一次观测的判决区域如何?
解:与上题求解类似得
=
=2/3
,=1/3
1.9 设两种假设为: : :
其中n(t)为零均值和功率为2的高斯白噪声。根据M个独 立样本(1,2,……,M),应用纽曼-皮尔逊准则进行检验。 令=0.05,试求:
(1) 最佳判决门限; (2) 相应的检测概率。 解:由(1-43)得似然比
将,n=M代入得
化简得
服从均值为2(下)和0(下),方差为2/M的高斯分布
从中解得 相应的
= =0.05
= 判为 (其中) 化简得到
判为 (1) 即曲线方程为
似然函数为 (k=1,0)
虚警概率
漏报概率
平均风险 =
其中为(1)式确定 1.3只用一次观测x来对下面两个假设作选择,:样本x为零均值、方差
的高斯变量,:样本x为零均值、方差的高斯变量,且>。 根据观测结果x,确定判决区域和。 画出似然比接收机框图。为真而选择了的概率如何? 解:(1)似然函数
|x|1时似然比为 判为
化简得 = 判为
所以得判决区域为
(2)应用纽曼-皮尔逊准则 所以得判决区域为
1.7 根据一次观测,用极大极小化检验对下面两个假设做判断 : :
设n(t)为零均值和功率为的高斯过程,且。试求: (1) 判决门限 (2) 与相应的各假设先验概率。
解:因为采用极大极小化准则,所以要求
(k=1,0) 似然比
判为 化简得
(>) 判为 得 根据选取准则而定 (2)框图
0 判为
<0 判为
x
信号与系统课后习题与解答第一章
![信号与系统课后习题与解答第一章](https://img.taocdn.com/s3/m/8467a45525c52cc58bd6be53.png)
1-1分别判断图1-1所示各波形是连续时间信号还是离散时间信号,若是离散时间信号是否为数字信号?图1-1图1-2解 信号分类如下:图1-1所示信号分别为⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧--⎩⎨⎧--))(散(例见图数字:幅值、时间均离))(连续(例见图抽样:时间离散,幅值离散))(连续(例见图量化:幅值离散,时间))(续(例见图模拟:幅值、时间均连连续信号d 21c 21b 21a 21(a )连续信号(模拟信号);(b )连续(量化)信号;(c )离散信号,数字信号;(d )离散信号;(e )离散信号,数字信号;(f )离散信号,数字信号。
1-2 分别判断下列各函数式属于何种信号?(重复1-1题所示问)(1);)sin(t e at ω-(2);nT e -(3);)cos(πn (4);为任意值)(00)sin(ωωn (5)。
221⎪⎭⎫ ⎝⎛解由1-1题的分析可知:(1)连续信号;(2)离散信号;(3)离散信号,数字信号;(4)离散信号;(5)离散信号。
1-3 分别求下列各周期信号的周期T :(1);)30t (cos )10t (cos -(2);j10t e (3);2)]8t (5sin [(4)。
[]为整数)(n )T nT t (u )nT t (u )1(0n n ∑∞=-----解 判断一个包含有多个不同频率分量的复合信号是否为一个周期信号,需要考察各分量信号的周期是否存在公倍数,若存在,则该复合信号的周期极为此公倍数;若不存在,则该复合信号为非周期信号。
(1)对于分量cos (10t )其周期;对于分量cos (30t ),其周期。
由于5T 1π=15T 2π=为的最小公倍数,所以此信号的周期。
5π21T T 、5T π=(2)由欧拉公式)t (jsin )t (cos e t j ωωω+=即)10t (jsin )10t (cos e j10t +=得周期。
5102T ππ==(3)因为[])16t (cos 2252252)16t (cos 125)8t (5sin 2-=-⨯=所以周期。
信号检测与估计 张明友 第一二三八章答案
![信号检测与估计 张明友 第一二三八章答案](https://img.taocdn.com/s3/m/07228b3a50e2524de4187e19.png)
时间:6月16日(星期一)晚上6:30-8:30 地点:六教104室(上课教室)试卷共8题,其中4题属于教材第一章内容,其余4题分别的其他章节。
请同学们对匹配滤波器,离散卡尔曼滤波,离散维纳滤波,高斯白噪声下确知信号的检测,K -L 展开,高斯白噪声信道中的单参量信号估计等内容重点关注。
1.1 (付柏成 20060150)在例1.2中,设噪声均方差电压值为σ=2v ,代价为f c =2,m c =1。
信号存在的先验概率P =0.2。
试确定贝叶斯意义下最佳门限β,并计算出相应的平均风险。
解:根据式(1-15),可以算出00.8280.21f mQc Pc ⨯Λ===⨯ 而判决门限2201ln 0.52ln88.822βσ=+Λ=+= 根据式(1-21)可知平均风险1010Pr 0.2r 0.8R Qr r =+=+01100.2(|)0.8(|)m f c P D H c P D H =+ 而011(|)(|)D P D H p x H dx =⎰1100(|)(|)D P D H p x Hdx =⎰而212(1)(|)]2x p x H σ-=-202(|)]2x p x H σ=-所以20112(1)(|)(|)]2D D x P D H p x H dx dx σ-==-⎰⎰22(1)]2x dx βσ-=-⎰=17.82()()(3.91)22β-Φ=Φ=Φ 同理1121002(|)(|)]2D D x P D H p x H dx dx σ==-⎰⎰22)2x dx βσ∞=- 8.821()1()1(4.41)22β=-Φ=-Φ=-Φ 所以0.21(3.91)0.82[1(4.41)]R =⨯⨯Φ+⨯⨯-Φ 1.2 (关瑞东 20060155)假定加性噪声()n t 服从均值为零,方差为的正态分布。
此时,两个假设为01:()():()1()H x t n t H x t n t ==+我们根据()x t 的两次独立测量值12,x x 作判断,则12,x x 是统计独立的,在假设1H 下其均值为1a =1,在假设0H 下均值为0a =0,因而在两种假设下它们的联合概率密度函数可写为22/221()(|)(2)exp()2nn i k k i x a p x H πσσ-=-=-∑ (0,1;2)k n == 于是,似然比等于22011012210()(|)()exp[](|)2n ii a a n a a p x H x x p x H σσ=--Λ==-∑如果0()x Λ≥Λ,则选择假设1H ,否则选择假设0H 。
信号检测与估计理论
![信号检测与估计理论](https://img.taocdn.com/s3/m/e4dfdf2227d3240c8447eff7.png)
第2章 信号检测与估计理论的基础知识 内容提要
三. 离散随机信号的函数
1.一维雅可比特变别换是, 简单线性 的函 变数 。 换时 2. N维雅可比变换。
四. 连续随机信号
1任 .tk 时 意刻采 x (tk) 样 (x k ; tk)所 k ( 1 ,2 , 得 ,N )的 样 概 本 率 函数描述。
平均似然 广 比 义 检 似 验 然 ,比-检 皮验 尔和 逊奈 检曼 验的基
和方法。
第3章 信号状态的统计检测理论 例题解答
例3.1 设二元信号检测的模信型号为
H 0: x1n H1: x2n
其中 观,测n噪 服声 从对称三 如3 角 图 .1(a)分 所布 。 示,
若似然 1 ,求 比最 检 图 佳 测 示 判 门 计 判 P ( 决 H 限 算 1|H 0 决 )。 式域
也相互统计独立。
七. 信号模型及统计特性
确知信号 (未和 )知 参随 量机 ; 信 随号 机参量信性 号描 的述 统
第2章 信号检测与估计理论的基础知识 例题解答
例 2.1设离散x随 服机 从信 对号 称 其 三 概 角 率 分 密 布 度 , 函
p(x)
11|x| a a2
axa (a0)
0
其他
第3章 信号状态的统计检测理论 内容提要
一.信号状态统计检测 的理 基论 本概念
信号状态观 的测 假信 设号 , 的数 概合 ,率理 密判 判 度决 决 函,结果 与判决概最 率佳 , 判决的概 。念
二.二元信号状态统计 的检 三测 个准则
贝叶斯最 检小 测平 准均 则准 错 , 奈 则 误 曼 , 皮 概尔 率逊 检 测准则的概 检 念 验 、 判 似 决 然 为 式 比 最 、简 化判 简决 能 式
信号检测与估计理论(复习题解)
![信号检测与估计理论(复习题解)](https://img.taocdn.com/s3/m/8a6fb65b54270722192e453610661ed9ad5155e7.png)
最大似然估计法具有一致性和渐近无偏性等优点,但在小样本情况下可能存在偏差。此外,该方 法对模型的假设较为敏感,不同的模型假设可能导致不同的估计结果。
最小二乘法
01
原理
最小二乘法是一种基于误差平方和最小的参数估计方法, 它通过最小化预测值与观测值之间的误差平方和来估计模 型参数。
02 03
步骤
首先,构建包含未知参数的预测模型;然后,根据观测数 据计算预测值与观测值之间的误差平方和;接着,对误差 平方和求导并令其为零,得到参数的估计值;最后,通过 求解方程组得到参数的最小二乘估计值。
优缺点
最小二乘法具有计算简单、易于实现等优点,但在处理非 线性问题时可能效果不佳。此外,该方法对异常值和噪声 较为敏感,可能导致估计结果的偏差。
01
小波变换基本原理
小波变换是一种时频分析方法,通过伸缩和平移等运算对信号进行多尺
度细化分析,能够同时提供信号的时域和频域信息。
02
小波变换在信号去噪中的应用
小波变换具有良好的时频局部化特性,可以用于信号的去噪处理。通过
对小波系数进行阈值处理等操作,可以有效去除信号中的噪声成分。
03
小波变换在信号特征提取中的应用
3. 观察相关函数的峰值,判断是否超过预设门限。
实现步骤
2. 将待检测信号与本地参考信号进行相关运算。
优缺点:相关接收法不需要严格的信号同步,但要求参 考信号与待检测信号具有较高的相关性,且容易受到多 径效应和干扰的影响。
能量检测法
原理:能量检测法通过计算接收信号的能量来判断信号 是否存在。在噪声功率已知的情况下,可以通过比较接 收信号的能量与预设门限来判断信号是否存在。 1. 计算接收信号的能量。
经典参数估计方法
信号检测与估计理论 第一章 概论
![信号检测与估计理论 第一章 概论](https://img.taocdn.com/s3/m/854dc95cb307e87101f69683.png)
信号的随机性及其统计处理方法
1. 信号的随机性 信号的分类:
确知信号 随机(未知)参量信号
信号的随机性及其统计处理方法
确知信号与随机(未知)参量信号 举例
确知与“未确知”的转换:排水管网/污水流量……
信号的随机性及其统计处理方法
2. 信号的统计处理方法
对信号的随机特性进行统计描述;
P A B
P A P B A P B
0.001 0.95 0.0868 0.01094
检查结果为阳性,患病概率仅为8.68%。
示例3
Number 0: s0 t sin 0t , 0 t T Number1: s1 t sin 1t , 0 t T
连续相位移频键控(CPFM)信号
信号检测与估计理论概述
示例4
3 Times
片段
数字“0”和“1”的语言波形
本课程的主要内容
第一部分
信号检测与估计理论的研究对象
以概率论与数理统计为工具,为通信、雷达、声纳、自动控制等技术 领域提供理论基础。此外,它在模式识别、射电天文学、雷达天文学、 地震学、生物物理学以及医学等领域里,也获得了广泛的应用。 通信、雷达、自动控制系统等都是当代重要的信息传输和处理系统, 对它们的性能要求,总的说来有两个方面。 一是要求系统能高效率地传输信息,——系统的有效性; 二是要求系统能可靠地传输\处理信息,——系统的可靠性或抗干扰性。 使系统信息传输可靠性降低的主要原因有:
2 N 1 N 2 1 1 2 2 ( x )] E[( ˆ( x )) 2 ] E E[ ( nk ) E nk n N k 1 N k 1 N
信号检测与估计简答题集
![信号检测与估计简答题集](https://img.taocdn.com/s3/m/39ae614f0242a8956aece43f.png)
一、简答题注释简答题(每题5分,共20分)或(每题4分,共20分)二、第1章简答题1.从系统和信号的角度看,简述信号检测与估计的研究对象。
答:从系统的角度看,信号检测与估计的研究对象是加性噪声情况信息传输系统中的接收设备。
从信号的角度看,信号检测与估计的研究对象是随机信号或随机过程。
2.简述信号检测与估计的基本任务和所依赖的数学基础。
答:解决信息传输系统接收端信号与数据处理中信息恢复与获取问题,或从被噪声及其他干扰污染的信号中提取、恢复所需的信息。
信号检测与估计所依赖的数学基础是数理统计中贝叶斯统计的贝叶斯统计决策理论和方法。
3.概述信号在传输过程中与噪声混叠在一起的类型。
答:信号在传输过程中,噪声与信号混杂在一起的类型有3种:噪声与信号相加,噪声与信号相乘(衰落效应),噪声与信号卷积(多径效应)。
与信号相加的噪声称为加性噪声,与信号相乘的噪声称为乘性噪声,与信号卷积的噪声称为卷积噪声。
加性噪声是最常见的干扰类型,也是最基本的,因为乘性噪声和卷积噪声的情况均可转换为加性噪声的情况。
三、第2章简答题1.简述匹配滤波器概念及其作用。
答:匹配滤波器是在输入为确定信号加平稳噪声的情况下,使输出信噪比达到最大的线性系统。
匹配滤波器的作用:一是使滤波器输出有用信号成分尽可能强;二是抑制噪声,使滤波器输出噪声成分尽可能小,减小噪声对信号处理的影响。
2.根据匹配滤波器传输函数与输入确定信号及噪声的关系,简述匹配滤波器的原理。
答:匹配滤波器传输函数等于输入确定信号频谱的复共轭除以输入平稳噪声的功率谱密度,再附加相位项T ω-,其中T 为输入确定信号的持续时间或观测时间。
由于匹配滤波器传输函数的幅频特性与输入确定信号的幅频特性成正比,与输入噪声的功率谱密度成反比;对于某个频率点,信号越强,该频率点的加权系数越大,噪声越强,加权越小。
从而起到加强信号,抑制噪声的作用。
对于信号,匹配滤波器的相频特性与输入信号的相位谱互补,使输入信号经过匹配滤波器以后,相位谱将全部被补偿掉。
信号检测与估计第一章
![信号检测与估计第一章](https://img.taocdn.com/s3/m/8fe01434336c1eb91b375d0f.png)
1.2.5 极小极大准则
• 贝叶斯准则要求已知先验概率和各种代价函数;极小极大
准则应用于仅仅知道代价函数 Cij i, j 0 ,1 ,而先验概率 P H i i 0 ,1 未知的情况。
• 极小极大准则:把使最小平均代价(贝叶斯代价)取得最 大值所对应的概率当作先验概率使用。
Hi
Cii
i0
P
x i j 0, j i
Hj
Cij C jj
f x H j dx
定义
M 1
Ii x P H j Cij C jj f x H j
j0, ji
则
i x : Ii x I j x , j 0,1, , M 1, j i
• 记 x x1, x2 , , xN T 。贝叶斯判决的目标是将N维观测空间
划分为互斥的
N 0
,
N 两个区域,使平均代价
1
C
达到最小。
• 相应的判决规则为
x f
x H1
f
x1, x2 ,
f x H0 f x1, x2 ,
xN H1 H1 P H 0 C10 C00 th xN H 0 P H0 H1 C01 C11
设先验概率 P H 0 p ,则贝叶斯判决规则为
f x H1 H1
p C10 C00
f x H 0 H0 1 p C01 C11
贝叶斯代价为
Cmin p p C00 1 p C10 p 1 p C01 p C11 1 p
• M 元假设检验 • 连续信号的检测 • 离散信号的检测
信号检测与估计理论第一章习题讲解
![信号检测与估计理论第一章习题讲解](https://img.taocdn.com/s3/m/ce919a28dc36a32d7375a417866fb84ae45cc366.png)
信号检测与估计理论第一章习题讲解1-9已知随机变量某的分布函数为0F某(某)k某21,某0,0某1,某1求:①系数k;②某落在区间(0.3,0.7)内的概率;③随机变量某的概率密度。
解:第①问利用F某(某)右连续的性质k=1第②问P0.3某0.7PF0.7F00.某3.3某.70.7P0dF某(某)2某第③问f某(某)d某00某1ele1-10已知随机变量某的概率密度为f某(某)ke普拉斯分布),求:某(某)(拉①系数k②某落在区间(0,1)内的概率③随机变量某的分布函数解:第①问f某某1d某11k2F2某F1某某1第②问P某2某某2f某d某随机变量某落在区间(某1,某2]的概率P{某1某某2}就是曲线yf某下的曲边梯形的面积。
P0某1P0某1f某d某0111e12第③问1某e2f某1e某2某0某0F某某f(某)d某1某某0e21某某01e2某0某1某ed某201e某d某某1e某d某022某01-11某繁忙的汽车站,每天有大量的汽车进出。
设每辆汽车在一天内出事故的概率为0.0001,若每天有1000辆汽车进出汽车站,问汽车站出事故的次数不小于2的概率是多少?(0-1)分布n,p0,np=二项分布泊松分布n成立,p,q0不成立高斯分布汽车站出事故的次数不小于2的概率P(k2)1Pk0Pk10.1P(k2)11.1e答案P某k=n=1实际计算中,只需满足n10kek!p0.1,二项分布就趋近于泊松分布=np1-12已知随机变量(某,Y)的概率密度为(3某4y)kef某Y(某,y)0,某0,y0,其它求:①系数k?②(某,Y)的分布函数?③P{0某1,0某2}?第③问方法一:联合分布函数F某Y(某,y)性质:若任意四个实数a,a,b,b,满足1212a1a2,b1b2,则P{a1某a2,b1Yb2}F某Y(a2,b2)F某Y(a1,b1)F某Y(a1,b2)F某Y(a2,b1)P{0某1,0Y2}F某Y(1,2)F某Y(0,0)F某Y(1,0)F某Y(0,2)方法二:利用P{(某,y)D}f某Yu,vdudvD20P{0某1,0Y2}0f某Y某,yd某dy11-13已知随机变量(某,Y)的概率密度为1,0某1,y某f(某,y)0,其它①求条件概率密度f某(某|y)和fY(y|某)?②判断某和Y是否独立?给出理由。
1信号检测与估计理论打印版
![1信号检测与估计理论打印版](https://img.taocdn.com/s3/m/30b9271c844769eae009ed7f.png)
第1章 信号检测与估计概论信号检测与估计概论教 材:信号检测与估计(张立毅) 信号检测与估计理论(赵树杰 ) 清华大学出版社引言 信号处理发展概况 信号的随机性及其统计处理方法 信号检测与估计理论概述 内容编排和建议一种抓彩的游戏:四种颜色的彩色玻璃球,如黄、红、黑、白,每 种五粒,四种二十粒。
把二十粒球放到一个口袋里,游玩者信手去 抓十粒。
如果你抓出来的玻璃球四种颜色的比例是5500,你将得到重奖; 如果你抓出来的玻璃球四种颜色的比例是5410或5320,奖品可观; 如果你抓出来的玻璃球四种颜色的比例是4411,是小奖品; 如果你抓出来的玻璃球四种颜色的比例是4321,罚一元人民币; 如果你抓出来的玻璃球四种颜色的比例是3322,罚五元人民币。
乍一看,得奖的机会似乎比受罚的机会更多; 结果是:十个人里至少有七个人抓出来的是3322,可能有一两个人 是4321,至于得重奖的,理论上是可能的,实际上却几乎是不可能。
其实,这只是一个最简单的概率或者叫做几率的问题,能够算得出 来,很精确的。
四种颜色的球的数量不会相差太远。
1.1 引言信号检测与估计的概念、理论和方法是 随机信号统计处理的理论基础; 本节主要内容:发展概况、待处理信号 的随机性及其统计处理方法的含义 统计信号处理的理论基础:信号的统计 检测理论、估计理论、滤波理论等1.2 信号处理发展概况 理论• 检测 • 估计 • 滤波 • 多维阵列信号处理 • 自适应信号处理 • 自适应滤波1.2 信号处理发展概况面临很多新的应用问题。
如我国载人航空航天中的应用 (原位探测、信息处理,对我国 科技工作者而言,将是全新的 领域;火星探测、嫦娥工程、 夸父计划)应用• 电子信息 • 自动化工程 • 模式识别 • 生物医学工程 • 航空航天 • 地球物理1.2 信号处理发展概况类别 比较 时域背景特性 平稳随机过程、高斯分布 平稳、非平稳随机过程; 高斯、非高斯分布 频域背景特性 均匀功率谱、高斯功率谱 信号特性 系统特性 数学工具 实现技术 简单信号,编码信号 均匀、非均匀功率谱; 高斯、非高斯功率谱 编码信号,扩频信号, 线性、非线性调频信号 线性时不变最小相位系统 线性时不变,时变系统, 非线性时变、非最小相位系统 随机过程、傅立叶变换 随机过程、傅立叶变换、高阶谱高 阶累积量、时频分析、小波变换 统计信号处理基础 现代信号处理1.2 信号处理发展概况统计信号处理基础所研究的内容是现代信号处理必备的理论 基础知识,二者没有严格的界限 信号统计理论研究的日益进步和完善,以及信号处理技术应 用领域的不断深入和扩展,使信号处理,特别是随机信号处 理得到人们十分广泛的重视 随机信号属于随机过程,应采用数学上的统计方法进行处理 因此,从事信号处理的科技工作者应有的素质: • • • • 建立随机信号统计处理方法的基本概念 掌握扎实的统计信号处理的理论基础 具有运用统计的方法研究分析随机信号处理问题的能力 具有运用统计的方法解决工程技术问题的能力1.3 信号的随机性及统计处理方法采用现代模拟器件为主的模拟处理技术 采用DSP为核心器件的数字处理技术图1.1 无线通信系统原理框图11.3 信号的随机性及统计处理方法一般来说,信息系统的主要工作是信号的产生、发射、传 输、接收和处理,以实现信息传输的目的,这样的系统通 常称为电子信息系统 对于电子信息系统,最主要的要求是高速率和高准确性 前者要求系统传输信号的效率尽可能高,主要决定于信号 的波形设计和频率选择 后者要求系统在传输信息过程中,尽可能少出错,减小信 号波形的失真度,这就是系统的抗干扰能力问题。
2021年信号检测与估计各章作业参考答案(1~9章)
![2021年信号检测与估计各章作业参考答案(1~9章)](https://img.taocdn.com/s3/m/5de3448bf5335a8103d220bc.png)
其中 是常数, 是 上均匀分布的随机参量; 是高斯白噪声。
(a)求判决公式及最正确接收机结构形式。
(b)如果 ,证明最正确接收机可用 作为检验统计量,并对此加以讨论。
解:〔a〕设 是均值为0、功率谱密度为 的正态白噪声,那么有
由于
所以
按照贝叶斯准那么
或者
两边取对数得到
最正确接
因此 的均值、二阶原点矩和方差分别为
9.假设随机过程 的自相关函数为 ,求 的功率谱密度。
解:自相关函数与功率谱密度函数是一对傅立叶变换对,所以有
利用欧拉公式,可得
11.平稳随机过程 具有如下功率谱密度
求 的相关函数 及平均功率 。
解:
而自相关函数 与功率谱密度 是一对傅立叶变换,
〔b〕不管是否有条件 ,
都可选 作为检验统计量。
当 时,由于
所以判决规那么为
第六章多重信号检测
思考题1:为何要进行多重信号的检测?
答:利用多重信号检测的优势是可以增加检测系统的信噪比,从而增强系统的检测性能。
思考题3:何谓随机相位相干脉冲串信号和随机相位非相干脉冲串信号?
答:通常把多个脉冲信号组成的一串信号称为脉冲串信号,各个脉冲叫做子脉冲,整个信号叫做脉冲串信号。如果脉冲串信号的初相随机,但各个子脉冲信号的相位一致,那么称之为随机相位相干脉冲串信号。如果各子脉冲信号的相位都是随机变化的,且彼此独立变化,那么称之为随机相位非相干脉冲串信号。
〔1〕求 的最大似然估计。
〔2〕假设 的概率密度
求 的最大后验概率估计。
解:〔1〕由题意可写出似然函数
按最大似然估计方程 ,由此解得
〔2〕当 时,可按最大后验概率方程 求解,得到
信号检测与估计-习题讲解
![信号检测与估计-习题讲解](https://img.taocdn.com/s3/m/ffc2629a71fe910ef12df8c6.png)
T
0
Bx (t ) sin 2 t dt
1 T 1 2 x t A t dt 因 此 , p (x H 1 ) F exp ( ) cos 1 0 2 N0 B 2T 2 2 T B x t t dt exp exp ( ) sin 2 d 0 0 2N0 N0 1 1 p (x H 0 ) F exp 2 N0
答:(1)其匹配滤波器的冲激相应为: ka h0 (t ) ks(T t ) 0 传输函数: 0t T 其他
sin T / 2 jT e T / 2 ka 2t 0t T 2 输出信号波形:so (t ) s(t )* h0 (t ) ka (2T t ) T t 2T 0 其他 H ( ) kS * ( )e jT kaT 输出峰值信噪比:SNR max Es 2a 2T Pn N0
cos t cos tdt cos t sin tdt 0
0 1 2 0 1 2
T
T
证明:最佳接收机可用 x(t)cos1tdt作为检验统计量并对此加以讨论。
0
T
答:最佳接收机的表达式为: p(x H1) H1 0。其中,x为向量, l x(t) p(x H0 ) H0 1 2 p(x H1) p(x H1 ,)d 2 0 1 T 1 2 2 F exp x(t) Acos1t B cos(2t ) dt d 0 2 0 N0 1 2 p(x H0 ) p(x H0 ,)d 2 0 1 T 1 2 2 F exp x(t) B cos(2t ) dt d 0 2 0 N0
信号检测与估计理论 (复习题解)
![信号检测与估计理论 (复习题解)](https://img.taocdn.com/s3/m/babbb39d7cd184254a353545.png)
第2章 信号检测与估计理论的基础知识 内容提要
五. 线性时不变系统对平稳连续随机信号的响应
1. 输入平稳连续随机信号x(t),响应y(t)也是平稳的。
2. 响应y(t)均值 y H (0)x,自相关函数ry ( ) h( ) h( ) rx ( ), 功率谱密度Py () | H () |2 Px ()。
第2章 信号检测与估计理论的基础知识 内容提要
三. 离散随机信号的函数
1. 一维雅可比变换,特别是简单线性函数时的变换。 2. N维雅可比变换。
四. 连续随机信号
1. 任意tk时刻采样所得样本x(tk ) (xk;tk )(k 1,2, , N )的概率密度 函数描述。
2. 统计平均量:均值,均方值,方差,自相关函数,协方差函数及关系。
图2.1(a)
图2.1(b)
ab y
例2.2
设x ~
N(x
,
2 x
)。若y
2
x
b,
求p(
y)及
y和
2。
y
解:y
2x
b是线性变换,所以y
~
N(
y
,
2 y
)。
反函数 x ( y b) / 2, 雅可比 J d[(y b) / 2]/ dy 1/ 2。所以
p(
y)
1
2
2 x
1
2
exp
(
y
b) / 2
a x a 其他
(a 0)
如图2.1(a )所示。已知x的均值和方差分别为 x
0,
2 x
a2
/ 6。
设y x b,求p( y)及y的均值和方差;当a b 2a时,画出p( y)的函数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1-9 已知随机变量X 的分布函数为20,0(),011,1X x F x kx x x <⎧⎪=≤≤⎨⎪>⎩求:①系数k ; ②X 落在区间(0.3,0.7)内的概率; ③随机变量X 的概率密度。
解:第①问 利用()X F x 右连续的性质 k =1 第②问{}{}{}()()0.30.70.30.70.70.30.7P X P X F P X F =<<=<≤-=-第③问 201()()0X X xx d F x f x elsedx ≤<⎧==⎨⎩1-10已知随机变量X 的概率密度为()()xX f x ke x -=-∞<<+∞(拉普拉斯分布),求:①系数k ②X 落在区间(0,1)内的概率 ③随机变量X 的分布函数 解: 第①问()112f xd x k ∞-∞==⎰ 第②问 {}()()()211221x x P x X xF x F xfx d x<≤=-=⎰ 随机变量X 落在区间12(,]x x 的概率12{}P x X x <≤就是曲线()y f x =下的曲边梯形的面积。
{}{}()()1010101112P X P X f x dxe -<<=<≤==-⎰第③问()102102xx e x f x e x -⎧≤⎪⎪=⎨⎪>⎪⎩()00()110022111010222xx xxx x x x F x f x dxe dx x ex e dx e dxx e x -∞-∞---∞=⎧⎧≤≤⎪⎪⎪⎪==⎨⎨⎪⎪+>->⎪⎪⎩⎩⎰⎰⎰⎰1-11 某繁忙的汽车站,每天有大量的汽车进出。
设每辆汽车在一天内出事故的概率为0.0001,若每天有1000辆汽车进出汽车站,问汽车站出事故的次数不小于2的概率是多少?,(01)p q λ→∞→→∞→−−−−−−−−→−−−−−−−−→−−−−−−−−→n=1n ,p 0,np=n 成立,0不成立-分布二项分布泊松分布高斯分布汽车站出事故的次数不小于2的概率()()P(2)101k P k P k ≥=-=-= 答案0.1P(2)1 1.1k e -≥=-100.1n p ≥≤实际计算中,只需满足,二项分布就趋近于泊松分布()np!k e P X k k λλλ-===1-12 已知随机变量(,)X Y 的概率密度为(34)0,0(,)0x y XY kex y f x y -+⎧>>⎪=⎨⎪⎩,,其它求:①系数k ?②(,)X Y 的分布函数?③{01,02}P X X <≤<≤?第③问 方法一:联合分布函数(,)XY F x y 性质:若任意四个实数1212,,,a a b b ,满足1212,a a b b ≤≤,则121222111221{,}(,)(,)(,)(,)XY XY XY XY P a X a b Y b F a b F a b F a b F a b <≤<≤=+--{01,02}(1,2)(0,0)(1,0)(0,2)XY XY XY XY P X Y F F F F ⇒<≤<≤=+--方法二:利用(){(,)},XY DP x y D f u v dudv∈∈⎰⎰)(210{01,02},XY P X Y f x y dxdy <≤<≤=⎰⎰1-13 已知随机变量(,)X Y 的概率密度为101,(,)0x y xf x y ⎧<<<=⎨⎩,,其它 ①求条件概率密度(|)X f x y 和(|)Y f y x ?②判断X 和Y 是否独立?给出理由。
先求边缘概率密度()X f x 、()Y f y注意上下限的选取()X 2,01,01(),00,xx XY x x dy x f x f x y dy else else +∞--∞⎧<<<<⎧⎪===⎨⎨⎩⎪⎩⎰⎰, ()11,011||(),,10011,y Y XY ydxy y f y f x y dx dx y elsey else+∞-∞-⎧<<⎪-⎪⎧===⎨⎨-<<-<<⎩⎪⎪⎩⎰⎰⎰1-14 已知离散型随机变量X 的分布律为求:①X 的分布函数31X +的分布律1-15 已知随机变量X 服从标准高斯分布。
求:①随机变量XY e =的概率密度?②随机变量Z X =的概率密度? 分析:①[]()'()()Y X f y h y f h y =⋅②1122()|'()|[()]|'()|[()]Y X X f y h y f h yh y f h y =⋅+⋅答案:()22ln 22100()()00y z Y Z e y z f y f z elseelse--⎧>≥==⎩⎩1-16 已知随机变量1X 和2X 相互独立,概率密度分别为11121111,0()20,0x X e x f x x -⎧⎪≥=⎨⎪<⎩,22132221,0()30,0x X e x f x x -⎧⎪≥=⎨⎪<⎩求随机变量12Y X X =+的概率密度?解:设11221()Y Y X X Y X ==+⎧⎨=⎩任意的 求反函数,求雅克比J =-1()12121136121210,60y y Y Y e y y f y y else--⎧⎪≥≥=⎨⎪⎩()11111321100y y Y e e y f y else --⎧⎪-≥=⎨⇒⎪⎩1-17 已知随机变量,X Y 的联合分布律为{}532m,,,0,1,2,!!m n e P X Y n m n m n -====求:①边缘分布律{}m (0,1,2,)P X m == 和{}(0,1,2,)P Y n n == ?②条件分布律{}m |P X Y n ==和{}|m P Y n X ==?分析:{}32532m,,,0,1,2,!!32!!m n m n e P X Y n m n m n e e m n ---=⋅====泊松分布 {},0,1,2,!k e P X k k k λλ-==={}01!!k k kk k P X k e e e k e k λλλλλλ-∞=∞∞--======⋅=∑∑∑P19 (1-48)解:①{}{}121332m !m,!n m n n e P X P X Y n e n m -=∞=∞-=====∑∑{}{}21n m 2,!n n P Y P X Y n e n ∞=-=====∑同理 ②{}{}{}m,n P X Y n P X m P Y ⋅===== 即X 、Y 相互独立1-18 已知随机变量12,,,nX XX 相互独立,概率密度分别为1122(),(),,()n n f x f x f x 。
又随机变量1121212n nY X Y X X Y X X X =⎧⎪=+⎪⎨⎪⎪=+++⎩证明:随机变量12,,,nY Y Y 的联合概率密度为12112211(,,,)()()()Y n n n n f y y y f y f y y f y y -=--11212121212323211211121n n n n n n n nY X Y X X X Y Y Y X X X X Y Y Y X X X X Y Y Y X X X X ----=⎧⎪=+=-⎧⎪⎪⎪=++=-⎪⎪⎨⎨⎪⎪⎪⎪=+++=-⎩⎪=+++⇒+⎪⎩10000110001001000011000011J -==--因为|J|=1,故 已知随机变量12,,,nX X X 相互独立,概率密度分别为1122(),(),,()n n f x f x f xX 121211(,,,)(,,,)n Y n n f y y y f y y y y y -=-- 12121111221X 1(,,,)(,,,)()()()n n n n n n Y f y y y f y y y y y f y f y y f y y --=--=--1-19 已知随机变量X 服从拉普拉斯分布,其概率密度为1(),2xX f x ex -=-∞<<+∞求其数学期望与方差?解:[]()()22222200121(022222)()X xxxX xxxxx E X x dx x dx E X x dx x dx x dx x ee dx exdxxee f x e d f x x e e ∞∞-∞-∞∞∞-∞-∞∞∞-+∞-∞-∞-+∞----===⎡⎤==⎣⎦==-+=⋅=-+=⎰⎰⎰⎰⎰⎰⎰⎰奇函数偶函数1-20 已知随机变量X 可能取值为{4,1,2,3,4}--,且每个值出现的概率均为15。
求:①随机变量X 的数学期望和方差?②随机变量23Y X =的概率密度?③Y 的数学期望和方差?①③答案: ② Y 3 12 27 48 P1/51/51/52/5离散型随机变量的概率密度表达式 P12,1-25式()()1k k k f x p x x δ∞==-∑ 其中(),0,0x x x δ∞=⎧=⎨≠⎩ 为冲激函数()()()()()()1312272485Y f y y y y y δδδδ=-+-+-+-[]21212[][()]()[]D [][]k k k k kk E X x p E g X g x p E X X E X E X ∞=∞===⇒=-∑∑[][]22446214[][]D 55251388406[][]1098D 525E X E X X E Y E Y Y ======1-22 已知两个随机变量,X Y 的数学期望为1,2X Y m m ==,方差为224,1X Y σσ==,相关系数0.4XY ρ=。
现定义新随机变量,V W 为23V X YW X Y=-+⎧⎨=+⎩ 求,V W 的期望,方差以及它们的相关系数?[][][][][][][][][][]22374.817.82XYE V E W D V D W E aX bY aE X bE Y D aX bY a D X b D Y abC +=+++=+====XYXY X YC ρσσ=0.131-23 已知随机变量,X Y 满足Y aX b =+,,a b 皆为常数。
证明: ① 2XY XC a σ=;②1010XYa a ρ>⎧=⎨-<⎩;③ 当0X m ≠且2[][]aE X b E X =-时,随机变量,X Y 正交。
① X Y X Y X C R m m =-[][][]()22XY X C a X XE Y E aX b am bE XY E X aX b aE X bm σ=+=+⎡⎤=+=+⎡⎤⎣⎦⎣⎦⇒=②XYXY X YC ρσσ=()()()222X aX b a D Y D D X a σ===+2XYXY X YC a a aρσσ===③0XY R ⇔正交=[]22[][]XE XY aE X bm aE X b E X ⎧⎡⎤=+⎣⎦⎪⇒⎨=-⎪⎩得证1-25 已知随机变量,X Y 相互独立,分别服从参数为1λ和2λ的泊松分布。