高一数学幂函数知识点总结

合集下载

高一数学知识点大全:幂函数的性质

高一数学知识点大全:幂函数的性质

2019年高一数学知识点大全: 幂函数的性质高中数学相对于初中数学来说, 高中数学更具有学科化的特点, 因此相对增加一些难度, 2019年高一数学知识点大全了解得当的话, 相对来说就不会太难了, 逐渐也会对这门学科增加一些兴趣!2019年高一数学知识点大全: 幂函数的性质对于a的取值为非零有理数, 有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q, q和p都是整数, 则x^(p/q)=q次根号(x的p次方), 如果q是奇数, 函数的定义域是R, 如果q是偶数, 函数的定义域是[0, +∞)。

当指数n是负整数时, 设a=-k, 则x=1/(x^k), 显然x≠0, 函数的定义域是(-∞, 0)∪(0, +∞).因此可以看到x所受到的限制来源于两点, 一是有可能作为分母而不能是0, 一是有可能在偶数次的根号下而不能为负数, 那么我们就可以知道:排除了为0与负数两种可能, 即对于x>0, 则a可以是任意实数;排除了为0这种可能, 即对于x0的所有实数, q不能是偶数; 排除了为负数这种可能, 即对于x为大于且等于0的所有实数, a就不能是负数。

总结起来, 就可以得到当a为不同的数值时, 幂函数的定义域的不同情况如下: 如果a为任意实数, 则函数的定义域为大于0的所有实数;如果a为负数, 则x肯定不能为0, 不过这时函数的定义域还必须根据q的奇偶性来确定, 即如果同时q为偶数, 则x 不能小于0, 这时函数的定义域为大于0的所有实数;如果同时q为奇数, 则函数的定义域为不等于0的所有实数。

在x大于0时, 函数的值域总是大于0的实数。

在x小于0时, 则只有同时q为奇数, 函数的值域为非零的实数。

而只有a为正数, 0才进入函数的值域。

由于x大于0是对a的任意取值都有意义的, 因此下面给出幂函数在第一象限的各自情况.可以看到:(1)所有的图形都通过(1, 1)这点。

(2)当a大于0时, 幂函数为单调递增的, 而a小于0时, 幂函数为单调递减函数。

人教版高一数学必修一第一章知识点梳理幂函数

人教版高一数学必修一第一章知识点梳理幂函数

人教版高一数学必修一第一章知识点梳理幂函数定义:形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为为常量的函数称为幂函数。

定义域和值域:当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不会等于0的所有实数。

当x为不同的数值时,幂函数的值域的不同情况如下:在x 大于0时,函数的值域似乎大于0的实数。

在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。

而只有a为正数,0才进入函数的值域性质:对于a的取值为非零数列,有必要分成情况来讨论各自的特性:首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是r,如果q是偶数,函数的定义域是[0,+∞),当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x;0,则a可以是任意实数;排除了为0这种可能,即对于x;0和x;0的所有实数,q不能是偶数;排除了为有理数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的开集为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的开集为大于0的所有实数;如果同时q为奇数,则整数的定义域为不等于0的所有实数。

高一数学复习考点知识与题型专题讲解12--- 幂函数

高一数学复习考点知识与题型专题讲解12--- 幂函数

高一数学复习考点知识与题型专题讲解3.3 幂函数【考点梳理】知识点一幂函数的概念一般地,函数y=xα叫做幂函数,其中x是自变量,α是常数.知识点二五个幂函数的图象与性质1.在同一平面直角坐标系内函数(1)y=x;(2)y=12x;(3)y=x2;(4)y=x-1;(5)y=x3的图象如图.2.五个幂函数的性质y=x y=x2y=x312y xy=x-1定义域R R R[0,+∞){x|x≠0}值域R[0,+∞)R[0,+∞){y|y≠0}奇偶性奇偶奇非奇非偶奇单调性增在[0,+∞) 上增,增增在(0,+∞)上减,在(-∞,0] 上减在(-∞,0)上减知识点三 一般幂函数的图象特征1.所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1).2.当α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数.特别地,当α>1时,幂函数的图象下凸;当0<α<1时,幂函数的图象上凸. 3.当α<0时,幂函数的图象在区间(0,+∞)上是减函数.4.幂指数互为倒数的幂函数在第一象限内的图象关于直线y =x 对称.5.在第一象限,作直线x =a (a >1),它同各幂函数图象相交,按交点从下到上的顺序,幂指数按从小到大的顺序排列.【题型归纳】题型一:幂函数的定义1.(2020·江苏省平潮高级中学高一月考)如果幂函数()22233m m y m m x --=-+的图象不过原点,则实数m 的取值为( ) A .1B .2C .1或2D .无解2.(2021·云南省玉溪第一中学高一月考)已知幂函数()y f x =的图象过点()33,,则该函数的解析式为( )A .2y x =B .2y x =C .3y x =D .y x =3.(2020·江苏镇江市·)已知幂函数()2()33m f x m m x =--在区间()0,∞+上是单调递增函数,则实数m 的值是( )A .-1或4B .4C .-1D .1或4题型二:幂函数的值域问题4.(2021·全国高一课时练习)已知幂函数()f x x α=的图像过点(8,4),则()f x x α= 的值域是( )A .(),0-∞B .()(),00,-∞⋃+∞C .()0,∞+D .[)0,+∞5.(2020·湖南衡阳市·高一月考)函数2y x -=在区间1,22⎡⎤⎢⎥⎣⎦上的最小值是( )A .14B .14-C .4D .4-6.(2018·南京市第三高级中学高一期中)以下函数12y x =,2y x =,23y x =,1y x -=中,值域为[0,)+∞的函数共( )个 A .1B .2C .3D .4题型三:幂函数的定点和图像问题7.(2021·高邮市临泽中学高一月考)已知幂函数1()(21)a g x a x +=-的图象过函数1()(0,1)2x b f x m m m -=->≠的图象所经过的定点,则b 的值等于( )A .12±B .22±C .2D .2± 8.(2020·南宁市银海三美学校高一月考)函数23y x =的图象是( )A .B .C .D .9.(2019·宁都县宁师中学高一月考)已知函数y =x a ,y =x b ,y =x c 的图象如图所示,则a ,b ,c 的大小关系为( )A .c <b <aB .a <b <cC .b <c <aD .c <a <b题型四:幂函数的单调性问题(比较大小、解不等式、参数)10.(2021·江西宜春市·高安中学高一月考)已知 1.13a =, 1.14b =,0.93c =,则a ,b ,c 的大小关系为( )A .c a b <<B .c b a <<C .b a c <<D .b c a <<11.(2020·江苏省平潮高级中学高一月考)幂函数223a a y x --=是奇函数,且在()0+∞,是减函数,则整数a 的值是( ) A .0B .0或2C .2D .0或1或212.(2020·江西鹰潭一中)已知幂函数12()f x x =,若()()132f a f a +<-,则实数a 的取值范围是( )A .[)1,3-B .21,3⎡⎫-⎪⎢⎣⎭C .[)1,0-D .21,3⎛⎤- ⎥⎝⎦题型五:幂函数的奇偶性问题13.(2020·江西南昌市·南昌十中高一月考)已知幂函数y =f (x )经过点(3,3),则f (x )( )A .是偶函数,且在(0,+∞)上是增函数B .是偶函数,且在(0,+∞)上是减函数C .是奇函数,且在(0,+∞)上是减函数D .是非奇非偶函数,且在(0,+∞)上是增函数14.(2021·吴县中学)有四个幂函数:①()2f x x -=;②()1f x x -=;③()3f x x =;④()3f x x =,某向学研究了其中的一个函数,并给出这个函数的三个性质:(1)()f x 为偶函数;(2)()f x 的值域为()(),00,-∞⋃+∞;(3)()f x 在(),0-∞上是增函数.如果给出的三个性质中,有两个正确,一个错误,则他研究的函数是( ) A .①B .②C .③D .④15.(2020·乌苏市第一中学高一月考)已知112,1,,,1,2,322α⎧⎫∈---⎨⎬⎩⎭,若幂函数()f x x α=为偶函数,且在(0,)+∞上递减,则a =( ) A .1-,12-B .1,3C .2-D .12,2【双基达标】一、单选题16.(2021·镇远县文德民族中学校高一月考)已知幂函数()()21f x m x =-,则实数m 等于( )A .2B .1C .0D .任意实数17.(2020·南京市第十三中学高一月考)函数 85y x =的图象是( )A .B .C .D .18.(2021·全国高一课时练习)下列结论中,正确的是( ) A .幂函数的图象都经过点(0,0),(1,1) B .幂函数的图象可以出现在第四象限C .当幂指数α取1,3,12时,幂函数y =x α是增函数 D .当α=-1时,幂函数y =x α在其整个定义域上是减函数19.(2021·全国高一单元测试)已知幂函数()f x 的图象过点1(2,)2,则f (4)的值是( ) A .64B .42C .24D .1420.(2021·全国高一专题练习)函数()()()102121f x x x -=-+-的定义域是( ) A .(],1-∞B .11,,122⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭C .(),1-∞-D .1,12⎛⎫⎪⎝⎭21.(2021·全国高一课前预习)已知幂函数()3m f x x -=(m ∈N *)为奇函数,且在区间(0,+∞)上是减函数,则m 等于( ) A .1B .2C .1或2D .322.(2021·全国)幂函数()f x 满足:对任意12x x R ∈、,当且仅当12x x =时,有12()()f x f x =,则(1)(0)(1)f f f -++=( ). A .1-B .0C .1D .223.(2021·全国)下列比较大小中正确的是( ).A .0.50.532()()23<B .1123()()35---<-C .3377( 2.1)( 2.2)--<-D .443311()()23-<24.(2019·云南昭通市第一中学高一月考)已知函数()f x x =,若(1)(102)f a f a+<-,则a 的取值范围是( )A .(0,5)B .(5,)+∞C .[1,3)-D .(3,5)25.(2021·全国)幂函数1y x -=,及直线,1,1y x y x ===将直角坐标系第一象限分成八个“卦限: I, II, III,IV, V, VI, VII, VIII (如图所示),那么,而函数13y x -=的图象在第一象限中经过的“卦限”是( )A .IV,VII B . IV,VIII C . III, VIII D . III, VII 【高分突破】一:单选题26.(2021·全国高一课前预习)幂函数2266()(33)m m f x m m x -+=-+在(0,)+∞上单调递增,则m的值为( ) A .1B .2C .3D .1或227.(2021·浙江)下列函数中,在其定义域内既是奇函数又是减函数的是( ) A .()y x x R =-∈B .3()y x x x R =--∈ C .1()()2x y x R =∈D .1y x=-(x R ∈,且0)x ≠28.(2021·全国高一课时练习)点(,8)m 在幂函数()(1)n f x m x =-的图象上,则函数()g x n x x m =-+-的值域为( )A .0,2⎡⎤⎣⎦B .1,2⎡⎤⎣⎦C .2,2⎡⎤⎣⎦D .[]2,329.(2021·全国高一课时练习)如图,①②③④对应四个幂函数的图像,其中②对应的幂函数是( )A .3y x =B .2y x =C .y x =D .y x =30.(2021·全国高一课时练习)已知幂函数()()2133m f x m m x +=-+的图象关于原点对称,则满足()()132m ma a +>-成立的实数a 的取值范围为( )A .22,33⎛⎫- ⎪⎝⎭B .22,3⎛⎫-- ⎪⎝⎭C .22,3⎛⎫- ⎪⎝⎭D .2,43⎛⎫ ⎪⎝⎭31.(2021·全国高一课时练习)设11,,1,2,32α⎧⎫∈-⎨⎬⎩⎭则“()f x x α=的图象经过()1,1--”是“()f x x α=为奇函数”的( )A .充分不必要件B .必要不充分条件C .充要条件D .既不充分也不必要条件32.(2021·浙江高一期末)已知实数a ,b 满足等式35a b =,给出下列五个关系式:①1b a <<;②1a b <<-;③01b a <<<;④10a b -<<<;⑤a b =,其中,可能成立的关系式有( ) A .1个B .2个C .3个D .5个33.(2021·全国高一单元测试)已知函数1a y ax b =-+-是幂函数,直线20(0,0)mx ny m n -+=>>过点(,)a b ,则11n m ++的取值范围是( ) A .11,,333⎫⎫⎛⎛-∞⋃ ⎪ ⎪⎝⎝⎭⎭B .(1,3)C .1,33⎡⎤⎢⎥⎣⎦D .1,33⎛⎫ ⎪⎝⎭二、多选题34.(2021·全国高一课时练习)下列关于幂函数y x α=的性质,描述正确的有( ) A .当1α=-时函数在其定义域上是减函数B .当0α=时函数图象是一条直线 C .当2α=时函数是偶函数D .当3α=时函数在其定义域上是增函数35.(2021·全国高一课时练习)已知函数()21m m y m x -=-为幂函数,则该函数为( ) A .奇函数B .偶函数C .区间()0,∞+上的增函数D .区间()0,∞+上的减函数36.(2021·全国高一课时练习)已知幂函数223()(1)m m f x m m x +-=--,对任意12,(0,)x x ∈+∞,且12x x ≠,都满足1212()()0f x f x x x ->-,若,a b ∈R 且()()0f a f b +<,则下列结论可能成立的有( )A .0a b +> 且0ab <B .0a b +< 且0ab <C .0a b +< 且0ab >D .以上都可能37.(2021·全国高一专题练习)已知幂函数9()5m f x m x ⎛⎫=+ ⎪⎝⎭,则下列结论正确的有( )A .()13216f -=B .()f x 的定义域是RC .()f x 是偶函数D .不等式()()12f x f -≥的解集是[)(]1,11,3-38.(2020·江苏常州市·常州高级中学高一期中)若函数()f x 同时满足:①对于定义域上的任意x ,恒有()()0f x f x +-=;②对于定义城上的任意1x ,2x ,当12x x ≠时,恒有()()12120f x f x x x -<-,则称函数()f x 为“理想函数”.下列四个函数中,能被称为“理想函数”的有( ) A .()2121x f x x -=+B .()3f x x =-C .()f x x =-D .()22,0,,0x x f x x x ⎧-≥=⎨<⎩三、填空题39.(2021·湖南邵阳市·高一期末)已知幂函数()y f x =的图象过点()2,2,则()5f =______.40.(2021·雄县第二高级中学高一期末)已知幂函数()f x 过定点18,2⎛⎫ ⎪⎝⎭,且满足()()2150f a f ++->,则a 的范围为________.41.(2021·全国高一课时练习)不等式()()1133312a a -<+的解集为______42.(2021·上海上外浦东附中高一期末)已知幂函数()223()m m f x x m Z --=∈的图像关于y 轴对称,与x 轴及y 轴均无交点,则由m 的值构成的集合是__________.43.(2021·全国高一单元测试)已知112,1,,1,,2,322k ⎧⎫∈---⎨⎬⎩⎭,若幂函数()kf x x =为奇函数,且在()0,∞+上单调递减,则k =______.四、解答题44.(2021·全国高一课时练习)已知函数()()21212223m f x m m xn -=+-+-是幂函数,求2m n -的值.45.(2021·全国高一课时练习)已知函数()()()()1221a a f x a a x -+=--是幂函数()a R ∈,且()()12f f <.(1)求函数()f x 的解析式;(2)试判断是否存在实数b ,使得函数()()32g x f x bx =-+在区间[]1,1-上的最大值为6,若存在,求出b 的值;若不存在,请说明理由.46.(2021·全国高一专题练习)已知幂函数()()1222mf x m m x =--在()0,∞+上单调递减.(1)求实数m 的值.(2)若实数a 满足条件()()132f a f a ->+,求a 的取值范围.47.(2021·江西省乐平中学高一开学考试)已知幂函数()()()22322k k f x m m x k -=-+∈Z 是偶函数,且在()0,∞+上单调递增. (1)求函数()f x 的解析式;(2)若()()212f x f x -<-,求x 的取值范围: (3)若实数()*,,a b a b ∈R 满足237a b m +=,求3211a b +++的最小值.【答案详解】1.C 【详解】由幂函数的定义得m 2-3m +3=1,解得m =1或m =2;当m =1时,m 2-m -2=-2,函数为y =x -2,其图象不过原点,满足条件; 当m =2时,m 2-m -2=0,函数为y =x 0,其图象不过原点,满足条件. 综上所述,m =1或m =2. 故选:C. 2.D 【详解】设()f x x α=,依题意()13332f αα==⇒=,所以()f x x =. 故选:D 3.B 【详解】幂函数()2()33mf x m m x =--在(0,)+∞上是增函数则2331m m m ⎧--=⎨>⎩ ,解得4m = 故选:B 4.D【详解】幂函数()f x x α=的图像过点(8,4),84α∴=,解得23α=,2332(0)f x x x ∴==≥,∴()f x 的值域是[)0,+∞. 故选:D. 5.A 【详解】∵函数2y x -=在区间1,22⎡⎤⎢⎥⎣⎦上是减函数,∴2min 124y -==, 故选:A. 6.C 【详解】函数12y x x ==,其定义域为[0,)+∞,值域为[0,)+∞; 函数2y x =的定义域为R ,值域为[0,)+∞; 函数2323y x x ==,20x ≥Q ,∴函数值域为[0,)+∞;函数331y x x -==,值域为(,0)(0,)-∞+∞. ∴值域为[0,)+∞的函数共3个.故选:C. 7.B 【详解】由于1()(21)a g x a x +=-为幂函数,则211a -=,解得:1a =,则2()g x x =; 函数1()(0,1)2x b f x m m m -=->≠,当x b = 时,11()22b b f b a -=-=,故()f x 的图像所经过的定点为1,2b ⎛⎫ ⎪⎝⎭, 所以1()2g b =,即212b =,解得:22b =±, 故选:B. 8.C 【详解】首先由分数指数幂运算公式可知()21233x x ⎛⎫=⎪⎝⎭,则()()23y f x x ==,()()f x f x -=,且函数的定义域为R ,所以函数是偶函数,关于y 轴对称,故排除AD ,因为2013<<,所以23y x =在第一象限的增加比较缓慢,故排除B , 故选:C 9.A试题:由幂函数图像特征知,1a >,01b <<,0c <,所以选A . 10.A 【详解】由题意,构造函数 1.13,x y y x ==,由指数函数和幂函数的性质, 可知两个函数在(0,)+∞单调递增;由于0.9 1.10.9 1.133c a <∴<∴<;由于 1.1 1.13434a b <∴<∴<;综上:c a b << 故选:A 11.B由于幂函数223a a y x --=是奇函数,且在(0,)+∞是减函数,故2230a a --<,且223a a --是奇数,且a 是整数,13a -<<∴,a Z ∈,当0a =时,2233a a --=-,是奇数,; 当1a =时,2234a a --=-,不是奇数; 当2a =时,2233a a --=-,是奇数; 故0a =或2. 故答选:B 12.B 【详解】因为幂函数()12f x x =是增函数,且定义域为[)0,+∞,由()()132f a f a +<-得13210320a aa a +<-⎧⎪+≥⎨⎪-≥⎩,解得213a -≤<.所以实数a 的取值范围是21,3⎡⎫-⎪⎢⎣⎭故选:B 13.D 【详解】设幂函数的解析式为y x α=, 将点()3,3的坐标代入解析式得33α=,解得12α=, ∴12y x =,函数的定义域为[)0,+∞,是非奇非偶函数,且在()0,+∞上是增函数,14.A 【详解】对于①,函数()2f x x -=为偶函数,且()2210f x x x -==>,该函数的值域为()0,∞+, 函数()2f x x -=在()0,∞+上为减函数,该函数在(),0-∞上为增函数,①满足条件;对于②,函数()11x x f x -==为奇函数,且()10f x x=≠,该函数的值域为()(),00,-∞⋃+∞, 函数()f x 在(),0-∞上为减函数,②不满足条件;对于③,函数()3f x x =的定义域为R ,且()()33f x x x f x -=-=-=-,该函数为奇函数, 当0x ≥时,()30f x x =≥;当0x <时,()30f x x =<,则函数()f x 的值域为R , 函数()3f x x =在()0,∞+上为增函数,该函数在(),0-∞上也为增函数,③不满足条件;对于④,函数()3f x x =为奇函数,且函数()3f x x =的值域为R ,该函数在(),0-∞上为增函数,④不满足条件. 故选:A. 15.C 【详解】112,1,,,1,2,322α⎧⎫∈---⎨⎬⎩⎭若幂函数()f x x α=为偶函数,且在(0,)+∞上递减,则0α<且2,k k Z α=∈, 所以2a =-. 故选:C 16.A因为函数()()21f x m x =-为幂函数,所以m -1=1,则m =2.故选:A. 17.A 【详解】由幂函数85y x =可知: 85y x =是定义域为R 的偶函数,在(0,+∞)上单调递增,且当x >1时,函数值增长的比较快. 故选:A 18.C 【详解】当幂指数α=-1时,幂函数y =x -1的图象不经过原点,故A 错误;因为所有的幂函数在区间(0,+∞)上都有定义,且y =x α(α∈R)>0,所以幂函数的图象不可能出现在第四象限,故B 错误; 当α>0时,y =x α是增函数,故C 正确;当α=-1时,y =x -1在区间(-∞,0),(0,+∞)上是减函数,但在整个定义域上不是减函数,故D 错误. 故选:C. 19.D 【详解】幂函数()a f x x =的图象过点1(2,)2,122a ∴=,解得1a =-,1()f x x∴=, f ∴(4)14=, 故选:D . 20.B 【详解】因为()()()()121121211f x x x x x-=-+-=+--, 则有10210x x ->⎧⎨-≠⎩,解得1x <且12x ≠,因此()f x 的定义域是11,,122⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭. 故选:B. 21.B 【详解】因为()3m f x x -=在(0,+∞)上是减函数,所以m -3<0,所以m <3. 又因为m ∈N *,所以1m =或2.又因为()3m f x x -=是奇函数,所以m -3是奇数, 所以m =2. 故选:B. 22.B 【详解】设()a f x x =,由已知,函数()f x 的定义域为R ,∴0a >,又∵对任意12x x R ∈、,当且仅当12x x =时,有12()()f x f x =,即y 与x 一一对应,()f x 必定不是偶函数,∴必定为奇函数,∴答案为0,故选:B. 23.C 【详解】A 选项,0.5y x =在[0)+∞,上是递增函数,0.50.523()()32<,错, B 选项,1y x -=在()0-∞,上是递减函数,1123()()35--->-,错, C 选项,37y x =在()0-∞,上是递增函数, 337721( 2.1)()10-=-,33775( 2.2)()11--=-,3377( 2.1)( 2.2)--<-,对,D 选项,43y x =在[0)+∞,上是递增函数, 443311()()22-=,443311()()23>,443311()()23->,错,故选:C . 24.C 【详解】()f x x =的定义域为[)0,+∞,且在[)0,+∞单调递增,所以(1)(102)f a f a +<-可化为:1010201102a a a a +≥⎧⎪-≥⎨⎪+<-⎩,解得:13x -≤<. 故a 的取值范围是[1,3)-. 故选:C 25.B【详解】对于幂函数13y x -=,因为103-< ,所以13y x -=在第一象限单调递减, 根据幂函数的性质可知:在直线1x =的左侧,幂函数的指数越大越接近y 轴 ,因为113->-,所以13y x -=的图象比1y x -=的图象更接近y 轴 ,所以进过第IV 卦限, 在直线1x =的右侧,幂函数的指数越小越接近x 轴,因为1103-<-<, 所以13y x -=的图象位于1y x -=和1y =之间,所以经过VIII 卦限,所有函数13y x -=的图象在第一象限中经过的“卦限”是IV,VIII , 故选:B 26.A 【详解】解:幂函数2266()(33)m m f x m m x -+=-+在(0,)+∞上单调递增,2331m m ∴-+=,且2660m m -+>,解2331m m -+=得1m =或2m =,当1m =时26610m m -+=>符合题意; 当2m =时26620m m -+=-<不符合题意; 故选:A . 27.B 【详解】解:对于A 选项,()()f x x x f x -=--=-=,为偶函数,故错误;对于B 选项,()()()()33f x x x x x f x -=----=+=-,为奇函数,且函数3,y x y x =-=-均为减函数,故3()y x x x R =--∈为减函数,故正确; 对于C 选项,指数函数没有奇偶性,故错误;对于D 选项,函数为奇函数,在定义域上没有单调性,故错误.故选:B28.B【详解】解:因为点(,8)m 在幂函数()(1)n f x m x =-的图象上,所以11m -=,即2m =,()()228n f m f ===,所以3n =, 故()32g x x x =-+-,[]2,3x ∈, ()()22()12321256g x x x x x =+--=+-+-, 因为[]2,3x ∈,所以21560,4x x ⎡⎤-+-∈⎢⎥⎣⎦, 所以[]2()1,2g x ∈, 所以函数()g x n x x m =-+-的值域为1,2⎡⎤⎣⎦.故选:B.29.C【详解】 解:由图知:①表示y x =,②表示y x =,③表示2y x =,④表示3y x =.故选:C.30.D【详解】由题意得:2331m m -+=,得1m =或2m =当1m =时,2()f x x =图象关于y 轴对称,不成立;当2m =时,3()f x x =是奇函数,成立;所以不等式转化为22(1)(32)a a +>-,即231480a a -+<,解得243a <<.故选:D31.C【详解】 由11,,1,2,32α⎧⎫∈-⎨⎬⎩⎭,由()f x x α=的图像经过()1,1--,则α的值为11,3-,,此时()f x x α=为奇函数. 又当()f x x α=为奇函数时,则α的值为11,3-,,此时()f x x α=的图象经过()1,1--. 所以“()f x x α=的图象经过()1,1--”是“()f x x α=为奇函数”的充要条件故选:C32.C【详解】在同一坐标系中画出函数3y x =和5y x =的图像,如图所示:数形结合可知,在(1)处1a b <<-;在(2)处10b a -<<<;在(3)处01a b <<<; 在(4)处1b a <<;在1a b ==或1a b ==-也满足,故①②⑤对故选:C.33.D【详解】由1a y ax b =-+-是幂函数,知:1,1a b =-=,又(,)a b 在20mx ny -+=上,∴2m n +=,即20n m =->,则1341111n m m m m +-==-+++且02m <<, ∴11(,3)13n m +∈+. 故选:D.34.CD【详解】对于A 选项,1y x =,在(,0)-∞和(0,)+∞上递减,不能说在定义域上递减,故A 选项错误.对于B 选项,0y x =,0x ≠,图像是:直线1y =并且除掉点(0,1),故B 选项错误. 对于C 选项,2y x =,定义域为R ,是偶函数,所以C 选项正确.对于D 选项,3y x =,函数在其定义域上是增函数,所以D 选项正确.故选:CD35.BC【详解】由()21m m y m x -=-为幂函数,得11m -=,即m =2,则该函数为2y x =,故该函数为偶函数,且在区间()0,∞+上是增函数,故选:BC .36.BC【详解】因为223()(1)m m f x m m x +-=--为幂函数,所以211m m --=,解得:m =2或m =-1.因为任意12,(0,)x x ∈+∞,且12x x ≠,都满足1212()()0f x f x x x ->-, 不妨设12x x >,则有12())0(f x f x ->,所以()y f x =为增函数,所以m =2,此时3()f x x =因为()33()()f x x x f x -=-=-=-,所以3()f x x =为奇函数.因为,a b ∈R 且()()0f a f b +<,所以()()f a f b <-.因为()y f x =为增函数,所以a b <-,所以0a b +<.故BC 正确.故选:BC37.ACD【详解】 因为函数是幂函数,所以915m +=,得45m =-,即()45f x x -=, ()()()45451322216f --⎡⎤-=-=-=⎣⎦,故A 正确;函数的定义域是{}0x x ≠,故B 不正确; ()()f x f x -=,所以函数是偶函数,故C 正确;函数()45f x x -=在()0,∞+是减函数,不等式()()12f x f -≥等价于12x -≤,解得:212x -≤-≤,且10x -≠,得13x -≤≤,且1x ≠,即不等式的解集是[)(]1,11,3-,故D 正确.故选:ACD38.BCD【详解】对于①对于定义域内的任意x ,恒有()()0f x f x +-=,即()()f x f x -=-,所以()f x 是奇函数;对于②对于定义域内的任意1x ,2x ,当12x x ≠时,恒有()()12120f x f x x x -<-, ()f x 在定义域内是减函数; 对于A :()2121x f x x -=+,()113f =,()13f -=,故不是奇函数,所以不是“理想函数”; 对于 B :()3f x x =-是奇函数,且是减函数,所以是“理想函数”;对于C :()f x x =-是奇函数,并且在R 上是减函数,所以是“理想函数”;对于D :()22,0,0x x f x x x x x ⎧-≥==-⎨<⎩,()||()f x x x f x -==-, 所以()22,0,0x x f x x x ⎧-≥=⎨<⎩是奇函数; 根据二次函数的单调性,()f x 在(,0)-∞,(0,)+∞都是减函数,且在0x =处连续,所以()22,0,0x x f x x x ⎧-≥=⎨<⎩在R 上是减函数, 所以是“理想函数”.故选:BCD.39.5【详解】设()f x x α=,则()12222f αα==⇒=, 所以()(),55f x x f ==. 故答案为:540.()22-,【详解】设幂函数()y f x x α==,其图象过点18,2⎛⎫ ⎪⎝⎭, 所以182α=,即3122α-=,解得:13α=-,所以()13f x x -=, 因为()()()13f x x f x --=-=-,所以()13f x x -=为奇函数,且在()0-∞,和()0+∞,上单调递减, 所以()()2150f a f ++->可化为()()()2155f a f f +>--=, 可得215a +<,解得:22a -<<,所以a 的范围为()22-,, 故答案为:()22-,. 41.()4,-+∞【详解】 解:因为幂函数13y x =在R 上为增函数,()()1133312a a -<+, 所以312a a -<+,解得4a >-,所以不等式的解集为()4,-+∞,故答案为:()4,-+∞42.{}1,1,3-【详解】由幂函数()f x 与x 轴及y 轴均无交点,得2230m m -≤-,解得13m -≤≤,又m Z ∈,即{}1,0,1,2,3m ∈-,()223()m m f x x m Z --=∈的图像关于y 轴对称, 即函数为偶函数,故223m m --为偶数, 所以{}1,1,3m ∈-,故答案为:{}1,1,3-.43.1-【详解】由题意知,幂函数()k f x x =在(0)+∞,上单调递减, 则k 为负数,则k =-2,-1,12-,又由函数()k f x x =为奇函数,则k =-1,故答案为:-144.-6【详解】因为()()21212223m f x m m x n -=+-+-是幂函数,所以22221,10,230,m m m n ⎧+-=⎪-≠⎨⎪-=⎩,解得3,3,2m n =-⎧⎪⎨=⎪⎩, 所以323262m n -=--⨯=-.45.(1)()2f x x =;(2)存在,2b =±. 解:因为函数()()()()1221a a f x a a x -+=--是幂函数,所以211a a --=,解得2a =或1a =-,当2a =时,()4f x x -=,则()()12f f >,故不符题意,当1a =-时,()2f x x =,则()()12f f <,符合题意,所以()2f x x =;(2)由(1)得 ()()()22232233g x f x bx x bx x b b =-+=-++=--++, 函数图像开口向下,对称轴为:x b =,当1b ≤-时,函数()g x 在区间[]1,1-上递减,则()()11236max g x g b =-=--+=,解得2b =-,符合题意; 当1b ≥时,函数()g x 在区间[]1,1-上递增,则()()11236max g x g b ==-++=,解得2b =,符合题意;当11b -<<时,()()22236max g x g b b b ==-++=,解得3b =±,不符题意, 综上所述,存在实数2b =±满足题意.46.(1)1m =-;(2)32,,123⎛⎫⎛⎫-∞-- ⎪ ⎪⎝⎭⎝⎭. 【详解】解:(1)()f x 是幂函数,2221m m ∴--=,解得:3m =或1m =-, 3m =时,()13f x x =在(0,)+∞上单调递增,1m =-时,()1f x x=在(0,)+∞递减, 故1m =-;(2)若实数a 满足条件()()132f a f a ->+,则10320a a ->⎧⎨+<⎩或10320132a a a a ->⎧⎪+>⎨⎪-<+⎩或10320132a a a a-<⎧⎪+<⎨⎪-<+⎩,解得:32a <-或213a -<<,故a 的取值范围是32,,123⎛⎫⎛⎫-∞-- ⎪ ⎪⎝⎭⎝⎭. 47.(1)2()f x x =;(2)(1,1)-;(3)2.【详解】(1)()f x 是幂函数,则2221m m -+=,1m =,又()f x 是偶函数,所以23(3)k k k k -=-是偶数,()f x 在(0,)+∞上单调递增,则230k k ->,03k <<,所以1k =或2. 所以2()f x x =;(2)由(1)偶函数()f x 在[0,)+∞上递增, (21)(2)f x f x -<-22(21)(2)212f x f x x x ⇔-<-⇔-<-11x ⇔-<<. 所以x 的范围是(1,1)-.(3)由(1)237a b +=,2(1)3(1)12a b +++=,0,0a b >>, []3213219(1)2(1)2(1)3(1)121112111211b a a b a b a b a b ++⎛⎫⎛⎫+=++++=++ ⎪ ⎪++++++⎝⎭⎝⎭ 19(1)4(1)12221211b a a b ⎛⎫++≥+⨯= ⎪ ⎪++⎝⎭,当且仅当9(1)4(1)11b a a b ++=++,即2,1a b ==时等号成立. 所以3211a b +++的最小值是2.。

高一数学知识点幂函数的总结

高一数学知识点幂函数的总结

高一数学知识点幂函数的总结高一数学知识点幂函数的总结「篇一」不过作为集合大小的定义,我们希望能够比较任意两个集合的大小。

所以,对于任何给定的两个集合A和B,或者A比B大,或者B比A大,或者一样大,这三种情况必须有一种正确而且只能有一种正确。

这样的偏序关系被称为“全序关系”。

最后,新的定义必须保持原来有限集合间的大小关系。

有限集合间的大小关系是很清楚的,所谓的“大”,也就是集合中的元素更多,有五个元素的集合要比有四个元素的集合大,在新的扩充了的集合定义中也必须如此。

这个要求是理所当然的,否则我们没有理由将新的定义作为老定义的扩充。

经过精心的整理,有关“高一数学学习:集合大小定义的基本要求三”的内容已经呈现给大家,祝大家学习愉快!学好高中数学也需阅读积累阅读,在语文中要抓住精炼的或生动形象的词与句,而在数学中,则应抓住关键的词语。

比如在初二课本第一学期第21章第五节反比例函数性质的第一条:“当k>0时,函数图像的两个分支分别在第一、三象限内,在每个象限内,自变量x逐渐增大时,y的值则随着逐渐减小。

&rdquo 高中历史;这句话中,关键词语是“在每个象限内”,反比例函数的图像为双曲线,而这个性质是对于其中某一分支而言,并不是对整个函数来说的。

所以在做题时,应注意到这一点。

从这一实例来看,我们不难发现阅读时抓住关键词语的重要性。

积累,在语文中有利于写作,在数学中有利于解题。

积累包括两方面:一、概念知识,二、错误的题目。

脑子中多一些概念就多了一些思考的方法,多了一些解题的突破口,在做较难的题目时,也就得心应手了。

积累错误的题目,指挑选一些自己平时易错或难懂的题目,记在本子上,在复习时,翻看这本本子就能更加清楚地了解自己在哪些方面还有所欠缺,应特别注意。

所以积累对学好数学起着极大的作用。

自主复习最好各科交替进行大部分区县都将实行全区统考,并将考生成绩进行大排队。

这次考试将成为考生填报高考志愿的重要参考依据。

高一数学上册知识点整理:幂函数的性质

高一数学上册知识点整理:幂函数的性质

高一数学上册知识点整理:幂函数的性质定义:形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

定义域和值域:当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。

当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。

在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。

而只有a为正数,0才进入函数的值域性质:对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。

当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞)。

因此可以看到x所受到的限制于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x&gt;;0,则a可以是任意实数;排除了为0这种可能,即对于x&lt;;0和x&gt;;0的所有实数,q不能是偶数;排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;。

幂函数知识点总结5篇

幂函数知识点总结5篇

幂函数知识点总结5篇在平时的学习中,大家都没少背知识点吧?知识点就是掌握某个问题/知识的学习要点。

想要一份整理好的知识点吗?的我精心为您带来了5篇《幂函数知识点总结》,如果能帮助到亲,我们的一切努力都是值得的。

高一数学幂函数知识点总结篇一1、函数的单调性(局部性质)(1)增函数设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数。

区间D称为y=f(x)的单调减区间。

注意:函数的单调性是函数的局部性质;(2)图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的。

(3)函数单调区间与单调性的判定方法(A)定义法:a.任取x1,x2D,且x1b.作差f(x1)-f(x2);c.变形(通常是因式分解和配方);d.定号(即判断差f(x1)-f(x2)的正负);e.下结论(指出函数f(x)在给定的区间D上的单调性)。

(B)图象法(从图象上看升降)(C)复合函数的单调性复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:"同增异减'注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集。

8、函数的奇偶性(整体性质)(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数。

(2)奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数。

(3)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称。

利用定义判断函数奇偶性的步骤:a.首先确定函数的定义域,并判断其是否关于原点对称;b.确定f(-x)与f(x)的关系;c.作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数。

高一数学幂知识点

高一数学幂知识点

高一数学幂知识点幂作为数学中的一个重要概念,在高一数学中占据着重要地位。

掌握好幂的定义、运算规则以及一些常见的性质和应用,对于理解和解决数学问题是至关重要的。

本文将为大家详细介绍高一数学中的幂知识点。

一、幂数的定义在数学中,幂是指将一个数乘以自身多次的运算。

其中,被乘的数称为底数,用字母a表示;乘积中相同的因数的个数称为指数,用字母n表示。

幂的表示方式为aⁿ。

例如,当a=2,n=3时,2ⁿ = 2³ = 2 × 2 × 2 = 8。

二、幂数的运算规则1. 幂的乘法规则:当两个幂的底数相同时,它们的指数相加。

即,aⁿ × aᵐ= aⁿ⁺ᵐ。

例如,2² × 2³ = 2⁵ = 2 × 2 × 2 × 2 × 2 = 32。

2. 幂的除法规则:当两个幂的底数相同时,将它们的指数相减。

即,aⁿ ÷ aᵐ= aⁿ⁻ᵐ。

例如,3⁵ ÷ 3² = 3³ = 3 × 3 × 3 = 27。

3. 幂的乘方规则:幂的乘方指的是将一个幂再次乘以指数。

即,(aⁿ)ᵐ= aⁿᵐ。

例如,(4²)³ = 4⁶ = 4 × 4 × 4 × 4 × 4 × 4 = 4096。

三、幂的性质1. 任何数的零次幂等于1:即,a⁰ = 1(其中a不等于0)。

例如,2⁰ = 1。

2. 任何非零数的负整数次幂等于其倒数的正整数次幂:即,a⁻ⁿ = 1 / (aⁿ)(其中a不等于0)。

例如,3⁻² = 1 / (3²) = 1 / 9。

3. 指数为1的幂等于底数本身:即,a¹ = a。

例如,5¹ = 5。

四、幂的应用幂的概念在数学中有着广泛的应用,尤其在代数、几何和物理等领域中经常被使用。

高一上数学必修一第四章《4.4幂函数》知识点梳理

高一上数学必修一第四章《4.4幂函数》知识点梳理

高一上必修二第四章《指数函数、对数函数与幂函数》知识点梳理§4.4 幂函数学习目标 1.了解幂函数的概念.2.掌握y =x α(α=-1,12,1,2,3)的图像与性质.3.理解和掌握幂函数在第一象限的分类特征,能运用数形结合的方法处理幂函数的有关问题.知识点一 幂函数的概念一般地,函数y =x α称为幂函数,其中x 是自变量,α是常数.提醒 幂函数中底数是自变量,而指数函数中指数为自变量.知识点二 幂函数的图像和性质1.幂函数的图像在同一平面直角坐标系中,幂函数y =x ,y =x 2,y =x 3,y =,y =x -1的图像如图.2.五个幂函数的性质y =xy =x 2y =x 3y =y =x -1定义域R R R [0,+∞){x |x ≠0}值域R [0,+∞)R [0,+∞){y |y ≠0}奇偶性奇函数偶函数奇函数非奇非偶函数奇函数单调性在R 上是增函数在[0,+∞)上是增函数,在(-∞,0]上是减函数在R 上是增函数在[0,+∞)上是增函数在(0,+∞)上是减函数,在(-∞,0)上是减函数12x 12x公共点(1,1)1.y =-1x 是幂函数.( × )2.当x ∈(0,1)时,x 2>x 3.( √ )3.y =与y =定义域相同.( × )4.若y =x α在(0,+∞)上为增函数,则α>0.( √ )一、幂函数的概念例1 (1)(多选)下列函数为幂函数的是( )A .y =x 3 B .y =(12)xC .y =4x 2D .y =x答案 AD解析 B 项为指数函数,C 中的函数的系数不为1,AD 为幂函数.(2)已知y =(m 2+2m -2)+2n -3是幂函数,求m ,n 的值.解 由题意得Error!解得Error!或Error!所以m =-3或1,n =32.反思感悟 判断一个函数是否为幂函数的方法判断一个函数是否为幂函数的依据是该函数是否为y =x α(α为常数)的形式,即函数的解析式为一个幂的形式,且需满足:(1)指数为常数;(2)底数为自变量;(3)系数为1.跟踪训练1 已知f (x )=ax 2a +1-b +1是幂函数,则a +b 等于( )A .2 B .1 C.12 D .0答案 A解析 因为f (x )=ax 2a +1-b +1是幂函数,所以a =1,-b +1=0,即a =1,b =1,则a +b =2.32x 64x 22m x二、幂函数的图像例2 如图所示,图中的曲线是幂函数y =x n 在第一象限的图像,已知n 取±2,±12四个值,则对应于c 1,c 2,c 3,c 4的n 依次为( )A .-2,-12,12,2B .2,12,-12,-2C .-12,-2,2,12D .2,12,-2,-12答案 B解析 根据幂函数y =x n 的性质,故c 1的n =2,c 2的n =12,当n <0时,|n |越大,曲线越陡峭,所以曲线c 3的n =-12,曲线c 4的n =-2.反思感悟 解决幂函数图像问题应把握的两个原则(1)依据图像高低判断幂指数大小,相关结论为:在(0,1)上,指数越大,幂函数图像越靠近x 轴(简记为指大图低);在(1,+∞)上,指数越大,幂函数图像越远离x 轴(简记为指大图高).(2)依据图像确定幂指数α与0,1的大小关系,即根据幂函数在第一象限内的图像(类似于y =x -1 或y =或y =x 3)来判断.跟踪训练2 函数f (x )=的大致图像是( )答案 A解析 因为-12<0,所以f (x )在(0,+∞)上单调递减,排除选项B ,C ;又f (x )的定义域为(0,+∞),故排除选项D.三、比较幂值的大小12x 12x例3 比较下列各组数中两个数的大小:(1)(25)0.5与(13)0.5;(2)(-23)-1与(-35)-1;(3)与.解 (1)∵幂函数y =x 0.5在(0,+∞)上是单调递增的,又25>13,∴(25)0.5>(13)0.5.(2)∵幂函数y =x -1在(-∞,0)上是单调递减的,又-23<-35,∴(-23)-1>(-35)-1.(3)∵函数y 1=(23)x为R 上的减函数,又34>23,∴>.又∵函数y 2=在(0,+∞)上是增函数,且34>23,∴>,∴>.反思感悟 比较幂值大小的方法跟踪训练3 比较下列各组值的大小:(1),;(2),,1.42.解 (1)∵y =为R 上的偶函数,∴=.又函数y =为[0,+∞)上的增函数,且0.31<0.35,3423⎛⎫⎪⎝⎭2334⎛⎫⎪⎝⎭2323⎛⎫ ⎪⎝⎭3423⎛⎫ ⎪⎝⎭23x 2334⎛⎫⎪⎝⎭2323⎛⎫ ⎪⎝⎭2334⎛⎫ ⎪⎝⎭3423⎛⎫⎪⎝⎭()650.31-650.35121.2121.465x ()650.31-650.3165x∴<,即<.(2)∵y =在[0,+∞)上是增函数,且1.2<1.4,∴<.又∵y =1.4x 为增函数,且12<2,∴<1.42,∴<<1.42.幂函数性质的应用典例 已知幂函数y =x 3m -9 (m ∈N +)的图像关于y 轴对称且在(0,+∞)上单调递减,求满足的a 的取值范围.解 因为函数y =x 3m -9在(0,+∞)上单调递减,所以3m -9<0,解得m <3.又因为m ∈N +,所以m =1,2.因为函数的图像关于y 轴对称,所以3m -9为偶数,故m =1.则原不等式可化为.因为y =在(-∞,0),(0,+∞)上单调递减,所以a +1>3-2a >0或3-2a <a +1<0或a +1<0<3-2a ,解得23<a <32或a <-1.故a 的取值范围是Error!.[素养提升] (1)幂函数y =x α中只有一个参数α,幂函数的所有性质都与α的取值有关,故可由α确定幂函数的定义域、值域、单调性、奇偶性,也可由这些性质去限制α的取值.(2)通过具体实例抽象出幂函数的概念和性质,并应用单调性求解,体现了数学中数学运算与直观想象的核心素养.650.31650.35()650.31-650.3512x 121.2121.4121.4121.2121.433(1)(32)m m a a --+<-1133(1)(32)a a --+<-13x-1.下列函数是幂函数的是( )A .y =5x B .y =x 5C .y =5x D .y =(x +1)3答案 B解析 函数y =5x 是指数函数,不是幂函数;函数y =5x 是正比例函数,不是幂函数;函数y =(x +1)3的底数不是自变量x ,不是幂函数;函数y =x 5是幂函数.2.幂函数y =x α(α∈R )的图像一定不经过( )A .第四象限 B .第三象限C .第二象限 D .第一象限答案 A解析 由幂函数的图像可知,其图像一定不经过第四象限.3.设α∈{-1,1,12,3},则使函数y =x α的定义域为R 且为奇函数的所有α值为( )A .1,3B .-1,1C .-1,3D .-1,1,3答案 A解析 可知当α=-1,1,3时,y =x α为奇函数,又因为y =x α的定义域为R ,则α=1,3.4.已知幂函数f (x )=kx α(k ∈R ,α∈R )的图像过点(12,2),则k +α等于( )A.12 B .1 C.32 D .2答案 A解析 ∵幂函数f (x )=kx α(k ∈R ,α∈R )的图像过点(12,2),∴k =1,f(12)=(12)α=2,即α=-12,∴k +α=12.5.已知f (x )=,若0<a <b <1,则下列各式中正确的是( )A .f (a )<f (b )<f(1a )<f(1b)B .f (1a )<f(1b )<f (b )<f (a )C .f (a )<f (b )<f (1b )<f(1a )D .f (1a )<f (a )<f(1b )<f (b )12x答案 C解析 因为函数f (x )=在(0,+∞)上是增函数,又0<a <b <1<1b <1a ,故f (a )<f (b )<f(1b )<f(1a).1.知识清单:(1)幂函数的概念.(2)幂函数的图像.(3)幂函数的性质及其应用.2.方法归纳:数形结合.3.常见误区:幂函数与指数函数的区别;幂函数的奇偶性.1.幂函数f (x )=x α的图像经过点(2,4),则f (-12)等于( )A.12B.14 C .-14 D .2答案 B解析 幂函数f (x )=x α的图像经过点(2,4),则2α=4,解得α=2;∴f (x )=x 2,∴f (-12)=(-12)2=14.2.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是( )A .y =x -2 B .y =x -1C .y =x 2 D .y =答案 A解析 所给选项都是幂函数,其中y =x -2和y =x 2是偶函数,y =x -1和y =不是偶函数,故排除选项B ,D ,又y =x 2在区间(0,+∞)上单调递增,不合题意,y =x -2在区间(0,+∞)上单调递减,符合题意.3.设a =,b =,c =,则a ,b ,c 的大小关系是( )12x 13x13x 2535⎛⎫ ⎪⎝⎭3525⎛⎫⎪⎝⎭2525⎛⎫⎪⎝⎭A .a >c >bB .a >b >cC .c >a >bD .b >c >a答案 A解析 ∵y =(x >0)为增函数,又35>25,∴a >c .∵y =(25)x (x ∈R )为减函数,又25<35,∴c >b .∴a >c >b .4.在同一坐标系内,函数y =x a (a ≠0)和y =ax -1a的图像可能是( )答案 C解析 选项A 中,幂函数的指数a <0,则y =ax -1a 应为减函数,A 错误;选项B 中,幂函数的指数a >1,则y =ax -1a 应为增函数,B 错误;选项D 中,幂函数的指数a <0,则-1a >0,直线y =ax -1a在y 轴上的截距为正,D 错误.5.若幂函数f (x )的图像过点(2,2),则函数g (x )=f (x )-3的零点是( )A.3 B .9 C .(3,0) D .(9,0)答案 B解析 ∵幂函数f (x )=x α的图像过点(2,2),∴f (2)=2α=2,解得α=12,∴f (x )=,∴函数g (x )=f (x )-3=-3,由-3=0,得x =9.∴函数g (x )=f (x )-3的零点是9.6.已知幂函数f (x )=x α的部分对应值如表:x11225x 12x 12x 12xf (x )122则f (x )的单调递增区间是________.答案 [0,+∞)解析 因为f(12)=22,所以(12)α=22,即α=12,所以f (x )=的单调递增区间是[0,+∞).7.已知幂函数f (x )=x α(α∈R )的图像经过点(8,4),则不等式f (6x +3)≤9的解集为________.答案 [-5,4]解析 由题意知8α=4,故α=log 84=23,由于f (x )==x 2为R 上的偶函数且在(0,+∞)上递增,故f (6x +3)≤9即为f (6x +3)≤f (27),所以|6x +3|≤27,解得-5≤x ≤4.8.设a =,b =,c =,则a ,b ,c 从小到大的顺序是________.答案 b <a <c解析 由a =,b =,可利用幂函数的性质,得a >b ,可由指数函数的单调性得c >a ,∴b <a <c .9.已知幂函数f (x )=x α的图像过点P (2,14),试画出f (x )的图像并指出该函数的定义域与单调区间.解 因为f (x )=x α的图像过点P (2,14),所以f (2)=14,即2α=14,得α=-2,即f (x )=x -2,f (x )的图像如图所示,定义域为(-∞,0)∪(0,+∞),单调递减区间为(0,+∞),单调递增区间为(-∞,0).10.已知幂函数f (x )=x 9-3m (m ∈N +)的图像关于原点对称,且在R 上单调递增.(1)求f (x )的解析式;(2)求满足f (a +1)+f (3a -4)<0的a 的取值范围.解 (1)由幂函数f (x )=x 9-3m (m ∈N +)的图像关于原点对称,且在R上单调递增,可得9-3m >0,解得m <3,m ∈N +,可得m =1,2,12x 23x 2312⎛⎫⎪⎝⎭2315⎛⎫ ⎪⎝⎭1312⎛⎫⎪⎝⎭2312⎛⎫ ⎪⎝⎭2315⎛⎫⎪⎝⎭若m =1,则f (x )=x 6的图像不关于原点对称,舍去;若m =2,则f (x )=x 3的图像关于原点对称,且在R 上单调递增,成立.则f (x )=x 3.(2)由(1)可得f (x )是奇函数,且在R 上单调递增,由f (a +1)+f (3a -4)<0,可得f (a +1)<-f (3a -4)=f (4-3a ),即为a +1<4-3a ,解得a <34.11.若函数f (x )=(m +2)x a 是幂函数,且其图像过点(2,4),则函数g (x )= log a (x +m )的单调递增区间为( )A .(-2,+∞) B .(1,+∞)C .(-1,+∞) D .(2,+∞)答案 B解析 由题意得m +2=1,解得m =-1,则f (x )=x a ,将(2,4)代入函数的解析式得,2a =4,解得a =2,故g (x )=log a (x +m )=log 2(x -1),令x -1>0,解得x >1,故g (x )在(1,+∞)上单调递增.12.函数y =-1的图像关于x 轴对称的图像大致是( )答案 B解析 y =的图像位于第一象限且为增函数,所以函数图像是上升的,函数y =-1的图像可看作由y =的图像向下平移一个单位长度得到的(如选项A 中的图所示),将y =-1的图像关于x 轴对称后即为选项B.13.为了保证信息的安全传输,有一种密钥密码系统,其加密、解密原理为:发送方由明文到密文(加密),接收方由密文到明文(解密).现在加密密钥为y =x α(α为常数),如“4”通过加密后得到密文“2”.若接收方接到密文“3”,则解密后得到的明文是________.答案 9解析 由题意可知加密密钥y =x α(α为常数)是一个幂函数,所以要想求得解密后得到的明文,就必须先求出α的值.由题意,得2=4α,解得α=12,则y =.由=3,得x =9,即明文是9.14.已知幂函数f (x )=,若f (a +1)<f (10-2a ),则a 的取值范围是________.12x 12x 12x 12x 12x 12x 12x 12x答案 (3,5)解析 ∵f (x )==1x(x >0),易知f (x )在(0,+∞)上为减函数,又f (a +1)<f (10-2a ),∴Error!解得Error!∴3<a <5.15.幂函数y =x α,当α取不同的正数时,在区间[0,1]上它们的图像是一族美丽的曲线(如图).设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y =x α,y =x β的图像三等分,即有BM =MN =NA ,那么,αβ等于________.答案 1解析 由条件,得M (13,23),N (23,13),可得13=(23)α,23=(13)β,即α=13,β=23.所以αβ=13·23=lg 13lg 23·lg 23lg 13=1.16.已知幂函数g (x )过点(2,12),且f (x )=x 2+ag (x ).(1)求g (x )的解析式;(2)讨论函数f (x )的奇偶性,并说明理由.解 (1)设幂函数的解析式g (x )=x α(α为常数).因为幂函数g (x )过点(2,12),所以2α=12,解得α=-1,所以g (x )=1x.(2)由(1)得f (x )=x 2+a x.①当a =0时,f (x )=x 2.12x 23log 13log 23log 13log由于f(-x)=(-x)2=x2=f(x),可知f(x)为偶函数.②当a≠0时,由于f(-x)=(-x)2+a-x=x2-ax≠x2+ax=f(x),且f(-x)=(-x)2+a-x=x2-ax≠-(x2+a x)=-f(x),所以f(x)是非奇非偶函数.综上,①当a=0时,f(x)为偶函数;②当a≠0时,f(x)为非奇非偶函数.。

高一数学指对幂函数知识点

高一数学指对幂函数知识点

高一数学指对幂函数知识点在高一数学课程中,学生们将会接触到许多数学知识,其中之一就是幂函数。

幂函数是数学中非常重要的一部分,它在各个领域都有广泛的应用。

本文将从定义、性质及应用三个方面,对幂函数进行详细介绍。

一、幂函数的定义与基本性质幂函数是指形如f(x) = a^x的函数,其中a是常数且大于0,x属于实数集。

幂函数的图像通常是一个与x轴的交点为(0, 1)的变化趋势递增或递减的曲线。

当a>1时,幂函数呈指数增长趋势;当0<a<1时,幂函数呈指数衰减趋势。

幂函数有一些基本的性质,首先是定义域。

对于幂函数f(x) = a^x,由于a>0,故定义域为所有实数。

其次是值域。

当a>1时,f(x)的值域为(0, +∞);当0<a<1时,f(x)的值域为(0, 1)。

幂函数还具有一些特殊的性质,比如当x为0时,幂函数f(x)的值为1。

这可以从定义中直接得出,当x=0时,a^0=1。

此外,幂函数的单调性与横截距也是值得关注的性质。

当a>1时,幂函数呈递增趋势,且在x轴的正半轴上无横截距;当0<a<1时,幂函数呈递减趋势,且在x轴的正半轴上有横截距。

二、幂函数的应用幂函数在实际问题中有着广泛的应用。

首先是在经济学中的应用。

在经济学中,幂函数可以用来描述一些经济指标的增长趋势。

比如,GDP增长速度可以用幂函数来描述,这有助于分析和预测经济发展的趋势。

其次是在生物学中的应用。

在生物学中,幂函数可以用来描述一些生物体的增长规律。

例如,人口增长模型就可以用幂函数来描述,这有助于研究人口增长的变化规律以及制定相应的政策。

此外,幂函数还可以用来表示一些物理学中的规律。

比如,当物体受到空气阻力时,在自由下落过程中速度与时间的关系可以用幂函数来表示。

这可以帮助我们理解物体在真实环境中的运动规律。

三、幂函数的图像与变换在绘制幂函数的图像时,我们可以通过计算多个点的函数值来得到一个大致的曲线。

高一数学知识点幂函数

高一数学知识点幂函数

高一数学知识点幂函数幂函数是数学中的一种基本函数,也是高一数学中的重要内容。

幂函数的定义可以简单地表示为f(x) = x^a,其中,a为实数且不为零。

在这个函数中,x为自变量,a为幂指数,f(x)为因变量。

幂函数的图像表现出不同的特征,这取决于幂指数a的值。

当a为正数时,幂函数的图像呈现上升的形态,随着自变量x的增加,因变量f(x)也随之增加。

当a为负数时,幂函数的图像则呈现下降的形态,随着自变量x的增加,因变量f(x)逐渐减小。

当a为零时,幂函数的图像则变为一条水平的直线。

幂函数还具备以下几个重要的性质:对称性、单调性、奇偶性和最值。

首先,幂函数具有对称性。

在幂函数f(x) = x^a中,如果幂指数a是一个偶数,则函数的图像关于y轴对称;如果幂指数a是一个奇数,则函数的图像关于原点对称。

其次,幂函数具有单调性。

当幂指数a是正数时,幂函数是递增的,即当x1 < x2时,f(x1) < f(x2);当幂指数a是负数时,幂函数是递减的,即当x1 < x2时,f(x1) > f(x2)。

再次,幂函数具有奇偶性。

当幂数a是偶数时,幂函数是偶函数,即f(x) = f(-x);当幂数a是奇数时,幂函数是奇函数,即f(x) = -f(-x)。

最后,幂函数具有最值。

当幂指数a为正时,幂函数的最小值发生在自变量x = 0的位置;当幂指数a为负时,幂函数的最大值也发生在自变量x = 0的位置。

幂函数在实际问题中具有广泛的应用。

例如,在物理中,强度随距离变化的关系可以用幂函数来表示;在经济学中,成本随产量变化的关系也可以用幂函数来描述。

在高一的学习中,同学们不仅需要掌握幂函数的定义以及图像特征,还需要能够应用幂函数解决实际问题。

因此,对幂函数的深入理解和运用至关重要。

通过对幂函数的学习和掌握,我们能够更好地理解数学中的指数运算及其应用。

同时,幂函数也为我们打开了更广阔的数学世界的大门,为我们理解和掌握更高级的函数提供了基础。

高一数学幂函数知识点

高一数学幂函数知识点

高一数学幂函数知识点1.概念:y x α=(x 是自变量,α是常数)注意:(1).只有形如y x α=(α为任意实数,x 为自变量)的函数才是幂函数,否则就不是; (2).判断是否为幂函数的依据:y x α=①.指数为常数 ②. 底数为自变量 ③. 底数系数为1 如:()3,2,5,y x y x y x ααα===+等都不是幂函数.2.幂函数的图象 按0,1,1,01,0ααααα==><<<五种类型分3.幂函数y x α=在第一象限图象特征(1).当1α>时,图象过(0,0),(1,1),下凸递增,如3y x = (2).当01α<<时,图象过(0,0),(1,1),上凸递增,如12y x =(3).当0α<时,图象过(1,1),下凸递减,且以两坐标轴为渐近线.如12y x -= 4.幂函数的性质(1).所有的幂函数在()0,+∞上都有意义,图象都过(1,1). (2).如果0α>,则幂函数过原点,在()0,+∞上单调递增.(3).如果0α<,图象在()0,+∞上单调递减,在第一象限内,当x 从右边趋向于原点时,图象在y 轴右方无限逼近y 轴;当x 趋向于+∞时,图象在x 轴上方无限逼近x 轴. (4).①.当α为奇数时,幂函数为奇数 ②.当α为偶数时,幂函数为偶数 ③.当(),,pp q p q N qα+=∈为互质,时a. 若q 为奇数,则当p 为奇数时p q y x =为奇函数,当p 为偶数时p qy x =为偶函数 b. 若q 为偶数,则p 必为奇数,此时pqy x =为非奇非偶函数 (5).幂函数的定义域①.当N α+∈时,定义域为R ②.当0α=时,定义域为{}|,0x x R x ∈≠ ③.当α为负整数时,定义域为{}|,0x x R x ∈≠ ④.当(),,1,,pp q N q p q qα+=∈>且互质时 a. q 为偶数时,定义域为[)0,+∞ b. q 为奇数时,定义域为R ⑤.当()-,,1,,pp q N q p q qα+=∈>且互质时 a. q 为偶数,定义域为()0,+∞ b. q 为奇数,定义域为{}|,0x x R x ∈≠.。

新高一指数幂的知识点

新高一指数幂的知识点

新高一指数幂的知识点指数幂是数学中一个重要的概念,广泛应用于各个领域。

本文将为大家介绍高中一年级新学期所涉及的指数幂的知识点。

一、指数幂的基本定义指数幂由底数和指数两个要素构成。

底数表示需要进行幂运算的数,而指数表示幂运算的次数。

例如,2的3次幂可以表示为2^3,即2*2*2=8。

在这个例子中,2是底数,3是指数。

指数幂的基本性质是,如果底数相同,不同指数的指数幂可以进行运算。

例如,2^3 * 2^4 = 2^(3+4) = 2^7,由此可见,指数幂的运算可以转化为指数的加法运算。

二、指数幂的运算规律1. 乘法运算规律:对于相同底数的幂进行乘法运算时,可以通过将指数相加得到新的指数幂。

例如,3^2 * 3^4 = 3^(2+4) = 3^6。

2. 除法运算规律:相同底数的幂进行除法运算时,可以通过将指数相减得到新的指数幂。

例如,5^6 / 5^3 = 5^(6-3) = 5^3。

3. 幂的乘方:当两个指数幂进行乘方运算时,可以通过将指数相乘得到新的指数幂。

例如,(2^3)^2 = 2^(3*2) = 2^6。

4. 幂的整体乘方:当指数幂进行整体乘方运算时,可以通过将指数乘以整体指数的方式得到新的指数幂。

例如,(2^3)^4 = 2^(3*4) = 2^12。

5. 零的指数幂:任何数除以自身等于1,因此,对于任何非零数,其0次幂均等于1。

例如,3^0 = 1。

三、指数幂的应用指数幂在现实生活中有许多应用,下面举几个例子。

1. 计算利息:在利息的计算中,指数幂可用于表示复利的增长。

例如,假设一个存款每年以10%的利率增长,那么存款在第n年的金额可以表示为初始金额乘以1.1的n次幂。

2. 科学计数法:科学计数法用于表示非常大或非常小的数。

在科学计数法中,指数幂用于表示十的幂次。

例如,1.23 x 10^6表示1.23乘以10的6次幂。

3. 指数函数:指数函数是指以指数幂为自变量的函数。

在数学和物理中,指数函数广泛应用于描述增长和衰变等现象。

高一数学幂函数的性质与图像知识点

高一数学幂函数的性质与图像知识点

高一数学幂函数的性质与图像学问点高一数学幂函数的性质与图像学问点幂函数的图象最多只能同时出现在两个象限内;假如幂函数图象与坐标轴相交,则交点确定是原点。

下文是沪教版高一数学上册幂函数的性质与图像学问点,欢迎阅读!定义:形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

定义域和值域:当a为不同的数值时,幂函数的定义域的不同状况如下:假如a为随意实数,则函数的定义域为大于0的全部实数;假如a为负数,则x确定不能为0,不过这时函数的定义域还必需根[据q的奇偶性来确定,即假如同时q为偶数,则x不能小于0,这时函数的定义域为大于0的全部实数;假如同时q为奇数,则函数的定义域为不等于0 的全部实数。

当x为不同的数值时,幂函数的值域的不同状况如下:在x大于0时,函数的.值域总是大于0的实数。

在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。

而只有a为正数,0才进入函数的值域性质:对于a的取值为非零有理数,有必要分成几种状况来探讨各自的特性:首先我们知道假如a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),假如q是奇数,函数的定义域是R,假如q是偶数,函数的定义域是[0,+∞)。

当指数n是负整数时,设a=-k,则x=1/(x^k),明显x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:解除了为0与负数两种可能,即对于x0,则a可以是随意实数;解除了为0这种可能,即对于x0和x0的全部实数,q不能是偶数;解除了为负数这种可能,即对于x为大于且等于0的全部实数,a就不能是负数。

总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同状况如下:假如a为随意实数,则函数的定义域为大于0的全部实数;假如a为负数,则x确定不能为0,不过这时函数的定义域还必需依据q的奇偶性来确定,即假如同时q为偶数,则x不能小于0,这时函数的定义域为大于0的全部实数;假如同时q为奇数,则函数的定义域为不等于0 的全部实数。

高中数学必修1 幂函数

高中数学必修1 幂函数

..过程与方法.、研究幂函数的图像幂函数性质凸越大,下凸的程度越大(你能找出原因吗?)上凸的程度越大(你能说出原因吗?).课外练习一、选择题1.下列函数中既是偶函数又是 ( )A .B .C .D .2.函数2-=x y 在区间]2,21[上的最大值是 ( )A .41 B .1- C .4 D .4- 3.下列所给出的函数中,是幂函数的是( )A .3x y -=B .3-=xyC .32x y = D .13-=x y 4.函数34x y =的图象是( )A .B .C .D .5.下列命题中正确的是( )A .当0=α时函数αx y =的图象是一条直线B .幂函数的图象都经过(0,0)和(1,1)点C .若幂函数αx y =是奇函数,则αx y =是定义域上的增函数 D .幂函数的图象不可能出现在第四象限6.函数3x y =和31x y =图象满足( )A .关于原点对称B .关于x 轴对称C .关于y 轴对称D .关于直线x y =对称 7. 函数R x x x y ∈=|,|,满足( )A .是奇函数又是减函数B .是偶函数又是增函数C .是奇函数又是增函数D .是偶函数又是减函数8.函数2422-+=x x y 的单调递减区间是( )A .]6,(--∞B .),6[+∞-C .]1,(--∞D .),1[+∞-9. 如图1—9所示,幂函数αx y =在第一象限的图象,比较1,,,,,04321αααα的大小( ) A .102431<<<<<αααα B .104321<<<<<αααα C .134210αααα<<<<< D .142310αααα<<<<<10. 对于幂函数54)(x x f =,若210x x <<,则)2(21x x f +,2)()(21x f x f +大小关系是( ) A .)2(21x x f +>2)()(21x f x f +B . )2(21x x f +<2)()(21x f x f + C . )2(21x x f +=2)()(21x f x f + D . 无法确定二、填空题 11.函数的定义域是 .12.的解析式是.13.942--=a a xy 是偶函数,且在),0(+∞是减函数,则整数a 的值是 .14.幂函数),*,,,()1(互质n m N k n m x y mnk∈=-图象在一、二象限,不过原点,则nm k ,,的奇偶性为 . 三、解答题 15.(12分)比较下列各组中两个值大小1α3α4α2α(1)16.(12分)求证:函数3x y =在R 上为奇函数且为增函数.17.(12分)下面六个幂函数的图象如图所示,试建立函数与图象之间的对应关系..6543212132323123---======x y x y x y x y x y x y );();()(;);();()((A ) (B ) (C ) (D ) (E ) (F ) 18.(14分)利用幂函数图象,画出下列函数的图象(写清步骤).(1).参考答案一、CCBAD DCADA 二、11.; 12.)0()(34≥=x x x f ; 13.5; 14.k m ,为奇数,n 是偶数;三、15. 解:(1)+∞<<<+∞=7.06.00),0(116上是增函数且在函数x y1161167.06.0<∴ (2)函数),0(35+∞=在x y 上增函数且89.088.00<<.)89.0()88.0(,89.088.089.088.0353535353535-<-∴->-∴<∴即16.解: 显然)()()(33x f x x x f -=-=-=-,奇函数;令21x x <,则))(()()(22212121323121x x x x x x x x x f x f ++-=-=-, 其中,显然021<-x x ,222121x x x x ++=2222143)21(x x x ++,由于0)21(221≥+x x ,04322≥x ,且不能同时为0,否则021==x x ,故043)21(22221>++x x x .从而0)()(21<-x f x f . 所以该函数为增函数. 17.解:六个幂函数的定义域,奇偶性,单调性如下:(1)323x x y ==定义域[0,,既不是奇函数也不是偶函数,在[0,是增函数;.),0(16),0(15),0(14),0[3),0[22133223232331上减函数函数,在既不是奇函数也不是偶定义域为)(是减函数;是奇函数,在定义域)(是减函数;是偶函数,在定义域)(是增函数;,是偶函数,在定义域为)(是增函数;,是奇函数,在定义域为)(+∞==+∞==+∞==+∞==+∞==+--+--+-R xx y UR R x x y UR R x x y R x x y R x x y通过上面分析,可以得出(1)↔(A ),(2)↔(F ),(3)↔(E ),(4)↔(C ),(5)↔(D ),(6)↔(B ).18.解:(1)1)1(1112112222222++=+++=++++=x x x x x x x y 把函数21,x y =的图象向左平移1个单位,再向上平移1个单位可以得到函数122222++++=x x x x y 的图象.(2)1)2(35--=-x y 的图象可以由35-=x y 图象向右平移2个单位,再向下平移1个单位而得到.图象略。

高一数学重点知识点:幂函数解析

高一数学重点知识点:幂函数解析

高一数学重点知识点:幂函数解析高中数学相对于初中来说在学习方法和解题难度上都会有所增加,所以我们要熟悉每个重点知识点,以此来找到更好的学习方法。

掌握幂函数的内部规律及本质是学好幂函数的关键所在,下面是整理的高一数学重点知识点:幂函数解析,希望对广大朋友有所帮助。

定义:形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

定义域和值域:当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。

当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。

在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。

而只有a为正数,0才进入函数的值域性质:对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+)。

当指数n是负整数时,设a=-k,则x=1/(x^k),显然x0,函数的定义域是(-,0)(0,+).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x0,则a可以是任意实数;排除了为0这种可能,即对于x0和x0的所有实数,q不能是偶数;排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。

幂函数知识点总结_学习总结_

幂函数知识点总结_学习总结_

幂函数知识点总结小编为您提供的高一数学知识点,希望可以给大家的数学学习带来帮助。

掌握幂函数的内部规律及本质是学好幂函数的关键所在,下面是整理的幂函数公式大全,希望对广大朋友有所帮助。

定义:形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

定义域和值域:当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x 肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。

当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。

在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。

而只有a为正数,0才进入函数的值域性质:对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是r,如果q是偶数,函数的定义域是[0,+∞)。

当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;排除了为0这种可能,即对于x<0和x>0的所有实数,q不能是偶数;排除了为负数这种可能,即对于x为大于且等于0的所有实数,a 就不能是负数。

总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。

高一数学知识点幂函数

高一数学知识点幂函数

高一数学知识点:幂函数掌握幂函数的内部规律及本质是学好幂函数的关键所在,下面是精品学习网高中频道为大家整理的幂函数公式大全,希望对广大朋友有所帮助。

定义:形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

定义域和值域:当a为不同的数值时,幂函数的定义域的不同情况如下:如果a 为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。

当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。

在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。

而只有a为正数,0才进入函数的值域性质:对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。

当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;排除了为0这种可能,即对于x<0和x>0的所有实数,q不能是偶数;排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学幂函数知识点总结
函数是高中数学中比较重要的一项知识,学好函数可以提高自己的数学知识水平。

下面就让小编给大家分享一些高一数学幂函数知识点总结吧,希望能对你有帮助!
高一数学幂函数知识点总结篇一一、一次函数定义与定义式:自变量x和因变量y有如下关系:
y=kx+b
则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx(k为常数,k0)
二、一次函数的性质:
1.y的变化值与对应的x的变化值成正比例,比值为k
即:y=kx+b(k为任意不为零的实数b取任何实数)
2.当x=0时,b为函数在y轴上的截距。

三、一次函数的图像及性质:
1.作法与图形:通过如下3个步骤
(1)列表;
(2)描点;
(3)连线,可以作出一次函数的图像一条直线。

因此,作一次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与x轴
和y轴的交点)
2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限:
当k0时,直线必通过一、三象限,y随x的增大而增大;
当k0时,直线必通过二、四象限,y随x的增大而减小。

当b0时,直线必通过一、二象限;
当b=0时,直线通过原点
当b0时,直线必通过三、四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k0时,直线只通过一、三象限;当k0时,直线只通过二、四象限。

四、确定一次函数的表达式:
已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=kx+b。

(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。

所以可以列出2个方程:y1=kx1+b①和y2=kx2+b②
(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。

高一数学幂函数知识点总结篇二一、高中数学函数的有关概念
1.高中数学函数函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于函数A中的任意一个数x,在函数B 中都有唯一确定的数f(x)和它对应,那么就称f:AB为从函数A到函数B的一个函数.记作:y=f(x),xA.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的函数{f(x)|xA}叫做函数的值域.
注意:
函数定义域:能使函数式有意义的实数x的函数称为函数的定义域。

求函数的定义域时列不等式组的主要依据是:
(1)分式的分母不等于零;
(2)偶次方根的被开方数不小于零;
(3)对数式的真数必须大于零;
(4)指数、对数式的底必须大于零且不等于1.
(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的函数.
(6)指数为零底不可以等于零,
(7)实际问题中的函数的定义域还要保证实际问题有意义.
相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备)
2.高中数学函数值域:先考虑其定义域
(1)观察法
(2)配方法
(3)代换法
3.函数图象知识归纳
(1)定义:在平面直角坐标系中,以函数y=f(x),(xA)中的x为横坐标,函数值y为纵坐标的点P(x,y)的函数C,叫做函数y=f(x),(xA)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.
(2)画法
A、描点法:
B、图象变换法
常用变换方法有三种
1)平移变换
2)伸缩变换
3)对称变换
4.高中数学函数区间的概念
(1)函数区间的分类:开区间、闭区间、半开半闭区间
(2)无穷区间
5.映射
一般地,设A、B是两个非空的函数,如果按某一个确定的对应法则f,使对于函数A中的任意一个元素x,在函数B中都有唯一确
定的元素y与之对应,那么就称对应f:AB为从函数A到函数B的一个映射。

记作f(对应关系):A(原象)B(象)
对于映射f:AB来说,则应满足:
(1)函数A中的每一个元素,在函数B中都有象,并且象是唯一的;
(2)函数A中不同的元素,在函数B中对应的象可以是同一个;
(3)不要求函数B中的每一个元素在函数A中都有原象。

6.高中数学函数之分段函数
(1)在定义域的不同部分上有不同的解析表达式的函数。

(2)各部分的自变量的取值情况.
(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.
补充:复合函数
如果y=f(u)(uM),u=g(x)(xA),则y=f[g(x)]=F(x)(xA)称为f、g的复合函数。

高一数学幂函数知识点总结篇三 1.函数的单调性(局部性质)
(1)增函数
设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D 内的任意两个自变量x1,x2,当x1
如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.
注意:函数的单调性是函数的局部性质;
(2)图象的特点
如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.
(3)函数单调区间与单调性的判定方法
(A)定义法:
a.任取x1,x2D,且x1
b.作差f(x1)-f(x2);
c.变形(通常是因式分解和配方);
d.定号(即判断差f(x1)-f(x2)的正负);
e.下结论(指出函数f(x)在给定的区间D上的单调性).
(B)图象法(从图象上看升降)
(C)复合函数的单调性
复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:同增异减
注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.
8.函数的奇偶性(整体性质)
(1)偶函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.
(2)奇函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数.
(3)具有奇偶性的函数的图象的特征
偶函数的图象关于y轴对称;奇函数的图象关于原点对称.
利用定义判断函数奇偶性的步骤:
a.首先确定函数的定义域,并判断其是否关于原点对称;
b.确定f(-x)与f(x)的关系;
c.作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.
注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定;(2)由f(-x)f(x)=0或f(x)/f(-x)=1来判定;(3)利用定理,或借助函数的图象判定.
9、函数的解析表达式
(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.
(2)求函数的解析式的主要方法有:
1)凑配法
2)待定系数法
3)换元法
4)消参法
10.函数最大(小)值(定义见课本p36页)
a.利用二次函数的性质(配方法)求函数的最大(小)值
b.利用图象求函数的最大(小)值
c.利用函数单调性的判断函数的最大(小)值:
如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);
如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);
看了高一数学幂函数知识点总结的人还看:
1.高一上学期数学知识:幂函数
2.高一数学必修一函数的奇偶性知识要点
3.高一数学必修1抽象函数常见题型解法归纳
4.高一数学必修一函数经典题型复习
5.高中数学幂函数教案
6.高一数学必修一幂函数概念知识点。

相关文档
最新文档