原子结构与元素周期律ppt

合集下载

《元素性质的周期性变化规律》元素周期律PPT课件

《元素性质的周期性变化规律》元素周期律PPT课件

(2)试从原子结构角度解释同周期元素性质存在周期性变化的原 因。 提示:核外电子层数相同,随着原子序数(核电荷数)的递增,原子 核对核外电子的引力逐渐增强,原子半径逐渐减小,元素原子的 得电子能力逐渐增强,失电子能力逐渐减弱,最终导致元素的非 金属性逐渐增强,金属性逐渐减弱。
【案例示范】 【典例】(2017·全国卷Ⅱ)a、b、c、d为原子序数依 次增大的短周期主族元素,a原子核外电子总数与b原子 次外层的电子数相同;c所在周期数与族数相同;d与a同 族,下列叙述正确的是 ( )
第二节 元素周期律 第1课时 元素性质的周期性变化规律
-.
一、原子结构的周期性变化
结合图1、图2、图3完成下表:
原子 电子 最外层 序数 层数 电子数
1~2 1
3~ 10
_2_
1~2
_1_~__8_
原子半径的 变化(稀有气 体元素除外)

由_大__到_小__
最高或最 低化合价 的变化
+1→0
变化。 核外电子排
2.实质:元素性质的周期性变化是原子的___________ 布 ___的周期性变化的必然结果。
知识点一 元素周期表中主族元素的周期性变化规律
【重点释疑】
项目
同周期(左→右)
原 核电荷数 逐渐增大 子 电子层数 相同 结 构 原子半径 逐渐减小
同主族(上→下) 逐渐增大 逐渐增多
③Al向(OAHl)(3O+H3)H3+沉=淀==中= 加Al入3++盐3H酸2O,发生反应的离子方程式: _________________________。
3.钠、镁、铝的最高价氧化物对应水化物的碱性
NaOH 分类 强碱 碱性强弱 结论

优秀课件——元素周期律(共45张PPT)

优秀课件——元素周期律(共45张PPT)
化学反应中不稳定结构总是通过各种方式(得失电子、
共用电子对)趋向达到稳定结构
(2)核外电子排布与元素性质的关系
质子数、电子层数 决定 元素的原子半径由________________
最外层电子数 决定 元素的化学性质主要由________________
最外层电子数 决定 元素的化合价主要由_________________ 金属元素的原子最外层电子数一般少于4,易失电子
N +5
-3
O
F
Ne 0
最低价
元素符号 最高价 Na +1 Mg +2 Al +3
-2
-1
Si +4
-4
P +5
-3
S +6
-2
Cl +7
-1
Ar 0
最低价
最高正价= 最外层电子数(F、O除外) 负价 = 最外层电子数-8
随着原子序数的递增
引起了
课堂总结
核外电子排布呈周期性变化 最外层电子数 1→8
• 【回顾】
• 1、碱金属元素的性质递变,其本质原因? • 2、卤素性质递变,其本质原因?
•【思考与交流】 元素的性质随着原子序数的递增而呈怎 样变化呢?
从今天开始,我们就通过来学习认清这些问题
一. 原子核外电子的排布
1. 电子层-表示运动着的电子离核远近及能量高低
含多个电子的原子中, 电子是分层排布的。能量较 低的电子运动在离核较近的 区域,能量较高的电子运动 在离核较远的区域。
深入探讨
原子半径受哪些因素制约?为什么随原子序数 的递增,原子半径出现从大到小的周期性变化?
①电子层数:电子层数越多,原子半径越大 最主要因素 影响原 子半径 大小的 因素 ②核电荷数: 核电荷数增多,使原子半径有减小的趋向

人教版高中化学必修一《原子结构与元素周期表》物质结构元素周期律PPT(第2课时)

人教版高中化学必修一《原子结构与元素周期表》物质结构元素周期律PPT(第2课时)

▪ c.分类:
▪ 短周期:包括__第__一__、__二_、__三__周__期________

第四、五、六、七周期
▪ 长周期:包括____________ _________。
▪ ②族
▪ a.个数:元素周期表有_1_8_个纵行,但只有1_6_ 个族
。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
▪ⅠAb原Ⅱ.A子特Ⅲ的B点Ⅳ最:B 外元ⅤB层素Ⅵ电B周子Ⅶ期B 数表中Ⅷ主族元ⅠB素Ⅱ的B 族ⅢA序ⅣA数Ⅴ等A 于ⅥA其ⅦA 0 ____________________。
▪ c.分类:
▪ 主族Ⅳ:A在族序数后标A,如周期表中第14纵行表示为 ▪ 第副_族_:__在__族__序族数。后标B,如周期表中第6纵行表示为
递增的顺序从上到下排成纵行。
钾(K) 钙(Ca)
周期(横 周期序数 = 电子层数
短周期 第一行周期):2 种元素
第二周期:8 种元素 第三周期:8 种元素
长周期 第四周期:18 种元素
第五周期:18 种元素 第六周期:32 种元素 第七周期:32种元素
(镧系元素) (锕系元素)
主族: ⅠA , ⅡA , ⅢA , ⅣA ,ⅤA , ⅥA , ⅦA
零族称为 稀有气体 元素
思考:Cl的位置的描述:第三周期第VIIA族
第III周期 第3周期 第三周期
第七主族 VII族 VIIA族
1、氦元素原子最外层有两个电子, 为什么不把它排在ⅡA族?
2、哪周期元素种类最多?族呢?
第六周期、第七周期
第ⅢB
课 1.已知某主族元素的原子结构示意图如
堂 下,判断其位于第几周期?第几族?

《原子结构》原子结构与元素周期表课件 图文

《原子结构》原子结构与元素周期表课件 图文

年代 1911年
模型
卢瑟福 原子 模型
观点或理论
在原子的中心有一个带正电 荷的核,它的质量几乎等于 原子的全部质量,电子在它 的周围沿着不同的轨道运转, 就像行星环绕太阳运转一样。
年代 1913年
模型
玻尔原子 模型
1926~ 1935年
电子云 模型
观点或理论
电子在原子核外空间的一定 轨道上绕核做高速圆周运动。
(8)内层电子总数是最外层电子数2倍的原子有Li、P。 (9)电子层数与最外层电子数相等的原子有H、Be、Al 。 (10)电子层数是最外层电子数2倍的原子是Li。 (11)最外层电子数是电子层数2倍的原子有He、C、S。 (12)最外层电子数是电子层数3倍的原子是O。
【迁移·应用】 1.(2019·南京师大附中高一检测)下列各原子结构示 意图中所表示的核外电子排布正确的是 ( )
【解析】选D。A原子的M层比B原子的M层少3个电子,B 原子的L层电子数恰为A原子L层电子数的2倍,说明A、B 为第二、第三周期元素;L层最多排8个电子,B原子的L 层电子数恰为A原子L层电子数的2倍,说明B原子的L层 有8个电子,A原子的L层有4个电子,故A是碳原子;A原子 的M层比B原子的M层少3个电子,故B为铝原子。
2.用A+、B-、C2-、D、E、F和G分别表示含有18个电子 的七种微粒(离子或分子),请回答: (1)A元素是________,B元素是________,C元素是 ________(用元素符号表示)。 (2)D是由两种元素组成的双原子分子,其分子式是 ________。
知识点 核外电子的分层排布 【重点释疑】 1.原子核外电子排布规律及其之间的关系
2.原子核外电子排布的表示方法 (1)原子结构示意图。

原子结构与元素的性质PPT课件

原子结构与元素的性质PPT课件

最外层一个电子所需能量(I1)的范围:
I1
__4_1_9__ < I1 <___7_3_8___。
-
16
跟踪练习
1.下列说法正确的是( C )
A.在所有元素中,氟的第一电离能最大 最大的是稀有气体元素He
B.铝的第一电离能比镁的第一电离能大 反常现象: 同周期ⅡA > ⅢA、 VA > VIA
C.第3周期所含的元素中钠的第一电离能最小
1、影响因素
原子半径 取决于 1、电子的能层数
的大小
2、核电荷数

子 同主族,由于
半 电子能层的增
径 逐 渐
加使电子间的 斥力增大而带
增 来的原子半径
大 增大的趋势。
原子半径逐渐减小
同周期电子能层数相同, 由于核电荷数的增加 使核对电子的引力增 加而带来的原子半径 减小的趋势。
-
6
例1 比较下列微粒半径的大小:
(3)同种元素的原子与离子,核外电子数越多, 微粒半径 越大 。 Mg > Mg2+
(4)电子层结构相同的离子,核电荷数越大离子
半径 越小 。
O2->Na+
-
8
二、电离能(阅读课本P17)
1、概念
气态电中性基态原子失去一个电子 转化为气态基态正离子所需要的最低能 量叫做第一电离能。
用符号I1表示,单位:kJ/mol
1. 下列左图是根据数据制作的第三周期元素 的电负性变化图,请用类似的方法制作IA、 VIIA元素的电负性变化图。
-
24
-
25
2.在元素周期表中,某些主族元素与右下方的主 族元素的性质有些相似,被称为“对角线规则”。 查阅资料,比较锂和镁在空气中燃烧的产物,铍 和铝的氢氧化物的酸碱性以及硼和硅的含氧酸酸 性的强弱,说明对角线规则,并用这些元素的电 负性解释对角线规则。

第一节元素周期表(共40张PPT)

第一节元素周期表(共40张PPT)

第ⅦA 族
与水缓慢反应
(2)原子结构特点 Cl2+H2O=HCl+HClO
静置后,液体分为两层。
通一过个以 12上C相质比量较同×,1点/思12考:钠和钾最的外性质层有 7个电子
静置后,液体分为两层。
和递变性。 (氧化性:Cl2 >I2)
核电荷数依次增多
不同点: 电子层数依次增多 上层无色,下层分别呈橙红色、紫红色
第一章 物质结构、元素周期律
第一节 元素周期表 一、元素周期表的结构
原子序数:依原子核电荷数由小到大的顺序给元素编号,这种
编号叫原子序数。
原子序数=核电荷数=质子数=核外电子数 (一)元素周期表的编排原则
1、横行: 把电子层数相同的各种元素按原子序数递增顺序
从左到右排列。
2、纵行: 把最外层电子数相同的各种元素按电子层数递增顺序 从上而下排成。
性逐渐增强,非金属性逐渐减弱。
2. 元素性质与原子结构有有密切的关系,主要与原子
核外的排布,特别是最外层电子数有关。原子结构
相似的一族元素,它们在化学性质上表现出相似性 和递变性。
1、砹(At)原子序数85,与F、Cl、Br、I同族,推测砹或
砹的化合物不可能具有的性质是( B)
A、砹易溶于某些有机溶剂 B、砹能与水剧烈反应
应越来越
,剧生烈成的氧化物越来越

最高复价杂氧化物对应水化物的碱性越来越 。

讨论1:Li与K 应如何保存? Li封存于固体石蜡中, 少量K保存于煤油中。
讨论2:碱金属与盐酸: 2R+2H+= 2R++H2 ↑ 讨论3:碱金属与盐溶液: 先与水反应
讨论4:Li+、Na+、K+、Rb+、Cs+也具有强还原性吗? 没有。 有较弱的氧化性。 氧化性: Li+ > Na+ > K+ > Rb+ > Cs+

人教版高中化学选修三课件:第一章 第二节 第二课时 元素周期律(29张PPT)

人教版高中化学选修三课件:第一章 第二节 第二课时 元素周期律(29张PPT)

电负性
1.电负性 (1)概念 ①键合电子:原子中用于形成 化学键 的电子。 ②电负性:用来描述不同元素的原子对 键合电子 吸引力 的大小。电负性越大的原子,对键合电子的吸引力 越大 。 (2)衡量标准 电负性是由美国化学家 鲍林 提出的,他以氟的电负性为 4.0 作为相对标准,得出了各元素的电负性。
5.已知元素的电负性和原子半径一样,也是元素的一种基本性质,下表给
出14种元素的电负性:
元素 Al B Be C Cl F Li Mg N Na O P S Si
电负 1.5 2.0 1.5 2.5 3.0 4.0 1.0 1.2 3.0 0.9 3.5 2.1 2.5 1.8
1.离子半径大小比较的规律 (1)同种元素的离子半径:阴离子大于原子,原子大于阳离 子,低价阳离子大于高价阳离子。如r(Cl-)>r(Cl),r(Fe)>r(Fe2+) >r(Fe3+)。 (2)电子层结构相同的离子,核电荷数越大,半径越小。如 r(O2-)>r(F-)>r(Na+)>r(Mg2+)>r(Al3+)。 (3)带相同电荷的离子,电子层数越多,半径越大。如r(Li+) <r(Na+)<r(K+)<r(Rb+)<r(Cs+),r(O2-)<r(S2-)<r(Se2-)<r(Te2-)。
1.判断正误(正确的打“√”,错误的打“×”)。
(1)电负性是人为规定的一个相对数值,不是绝对标准 ( √ )
(2)元素电负性的大小反映了元素对键合电子引力的大小( √ )
(3)元素的电负性越大,则元素的非金属性越强
ቤተ መጻሕፍቲ ባይዱ
(√ )
(4)同一周期电负性最大为稀有气体元素

2024版高一化学原子结构PPT课件图文

2024版高一化学原子结构PPT课件图文

波函数性质
波函数具有一些基本性质,如连续性、有限性、单值性等。此外,波函数还需要满足归一化 条件,即粒子在全空间出现的概率总和为1。
2024/1/25
波函数与电子云模型关系
波函数与电子云模型密切相关。在原子或分子中,电子的波函数决定了电子云的形状和分布。 通过求解薛定谔方程可以得到电子的波函数,进而得到电子云的分布。
高一化学原子结构 PPT课件图文
2024/1/25
1
目录
CONTENTS
• 原子结构基本概念 • 原子核结构与性质 • 电子云模型与波函数理论 • 元素周期律与化学键合性质 • 实验室制备和检测技术 • 原子结构在生活和科技中应用
2024/1/25
2
01 原子结构基本概念
2024/1/25
3
原子定义与组成
放射性衰变遵循指数衰变规律, 即衰变速度与剩余原子核数量
成正比
放射性衰变产生的射线具有穿 透能力和电离能力,对人体和
环境有一定危害
2024/1/25
9
射线类型及其特点
01
02
03
04
α射线
由氦核组成,带正电荷,质量 大,电离能力强,穿透能力弱
2024/1/25
β射线
由电子组成,带负电荷,质量 小,电离能力较弱,穿透能力
周期表中共有18个纵列,其中8、9、 10三个纵列共同组成一个族,其余每 个纵列为一个族,共有16个族。
2024/1/25
周期表中共有7个横行,即7个周期, 每个周期中元素的性质具有相似性。
元素周期表反映了元素性质的周期性 变化,是学习和研究化学的重要工具。
6
02 原子核结构与性质
2024/1/25

无机化学大学课件第一章原子结构和元素周期律

无机化学大学课件第一章原子结构和元素周期律

• 意义:n 是决定电子层能量高低的主要因素,
n=1表示离核最近,能量最低的第一电子层;n=2表示离核
次近的能量次低的第二电子层,依此类推。能量越低,受核束 缚越大,能量越低。
(2) 角量子数(l)或副量子数(azimuthal quantum number)
电子绕核运动时,不仅具有一定的能量,而且也具有一定
电子层结构的特征,并结合原子参数熟悉元素性质周 期性的变化规律。
图1 道尔顿原子模型
§1.1 原子的含核模型
1. “枣糕模型”: 1903年W.汤姆生(1824~1907)提出, 原子是一个球体,正电荷均匀分布在整个球内,电子 则镶在球里,原子受到激发后,电子振动,产生光谱。
图2 汤姆生原子模型
r,q,R rQ qF
r,q,R rYq,

解薛定谔方程时,为了方便起见,将直角坐标x,y,z变
换 成 球 极 坐 标 r,q,f , 这 样 (x,y,z) 就 变 成 了 (r,q,f)=
R(r)Q(q)F(f) , 将 与 角 度 有 关 的 函 数 合 并 为 Y(q,f) , 则
要的,或者说,四个量子数确定了,核外电子的运动状态就确
定了。
• (1) 主量子数(n)(principle quantum number)

它是用来描述原子中电子出现概率最大区域离核远近的参
数,或者说,它是确定电子层数的。
n 的取值为:1, 2, 3, 4…n等正整数,表示电子层数。
光谱学上常用K,L,M,N…表示电子层数。
数E 就是粒子处在该定态时的总能量。
Figure 9 pherical polar coordinates(r,θ,φ) and Cartesian axes(x, y, z).

第八章原子结构和元素周期表PPT课件

第八章原子结构和元素周期表PPT课件
5
电子运动状态的量子力学概念
一 、原子结构的认识史
1、古原子说
希腊词“原子”— “ato2m、o近s”代原子学说
——不可分割
质量守恒定律,定组成定律,倍 比定律
原子不可再分。
6
电子运动状态的量子力学概念
3、枣糕模型:
1906年诺贝尔 物理学奖
-
阴极
O
K
狭缝 +
7
4、Rutherford E有核原子模型
镧铈 镨 钕 钷 钐 铕 钆 铽镝 钬 铒 铥 镱镥
89 Ac 90 Th 91 Pa 92 U 93 Np 94 Pu 95Am 96 Cm 97 Bk 98 Cf 99 Es 100 Fm 101Md 102 No 103 Lr
锕 钍 镤 铀镎 钚 镅 锔 锫 锎 锿 镄 钔 锘 铹
4
第一节
电子运动状态的 量子力学概念
-粒子散射实验: -粒子:He+
Rutherford E “有核”原子模型: ◆ 原子核好比是太阳,电子好比是绕 太阳运动的行星,绕核高速运动。 8
电子运动状态的量子力学概念
核外电子有怎样的状态呢?
◆该模型与经典的电磁学发生矛盾: 绕核电子应不停地连续辐射能量, 结果: (1)应得到连续光谱; (2)原子毁灭。 事实: (1)原子没有毁灭; (2)原子光谱也不是连续光谱而是
7 87 Fr 88 Ra 89-103 104 Rf 105 Db 106 Sg 107 Bh 108 Hs 109 Mt 110 111 112
钫 镭 Ac-Lr 钅卢 钅杜 钅喜 钅波 钅黑 钅麦 Uun Uuu Uub
114 116 118
镧系 锕系
57 La 58 Ce 59 Pr 60 Nd 61 Pm 62 Sm 63 Eu 64 Gd 65 Tb 66 Dy 67 Ho 68 Er 69Tm 70 Yb 71 Lu

《无机化学》课件第一章

《无机化学》课件第一章

第一节 原子的组成与核外电子排布
电子云的角度分布图是通过将|Ψ|2的角度分布部分,即|Y|2随 θ、Φ的变化作图而得到的(空间)图像,它形象地显示出在原子核 不同角度与电子出现的概率密度大小的关系。图1-1(b)是电子云的 角度分布剖面图。电子云的角度分布剖面图与相应的原子轨道角 度分布剖面图基本相似,但有以下不同之处:原子轨道角度分布 图带有正、负号,而电子云的角度分布图均为正值(习惯不标出正 号);电子云的角度分布图比相应的原子轨道角度分布要“瘦”些, 这是因为Y值一般是小于1的,所以|Y|2的值就更小些。
第一节 原子的组成与核外电子排布
五、 多电子原子结构
多电子原子指原子核外电子数大于1的原子(即除H以外 的其他元素的原子)。在多电子原子结构中,核外电子是如何 分布的呢?要了解多电子中电子分布的规律,首先要知道原 子能级的相对高低。原子轨道能级的相对高低是根据光谱实 验归纳得到的。H原子轨道的能量取决于主量子数n,在多电 子原子中,轨道的能量除取决于主量子数n外,还与角量子 数l有关,总规律如下:
无机化学
第一章 原子结构和元素周期律
原子的组成与核外电子排布 元素周期律与元素周期表 元素基本性质的周期性
第一节 原子的组成与核外电子排布
一、 原子的组成
在20世纪30年代,人们已经认识到原子是由处于原子中 心的带正电荷的原子核和核外带负电荷的电子构成的。由于原 子核跟核外电子的电量相同,电性相反,所以原子呈电中性。 原子很小,半径约为10-10m;原子核更小,它的体积约为原 子体积的1/1012。如果把原子比喻成一座庞大的体育场,则原 子核只相当于体育场中央的一只蚂蚁。因此原子内部有相当大 的空间,电子就在这个空间内绕着原子核作高速运动。
第一节 原子的组成与核外电子排布

原子结构与元素周期系PPT

原子结构与元素周期系PPT

为材料科学提供支持
根据元素在周期表中的位置和性质, 可以指导新材料的合成和研究,为材 料科学的发展提供支持。
03 原子结构与元素性质关系
原子半径变化规律
01
同一周期,从左到右,随着核电 荷数的递增,原子半径逐渐减小 (稀有气体元素除外)。
02
同一主族,从上到下,随着核电 荷数的递增,原子半径逐渐增大 。
01
金属元素集中在周期表的左下方
金属元素一般具有较大的原子半径和较低的电离能,容易失去电子形成
阳离子。
02
非金属元素集中在周期表的右上方
非金属元素一般具有较小的原子半径和较高的电离能,容易得到电子形
成阴离子。
03
过渡元素位于周期表的中间
过渡元素具有介于金属和非金属之间的性质,可以形成多种化合物。
周期表应用及意义
金属性、非金属性变化规律
同一周期,从左到右,随着核 电荷数的递增,元素的金属性 逐渐减弱,非金属性逐渐增强

同一主族,从上到下,随着核 电荷数的递增,元素的金属性 逐渐增强,非金属性逐渐减弱

金属性最强的元素位于周期表 的左下角,非金属性最强的元 素位于周期表的右上角(稀有 气体元素除外)。
在金属和非金属的分界线附近 寻找半导体材料。
预测元素性质
通过元素在周期表中的位 置,可以预测其物理性质、 化学性质以及可能的化学 反应。
指导合成新物质
利用元素周期律,可以指 导合成具有特定性质的新 物质,如催化剂、超导材 料等。
解释化学反应机理
元素周期律有助于理解化 学反应的机理和过程,如 氧化还原反应、酸碱反应 等。
元素周期律在材料科学中的应用
核科学研究
核反应研究对于揭示物质结构和基本相互作用具有重要意 义,有助于解决能源、环境、安全等领域的重大问题。

物质结构和元素周期律-PPT课件

物质结构和元素周期律-PPT课件

答案:D
19
A.质子数为 7
B.最外层电子数为 2
C.核外电子数为 7
D.核外有 3 个电子层
解析:示意图中“+12”表示该原子质子数为 12,核外电子
共 12 个,电子排布情况为:最内层 2 个电子,次外层 8 个电
子,最外层 2 个电子,电子层数为 3,故应选 B、D。
答案:BD
9
大家有疑问的,可以询问和交流
4
典例剖析
【例 1·单选Ⅰ】下列说法正确的是( )。 A.同位素3648Se、6380Zn 具有相同的质量数 B.1210Na 与1119Na 互称为核素 C.氟元素的符号为197F D.同一元素的不同核素互称为同位素 解析:6384Se、6380Zn 质子数不同,不互为同位素,A 错误;2110Na 与1119Na 互称为同位素,B 错误;氟元素的符号为 F,C 错误。 答案:D
2
6.以ⅠA 和ⅦA 族为例,了解同一主族内元素性质递变规 律与原子结构的关系。
7.了解金属、非金属在元素周期表中的位置及其性质递变 的规律。
8.了解化学键的定义。了解离子键、共价键的形成。了解 化学反应的本质。
3
元素、核素、同位素
1.元素 元素是具有相同的___核__电__荷__数___(即__质__子__数__)的一类原子 的总称。 2.核素 核素是具有一定数目质子和一定数目中子的一种原子。 3.同位素 质子数___相__同___而中子数___不__同___的同一元素的不同原子 互称为同位素。
17
3.共价键 (1)定义:通过____共__用__电__子__对__而形成的相互作用。非金属 元素原子之间一般形成共价键。例如,
(2)共价键的分类。 ①非极性键:由同种元素原子形成的共价键,如 H-H 等。 ②极性键:由不同种元素原子形成的共价键,如 H-Cl 等。 4.化学反应的本质 化学反应的本质是旧化学键断裂,新化学键形成的过程。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1015
(
1 22
1 n2
)
ν: 谱线波长的倒数, 波数(cm-1). n:大于2的正整数(量子数).
瑞典物理学家
Balmer (1825-1898)
当n = 3, 4 , 5, 6 分别对应氢光谱中
↓ ↓↓ ↓
H、H、H、H 、 Balmer系
8
里得堡(Rydberg) ------瑞典 1913
13
光子能量的大小与光的频率成正比。
E = hν
式中 E 为光子的能量,ν 为光子的频率,h 为 Planck 常 数,其值为 6.626×10-34 J·s。
物质以光的形式吸收或放出的能 量只能是光量子能量的整数倍。
14
2 玻尔(Bohr)理论
Bohr理论的三点假设: (1)核外电子只能在有确定半径和能量的轨道上运动,
√ 说明了原子的稳定性 √ 对其他发光现象(如X光的形成)也能解释 √ 计算氢原子的电离能
玻尔理论的不足之处 ×不能解释多电子原子、分子或固体的光谱 × 不能解释氢原子光谱的精细结构
18
2.1.2 微观粒子运动的特性
1. 量子化性
由于原子中电子的能量是不连续的变化,故是量子 化的,所以量子化性是原子中电子及一切微观粒子 运动状态的特性之一。
和光子的能量公式 E = h ν 的联立出发,进行推理:
mc2 h mc2 h c mc h

P
表示动量,则
P = mc ,故有公式
P
h
20
电子衍射实验
证实了德布罗意的假设--微观粒子具有波粒 二象性。
衍射环—波动性! 21
3.统计性
(1) 测不准原理(Werner Heisenberg, 1926) 对于具有量子化和波粒二象性运动的微观粒子不可
2
§2.1 氢原子光谱和微观粒子的运动特性 § 2.2 氢原子核外电子运动状态的量子力学描述 § 2.3 多电子原子核外电子的运动状态 § 2.4 元素的性质与原子结构的关系
3
§2.1 氢原子光谱和微观粒子的运动特性
为什么要研究氢原子的光谱? 这是因为氢原子光谱反映了氢原子的外 层电子排布和运动状态; 原子的组成—原子核和核外电子—原子 结构
Calcium Carbon Helium Hydrogen Iron Krypton Magnesium Neon Nitrogen Oxygen Sodium Sulfur Xenon
规律?
Hale Waihona Puke 77原子光谱中,各谱线的波长或频率有一定的规律性。
巴尔麦( J. Balmer)经验公式(1885)
v
3.289
1
RH
(
1 n12
1 n2 2
)
c
RH
c(
1 n12
1 n2 2
)
v 3.2911015 ( 1 1 )s-1
n1 = 1, 2… n2: n2 > n1的正整数
: 谱线的频率(s-1)
n12 n22
Rydberg (1854-1919)
瑞典物理学家
RH:里得堡(Rydberg) 常数1.097 ×107 m-1
4
2.1.1 氢原子光谱和波尔理论
连续光谱(自然光)
电磁波连续光谱 c = λν
连续光谱(实验室)
5
5
1. 氢原子光谱
氢原子光谱(原子发射光谱):真空管中含少量H2(g),高压 放电,发出紫外光和可见光 → 三棱镜 → 不连续的线状光谱
Balmer 系
紫蓝
氢原子的 青 特征线状光谱红
6
6
所有元素都具有特征发射光谱!
第2章 原子结构和元素周期律
学习基本要求
掌握: 微观粒子运动的特性;氢原子的核外电子运动 状态,波函数、原子轨道、电子云的概念及角 度分布图、四个量子数的合理组合及物理意义 ;多电子原子的原子轨道能级图和能级组,核 外电子分布原则及其分布。
了解: 各周期元素原子结构和元素性质周期律,元素 的分区,原子半径、电离能、电子亲和能、电 负性、氧化数与原子结构的关系。
19
2 核外电子运动的波粒二象性
1924 年,法国年轻的物理学家 L. de Broglie ( 1892 — 1987 )指出,对于光的本质的研究,人们长期以来注重其波动 性而忽略其粒子性;与其相反,对于实物粒子的研究中,人 们过分重视其粒子性而忽略了其波动性。
L. de Broglie 从 Einstein 的质能联系公式 E = m c 2
轨道离核越远,能量越大。
16
(3)处于激发态的电子不稳定,可以跃迁
到离核较近的轨道上。
从激发态回到基态释放光能,光的频率取决于轨 道间的能量差:
hν = E2-E1
ν = E2-E1 h
各能级的能量为:
-13.6 E = n2 eV
17
玻尔理论的成功之处
√ 解释了 H 及 He+、Li2+、B3+ 的原子光谱
9
n1=3 n1=2 n1=1
10
氢原子光谱特征: ①线状的,不连续的 ②有规律的
理论上如何解释?
11
矛盾
十九世纪末,科学家们试图用经典的电磁理论 解释氢光谱的产生和规律性时,发现用经典电 磁理论和卢瑟福的有关原子结构的行星模型理 论来解释与其实验结果发生了尖锐的矛盾。按 其推论氢光谱等原子光谱应是连续光谱,但实 际情况是氢光谱等原子光谱不是连续光谱,而 是线状光谱。
在同一个轨道中运动时,电子能量固定。
轨道角动量
L
=
n
h 2π
Bohr量子化条件
这些轨道称为稳定轨道,它具有固定的能量。沿此轨 道运动的电子,称为处在定态的电子,它既不吸收也 不发射能量。
15
(2)电子在不同轨道上运动时具有不同的能量,即具 有许多定态。
通常,电子处在离核最近的轨道上,能量最低,原 子处于基态; 原子得能量后,电子被激发到高能轨道 上,原子处于激发态。把这些具有不连续能量的定态 称为能级。
这些矛盾用经典理论是不能解释的。
12
① 1900 年,德国科学家 Planck 提出了著名的 量子论。Planck 认为在微观领域能量是不连续 的,物质吸收或放出的能量总是一个最小的能 量单位的整倍数。这个最小的能量单位称为能 量子。
② 1905 年Einstein 在解释光电效应时,提出了 光子论。Einstein 认为能量以光的形式传播时 ,其最小单位称为光量子,也叫光子。
能同时准确测定它的空间位置和动量(或速度)。
x p h / 4π
Δx -粒子的位置不确定量 Δ p -粒子的运动速度不确定量
位置测定越准确,其相应动量 的准确度就越小,位置和动量不 能同时被精确测定。
相关文档
最新文档