从开环Bode图求系统开环传递函数参考例题
自动控制原理及应用各章习题清华董红生
习题1-1 什么是自动控制?什么是自动控制系统?1-2 试比较开环控制和闭环控制的优缺点。
1-3 自动控制系统有哪些基本组成元件?这些元件的功能是什么?1-4 简述反馈控制系统的基本原理。
1-5 简述对自动控制系统基本要求。
1-6 试举几个日常生活中的开环和闭环控制系统的实例,并说明它们的工作原理。
1-7 液位自动控制系统如图1-19(a)所示,试说明系统工作原理。
若将系统的结构改为图1-19(b)图,对系统工作有何影响?(a) (b)图1-19习题1-71-8 家用电冰箱的恒温控制系统如图1-20所示,试画出系统原理框图。
图1-20习题1-81-9 某仓库大门自动控制系统的原理如图1-21所示,试说明自动控制大门开启和关闭的工作原理,并画出系统原理框图。
1-10 导弹发射架方位随动控制系统如图1-22所示,试说明系统工作原理,并画出系统原理框图。
图1-20 习题1-8nU fU cU aU rθ图1-21 习题1-10习 题2-1 试建立如图2-39所示电路的微分方程。
1R )C(b )(a )图2-39 习题2-12-2求下列函数的拉普拉斯逆变换。
(1))3)(2(1)(+++=s s s s F(2))3()2(1)(3++=s s s s F (3))22(1)(2+++=s s s s s F2-3设系统传递函数为)2)(1(2)()(++=s s s R s C ,初始条件1)0(-=c ,0)0(=∙c ,试求单位阶跃信号作用时,系统输出响应)(t c 。
2-4若某系统在单位阶跃输入信号时,零初始条件下的输出响应t t e e t c --+-=21)(,试求系统的传递函数。
2-5使用复阻抗法写出如图2-40所示有源电路的传递函数。
)1C图2-40 习题2-52-6 已知系统方程组如下:⎪⎪⎩⎪⎪⎨⎧=-=-=--=)()()()()]()()([)()]()()()[()()()]()()[()()()(3435233612287111s X s G s C s G s G s C s X s X s X s G s X s G s X s C s G s G s G s R s G s X 试绘制系统结构图,并求闭环传递函数)()(s R s C 。
由伯德图确定传递函数
G(s)
K (1 1 s) 2 10
K (1 0.1s) 2
s(1 1 s) 2
s(1 5s) 2
0.2
穿越频率 1 ,因此,可以由L(1)=1, 或者 G( j ) 1 1 确定K。
通常在穿越频率附近,转折频率在穿越频 率左边的惯性环节的对数幅频特性可以认为是 -20db/dec 的斜线,即可以近似为一个积分环 节。而转折频率在穿越频率右边的惯性环节的 幅频特性可以认为是 0d的b 水平线,即可以近 似为1。
例2.29 某最小相位系统的对数幅频特性的渐近 线如图2.58所示,确定该系统的传递函数。
L( )
-20
-60 1
0 0.2
10
-20 图2.58 最小相位系统的伯德图
解 由于对数幅频特性的低频段是的直
线 20db / dec,所以,系统的传递函数有1个
积分环节。根据转折点处对数幅频特性渐近线 斜率的变化,容易写出系统的传递函数为
2. 由伯德图确定传递函数
对于最小相位系统,幅频特性和相频特性是单值 对应的,因此,根据系统的对数幅频特性就可以 写出系统的传递函数或者频率特性。 例2.28 某最小相位系统的对数幅频特性的渐近线 如图2.57所示,确定该系统的传递函数。
dB
40
L( )
-20
20
0 0.1 0.4
-40 -20
假设系统是最小相位的,则根据所选择的对数 幅频特性的渐近线,可以写出系统的传递函数。 例如,某系统的实验数据如表2.4所示,其伯 德图如图2.59所示。
表2.4 某系统的实验数据
0.1
0.2
0.4
1
2
4
10204099.6 49.3 23.7 7.96 3.26
自动控制原理课后习题答案,第5章(西南科技大学)
j
1(
j
5
1)
由频率特性可得:
解:
20
lg
0.4
1
L()
20 20
lg lg
0.41 5
20
lg
20
3
5
1 0.4 1
L() 3 2 10 4 3 20 5
可见:c 0.4
()
arctan
90
arctan 5
2
arc
tan 10
2
将 代c 入 ()
)( 1
1
s
1)
其中 1 10n 1
因 20lg K 20得K 10
因 20lg Mr 40 20
由Mr 2
1
12
得 0.05
10s2
G(s) (s2 0.1s 1)(0.1s 1)
5-8 已知单位反馈系统开环传递函数
G(s)H
(s)
s(s2
20(s 1) 2s 10)(s
1
2 10 时,直线斜率由
0dB/dec 变 为 -40dB/dec 、
10 5
40 60
当3 5 时,直线斜率由-
40dB/dec变为-20dB/dec 。
相频特性曲线由各环节的相频特性相加获得,计算几个点的 值绘出大致曲线。
num=[20 20]; den=[1 7 20 50 0]; bode(num,den) grid
20 lg K
由
lg1 lg10
得K= 100
40
G(s)
100(0.316s 1) s2 (0.00316s 1)
解(c) :系统最左端直线的斜率为40dB/dec,得 v = -2,系统有两 个纯微分环节。1 和n 分别是振荡和惯性环节的转折频 率,则系统开环传递函数为:
实验二北京科技大学自控实验(3)
【自我实践4-1】某单位负反馈系统的开环传递函数()(1)(2)kG s s s s =++,求(1) 当k=4时,计算系统的增益裕度,相位裕度,在Bode 图上标注低频段斜率,高频段斜率及低频段、高频段的渐近相位角。
(2) 如果希望增益裕度为16dB ,求出响应的k 值,并验证。
(1)当K=4时>> num=[4]; den=[1,3,2,0]; G=tf(num,den)[Gm,Pm,Wcg,Wcp]=margin(G) bode(num,den) gridtitle(′Bode Diagram of G(s)=4/[s(s+1)(s+2)] ′) G =4----------------- s^3 + 3 s^2 + 2 sContinuous -time transfer function.Gm =1.5000,Pm =11.4304,Wcg =1.4142,Wcp =1.1431 title(′Bode Diagram of G(s)=4/[s(s+1)(s+2)] ′)低频段斜率为-20dB/dec ,高频段斜率为-60dB/dec ,低频段渐近相位角为-90度,高频段的渐近相位角为-270度。
增益裕度GM=1.5000dB/dec ,相位裕度Pm=11.4304度 (2)当增益裕度为16dB 时,算得K=0.951,对应的伯德图为:>> num=[0.951]; den=[1,3,2,0]; G=tf(num,den)[Gm,Pm,Wcg,Wcp]=margin(G) bode(num,den) gridtitle(′Bode Diagram of G(s)=4/[s(s+1)(s+2)] ′) G = 0.951 ----------------- s^3 + 3 s^2 + 2 sContinuous -time transfer function.Gm =6.3091,Pm =54.7839,Wcg =1.4142,Wcp =0.4276 title(′Bode Diagram ′)【自我实践4-2】系统开环传递函数()(0.51)(0.11)kG s s s s =++,试分析系统的稳定性。
自动控制原理期末考试卷含答案
自动控制原理期末考试卷与答案一、填空题〔每空 1 分,共20分〕1、对自动控制系统的根本要求可以概括为三个方面,即: 稳定性 、快速性和 准确性 。
2、控制系统的 输出拉氏变换与输入拉氏变换在零初始条件下的比值 称为传递函数。
3、在经典控制理论中,可采用 劳斯判据(或:时域分析法)、根轨迹法或奈奎斯特判据(或:频域分析法) 等方法判断线性控制系统稳定性。
4、控制系统的数学模型,取决于系统 结构 和 参数, 与外作用及初始条件无关。
5、线性系统的对数幅频特性,纵坐标取值为20lg ()A ω(或:()L ω),横坐标为lg ω 。
6、奈奎斯特稳定判据中,Z = P - R ,其中P 是指 开环传函中具有正实部的极点的个数,Z 是指 闭环传函中具有正实部的极点的个数,R 指 奈氏曲线逆时针方向包围 (-1, j0 )整圈数。
7、在二阶系统的单位阶跃响应图中,s t 定义为 调整时间 。
%σ是超调量 。
8、设系统的开环传递函数为12(1)(1)Ks T s T s ++,那么其开环幅频特性为2212()()1()1KA T T ωωωω=+⋅+,相频特性为01112()90()()tg T tg T ϕωωω--=---。
9、反应控制又称偏差控制,其控制作用是通过 给定值 与反应量的差值进行的。
10、假设某系统的单位脉冲响应为0.20.5()105t t g t e e --=+,那么该系统的传递函数G(s)为1050.20.5s s s s+++。
11、自动控制系统有两种根本控制方式,当控制装置与受控对象之间只有顺向作用而无反向联系时,称为 开环控制系统;当控制装置与受控对象之间不但有顺向作用而且还有反向联系时,称为 闭环控制系统;含有测速发电机的电动机速度控制系统,属于 闭环控制系统。
12、根轨迹起始于开环极点,终止于开环零点。
13、稳定是对控制系统最根本的要求,假设一个控制系统的响应曲线为衰减振荡,那么该系统 稳定。
第五章(5) 频域:用实验法确定系统的传递函数
第五节 用实验法确定系统传递函数
例
已知采用积分控制液位系统的结构 和对数频率特性曲线,试求系统的传 和对数频率特性曲线 试求系统的传 hr(t) 递函数。 递函数。 1 K h(t)
1 4
L(ω)/dB
20 0 -20 -20dB/dec
S
Ts+1
φ(ω)
0 -90 -180
返回 解: 将测得的对数 -40dB/dec 1 = 曲线近似成渐 0.25S2+1.25S+1) 近线: 近线 ω 1 φ(s)= (S+1) (S/4+1)
第五章 频率特性法
第五节 用实验法确定系统传递函数
频率特性具有明确的物理意义, 频率特性具有明确的物理意义,可 用实验的方法来确定它.这对于难以列 用实验的方法来确定它 这对于难以列 写其微分方程的元件或系统来说,具有 写其微分方程的元件或系统来说 具有 很重要的实际意义。 很重要的实际意义。
一、用实验法确定系统的伯德图 二、根据伯德图确定传递函数
1. ι= 0
系统的伯德图: 系统的伯德图:
x
L(ω)/dB
-20dB/dec
低频渐近线为
0
20lgK-40dB/源自ecL(ω)=20lgK=χ 即
χ
ωc
ω
K=10 20
第五节 用实验法确定系统传递函数
2. ι= 1
系统的伯德图: 系统的伯德图: ω=1 L(ω)=20lgK
L(ω)/dB 20lgK
0
-20dB/dec
ω0
1 ω1 ωc
-40dB/dec
ω
低频段的曲线与横 轴相交点的频率为 的频率为ω 轴相交点的频率为 0 20lgK 因为 =20 lgω0-lg1
自动控制原理期末考试卷与答案
自动控制原理期末考试卷与答案一、填空题(每空 1 分,共20分)1、对自动控制系统的基本要求可以概括为三个方面,即: 稳定性 、快速性和 准确性 。
2、控制系统的 输出拉氏变换与输入拉氏变换在零初始条件下的比值 称为传递函数。
3、在经典控制理论中,可采用 劳斯判据(或:时域分析法)、根轨迹法或奈奎斯特判据(或:频域分析法) 等方法判断线性控制系统稳定性。
4、控制系统的数学模型,取决于系统 结构 和 参数, 与外作用及初始条件无关。
5、线性系统的对数幅频特性,纵坐标取值为20lg ()A ω(或:()L ω),横坐标为lg ω. 6、奈奎斯特稳定判据中,Z = P — R ,其中P 是指 开环传函中具有正实部的极点的个数,Z 是指 闭环传函中具有正实部的极点的个数,R 指 奈氏曲线逆时针方向包围 (-1, j0 )整圈数。
7、在二阶系统的单位阶跃响应图中,定义为 调整时间 。
%σ是超调量 。
8、设系统的开环传递函数为12(1)(1)Ks T s T s ++,则其开环幅频特性为2212()()1()1KA T T ωωωω=+⋅+,相频特性为01112()90()()tg T tg T ϕωωω--=---。
9、反馈控制又称偏差控制,其控制作用是通过给定值 与反馈量的差值进行的。
10、若某系统的单位脉冲响应为0.20.5()105t t g t e e --=+,则该系统的传递函数G(s )为1050.20.5s s s s+++。
11、自动控制系统有两种基本控制方式,当控制装置与受控对象之间只有顺向作用而无反向联系时,称为 开环控制系统;当控制装置与受控对象之间不但有顺向作用而且还有反向联系时,称为 闭环控制系统;含有测速发电机的电动机速度控制系统,属于 闭环控制系统。
12、根轨迹起始于开环极点,终止于开环零点。
13、稳定是对控制系统最基本的要求,若一个控制系统的响应曲线为衰减振荡,则该系统 稳定。
自动控制理论第五章习题汇总
自动控制理论第五章习题汇总填空题1、系统的频率响应与正弦输入信号之间的关系称为频率响应2、在正弦输入信号的作用下,系统输入的稳态分量称为频率响应简答题:5-2、什么是最小相位系统及非最小相位系统?最小相位系统的主要特点是什么?答在s平面上,开环零、极点均为负实部的系统称为最小相位系统;反之,开环零点或极点中具有正实部的系统称为非最小相位系统。
最小相位系统的主要特点是:相位滞后最小,并且幅频特性与相频特性有惟一的确定关系。
如果知道最小相位系统的幅频特性,可惟一地确定系统的开环传递函数。
5-3、什么是系统的频率响应?什么是幅频特性?什么是相频特性?什么是频率特性?答对于稳定的线性系统,当输入信号为正弦信号时,系统的稳态输出仍为同频率的正弦信号,只是幅值和相位发生了改变,如图5-3所示,称这种过程为系统的频率响应。
图5-3称为系统的幅频特性,它是频率的函数;称为系统的相频特性,它是频率的函数:称为系统的频率特性。
稳定系统的频率特性可通过实验的方法确定。
计算题5-1、设某控制系统的开环传递函数为)()(s H s G =)10016()12.0(752+++s s s s 试绘制该系统的Bode 图,并确定剪切频率c ω的值。
解:Bode 图如下所示剪切频率为s rad c /75.0=ω。
5-2、某系统的结构图和Nyquist 图如图(a)和(b)所示,图中2)1(1)(+=s s s G 23)1()(+=s s s H 试判断闭环系统稳定性,并决定闭环特征方程正实部根的个数。
解:由系统方框图求得内环传递函数为:ss s s s s s H s G s G +++++=+23452474)1()()(1)( 内环的特征方程:04742345=++++s s s s s由Routh 稳定判据:1:0310:16:44:171:01234s s s s s由此可知,本系统开环传函在S 平面的右半部无开环极点,即P=0。
自动控制原理题目(含答案)
《自动控制原理》复习参考资料一、基本知识11、反馈控制又称偏差控制,其控制作用是通过输入量和反馈量的差值进行的。
2、闭环控制系统又称为反馈控制系统。
3、在经典控制理论中主要采用的数学模型是微分方程、传递函数、结构框图和信号流图。
4、自动控制系统按输入量的变化规律可分为恒值控制系统、随动控制系统和程序控制系统。
5、对自动控制系统的基本要求可以概括为三个方面,即:稳定性、快速性和准确性。
6、控制系统的数学模型,取决于系统结构和参数, 和外作用及初始条件无关。
7、两个传递函数分别为G1(s)和G2(s)的环节,以并联方式连接,其等效传递函数为G1(s)+G2(s),以串联方式连接,其等效传递函数为G1(s)*G2(s)。
8、系统前向通道传递函数为G(s),其正反馈的传递函数为H(s),则其闭环传递函数为G(s)/(1- G(s)H(s))。
9、单位负反馈系统的前向通道传递函数为G(s),则闭环传递函数为G(s)/(1+ G(s))。
10、典型二阶系统中,ξ=0.707时,称该系统处于二阶工程最佳状态,此时超调量为4.3%。
11、使用劳斯判据判断系统稳定性,劳斯表中第一列数据全部为正数,则系统稳定。
12、线性系统稳定的充要条件是所有闭环特征方程的根的实部均为负,即都分布在S平面的左平面。
13、随动系统的稳态误差主要来源于给定信号,恒值系统的稳态误差主要来源于扰动信号。
14、对于有稳态误差的系统,在前向通道中串联比例积分环节,系统误差将变为零。
15、系统稳态误差分为给定稳态误差和扰动稳态误差两种。
16、对于一个有稳态误差的系统,增大系统增益则稳态误差将减小。
17、对于典型二阶系统,惯性时间常数T 愈大则系统的快速性愈差。
18、使用频域分析法,穿越频率越大,则对应时域指标t s 越小,即快速性越好19最小相位系统是指S 右半平面不存在系统的开环极点及开环零点。
20、按照校正装置在系统中的不同位置,系统校正可分为串联校正、反馈校正、 补偿校正和复合校正四种。
自动控制原理:第六章频域分析法——伯特图及稳定性分析
• 当阻尼系数接近1时,振荡环节具有低通滤波的作用; • 而随着减小,=n=1/T处的幅值迅速增大,表明其对输
入信号中该频率附近分量的放大作用逐渐加强,此时,振
荡环节具有选频作用。
6.4 系统开环频率特性-典型环节的伯德图
40
Bode Diagram
二阶微分环节:
30
20
转折频率 渐近线
L() /(dB)
10 /T
1) 将乘除运算转化为加减运算,因而可通过简单的图像叠加 快速绘制高阶系统的伯德图 ;如 G( j) A1()e j1() A2 ()e , j2 () 则20lgA1()A2()=20lgA1()+20lgA2()
2) 伯德图还可通过实验方法绘制,经分段直线近似整理后, 很容易得到实验对象的频率特性表达式或传递函数.
i 1
i m1 1
v n1
v n1 nv n1 2
( jTl 1)
(1 Tl2 2 2 j lTl )
l v 1
l v n1 1
(6 - 17)
其 中 ,K ,0 i 1,0 l 1, i 0,Tl 0都 为 常 数 。
除此外,也存在某个Tl<0,开环不稳定,但闭环可能仍然 稳定的情况。
1
A(ω)
1 ωT 2 2 2ζωT 2
L() /(dB)
10
0
-10 -20
(1 T 22
j2T)1
0.05 0.1 0.3
-30
0.7
1 -40
180
转折频率 渐近线
135
(ω)
arctan
1
2ζωT
ωT
2
90 45
0
() /()
控制工程基础 燕山大学 孔祥东 答案与解答6
1 sin m 1 sin 37.4 0.244 (4) 1 sin 1 sin 37.4 m
(5) 超前校正装置在ωm 处的对数幅频值为 Lc(ωm)=10 lg(1/α)=10 lg(1/0.244)=6.13 dB ωm=5.4 rad/s 由于要求ωc=7.5 rad/s,因此应取ωm=7.5 rad/s ωc=7.5 rad/s 处原系统的幅值为:
55 arctan c 2 arctan 0.2 c 2 35 1.2 c 2 1 0.2 c 2
2
tan 35 0.7
c 2 0.55 rad / s
取ωc= ωc2=0.55rad/s (4)未校正系统在ωc 处的幅值为:
L0 c 20 lg K
c
20lg 8 lg 0.55 23.25dB
20 lg 23.25dB 14.55
(5)计算滞后校正装置的转折频率,作出校正装置的伯德图。
2 1
1
1
c
4
0.55 0.14 4
0.0096
Gc s
s 1 7.14s 1 s 1 104.17 s 1
(2)画出原系统的伯德图,
L0(ω) Lc(ω)
L(ω)
Φc(ω) γ Φ(ω)
Φ0 ( ω)
如图中的 L0(ω)及φ0(ω)所示。 其中 20 lgK=20 lg15=23.5 dB。
从图中可以看出,该系统未校正系统的穿越频率
自动控制原理习题
第一套一、单项选择填空(每小题4分,共20分) 1. 系统不稳定时,其稳定误差为( )1)+∞ 2)-∞ 3)0 4)以上都不对 2. 2-1-2型渐近对数幅频特性描述的闭环系统一定( )1)稳定 2)不稳定 3)条件稳定 4)说不清 3. 由纯积分环节经单位反馈而形成的闭环系统超调量为( ) 1)0 2)16.3% 3)无超量 4)以上都对 4. 描述函数描述了( )系统的性能。
1)非线性系统 2)本质非线性系统 3)线性、非线性系统 4)以上都错 5. 采样周期为( )的系统是连续系统。
1)0 2)∞ 3)需经严格证明 4)以上都错 二、简化结构图求传递函数C(s)/R(s) (每小题8分,共16分)1.2.三、单位负反馈系统的零初始条件下的单位阶跃响应为 (每小题5分,共20分)1. 析开环、闭环稳定性;2. 超调量;3. 求Δ=±0.02L(∞)时,调节时间;4. 求阶跃响应时的稳态误差。
四、单位负反馈系统的开环传递函数为 (每小题8分,共16分)1. 绘制闭环根轨迹图;2. 决定闭环稳定的k 1的范围。
五、单位负反馈系统开环传递函数为 (每小题8分,共16分)1. 绘制开环伯德图;2. 分析闭环稳定性。
0≥ +-=--t tg t e t C t )220sin(1)(15)1)(3()(1++=s s s k s G )1()(21++=s s s k s G第四套一、对自动控制系统基本的性能要求是什么?其中最基本的要求是什么?(5分)二、已知系统结构图如图1所示。
(20分) 1)求传递函数E(s)/R(s) 和 E(s)/N(s)。
2)若要消除干扰对误差的影响(即E(s)/N(s)=0),问G 0(s)=?图1三、已知系统结构图如图2所示,要求系统阻尼比0.6ζ=。
(20分) 1)确定K f 值并计算动态性能指标t p ,σ%,t s ; (提示:p dt πω=,%p e σ=4s nt ζω=)2)求在r (t )=t ,作用下系统的稳态误差。
自动控制原理 5频域分析法3
i 1 j 1 n m
算出各典型环节的交接频率W1,W2,W3,… 并记下相应的斜率变化; K 2.绘制低频段的特性 s :
K G( s) s
K G( jw) ( jw)v
K A( w) v w
例:已知单位反馈系统的开环传递函数
100( s 4) G(s) s ( s 1)( s 10)( s 2 s 4)
试绘制系
统的开环渐近对数频率特性(Bode图)
s 10( 1) 4 G( s) , K 10, 20 lg K 20 2 s s s s ( s 1)( 1)( 2 1) 10 2 4
L(wr ) 20lg( M r ) 20lg 2 1 2 6.3dB
相频特性为:
w/ 2 w w ( w) 90 arctan w arctan arctan arctan 2 w 4 10 1 4
0
(0) 90
0 0 0
(1) 160
n
j1 ( w )
An ( w)e jn ( w )
L( w) 20 lg A( w) 20 lg Ai ( w)
i 1
n
对数相频特性: ( w) i ( w)
i 1
把组成系统各典型环节的Bode曲线迭加后 即为开环系统的Bode曲线。从左到右,从低 频到高频依次迭加。
呈现凹凸形状
w
0
k(w=0)
例3设Ⅰ型单位反馈控制系统的开环传递为
20 G( s) s( s 2)( s 3)
试概略绘制开环幅相曲线,并确定幅相曲线与 j 负实轴的交点
自动控制原理(第2版)(余成波)_第5章习题解答 -
108第5章频率特性法教材习题同步解析5.1 一放大器的传递函数为:G (s )=1+Ts K测得其频率响应,当ω=1rad/s 时,稳态输出与输入信号的幅值比为12/2,稳态输出与输入信号的相位差为-π/4。
求放大系数K 及时间常数T 。
解:系统稳态输出与输入信号的幅值比为A ==222172K T ω=+ 稳态输出与输入信号的相位差arctan 45T ϕω=-=-︒,即1T ω=当ω=1rad/s 时,联立以上方程得T =1,K =12放大器的传递函数为:G (s )=121s +5.2 已知单位负反馈系统的开环传递函数为5()1K G s s =+ 根据频率特性的物理意义,求闭环输入信号分别为以下信号时闭环系统的稳态输出。
(1)r (t )=sin (t +30°); (2)r (t )=2cos (2t -45°);(3)r (t )= sin (t +15°)-2cos (2t -45°); 解:该系统的闭环传递函数为65)(+=Φs s 闭环系统的幅频特性为109365)(2+=ωωA闭环系统的相频特性为6arctan )(ωωϕ-=(1)输入信号的频率为1ω=,因此有37375)(=ωA ,()9.46ϕω︒=- 系统的稳态输出()20.54)37ss c t t ︒=+ (2)输入信号的频率为2ω=,因此有()A ω=,()18.43ϕω︒=- 系统的稳态输出()cos(263.43)2ss c t t ︒=- (3)由题(1)和题(2)有对于输入分量1:sin (t +15°),系统的稳态输出如下1() 5.54)37ss c t t ︒=+ 对于输入分量2:-2cos (2t -45°),系统的稳态输出为2()63.43)ss c t t ︒=- 根据线性系统的叠加定理,系统总的稳态输出为)4363.632cos(210)537.5sin(37375)(︒︒--+=t t t c ss5.3 绘出下列各传递函数对应的幅相频率特性与对数频率特性。
根据最小相位系统开环对数频率特性求对应开环传递函数
根据最小相位系统开环对数频率特性求对应开环传递函数根据最小相位系统开环对数频率特性求对应的开环传递函数(类似作业第八题),是《自动控制原理》课程的常考题型。
对于此类题目,首先需要理解以下几点:(1) 系统开环传递函数的一般表达式为:mm1222(τs1)(,,,τs2ζτs1)KK,,ikkk,,00i1k1 GsG(s),,,,,K0nnvv1222ss(Ts1)(Ts2,,,ζTs1)lll,,j,,lj11其中为连乘符号,为积分环节,是积分环节个数。
代表第个微分环节,代表,Ts1,τs1,ji22第j个惯性环节,代表第l个震荡环节。
作业或考试中,考查的开环传递函数比Ts2,,ζTs1lllm1(τs1),K,i,i1较简单,一般是形式。
Gs,,,,Knv1s(Ts1),,j,j1(2)根据(1)可知,要确定,求出、m1、n1、的值。
GsT,,jK(3)当开环对数频率特性低频段的斜率分别为0、-20、-40时,对应的分别等于0、1、2。
(教材图5-32)(4)对0型系统:当L(0)=20lgK;对I型系统:低频渐近线或其延长线与零分贝线相交的频率;当=1时,L(1)=20lgK; 对II型系统:低频渐近线或其延长线与零分贝线相交的频率;当=1时,L(1)=20lgK。
(5)当曲线经过微分环节时,斜率变化;当曲线经过惯性环节时,斜率变化。
11T,(6)由转折频率确定时间常数,即τ,,。
ji,,ji因此,根据最小相位系统开环对数频率特性求对应的开环传递函数的步骤如下: (1) 由低频段的斜率确定;(2) 由及低频渐近线或其延长线与零分贝线相交的频率确定K;(3) 根据曲线斜率变化确定微分环节、惯性环节的个数;(4) 由转折频率确定时间常数。
以下题为例,给出详细解答过程。
已知最小相位系统开环对数频率特性(渐近线)如下图所示,(1)写出开环传递函数;(2)根据相角裕度判别系统的稳定性。
解:(1)A. 由低频段的斜率为,可知,II系统;B. 曲线斜率由变到,斜率变化+20,可知经过一个微分环节。