华侨大学 大学物理作业本(下)答案

合集下载

大学物理练习册(下)答案解析

大学物理练习册(下)答案解析

练习一1、C ,2、C ,3、C ,4、D,5、()j y a qy2/322042+πε, (j 为y 方向单位矢量), 2/a ± ,6、()30220824R qdd R R qd εεπ≈-ππ,从O 点指向缺口中心点. 7、解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为λ=q / L ,在x 处取一电荷元d q = λd x = q d x / L , 它在P 点的场强: ()204d d x d L q E -+π=ε()204d x d L L x q -+π=ε总场强为 ⎰+π=Lx d L xL q E 020)(d 4-ε()d L d q +π=04ε 方向沿x 轴,即杆的延长线方向.8、解:把所有电荷都当作正电荷处理. 在θ处取微小电荷 d q = λd l = 2Q d θ / π它在O 处产生场强θεεd 24d d 20220RQR q E π=π=按θ 角变化,将d E 分解成二个分量:θθεθd sin 2sin d d 202R Q E E x π==,θθεθd cos 2cos d d 202R Q E E y π-=-=对各分量分别积分,积分时考虑到一半是负电荷⎥⎦⎤⎢⎣⎡-π=⎰⎰πππθθθθε2/2/0202d sin d sin 2R QE x =02022/2/0202d cos d cos 2R Q R Q E y εθθθθεππππ-=⎥⎦⎤⎢⎣⎡-π-=⎰⎰ 所以 j R Q j E i E E y x202επ-=+=练习二1、D ,2、C ,3、A ,4、C,5、不变、变,6、-3σ / (2ε0) ,-σ / (2ε0), 3σ / (2ε0)7、解: (1) 由对称分析知,平板外两侧场强大小处处相等、方向垂直于平面且背离平面.设场强大小为E . 作一柱形高斯面垂直于平面.其底面大小为S ,如图所示. 按高斯定理∑⎰=⋅0ε/d q S E S,即22d d 12εερεkSbx x kSx S SE bb===⎰⎰得到 E = kb 2 / (4ε0) (板外两侧) (2)过P 点垂直平板作一柱形高斯面,底面为S .设该处场强为E ',如图所示. 按高斯定理有 ()022εεkSbxdx kSS E E x==+'⎰xS P SEESSEd x b E 'd qR O xyθd θθPLdd q x (L+d -x )d ExO得到 ⎪⎪⎭⎫ ⎝⎛-='22220b x k E ε (0≤x ≤b ) (3) E '=0,必须是0222=-b x , 可得2/b x = 6、解:挖去电荷体密度为ρ 的小球,以形成球腔时的求电场问题,可在不挖时求出电场1E,而另在挖去处放上电荷体密度为-ρ的同样大小的球体,求出电场2E,并令任意点的场强为此二者的叠加,即可得 210E E E +=在图(a)中,以O 点为球心,d 为半径作球面为高斯面S ,则可求出O '与P 处场强的大小.ρε302113414d d d E S E S π⋅=π⋅=⋅⎰ 有 E 1O’=E 1P =d E 013ερ= 方向分别如图所示. 在图(b)中,以O '点为小球体的球心,可知在O '点E 2=0. 又以O ' 为心,2d 为半径作球面为高斯面S '可求得P 点场强E 2P()032223/)(4)(24d ερ-π=π⋅='⋅⎰'r d E S E S203212dr E P ερ-= (1) 求O '点的场强'O E. 由图(a)、(b)可得 E O ’ = E 1O’ =03ερd, 方向如图(c)所示.(2) 设空腔任一点P 相对O '的位矢为r ',相对O 点位矢为r则3ερr E PO =, 03ερr E O P '-=' , ∴ 0003'3)(3ερερερdOO r r E E E O P PO P=='-=+=' ∴腔内场强是均匀的.练习三1、D ,2、B ,3、C,4、C,5、q / (6πε0R )6、负,增加7、解:由高斯定理可得场强分布为:E =-σ / ε0 (-a <x <a ) E = 0 (-∞<x <-a ,a <x <+∞=E 1P ρ PE 2P E P 图(d) O O ' P E 1O’ ρ 图(a) O ρO ' d E O’=E 1 图(c)O P E 2P -ρ O 'r E 2O’=0图(b)E 1P由此可求电势分布:在-∞<x ≤-a 区间⎰⎰⎰---+==000/d d 0d aa xxx x x E U εσ0/εσa -=在-a ≤x ≤a 区间 00d d εσεσxx x E U x x =-==⎰⎰ 在a ≤x <∞区间 0000d d 0d εσεσax x x E U a a x x =-+==⎰⎰⎰8、解:设x 轴沿细线方向,原点在球心处,在x 处取线元d x ,其上电荷为x q d d λ=', 该线元在带电球面的电场中所受电场力为: d F = q λd x / (4πε0 x 2) 整个细线所受电场力为: ()l r r lq x x q F l r r +π=π=⎰+00024d 400ελελ 方向沿x 正方向.电荷元在球面电荷电场中具有电势能: d W = (q λd x ) / (4πε0 x ) 整个线电荷在电场中具有电势能: ⎪⎪⎭⎫ ⎝⎛+π=π=⎰+0000ln 4d 400r l r q x x q W l r r ελελ练习四1、D ,2、D ,3、B ,4、C ,5、U C C C C C q U C C C C C 21212221211)(,)(+-=+-,6、r εεσσ0,, 7、解:金属球的电势r d r d 221⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=22220π44πdr R R Rr r Qdrr Q εεε)11(π4210R R Q r r -+=εεε8、解:令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ∵ AB AC U U =,即-a +a O x UO R x r 0 r 0+ld xx∴ AB AB AC AC E E d d = ∴2d d 21===ACABAB AC E E σσ 且 1σ+2σSq A=得 ,32S q A =σ Sq A 321=σ 而 7110232-⨯-=-=-=A C q S q σC C 10172-⨯-=-=S q B σ (2)301103.2d d ⨯===AC AC AC A E U εσV练习五1、πR 2c2、 5.00×10-5 T , 3、20d 4a lI πμ , 平行z 轴负向 ; 4、)11(4120R R I -μ,垂直纸面向外 ,2/122210)11(4R R I+μ ,12arctg R R +π21,5、)3231(40ππμ-+R I , 6、C, 7、解:因为金属片无限长,所以圆柱轴线上任一点P 的磁感应强度方向都在圆柱截面上,取坐标如图所示,取宽为l d 的一无限长直电流l R II d d π=,在轴上P 点产生B d 与R 垂直,大小为RI R R R I R I B 20002d 2d 2d d πθμ=πθπμ=πμ= RI B B x 202d cos cos d d πθθμ=θ=RI B B y 202d sin )2cos(d d πθθμ-=θ+π=∴ 520202221037.6)]2sin(2[sin 22d cos -ππ-⨯=πμ=π--ππμ=πθθμ=⎰RI R I R I B x T 0)2d sin (2220=πθθμ-=⎰ππ-RI B y∴ i B51037.6-⨯= T8、解:(1) 对r ~r +d r 段,电荷 d q = λ d r ,旋转形成圆电流.则 r dq I d 22d π=π=λωω 它在O 点的磁感强度rrr IB d 42d d 000π==λωμμ⎰⎰+π==b a a r r B B d 4d 000λωμa ba +π=ln 40λωμ 方向垂直纸面向内. r r I r p m d 21d d 22λω=π=⎰⎰+==ba am m r r p p d 21d 2λω 6/])[(33a b a -+=λω 方向垂直纸面向内.练习六1、B2、)2(120I I -μ3、320μI , 4、Rihπμ20,5、)2/(210R rI πμ ,0 6、解:取同轴闭合圆环r l π2= )(b r a <<则 ⎰π=⋅lr B l B 2d2222)(a b Ia r I ππππ--=∑∴ )(2)(22220a b r a r I B --=πμ 7、解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小, 由安培环路定律可得:)(220R r r R IB ≤π=μ因而,穿过导体内画斜线部分平面的磁通Φ1为⎰⎰⋅==S B S B d d 1 Φr r RIRd 2020⎰π=μπ=40I μ在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为 )(20R r rIB >π=μ因而,穿过导体外画斜线部分平面的磁通Φ2为⎰⋅=S B d 2Φr r I R Rd 220⎰π=μ2ln 20π=Iμ穿过整个矩形平面的磁通量 21ΦΦΦ+=π=40I μ2ln 20π+IμOarbd r ω1、A ,2、B ,3、)/(cos 2eB m θv π, )/(sin eB m θv ,4、alB 2,5、铁磁质,顺磁质,抗磁质,6、 0.226 T ,300 A/m7、解: (1) 0=⨯=B l I F bcB l I F ab⨯= 方向⊥纸面向外,大小为866.0120sin ==︒IlB F ab NB l I F ca⨯=方向⊥纸面向里,大小866.0120sin ==︒IlB F ca N(2)IS P m =B P M m⨯= 沿O O '方向,大小为221033.443-⨯===B l I ISB M m N ⋅(3)磁力功 )(12ΦΦ-=I A∵ 01=Φ B l 2243=Φ ∴ 221033.443-⨯==B l IA J 8、解:在直线电流2I 上任意取一个小电流元dl I 2,此电流元到长直线 的距离为x ,无限长直线电流1I 在小电流元处产生的磁感应强度 xI B πμ210=21021060cos 22dxx I I dl x I I dF ⋅==πμπμ ab I I dxx I I F ba ln 60cos 22100210πμπμ=⋅=⎰1、D ,2、C ,3、A ,4、0.40 V , 0.5 m 2/s ,5、 5×10-4 Wb ,6、解:2IB xμπ=ln 22d adIl Id a ldx x dμμππ++Φ=⋅=⎰0l n c o s 2N I l d d a Nt dt dμωεωπΦ+=-=- 7、解: ⎰==︒=⋅=22212160cos d klvt lv kt Blvt S B m Φ∴ klvt tm-=-=d d Φε 即沿abcd 方向顺时针方向.练习九1、28/104.0s m ⨯顺时针 2、 πBnR 2 ,O 3、dtdBR221π, 4、等于零,不等于零;不等于零,等于零 5、RBfr 22π6、解: 作辅助线MN ,则在MeNM 回路中,沿v方向运动时0d =m Φ ∴ 0=MeNM ε 即 MN MeN εε= 又∵ ⎰+-<+-==ba ba MN ba ba Iv l vB 0ln 2d cos 0πμπε 所以MeN ε沿NeM 方向,大小为ba ba Iv -+ln 20πμ M 点电势高于N 点电势,即ba ba Iv U U N M -+=-ln 20πμ 7、解: ∵ bc ab ac εεε+=tBR B R t t ab d d 43]43[d d d d 21=--=-=Φε=-=t abd d 2ΦεtB R B R t d d 12π]12π[d d 22=--∴ tBR R acd d ]12π43[22+=ε ∵0d d >tB∴ 0>ac ε即ε从c a →练习十1、C ,2、C ,3、0,4、 垂直纸面向里 , 垂直OP 连线向下 ,5、(4)(2)(1) 5、解:圆柱形电容器电容 12ln 2R R lC πε=12ln 2R R lUCU q πε== 1212ln ln 22R R r U R R r lU S q D εππε===∴ 12ln R R r ktDj ε=∂∂=6、如图10-17图所示,取r l S d d = 则 ⎰⎰-----=--=-+=ad aad aad da a d Il r r r Ilr l r Ir πI)ln (ln 2πd )d 11(π2d ))d (π22(0000μμμμΦ aad Il-=lnπ0μ ∴ aad lIL -==lnπ0μΦ练习十一1、A2、 B3、B ,4、D ,5、2π (n -1) e / λ , 4×103 ;6、解: (1)由λk d D x =明知,λ22.01010.63⨯⨯=, ∴ 3106.0-⨯=λmm oA 6000=(2) 3106.02.010133=⨯⨯⨯==∆-λd D x mm7、解:(1) ∆x =20 D λ / a =0.11 m(2) 覆盖云玻璃后,零级明纹应满足 (n -1)e +r 1=r 2设不盖玻璃片时,此点为第k 级明纹,则应有 r 2-r 1=k λ所以 (n -1)e = k λk =(n -1) e / λ=6.96≈7 零级明纹移到原第7级明纹处练习十二1、A ,2、 C ,3、C ,4、 1.40 ,5、0.6mm 。

大学物理下习题册参考答案

大学物理下习题册参考答案

1. B解释:4/3π属于第二象限,特点是位移为负,速度为负。

2. C解释:旋转矢量处在第四象限,转过的角度为3/π 。

3. D解释:由旋转矢量知,合矢量和分矢量可组成正三角形,故分矢量间夹角为3/2π 。

4. cm 0 s m /03.0π 解释:由ωA 求出速度值。

5. 4/π )4c o s (02.0ππ+=t x解释:零时刻相位即为初相,由t 时刻相位求出ω 。

6. )2cos(04.0ππ+=t x解释:这题就不罗嗦了^_^参考上题。

7. 由 )65sin(2.0π-=t x 求出 )65sin(5π--=t a由 ma F = 求出 N F 56s i n 250=⨯⨯=π1)65sin(=-πt 时 N F 10max = 此时 2.0±=x (不需解出t )8. 本题直接求解较麻烦,用旋转矢量法求解比较方便。

由题意分析可得过A 点时矢量在第三象限,第一次过B 点在第四象限,第二次在第一象限。

配合矢量图可解得 πϕ430-= 4πω= 25=A cm所以振动方程为 )434c o s (25ππ-=t x cm 93.345==πυA cm/s 9. 由题意很容易知道 2003.060==k 502==mk ω 由振动方程知 )c o s (02ϕωω+-=t A a 若使物体在平衡位置上方分离,则只需 g A ≥2ω 即 2.02=≥ωgA 米1. B解释:代入时间后由原点相位确定曲线。

2. D解释:求出各个量的表达式。

3. D解释:写出波动方程即可。

4. 0.5解释:由比例可求出。

5. π解释:求出波长即可求出。

6. 503 m/s7. 紫外线 X 射线 γ射线 解释:参考课本P82。

8. )2165cos(1.0πππ--=x t y解释:由图求出s m u /330= m 4=λ Hz 2165=ν πω165=,初相位直接求解波方程得到,或把y 轴右移41周期,再由移动后的图确定出正确的初位相。

大学物理下习题册答案详解

大学物理下习题册答案详解

解 : a 30cm ,d 0.6m m , b=2.2m
D =a+b 2.5m ,
x 2.25m m
x D dx 5400 A
d
D
第 4级 明 纹 至 中 心 距 离 满 足 :
dx 4 x 4 D 9.00m m
D
ቤተ መጻሕፍቲ ባይዱ
d
练习34 光的干涉(2)
1.在双缝装置中,用一折射率为n的薄云母片覆盖其中
光的程亮差度2 分,, 2别则. 5为 有 , :3 .5
,比较 P、Q、R 三点
(1)P点最亮、Q点次之、R点最暗;
注意。单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简意赅地阐述您的观点。您的 内容已经简明扼要,字字珠玑,但信息却千丝万缕、错综复杂,需要用更多的文字来表述;但请您尽可能提炼思
20D 想 的 精 髓 , 否 则 容 易 造 成 观 者 的 阅 读 压 力 , 适 得 其 反 。 正 如 我 们 都 希 望 改 变 世 界 , 希 望 给 别 人 带 去 光 明 , 但 更 多
x 20x= 0.11m 时候我们只需要播下一颗种子,自然有微风吹拂,雨露滋养。恰如其分地表达观点,往往事半功倍。当您的内容 a 到 达 这 个 限 度 时 , 或 许 已 经 不 纯 粹 作 用 于 演 示 , 极 大 可 能 运 用 于 阅 读 领 域 ; 无 论 是 传 播 观 点 、 知 识 分 享 还 是 汇 报
n 1 题 目 中 k=-7
所 以 : e 7 n 1
答案为:(1)
2.迈克耳逊干涉仪可用来测量单色光的波长,当干涉仪
的动镜M2移动d距离时,测得某单色光的干涉条纹移 动N条,则该单色光的波长为:( )

华侨大学 大学物理作业本(下)答案

华侨大学 大学物理作业本(下)答案

大学物理作业本(下)姓名班级学号江西财经大学电子学院2005年10月第九章 稳恒磁场练 习 一1. 已知磁感应强度为20.2-⋅=m Wb B 的均匀磁场,方向沿x 轴正方向,如图所示。

求:(1) 通过图中abcd 面的磁通量;(2) 通过图中befc 面的磁通量;(3) 通过图中aefd 面的磁通量。

2. 如图所示,在被折成钝角的长直导线通中有20安培的电流。

求A 点的磁感应强度。

设a=2.0cm , 120=α。

3.有一宽为a的无限长薄金属片,自下而上通有电流I,如图所示,求图中P点处的磁感应强度B。

4.半径为R的圆环,均匀带电,单位长度所带的电量为 ,以每秒n转绕通过环心并与环面垂直的轴作等速转动。

求:(1)环心的磁感应强度;(2)在轴线上距环心为x处的任一点P的磁感应强度。

练习二1.一载有电流I的圆线圈,半径为R,匝数为N。

求轴线上离圆心x处的磁感应强度B,取R=12cm,I=15A,N=50,计算x=0cm,x=5.0cm, x=15cm各点处的B值;2.在一半径R=1.0cm的无限长半圆柱形金属薄片中,自上而下通有电流I=5.0A,如图所示。

求圆柱轴线上任一点P处的磁感应强度。

3.如图所示,两无限大平行平面上都有均匀分布的电流,设其单位宽度上的电流分别为1i 和2i ,且方向相同。

求:(1) 两平面之间任一点的磁感应强度;(2) 两平面之外任一点的磁感应强度;(3) i i i ==21时,结果又如何?4.10A 的电流均匀地流过一根长直铜导线。

在导线内部做一平面S ,一边为轴线,另一边在导线外壁上,长度为1m ,如图所示。

计算通过此平面的磁通量。

(铜材料本身对磁场分布无影响)。

练习三1.半径为R 的薄圆盘上均匀带电,总电量为q ,令此盘绕通过盘心且垂直盘面的轴线匀速转动,角速度为ω,求轴线上距盘心x 处的磁感应强度。

2.矩形截面的螺绕环,尺寸如图所示。

(1) 求环内磁感应强度的分布;(2) 证明通过螺绕环截面(图中阴影区)的磁通量,210ln 2D D NIh πμ=Φ 式中N 为螺绕环总匝数,I 为其中电流强度。

大物下册课后习题答案

大物下册课后习题答案

大物下册课后习题答案大物下册课后习题答案大学物理是一门重要的基础学科,它涉及到我们周围的自然现象和物质运动规律的研究。

作为学习大学物理的学生,课后习题是巩固知识、提高能力的重要途径。

下面将为大家提供大物下册课后习题的答案,希望对大家的学习有所帮助。

第一章:运动的描述1. 速度与位移的区别是什么?答:速度是描述物体在单位时间内位移的快慢,是矢量量,有大小和方向;位移是描述物体从一个位置到另一个位置的距离和方向,是矢量量,有大小和方向。

2. 什么是匀速直线运动?答:匀速直线运动是指物体在相等时间内位移相等的运动。

在匀速直线运动中,速度大小和方向保持不变。

3. 什么是加速度?答:加速度是描述物体速度变化率的物理量,是矢量量,有大小和方向。

加速度的大小等于速度变化量与时间的比值。

第二章:牛顿定律与运动学1. 牛顿第一定律是什么?答:牛顿第一定律,也称为惯性定律,指出当物体受力为零时,物体将保持静止或匀速直线运动的状态。

2. 什么是牛顿第二定律?答:牛顿第二定律指出,物体的加速度与作用在物体上的力成正比,与物体的质量成反比。

即F=ma,其中F为物体所受合力,m为物体的质量,a为物体的加速度。

3. 什么是牛顿第三定律?答:牛顿第三定律指出,任何一个物体受到的作用力都有一个大小相等、方向相反的反作用力作用在另一个物体上。

第三章:动能、功和能量守恒定律1. 动能是什么?答:动能是物体由于运动而具有的能量,它与物体的质量和速度的平方成正比。

动能的表达式为:K=1/2mv²,其中K为动能,m为物体的质量,v为物体的速度。

2. 什么是功?答:功是描述力对物体做功的物理量,它等于力与物体位移的乘积。

功的表达式为:W=Fs,其中W为功,F为力,s为物体的位移。

3. 能量守恒定律是什么?答:能量守恒定律指出,在一个封闭系统内,能量的总量是不变的。

能量可以相互转化,但不能被创造或破坏。

第四章:动量和碰撞1. 动量是什么?答:动量是物体运动的量度,它等于物体的质量与速度的乘积。

大学物理练习册答案(下册)-

大学物理练习册答案(下册)-

(1) x Acos( 2π t )
T
(2)
x Acos( 2π t 1 )
T2
(3)x Acos( 2π t 1 ) (4) x Acos( 2π t 3 )
T3
T4
2.两位外星人A和B生活在一个没有自转,没有大气, 表面光滑的匀质球形小星球上。有一次他们决定进 行一场比赛,从他们所在的位置出发,各自采用航 天技术看谁能先达到星球的对径位置。A计划穿过星 体直径凿一条通道,采用自由下落方式到达目标位 置;B计划沿着紧贴着星球表面的空间轨道,象人造 卫星一样航行到目标位置。试问A和B谁会赢得比赛?
C. 1 , 1 ,0.05 22
D. 2,2,0.05
9. 一列机械横波在t时刻的波形曲线如图所示, 则该时刻能量为最大值的媒y质质元的位置是:
A. o, b, d, f B. a, c, e, g O'
C. o, d
D. b, f O
d
a
eg
c
b
fx
(二) 填空题 1.一横波的波动方程为: y 0.01cos(250πt 10πx)(m)
解: 以星球中心为原点在直径 通道上设置x轴,A在x处受引力:
Fx
G
Mm R3
x
(注: 只有半径为x的星球部分对A有引力)
式中M为星球质量, R为星球半径, m为A的质量
A做简谐振动, 周期为 T 2 m / k k GMm / R3
A到达目标所需的时间为 tA T / 2 R R / GM B以第一宇宙速度做圆周运动 vB GM / R B到达目标所需的时间为 tB R / vB R R / GM
4. 一质点在x轴上作谐振动振幅A=4cm, 周期T=2s, 其平衡位置取作坐标原点, 若t=0时刻近质点第一次通过x=-2cm处, 且向x轴正方向运动, 则质点第二次通过 x=-2cm,处时刻为:[]

大学物理练习册下答案

大学物理练习册下答案

大学物理练习册下答案问题1:描述牛顿第二定律的数学表达式,并给出一个例子说明如何使用它来解决实际问题。

答案:牛顿第二定律的数学表达式是 \( F = ma \),其中 \( F \)是作用在物体上的合力,\( m \) 是物体的质量,\( a \) 是物体的加速度。

例如,如果一个质量为5kg的物体受到10N的力,那么根据牛顿第二定律,物体的加速度 \( a \) 将是 \( 10N / 5kg = 2m/s^2 \)。

问题2:说明什么是能量守恒定律,并给出一个物理系统的例子来展示这一定律。

答案:能量守恒定律表明,在一个封闭系统中,能量既不能被创造也不能被消灭,只能从一种形式转换为另一种形式,但总量保持不变。

例如,当一个自由落体的物体从一定高度下落时,它的势能转化为动能。

如果忽略空气阻力,下落过程中总能量是守恒的。

问题3:解释什么是波的干涉,并给出一个实验设置来观察这一现象。

答案:波的干涉是指两个或多个波相遇时,它们的振幅相加形成一个新的波形的现象。

当两个波的相位相同(相长干涉)或相反(相消干涉)时,干涉效果最为明显。

观察干涉的一个简单实验设置是使用两个相干光源,它们发出的波在空间中相遇,形成明暗相间的干涉条纹。

问题4:描述电磁感应的基本原理,并解释法拉第电磁感应定律。

答案:电磁感应是当一个导体在变化的磁场中移动时,导体中产生电动势的现象。

法拉第电磁感应定律表明,导体中产生的电动势与穿过导体回路的磁通量的变化率成正比。

数学表达式为 \( \varepsilon = -d\Phi_B/dt \),其中 \( \varepsilon \) 是感应电动势,\( \Phi_B \) 是磁通量,\( t \) 是时间。

问题5:简述量子力学的基本原理,并解释海森堡不确定性原理。

答案:量子力学是描述微观粒子行为的物理学分支,其基本原理包括波粒二象性、量子态的叠加以及量子态的演化遵循薛定谔方程等。

海森堡不确定性原理指出,粒子的位置和动量不能同时被精确测量,它们的不确定性的乘积至少等于普朗克常数的一半。

大学物理(下)练习册答案

大学物理(下)练习册答案

大学物理(下)练习册答案包括(波动、电磁、光的干涉、光的偏振、光的衍射、振动)波动选择:1B, 2A, 3D, 4D, 5D, 6D, 7C, 8A, 9C, 10D二,填空: 1,t x y ππ⨯=-20cos )21cos(100.122(SI) 2分)12(+=n x m , 即 x = 1 m ,3 m ,5 m ,7 m ,9 m 2分n x 2= m ,即 x = 0 m ,2 m ,4 m ,6 m ,8 m ,10 m 1分2,φλ+π-/2L 1分 λk L ± ( k = 1,2,3,…) 2分 λ)12(21+±k L ( k = 0, 1,2,…) 2分3,答案见图 3分 4,17 m 到1.7×10-2m3分5,λ21 3分一, 计算 1,解:(1) 原点O 处质元的振动方程为)2121cos(1022π-π⨯=-t y , (SI) 2分波的表达式为 )21)5/(21cos(1022π--π⨯=-x t y , (SI) 2分x = 25 m 处质元的振动方程为)321cos(1022π-π⨯=-t y , (SI)振动曲线见图 (a) 2分(2) t = 3 s 时的波形曲线方程)10/cos(1022x y π-π⨯=-, (SI) 2分波形曲线见图 2分2,解:(1) 与波动的标准表达式 )/(2cos λνx t A y -π= 对比可得:ν = 4 Hz , λ = 1.50 m , 各1分 波速 u = λν = 6.00 m/s 1分(2) 节点位置 )21(3/4π+π±=πn x )21(3+±=n x m , n = 0,1,2,3, … 3分(3) 波腹位置 π±=πn x 3/44/3n x ±= m , n = 0,1,2,3, … 2分3,解:(1) )1024cos(1.0x t y π-π=)201(4cos 1.0x t -π= (SI) 3分 (2)t 1 = T /4 = (1 /8) s ,x 1 = λ /4 = (10 /4) m 处质点的位移)80/4/(4cos 1.01λ-π=T ym 1.0)818/1(4cos 1.0=-π= 2分(3) 振速 )20/(4sin 4.0x t ty-ππ-=∂∂=v . )4/1(212==T t s ,在 x 1 = λ /4 = (10 /4) m 处质点的振速 26.1)21sin(4.02-=π-ππ-=v m/s 3分电磁§3.1 静止电荷的电场一, 选择题:t (s)O -2×10-21y (m)234(a)2×1, C 2, C 3, D 4, C 5, C 6, B 7, A 8, A 9, C 10, D 11, D二, 填空:1,q / (6ε0) 2,d 211λλλ+3,()40216/R S Q ε∆π 由圆心O 点指向△S4,q / ε0 0 -q /ε05,02εσ 向右 023εσ 向右 02εσ 向左三, 计算:1,解: 20114dq E επ=, 20224dq E επ=∵ 212q q = , ∴ 212E E = 由余弦定理:1212221360cos 2E E E E E E =-+=ο20143dq επ== 3.11×106 V/m 3分 由正弦定理得:αsin 60sin 1E E =ο, 2160sin sin 1==οE E αα = 30°∴E ϖ的方向与中垂线的夹角β=60°,如图所示.2分2,解:设闭合面内包含净电荷为Q .因场强只有x 分量不为零,故只是二个垂直于x 轴的平面上电场强度通量不为零.由高斯定理得:-E 1S 1+ E 2S 2=Q / ε0 ( S 1 = S 2 =S ) 3分则 Q = ε0S (E 2- E 1) = ε0Sb (x 2- x 1)= ε0ba 2(2a -a ) =ε0ba 3 = 8.85×10-12 C 2分2E ϖϖα 1E ϖ60° dβ60° q 2q 1 d3,解:选杆的左端为坐标原点,x 轴沿杆的方向 .在x 处取一电荷元λd x ,它在点电荷所在处产生场强为:()204d d x d xE +π=ελ 3分整个杆上电荷在该点的场强为:()()l d d lx d x E l+π=+π=⎰00204d 4ελελ 2分点电荷q 0所受的电场力为:()l d d lq F +π=004ελ=0.90 N 沿x 轴负向 3分4,解:在球内取半径为r 、厚为d r 的薄球壳,该壳内所包含的电荷为r r Ar V q d 4d d 2π⋅==ρ在半径为r 的球面内包含的总电荷为403d 4Ar r Ar dV q rVπ=π==⎰⎰ρ (r ≤R)以该球面为高斯面,按高斯定理有 0421/4εAr r E π=π⋅得到()0214/εAr E =, (r ≤R )方向沿径向,A >0时向外, A <0时向里. 3分在球体外作一半径为r 的同心高斯球面,按高斯定理有0422/4εAR r E π=π⋅得到 ()20424/r AR E ε=, (r >R )方向沿径向,A >0时向外,A <0时向里. 2分§3.2 电势一, 选择:q精品文档1,A 2,D 3,C 4,D 5,A 6,C 7,A 8,D 9,C二, 填空: 1,43ln 40ελπ 0; 2,10 cm ; 3,⎪⎪⎭⎫ ⎝⎛-π00114r r qε;4,⎪⎪⎭⎫ ⎝⎛-πb ar r q q 11400ε ;5, Ed三, 计算:1,解: 由高斯定理可知空腔内E =0,故带电球层的空腔是等势区,各点电势均为U . 2分在球层内取半径为r →r +d r 的薄球层.其电荷为d q = ρ 4πr 2d r该薄层电荷在球心处产生的电势为()00/d 4/d d ερεr r r q U =π= 2分 整个带电球层在球心处产生的电势为()21220002d d 21R R r r U U R R -===⎰⎰ερερ2分 因为空腔内为等势区所以空腔内任一点的电势U 为()2122002R R U U -==ερ 2分 若根据电势定义⎰⋅=l E U ϖϖd 计算同样给分.2,解:设点电荷q 所在处为坐标原点O ,x 轴沿两点电荷的连线.(1) 设0=E ρ的点的坐标为x ',则()04342020=-'π-'π=i d x qi x q E ϖϖϖεε 3分可得 02222=-'+'d x d x解出 ()d x 3121+-=' 2分 另有一解()d x 13212-=''不符合题意,舍去.(2) 设坐标x 处U =0,则 ()x d qx q U -π-π=00434εε ()0440=⎥⎦⎤⎢⎣⎡--π=x d x x d q ε 3分 得 d - 4x = 0, x = d /4 2分3,解:设内球上所带电荷为Q ,则两球间的电场强度的大小为204r QE επ=(R 1<r <R 2) 1分两球的电势差 ⎰⎰π==212120124d R R R R r dr Qr E U ε⎪⎪⎭⎫ ⎝⎛-π=21114R R Q ε 2分∴ 12122104R R U R R Q -π=ε=2.14×10-9 C 2分§3.4 静电场中的导体 §3.5 静电场中的电介质一, 选择:1,C 2,C 3,B 4,B 5,A 6,B 7,C 8,B二, 填空:1, 无极分子 电偶极子2,)2/()(21S Q Q + 1分)2/()(21S Q Q -1分)2/()(21S Q Q - 1分 )2/()(21S Q Q + 1分3, 不变 1分 减小 2分4, σ (x ,y ,z )/ε0 2分 与导体表面垂直朝外(σ > 0) 或 与导体表面垂直朝里(σ < 0) 1分5, )4/(30r r q επϖ2分)4/(0C r q επ 2分三, 计算:1,解:两球相距很远,可视为孤立导体,互不影响.球上电荷均匀分布.设两球半径分别为r 1和r 2,导线连接后的电荷分别为q 1和q 2,而q 1 + q 1 = 2q ,则两球电势分别是10114r q U επ=, 20224r q U επ= 2分两球相连后电势相等, 21U U =,则有21212122112r r qr r q q r q r q +=++== 2分 由此得到 921111067.62-⨯=+=r r qr q C 1分92122103.132-⨯=+=r r qr q C 1分两球电势 310121100.64⨯=π==r q U U ε V 2分2,解:玻璃板抽出前后电容器能量的变化即外力作的功.抽出玻璃板前后的电容值分别为 d S C r /)(0εε=,d S C /)(0ε=' 2分撤电源后再抽玻璃板.板上电荷不变,但电压改变,即U C CU Q ''== ∴ U C CU U r ε='='/)( 2分抽玻璃板前后电容器的能量分别为202)/(2121U d S CU W r εε== ,202)/(2121U d S U C W r εε=''=' 2分外力作功 W W A -'=)1)(/(21220-=r r d SU εεε = 2.55×10-6 J 2分3.7,3.8磁场的源 一选择:1B 2D 3D 4B 5A 6A 7C 8D 9A 10C 11B 12D二填空1, I 0μ 1分0 2分 2I 0μ 2分2, )/(lB mg 3分3, a l I 4/d 20μ 2分垂直电流元背向半圆弧(即向左) 1分4, b ,a 2分d ,c 1分 f ,e 2分三,计算: 1,解:将导线分成1、2、3、4四部份,各部分在O 点产生的磁感强度设为B 1、B 2、B 3、B 4.根据叠加原理O 点的磁感强度为:4321B B B B B ϖϖϖϖϖ+++=∵1B ϖ、4B ϖ均为0,故32B B B ϖϖϖ+= 2分 )2(4102R I B μ=方向⊗ 2分242)sin (sin 401203RIa I B π=-π=μββμ )2/(0R I π=μ 方向 ⊗ 2分其中 2/R a =, 2/2)4/sin(sin 2=π=β2/2)4/sin(sin 1-=π-=β∴ RIRIB π+=2800μμ)141(20π+=R I μ 方向 ⊗ 2分 2,1 234 R RO Iaβ2解:长直导线AC 和BD 受力大小相等,方向相反且在同一直线上,故合力为零.现计算半圆部分受力,取电流元l I ϖd , B l I F ϖϖϖ⨯=d d 即 θd d IRB F = 2分 由于对称性 0d =∑x F ∴ RIB IRB F F F y y 2d sin d 0====⎰⎰πθθ 3分方向沿y 轴正向3,解:洛伦兹力的大小 B q f v = 1分 对质子: 1211/R m B q v v = 1分 对电子: 2222/R m B q v v = 1分 ∵ 21q q = 1分 ∴ 2121//m m R R = 1分3.10电磁感应: 一选择:1C 2B 3C 4A 5D 6D 7A 8C 9D 10C 11B 二填空: 1,无感应电流 2分 无感应电流 2分2,1.11×10-5 V 3分 A 端 2分3,答案见图 曲线3分,标出文字结果2分4,225R B ω 3分 O 点 2分1F三计算 1,解:建立坐标(如图)则:21B B B ϖϖϖ+= xI B π=201μ, )(202a x I B -π=μ 2分x I a x I B π--π=2)(200μμ, B ϖ方向⊙ 1分d x xa x I x B d )11(2d 0--π==v v μ 2分 ⎰⎰--π==+x x a x I ba d )11(2d 202av μ b a b a I ++π=2)(2ln20v μ 2分 感应电动势方向为C →D ,D 端电势较高.1分2,解:两个载同向电流的长直导线在如图坐标x 处所产生的磁场为)11(2210r r x x B +-+π=μ 2分 选顺时针方向为线框回路正方向,则)d d (21111210⎰⎰⎰+++-+π==br r br r r r x xxx IaBdS μΦ 3分)ln(222110r br r b r Ia+⋅+π=μ 2分 ∴ tIr r b r b r atd d ]))((ln[2d d 21210++π-=-=μΦt r r b r b r a I ωωμcos ]))((ln[2212100++π-= 3分光的干涉光的干涉:一,选择:2a x +d x 2a +b I I C D vϖxO x1D, 2A, 3B, 4A, 5B, 6C, 7B, 8B, 9B, 10C, 11B, 12C, 13B, 14A, 15B, 16A二,填空1, 2π (n -1) e / λ 2分 4×103 2分2,3λ 2分 1.33 2分3,3λ / (2n θ) 3分4,236参考解:膜厚度为零处光程差2λδ±=膜厚度为e 处光程差 2sin 222122λδ±-=i n n e式中 n 2=1.5,n 1=1.0 令条纹数为k ,则有 λδk =∆2.236sin 22122=-=λin n e k5,2.60 e 3分三,计算 1,解: R 2=r 2+(R - e)2 r 2 = 2Re – e 2略去e 2,则 Rre 22= 2分 暗环: 2ne +21λ=( 2k +1)21λ 2e =λn k(k =0,1,2,…) 3分nRk r λ= k =10 2分r =0.38 cm 1分2,解:(1) 明环半径 ()2/12λ⋅-=R k r 2分()Rk r 1222-=λ=5×10-5 cm (或500 nm) 2分 (2) (2k -1)=2 r 2 / (R λ)对于r =1.00 cm , k =r 2 / (R λ)+0.5=50.5 3分 故在OA 范围内可观察到的明环数目为50个. 1分3,解:(1) 如图,设P 0为零级明纹中心 则 D O P d r r /012≈- 3分 (l 2 +r 2) - (l 1 +r 1) = 0 ∴ r 2 – r 1 = l 1 – l 2 = 3λ ∴()d D d r r D O P /3/120λ=-= 3分(2) 在屏上距O 点为x 处, 光程差λδ3)/(-≈D dx 2分 明纹条件λδk ±= (k =1,2,....) ()d D k x k /3λλ+±=在此处令k =0,即为(1)的结果.相邻明条纹间距d D x x x k k /1λ=-=+∆ 2分光的偏振光的偏振:一,选择:1A, 2B, 3B, 4B, 5C二,填空: 1,见图 每图1分2,线偏振光(或完全偏振光,或平面偏振光) 1分 光(矢量)振动 1分OP 0 r 1 r 2Dl 2s 1 s 2d l 1 0xi i i 0i 0 i 0偏振化(或透光轴) 1分3,tg i 0=n 21 (或tg i 0=n 1 / n 2 ) 1分 i 0 1分n 21 (或n 2 / n 1) 1分三,计算: 1,解:(1) 自然光通过第一偏振片后,其强度 I 1 = I 0 / 2 1分 通过第2偏振片后,I 2=I 1cos 245︒=I 0/ 4 2分 通过第3偏振片后,I 3=I 2cos 245︒=I 0/ 8 1分通过每一偏振片后的光皆为线偏振光,其光振动方向与刚通过的偏振片的偏振化方向平行. 2分(2) 若抽去第2片,因为第3片与第1片的偏振化方向相互垂直,所以此时I 3 =0. 1分 I 1仍不变. 1分解:(1) 连续穿过三个偏振片之后的光强为I =0.5I 0cos 2α cos 2(0.5π-α ) 2分=I 0sin 2(2α) / 8 1分 (2) 画出曲线 2分光的衍射光的衍射: 一,选择1B, 2B, 3C, 4C, 5C, 6A, 7B, 8D, 9B, 10D 二,填空 1,6 2分第一级明 2分 2,4 2分 第一 2分 暗 1分3,一 2分2,I I 0 / 8O π/4π/23π/45π/4π3π/2α三 2分4,2π 2分 暗 2分5,d sin ϕ =k λ ( k =0,±1,±2,···)3分6,3 3分三,计算1,解:(1) 由单缝衍射明纹公式可知()111231221sin λλϕ=+=k a (取k =1 ) 1分 ()222231221sin λλϕ=+=k a 1分f x /tg 11=ϕ , f x /tg 22=ϕ 由于 11tg sin ϕϕ≈ , 22tg sin ϕϕ≈所以 a f x /2311λ= 1分a f x /2322λ= 1分则两个第一级明纹之间距为a f x x x /2312λ∆=-=∆=0.27 cm 2分 (2) 由光栅衍射主极大的公式 1111sin λλϕ==k d2221sin λλϕ==k d 2分 且有f x /tg sin =≈ϕϕ所以d f x x x /12λ∆=-=∆=1.8 cm 2分2,解:设空气膜最大厚度为e ,2e +λ21= k λ 2分 λλ212+=e k =16.5 2分 ∴ 明纹数为16. 1分3,解:由光栅公式 (a +b )sin ϕ =k λ k =1, φ =30°,sin ϕ1=1 / 2∴ λ=(a +b )sin ϕ1/ k =625 nm 3分若k =2, 则 sin ϕ2=2λ / (a + b ) = 1, ϕ2=90°实际观察不到第二级谱线 2分振动振动:一, 选择1C, 2D, 3B, 4B, 5D, 6C, 7 D, 8A, 9D, 10C二,填空 1,π 1分 - π /2 2分 π/3. 2分2,)214cos(04.0π-πt (振幅、角频率、初相各1分) 3分3,0.37 cm 1分 )21cos(1037.02π±π⨯=-t x (SI) 2分4,1.2 s 1分-20.9 cm/s 5,0 1分 3π cm/s 2分三,计算解:设小球的质量为m ,则弹簧的劲度系数 0/l mg k =.选平衡位置为原点,向下为正方向.小球在x 处时,根据牛顿第二定律得220d /d )(t x m x l k mg =+- 将 0/l mg k = 代入整理后得0//d d 022=+l gx t x∴ 此振动为简谐振动,其角频率为. 3分l 0mgx kl 0k (l 0+x )π===1.958.28/0l g ω 2分设振动表达式为 )cos(φω+=t A x由题意: t = 0时,x 0 = A=2102-⨯m ,v 0 = 0,解得 φ = 0 1分∴ )1.9cos(1022t x π⨯=- 2分2,解:(1) A = 0.5 cm ;ω = 8π s -1;T = 2π/ω = (1/4) s ;φ = π/3 2分(2) )318sin(1042π+π⨯π-==-t x&v (SI))318cos(103222π+π⨯π-==-t x a && (SI) 2分(3) 2222121A m kA E E E P K ω==+==7.90×10-5 J 3分(4) 平均动能 ⎰=T K t m T E 02d 21)/1(v⎰π+π⨯π-=-Tt t m T 0222d )318(sin )104(21)/1( = 3.95×10-5 J = E 21 同理 E E P 21== 3.95×10-5 J 3分 3,解一:(1) 取平衡位置为原点,向下为x 正方向.设物体在平衡位置时弹簧的伸长量为∆l ,则有l k mg ∆=, 加拉力F 后弹簧又伸长x 0,则0)(0=+-+∆x l k mg F解得F = kx 0 2分由题意,t = 0时v0 = 0;x = x 0则 02020)/(x x A =+=ωv 2分又由题给物体振动周期4832=T s, 可得角频率 Tπ=2ω, 2ωm k = ∴ 444.0)/4(22=π==A T m kA F N 1分(2) 平衡位置以下1 cm 处: )()/2(2222x A T -π=v 2分221007.121-⨯==v m E K J 2分2222)/4(2121x T m kx E p π== = 4.44×10-4 J 1分解二:(1) 从静止释放,显然拉长量等于振幅A (5 cm ),kA F = 2分2224νωπ==m m k ,ν = 1.5 Hz 2分 ∴ F = 0.444 N 1分(2) 总能量 221011.12121-⨯===FA kA E J 2分 当x = 1 cm 时,x = A /5,E p 占总能量的1/25,E K 占24/25. 2分∴ 21007.1)25/24(-⨯==E E K J ,41044.425/-⨯==E E p J 1分。

华侨大学 大学物理作业本(下)答案

华侨大学 大学物理作业本(下)答案

大学物理作业本(下)姓名班级学号江西财经大学电子学院2005年10月第九章 稳恒磁场练 习 一1. 已知磁感应强度为20.2-⋅=m Wb B 的均匀磁场,方向沿x 轴正方向,如图所示。

求:(1) 通过图中abcd 面的磁通量;(2) 通过图中befc 面的磁通量;(3) 通过图中aefd 面的磁通量。

2. 如图所示,在被折成钝角的长直导线通中有20安培的电流。

求A 点的磁感应强度。

设a=2.0cm ,ο120=α。

3.有一宽为a的无限长薄金属片,自下而上通有电流I,如图所示,求图中P点处的磁感应强度B。

4.半径为R的圆环,均匀带电,单位长度所带的电量为 ,以每秒n转绕通过环心并与环面垂直的轴作等速转动。

求:(1)环心的磁感应强度;(2)在轴线上距环心为x处的任一点P的磁感应强度。

练习二1.一载有电流I的圆线圈,半径为R,匝数为N。

求轴线上离圆心x处的磁感应强度B,取R=12cm,I=15A,N=50,计算x=0cm,x=5.0cm, x=15cm各点处的B值;2.在一半径R=1.0cm的无限长半圆柱形金属薄片中,自上而下通有电流I=5.0A,如图所示。

求圆柱轴线上任一点P处的磁感应强度。

3.如图所示,两无限大平行平面上都有均匀分布的电流,设其单位宽度上的电流分别为1i 和2i ,且方向相同。

求:(1) 两平面之间任一点的磁感应强度;(2) 两平面之外任一点的磁感应强度;(3) i i i ==21时,结果又如何?4.10A 的电流均匀地流过一根长直铜导线。

在导线内部做一平面S ,一边为轴线,另一边在导线外壁上,长度为1m ,如图所示。

计算通过此平面的磁通量。

(铜材料本身对磁场分布无影响)。

练习三1.半径为R 的薄圆盘上均匀带电,总电量为q ,令此盘绕通过盘心且垂直盘面的轴线匀速转动,角速度为ω,求轴线上距盘心x 处的磁感应强度。

2.矩形截面的螺绕环,尺寸如图所示。

(1) 求环内磁感应强度的分布;(2) 证明通过螺绕环截面(图中阴影区)的磁通量,210ln 2D D NIh πμ=Φ 式中N 为螺绕环总匝数,I 为其中电流强度。

大学物理大作业答案(2024)

大学物理大作业答案(2024)

引言概述:正文内容:一、力学1.牛顿三定律的应用解释牛顿第一定律的原理,并给出实际应用的例子。

找出物体的质心,并计算其位置坐标。

利用牛顿第二定律计算物体所受的合力和加速度。

2.作用力和反作用力解释作用力和反作用力的概念,并给出相关案例。

计算物体所受的作用力和反作用力的大小和方向。

应用牛顿第三定律解决实际问题。

3.动能和动能守恒计算物体的动能,并解释其物理意义。

说明动能守恒定律的原理,给出相应的实例。

利用动能守恒定律解决能量转化问题。

4.力学振动和波动解释简谐振动的特征和公式,并计算相关参数。

介绍波的基本概念和性质,并给出波动方程的解释。

分析机械波的传播和干涉现象。

5.万有引力和天体运动介绍万有引力定律的公式和原理。

计算引力和重力的大小和方向。

描述行星运动的轨道和速度,并解释开普勒定律。

二、热学1.理想气体定律和状态方程解释理想气体和实际气体的区别。

推导理想气体定律,解释每个变量的含义。

计算理想气体的性质和状态。

2.热力学第一定律和功解释热力学第一定律的原理,并给出相应公式。

计算系统的内能变化和热量的传递。

分析功的定义和计算方法。

3.热力学第二定律和熵介绍热力学第二定律的概念和表述方法。

计算熵的变化和热力学过程的可逆性。

解释热力学第二定律对能量转化的限制。

4.热传导和热辐射分析热传导的机制和方法,并计算热传导的速率。

描述热辐射的特性和功率密度。

利用热传导和热辐射解决实际问题。

5.热力学循环和效率给出常见热力学循环的定义和示意图。

计算热力学循环的效率和功率输出。

分析热力学循环的改进方法和应用。

三、电磁学1.静电场和电势描述静电场的特性和形成原理,并给出电势的定义。

计算电场和电势的大小和方向。

利用电势差解决电荷移动和电场中的工作问题。

2.电场和电场强度推导库仑定律和电场强度公式。

计算由点电荷、带电导体和带电平面产生的电场。

分析电场中带电粒子受力和加速度。

3.电容和电容器解释电容和电容器的概念和原理,并计算其电容量。

大学物理(下)答案

大学物理(下)答案

大学物理学答案【下】北京邮电大学出版社习题99.1选择题(1) 正方形的两对角线处各放置电荷Q,另两对角线各放置电荷q,若Q所受到合力为零,则Q与q的关系为:()(A)Q=-23/2q (B) Q=23/2q (C) Q=-2q (D) Q=2q[答案:A](2) 下面说法正确的是:()(A)若高斯面上的电场强度处处为零,则该面内必定没有电荷;(B)若高斯面内没有电荷,则该面上的电场强度必定处处为零;(C)若高斯面上的电场强度处处不为零,则该面内必定有电荷;(D)若高斯面内有电荷,则该面上的电场强度必定处处不为零。

[答案:D](3) 一半径为R的导体球表面的面点荷密度为σ,则在距球面R处的电场强度()(A)σ/ε0 (B)σ/2ε0 (C)σ/4ε0 (D)σ/8ε0[答案:C](4) 在电场中的导体内部的()(A)电场和电势均为零;(B)电场不为零,电势均为零;(C)电势和表面电势相等;(D)电势低于表面电势。

[答案:C]9.2填空题(1) 在静电场中,电势不变的区域,场强必定为[答案:相同](2) 一个点电荷q放在立方体中心,则穿过某一表面的电通量为若将点电荷由中心向外移动至无限远,则总通量将。

[答案:q/6ε0, 将为零](3) 电介质在电容器中作用(a)——(b)——。

[答案:(a)提高电容器的容量;(b) 延长电容器的使用寿命](4) 电量Q均匀分布在半径为R的球体内,则球内球外的静电能之比[答案:5:6]9.3 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系解: 如题9.3图示(1) 以A处点电荷为研究对象,由力平衡知:q'为负电荷1q212cos30︒=4πε0a24πε0qq'(2a)3解得q'=-q 3(2)与三角形边长无关.题9.3图题9.4图9.4 两小球的质量都是m,都用长为l的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题9.4图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量.解: 如题9.4图示Tcosθ=mg⎧⎪q2 ⎨Tsinθ=F=1e⎪4πε0(2lsinθ)2⎩解得q=2lsinθ40mgtan9.5 根据点电荷场强公式E=q4πε0r2,当被考察的场点距源点电荷很近(r→0)时,则场强→∞,这是没有物理意义的,对此应如何理解ϖ解: E=q4πε0r2ϖr0仅对点电荷成立,当r→0时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.9.6 在真空中有A,B两平行板,相对距离为d,板面积为S,其带电量分别为+q和-q.则这两板之间有相互作用力f,有人说f=q2 4πε0d2,又有人说,因为f=qE,E=q,所ε0Sq2以f=.试问这两种说法对吗?为什么? f到底应等于多少ε0S解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强E=q看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个ε0Sqqq2=板的电场为E=,另一板受它的作用力f=q,这是两板间相互作用2ε0S2ε0S2ε0S的电场力.-19.7 长的直导线AB上均匀地分布着线密度λ=5.0x10-的正电荷.试求:(1)在导线的延长线上与导线B端相距a1=5.0cm处P点的场强;(2)在导线的垂直平分线上与导线中点相距d2=5.0cm 处Q点的场强.解:如题9.7图所示(1) 在带电直线上取线元dx,其上电量dq在P点产生场强为dEP=1λdx 24πε0(a-x)λEP=⎰dEP=4πε0⎰l2l-2dx 题9.7图2(a-x)=λ11[-] ll4πε0a-a+22=用l=15cm,λ=5.0⨯10-9λlπε0(4a2-l2) C⋅m-1, a=12.5cm代入得EP=6.74⨯102N⋅C-1 方向水平向右(2)同理=由于对称性dEQxl1λdx 方向如题9.7图所示4πε0x2+d22ϖ=0,即EQ 只有y分量,1λdx=4πε0x2+d22d2x+d222⎰∵dEQyEQy=⎰dEQyldλ=24πε2⎰l2l-2dx(x2+d22)32 =-9λl2πε0l+4d222以λ=5.0⨯10C⋅cm-1, l=15cm,d2=5cm代入得EQ=EQy=14.96⨯102N⋅C-1,方向沿y轴正向9.8 一个半径为R的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强.解: 如9.8图在圆上取dl=Rdϕ题9.8图dq=λdl=Rλdϕ,它在O点产生场强大小为dE=λRdϕ方向沿半径向外4πε0R2则dEx=dEsinϕ=λsinϕdϕ4πε0R-λcosϕdϕ4πε0Rπ-ϕ)= dEy=dEcos(积分Ex=⎰π0λλsinϕdϕ=4πε0R2πε0REy=⎰π0-λcosϕdϕ=0 4πε0R∴E=Ex=λ,方向沿x轴正向.2πε0R9.9 均匀带电的细线弯成正方形,边长为l,总电量为q.(1)求这正方形轴线上离中心为r处的场强E;(2)证明:在r>>l处,它相当于点电荷q产生的场强E.解: 如9.9图示,正方形一条边上电荷ϖq在P点产生物强dEP方向如图,大小为4dEP=λ(cosθ1-cosθ2)4πε0r2+l42∵cosθ1=lr2+l22cosθ2=-cosθ1∴dEP=λ4πε0r2+l42lr2+l22ϖdEP在垂直于平面上的分量dE⊥=dEPcosβ∴dE⊥=λl4πε0r2+l42rr2+l22r2+l42题9.9图由于对称性,P点场强沿OP方向,大小为EP=4⨯dE⊥=4λlr4πε0(r2+ll)r2+4222∵λ=∴EP=q 4l2qr4πε0(r2+ll)r2+422 方向沿9.10 (1)点电荷q位于一边长为a的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?ϖϖq 解: (1)由高斯定理E⋅dS= sε0立方体六个面,当q在立方体中心时,每个面上电通量相等∴各面电通量Φe=q.6ε0(2)电荷在顶点时,将立方体延伸为边长2a的立方体,使q处于边长2a的立方体中心,则边长2a的正方形上电通量Φe=q 6ε0 对于边长a的正方形,如果它不包含q所在的顶点,则Φe=如果它包含q所在顶点则Φe=0.q,24ε0如题9.10图所示.题9.10 图9.11 均匀带电球壳内半径6cm,外半径10cm,电荷体密度为2×108cm ,12cm 各点的场强.解: 高斯定理E⋅dS=s-5C·m求距球心5cm,-3ϖϖ∑q,E4πrε02=∑q ε0 ϖ当r=5cm时,∑q=0,E=0r=8cm时,∑q=p4π33) (r -r内3ρ∴E=4π32r-r内≈3.48⨯104N⋅C-1,方向沿半径向外.24πε0r()r=12cm时,∑q=ρ4π33)(r外-r内3ρ∴E=4π33r外-r内3≈4.10⨯104 N⋅C-1 沿半径向外. 24πε0r()9.12 半径为R1和R2(R2 >R1)的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r<R1;(2) R1<r<R2;(3) r>R2处各点的场强.ϖϖ解: 高斯定理E⋅dS=sq ε0取同轴圆柱形高斯面,侧面积S=2πrlϖϖ则E⋅dS=E2πrl S对(1) r<R1 ∑q=0,E=0∑q=lλ (2) R1<r<R2∴E=λ沿径向向外2πε0r(3) r>R2 ∑q=0∴E=0题9.13图9.13 两个无限大的平行平面都均匀带电,电荷的面密度分别为σ1和σ2,试求空间各处场强.解: 如题9.13图示,两带电平面均匀带电,电荷面密度分别为σ1与σ2,两面间,E=ϖ1ϖ(σ1-σ2)n 2ε0ϖ1ϖ(σ1+σ2)n σ1面外,E=-2ε0σ2面外,E=ϖ1ϖ(σ1+σ2)n 2ε0ϖn:垂直于两平面由σ1面指为σ2面.9.14 半径为R的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r<R的小球体,如题9.14图所示.试求:两球心O与O'点的场强,并证明小球空腔内的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电-ρ的均匀小球的组合,见题9.14图(a).ϖ(1) +ρ球在O点产生电场E10=0,ϖ-ρ球在O点产生电场E2043πrρ=OO' 4πε0d3ϖr3ρ;∴O点电场E0=3ε0d343πdρϖ(2) +ρ在O'产生电场E10'=34πε0dϖ-ρ球在O'产生电场E20'=0ϖρOO∴O'点电场E0'=3ε0题9.14图(a) 题9.14图(b) ϖϖ(3)设空腔任一点P相对O'的位矢为r',相对O点位矢为r (如题8-13(b)图)ϖϖρr则EPO=,3ε0ϖϖρr'EPO'=-, 3ε0ϖϖϖϖρϖϖρρd(r-r')=OO'=∴EP=EPO+EPO'= 3ε03ε03ε0∴腔内场强是均匀的.-69.15 一电偶极子由的两个异号点电荷组成,两电荷距离d=0.2cm,把这电偶极子放在的外电场中,求外电场作用于电偶极子上的最大力矩.-1解: ∵电偶极子p在外场E中受力矩ϖϖϖ M=p⨯E∴Mmax=pE=qlE代入数字Mmax=1.0⨯10-6⨯2⨯10-3⨯1.0⨯105=2.0⨯10-4N⋅m9.16 两点电荷q1=1.5×10C,q2=3.0×10C,相距r1=42cm,要把它们之间的距离变为-8-8r2=25cm,需作多少功解: A=⎰r2r1ϖϖr2qqdrqq11F⋅dr=⎰122=12(-) r24πεr4πε0r1r20=-6.55⨯10-6J外力需作的功A'=-A=-6.55⨯10 J-6题9.17图9.17 如题9.17图所示,在A,B两点处放有电量分别为+q,-q的点电荷,AB间距离为2R,现将另一正试验点电荷q0从O点经过半圆弧移到C点,求移动过程中电场力作的功.解: 如题9.17图示UO=1qq(-)=0 4πε0RRUO=1qqq (-)=-4πε03RR6πε0Rqoq 6πε0R∴A=q0(UO-UC)=9.18 如题9.18图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R.试求环中心O点处的场强和电势.。

大学物理学(下册)习题答案详解

大学物理学(下册)习题答案详解

第十二章 热力学基础一、选择题 12-1 C 12-2 C 12-3 C 12-4 B 12-5 C 12-6 A 二、填空题 12-710000100p V p V p V p V --12-8 260J ,280J - 12-912-10 )(5.21122V p V p -,))((5.01212V V p p -+,)(5.0)(312211122V p V p V p V p -+- 12-11 268J ,732J 三、计算题12-12 分析:理想气体的内能是温度T 的单值函数,内能的增量E ∆由始末状态的温度的增量T ∆决定,与经历的准静态过程无关.根据热力学第一定律可知,在等温过程中,系统从外界吸收的热量全部转变为内能的增量,在等压过程中,系统从外界吸收的热量部分用来转变为内能的增量,同时对外做功. 解:单原子理想气体的定体摩尔热容,32V m C R = (1) 等体升温过程20=A,21333()8.3150623222V V m E Q C T R T R T T J J ∆==∆=∆=-=⨯⨯= (2) 等压膨胀过程,2133()8.315062322V m E C T R T T J J ∆=∆=-=⨯⨯= 2121()()8.3150416A p V V R T T J J =-=-=⨯=1039p Q A E J =+∆=或者,,215()8.315010392p p m p m Q C T C T T J J =∆=-=⨯⨯=12-13 分析:根据热力学第一定律和理想气体物态方程求解. 解:氢气的定体摩尔热容,52V m C R =(1) 氢气先作等体升压过程,再作等温膨胀过程. 在等体过程中,内能的增量为 ,558.3160124622V V m Q E C T R T J J =∆=∆=∆=⨯⨯= 等温过程中,对外界做功为221ln8.31(27380)ln 22033T T V Q A RT J J V ===⨯+⨯= 吸收的热量为3279V T Q Q Q J =+=(2) 氢气先作等温膨胀过程,然后作等体升压过程. 在等温膨胀过程中,对外界做功为211ln8.31(27320)ln 21687T V A RT J J V ==⨯+⨯= 在等体升压过程中,内能的增量为,558.3160124622V m E C T R T J J ∆=∆=∆=⨯⨯= 吸收的热量为2933T Q A E J =+∆=3虽然氢气所经历的过程不同,但由于始末状态的温差T ∆相同,因而内能的增量E ∆相同,而Q 和A 则与过程有关.12-14 分析:卡诺循环的效率仅与高、低温热源的温度1T 和2T 有关.本题中,求出等温膨胀过程吸收热量后,利用卡诺循环效率及其定义,便可求出循环的功和在等温压缩过程中,系统向低温热源放出的热量. 解:从高温热源吸收的热量321110.005ln 8.31400ln 5.35100.001V m Q RT J J M V ==⨯⨯=⨯ 由卡诺循环的效率2113001125%400T A Q T η==-=-= 可得循环中所作的功310.255350 1.3410A Q J J η==⨯=⨯传给低温热源的热量3321(1)(10.25) 5.3510 4.0110Q Q J J η=-=-⨯⨯=⨯12-15 分析:在a b →等体过程中,系统从外界吸收的热量全部转换为内能的增量,温度升高.在b c →绝热过程中,系统减少内能,降低温度对外作功,与外界无热量交换.在c a →等压压缩过程中,系统放出热量,温度降低,对外作负功.计算得出各个过程的热量和功,根据热机循环效率的定义即可得证. 证明:在a b →等体过程中,系统从外界吸收的热量为,,1222()()V m V V m b a C mQ C T T p V p V M R=-=-在c a →等压压缩过程中,系统放出热量的大小为,,2122()()p m P p m c a C mQ C T T p V p V M R=-=- 所以,该热机的循环效率为41,212221,12222(1)()111()(1)p m P V V m V C p V p V Q V p Q C p V p V p ηγ--=-=-=---12-16 分析:根据卡诺定理,在相同的高温热源(1T ),与相同的低温热源(2T )之间工作的一切可逆热机的效率都相等,有221111Q TQ T η=-=-.非可逆热机的效率221111Q T Q T η=-<-. 解:(1) 该热机的效率为21137.4%Q Q η=-= 如果是卡诺热机,则效率应该是21150%c T T η=-= 可见它不是可逆热机.(2) “尽可能地提高效率”是指热机的循环尽可能地接近理想的可逆循环工作方式.根据热机效率的定义,可得理想热机每秒吸热1Q 时所作的功为4410.50 3.3410 1.6710c A Q J J η==⨯⨯=⨯5第十三章 气体动理论一、选择题 13-1 D 13-2 B 13-3 D 13-4 D 13-5 C 13-6 C 13-7 A 二、填空题13-8 相同,不同;相同,不同,相同. 13-9 (1)分子体积忽略不计;(2)分子间的碰撞是完全弹性的; (3)只有在碰撞时分子间才有相互作用.13-10 速率大于p v 的分子数占总分子数的百分比,分子的平均平动动能,()d 1f v v ∞=⎰,速率在∞~0内的分子数占总分子数的百分之百.13-11 氧气,氢气,1T 13-12 3,2,013-13 211042.9-⨯J ,211042.9-⨯J ,1:2 13-14 概率,概率大的状态. 三、计算题13-15 分析:根据道尔顿分压定律可知,内部无化学反应的平衡状态下的混合气体的总压强,等于混合气体中各成分理想气体的压强之和.解:设氦、氢气压强分别为1p 和2p ,则12p p p =+.由理想气体物态方程,得1He He m RTp M V =, 222H H m RT p M V=所以,总压强为62255123334.010 4.0108.31(27230)()()4.010 2.010 1.010H He He H m m RT p p p Pa M M V -----⨯⨯⨯+=+=+=+⨯⨯⨯⨯ 47.5610Pa =⨯13-16 解:(1)=可得 氢的方均根速率3/ 1.9310/s m s ===⨯ 氧的方均根速率483/m s === 水银的方均根速率/193/s m s === (2) 温度相同,三种气体的平均平动动能相同232133 1.3810300 6.211022k kT J J ε--==⨯⨯⨯=⨯13-17 分析:在某一速率区间,分布函数()f v 曲线下的面积,表示分子速率在该速率区间内的分子数占总分子数的百分比.速率区间很小时,这个百分比可近似为矩形面积()Nf v v N∆∆=,函数值()f v 为矩形面积的高,本题中可取为()p f v .利用p v 改写麦克斯韦速率分布律,可进一步简化计算.解: ()Nf v v N∆=∆ 当300T K =时,氢气的最概然速率为1579/p v m s ==== 根据麦克斯韦速率分布率,在v v v →+∆区间内的分子数占分子总数的百分比为232224()2mvkT N m e v v N kTππ-∆=∆7用p v 改写()f v v ∆有223()2222()4()e ()()2pv mv v kTpp mv v f v v v v e kTv v ππ--∆∆=∆=由题意可知,10p v v =-,(10)(10)20/p p v v v m s ∆=+--=.而10p v ,所以可取p v v ≈,代入可得1201.05%1579p N e N-∆=⨯=13-18 解:(1) 由归一化条件204()d 1FF V V dN V AdV f v v N Nπ∞===⎰⎰⎰ 可得 334F NA V π= (2) 平均动能2230143()d d 24FV FV N f v v mv v N V πωωπ∞==⨯⨯⎰⎰423031313d ()2525FV F F F mv v mv E v =⨯==⎰13-19 分析:气体分子处于平衡态时,其平均碰撞次数于分子数密度和分子的平均速率有关.温度一定时,平均碰撞次数和压强成正比.解:(1) 标准状态为50 1.01310p Pa =⨯,0273T K =,氮气的摩尔质量32810/M kg mol -=⨯由公式v =kTp n =可得224Z d nv d d π===5102231.013104(10)/1.3810273s π--⨯=⨯⨯⨯次885.4210/s =⨯次(2) 41.3310p Pa -=⨯,273T K =4102231.331044(10)/1.3810273Z ds ππ---⨯==⨯⨯⨯次0.71/s =次13-20 分析:把加热的铁棒侵入处于室温的水中后,铁棒将向水传热而降低温度,但“一大桶水”吸热后的水温并不会发生明显变化,因而可以把“一大桶水”近似为恒温热源.把铁棒和“一大桶水”一起视为与外界没有热和功作用的孤立系统,根据热力学第二定律可知,在铁棒冷却至最终与水同温度的不可逆过程中,系统的熵将增加.熵是态函数,系统的熵变仅与系统的始末状态有关而与过程无关.因此,求不可逆过程的熵变,可在始末状态之间设计任一可逆过程进行求解. 解:根据题意有 1273300573T K =+=,227327300T K =+=.设铁棒的比热容为c ,当铁棒的质量为m ,温度变化dT 时,吸收(或放出)的热量为dQ mcdT =设铁棒经历一可逆的降温过程,其温度连续地由1T 降为2T ,在这过程中铁棒的熵变为2121d d 300ln 5544ln /1760/573T T T Q mc T S mc J K J K T T T ∆====⨯⨯=-⎰⎰9第十四章 振动学基础一、选择题 14-1 C 14-2 A 14-3 B 14-4 C 14-5 B 二、填空题 14-622 14-7 5.5Hz ,114-82411s ,23π 14-9 0.1,2π14-10 2222mA T π- 三、计算题14-11 解:简谐振动的振幅2A cm =,速度最大值为3/m v cm s =则 (1) 2220.024 4.20.033m A T s s s v ππππω⨯====≈ (2) 222220.03m/s 0.045m/s 4m m m a A v v T ππωωπ===⨯=⨯≈ (3) 02πϕ=-,3rad/s 2ω= 所以 30.02cos()22x t π=- [SI]14-12 证明:(1) 物体在地球内与地心相距为r 时,它受到的引力为2MmF Gr=- 负号表示物体受力方向与它相对于地心的位移方向相反.式中M 是以地心为中心,以r 为半径的球体内的质量,其值为10343M r πρ=因此 43F G m r πρ=-物体的加速度为43F aG r m πρ==- a 与r 的大小成正比,方向相反,故物体在隧道内作简谐振动. (2) 物体由地表向地心落去时,其速度dr dr dv dr v a dt dv dt dv=== 43vdv adr G rdr πρ==-043v r R vdv G rdr πρ=-⎰⎰ 所以v =又因为dr vdt == 所以tRdt =-⎰⎰则得1126721min 4t s ===≈14-13 分析:一物体是否作简谐振动,可从动力学方法和能量分析方法作出判断.动力学的分析方法由对物体的受力分析入手,根据牛顿运动方程写出物体所满足的微分方程,与简谐振动的微分方程作出比较后得出判断.能量法求解首先需确定振动系统,确定系统的机械能是否守恒,然后需确定振动物体的平衡位置和相应的势能零点,再写出物体在任意位置时的机械能表达式,并将其对时间求一阶导数后与简谐振动的微分方程作比较,最后作出是否作简谐振动的判断. 解:(1) 能量法求解取地球、轻弹簧、滑轮和质量为m 的物体作为系统.在物体上下自由振动的过程中,系统不受外力,系统内无非保守内力作功,所以系统的机械能守恒. 取弹簧的原长处为弹性势能零点,取物体受合力为零的位置为振动的平衡位11置,也即Ox 轴的坐标原点,如图14-13(a)所示.图14-13 (a)图14-13 (b)设物体在平衡位置时,弹簧的伸长量为l ,由图14-13(b)可知,有10mg T -=,120T R T R -=,2T kl =得 mgl k=当物体m 偏离平衡位置x 时,其运动速率为v ,弹簧的伸长量为x l +,滑轮的角速度为ω.由系统的机械能守恒,可得222111()222k x l mv J mgx ω+++-=常量 式中的角速度 1v dxR R dt ω==将机械能守恒式对时间t 求一阶导数,得2222d x k x x dt m J Rω=-=-+ 上式即为简谐振动所满足的微分方程,式中ω为简谐振动的角频率2km J R ω=+另:动力学方法求解物体和滑轮的受力情况如图14-13(c)所示.12图14-13 (c)1mg T ma -= (1)12()JT T R J a Rβ-==(2) 设物体位于平衡位置时,弹簧的伸长量为l ,因为这时0a =,可得12mg T T kl ===当物体对平衡位置向下的位移为x 时,2()T k l x mg kx =+=+ (3)由(1)、(2)、(3)式解得2ka x m J R =-+物体的加速度与位移成正比,方向相反,所以它是作简谐振动. (2) 物体的振动周期为222m J R T kππω+==(3) 当0t =时,弹簧无伸长,物体的位移0x l =-;物体也无初速,00v =,物体的振幅22200()()v mgA x l l kω=+=-==00cos 1x kl A mgϕ-===- 则得 0ϕπ=13所以,物体简谐振动的表达式为2cos()mg k x t k m J Rπ=++ 14-14 分析:M 、m 一起振动的固有频率取决于k 和M m +,振动的初速度0m v 由M 和m 的完全非弹性碰撞决定,振动的初始位置则为空盘原来的平衡位置.图14-14解:设空盘静止时,弹簧伸长1l ∆(图14-14),则1Mg k l =∆ (1)物体与盘粘合后且处于平衡位置,弹簧再伸长2l ∆,则12()()m M g k l l +=∆+∆ (2)将(1)式代入得2mg k l =∆与M 碰撞前,物体m 的速度为02m v gh =与盘粘合时,服从动量守恒定律,碰撞后的速度为02m m mv v gh m M m M==++取此时作为计时零点,物体与盘粘合后的平衡位置作为坐标原点,坐标轴方向竖直向下.则0t =时,02mg x l k =-∆=-,02mv v gh m M==+14ω=由简谐振动的初始条件,0000cos , sin x A v A ϕωϕ==-可得振幅A ===初相位0ϕ满足000tan v x ϕω=-== 因为 00x <,00v >所以 032πϕπ<<0ϕπ=+所以盘子的振动表式为cos x π⎤⎫=+⎥⎪⎪⎥⎭⎦14-15 解:(1) 振子作简谐振动时,有222111222k p E E E mv kx kA +==+= 当k p E E =时,即12p E E =.所以 22111222kx kA =⨯0.200.14141x m m ==±=±(2)由条件可得振子的角频率为/2/s rad s ω=== 0t =时,0x A =,故00ϕ=.动能和势能相等时,物体的坐标15x =即cos A t ω=,cos t ω= 在一个周期内,相位变化为2π,故3574444t ππππω=, , , 时间则为1 3.140.3944 2.0t s s πω===⨯ 213330.39 1.24t t s s πω===⨯=315550.39 2.04t t s s πω===⨯=417770.39 2.74t t s s πω===⨯=14-16 解:(1) 合成振动的振幅为A =0.078m== 合成振动的初相位0ϕ可由下式求出110220*********.05sin0.06sin sin sin 44tan 113cos cos 0.05cos 0.06cos 44A A A A ππϕϕϕππϕϕ⨯+⨯+===+⨯+⨯ 084.8ϕ=(2) 当0102k ϕϕπ-=± 0,1,2,k =时,即0103224k k πϕπϕπ=±+=±+时, 13x x +的振幅最大.取0k =,则 031354πϕ== 当020(21)k ϕϕπ-=±+0,1,2,k =时,即020(21)(21)4k k πϕπϕπ=±++=±++时,13x x +的振幅最小.取0k =,则 052254πϕ==(或031354πϕ=-=-) 14-17 分析:质点同时受到x 和y 方向振动的作用,其运动轨迹在Oxy 平面内,16质点所受的作用力满足力的叠加原理.解:(1) 质点的运动轨迹可由振动表达式消去参量t 得到.对t 作变量替换,令12t t '=-,两振动表达式可改写为0.06cos()0.06sin 323x t t πππ''=+=-0.03cos3y t π'=将两式平方后相加,得质点的轨迹方程为222210.060.03x y += 所以,质点的运动轨迹为一椭圆. (2) 质点加速度的两个分量分别为22220.06()cos()3339x d x a t x dt ππππ==-+=-22220.03()cos()3369y d y a t y dt ππππ==--=-当质点的坐标为(,)x y 时,它所受的作用力为22()99x y F ma i ma j m xi yj mr ππ=+=-+=-可见它所受作用力的方向总是指向中心(坐标原点),作用力的大小为223.1499F ma π====⨯=14-18 分析:充电后的电容器和线圈构成LC 电磁振荡电路.不计电路的阻尼时,电容器极板上的电荷量随时间按简谐振动的规律变化.振荡电路的固有振动频率由L 和C 的乘积决定,振幅和初相位由系统的初始状态决定.任意时刻电路的状态都可由振荡的相位决定. 解:(1) 电容器中的最大能量212e W C ε=线圈中的最大能量17212m m W LI =在无阻尼自由振荡电路中没有能量损耗,e m W W =.因此221122m C LI ε=21.4 1.410m I A A -===⨯(2) 当电容器的能量和电感的能量相等时,电容器能量是它最大能量的一半,即22124q C C ε= 因此661.010 1.41.0101.41q C C --⨯⨯==±=±⨯ (3) LC 振荡电路中,电容器上电荷量的变化规律为00cos()q Q t ωϕ=+式中0Q C ε=,ω=.因为0t =时,0q Q =,故有00ϕ=.于是q C ε=当首次q =时有C ε==,4π=53.147.85104t s -===⨯18第十五章 波动学基础一、选择题 15-1 B 15-2 C 15-3 B 15-4 A 15-5 C 15-6 C 二、填空题15-7 波源,传播机械波的介质 15-8B C,2B π,2C π,lC ,lC - 15-9 cos IS θ 15-10 0 15-11 0.45m 三、计算题15-12 分析:平面简谐波在弹性介质中传播时,介质中各质点作位移方向、振幅、频率都相同的谐振动,振动的相位沿传播方向依次落后,以速度u 传播.把绳中横波的表达式与波动表达式相比较,可得到波的振幅、波速、频率和波长等特征量.t 时刻0x >处质点的振动相位与t 时刻前0x =处质点的振动相位相同. 解:(1) 将绳中的横波表达式0.05cos(104)y t x ππ=-与标准波动表达式0cos(22)y A t x πνπλϕ=-+比较可得0.05A m =,52v Hz ωπ==,0.5m λ=,0.55/ 2.5/ u m s m s λν==⨯=. (2) 各质点振动的最大速度为0.0510/0.5/ 1.57/m v A m s m s m s ωππ==⨯=≈各质点振动的最大加速度为192222220.05100/5/49.3/m a A m s m s m s ωππ==⨯=≈(3) 将0.2x m =,1t s =代入(104)t x ππ-的所求相位为10140.29.2ϕπππ=⨯-⨯=0.2x m =处质点的振动比原点处质点的振动在时间上落后0.20.082.5x s s u == 所以它是原点处质点在0(10.08)0.92t s s =-=时的相位. (4) 1t s =时波形曲线方程为x x y 4cos 05.0) 4110cos(05.0πππ=-⨯=1.25t s =时波形曲线方程为)5.0 4cos(05.0) 425.110cos(05.0ππππ-=-⨯=x x y1.50t s =时波形曲线方程为) 4cos(05.0) 45.110cos(05.0ππππ-=-⨯=x x y1t s =, 1.25t s =, 1.50t s =各时刻的波形见图15-12.15-13 解:(1) 由于平面波沿x 轴负方向传播,根据a 点的振动表达式,并以a 点为坐标原点时的波动表达式为0cos[()]3cos[4()]20x xy A t t u ωϕπ=++=+(2) 以a 点为坐标原点时,b 点的坐标为5x m =-,代入上式,得b 点的振动表达式为53cos[4()]3cos(4)20b y t t πππ=-=- 若以b 点为坐标原点,则波动表达式为3cos[4()]20xy t ππ=+-s1s5.12015-14 解:由波形曲线可得100.1A cm m ==,400.4cm m λ==从而0.4/0.2/2u m s m s T λ===,2/rad s Tπωπ==(1) 设振动表达式为 0cos[()]xy A t uωϕ=++由13t s =时O 点的振动状态:2Ot Ay =-,0Ot v >,利用旋转矢量图可得,该时刻O 点的振动相位为23π-,即 10032()33Ot t t ππϕωϕϕ==+=+=-所以O 点的振动初相位为 0ϕπ=-将0x =,0ϕπ=-代入波动表达式,即得O 点的振动表达式为0.1cos()O y t ππ=-(2) 根据O 点的振动表达式和波的传播方向,可得波动表达式0cos[()]0.1cos[(5))]xy A t t x uωϕππ=++=+-(3) 由13t s =时Q 点的振动状态:0Qt y =,0Qt v <,利用旋转矢量图可得,该时刻Q 点的振动相位为2π,即013[()]30.22Q Qt t x x t u πππϕωϕπ==++=+-=可得 0.233Q x m =将0.233Q x m =,0ϕπ=-代入波动表达式,即得Q 点的振动表达式为0.1cos()6Q y t ππ=+(4) Q 点离O 点的距离为0.233Q x m =15-15 分析:波的传播过程也是能量的传播过程,波的能量同样具有空间和时间的周期性.波的强度即能流密度,为垂直通过单位面积的、对时间平均的能流.注意能流、平均能流、能流密度、能量密度、平均能量密度等概念的区别和联系.解:(1) 波中的平均能量密度为32235319.010/ 3.010/2300I w A J m J m u ρω--⨯====⨯最大能量密度为 532 6.010/m w w J m -==⨯ (2) 每两个相邻的、相位差为2π的同相面间的能量为25273000.14() 3.010() 4.621023002u d W wV w S w J v λππ--====⨯⨯⨯⨯=⨯15-16 分析:根据弦线上已知质点的振动状态,推出原点处质点振动的初相位,即可写出入射波的表达式.根据入射波在反射点的振动,考虑反射时的相位突变,可写出反射波的表达式.据题意,入射波和反射波的能量相等,因此,在弦线上形成驻波的平均能流为零.解:沿弦线建立Ox 坐标系,如图15-16所示.根据所给数据可得图15-16/100/u s m s ===,2100 /rad s ωπνπ==,100250u m m v λ===, (1) 设原点处质元的初相位为0ϕ,入射波的表达式为0cos[()]xy A t uωϕ=-+据题意可知,在10.5x m =处质元的振动初相位为103πϕ=,即有110001000.51003x u ωππϕϕϕ⨯=-+=-+=得 05326πππϕ=+=所以,入射波表达式为550.04cos[100()]0.04cos[100()]61006x x y t t u ππππ=-+=-+入考虑半波损失,反射波在2x 处质元振动的初相位为2010511100()10066ππϕππ=-++=反射波表达式为220cos[()]x x y A t uωϕ-=++反 ]611)100(100cos[04.0]611)10010(100cos[04.0ππππ++=+-+=x t x t(2)入射波和反射波的传播方向相反,叠加后合成波为驻波40.08cos()cos(100)23y y y x t ππππ=+=++入反波腹处满足条件 2x k πππ+=即 1()2x k =-因为010x m ≤≤,在此区间内波腹位置为0.5, 1.5, 2.5,,9.5x m = 波节处满足条件 (21)22x k πππ+=+即 x k = 在区间010x m ≤≤,波节坐标为0,1,2,,10x m = (3) 合成为驻波,在驻波中没有能量的定向传播,因而平均能流为零. 15-17 分析:运动波源接近固定反射面而背离观察者时,观察者即接收到直接来自波源的声波,也接收到来自固定反射面反射的声波,两声波在A 点的振动合成为拍.当波源相对于观察者静止,而反射面接近波源和观察者时,观察者接收到直接来自波源的声波无多普勒效应,但反射面反射的频率和观察者接收到的反射波频率都发生多普勒效应,因此,两个不同频率的振动在A 点也将合成为拍. 解:(1) 波源远离观察者而去,观察者接收到直接来自波源声音频率为1R S Suu v νν=+观察者相对反射面静止,接收到来自反射面的声波频率2R ν就是固定反射面接收到的声波频率,这时的波源以S v 接近反射面.2R S Suu v ννν==-反 A 处的观察者听到的拍频为21222S S R R S S S S Suv u uu v u v u v νννννν∆=-=-=-+- 由此可得方程2220S S S v uv u ννν∆+-∆=0.25/S v m s ≈(2) 观察者直接接收到的波的频率就是波源振动频率1RS νν'= 对于波源来说,反射面相当于接收器,它接收到的频率为S u vuνν+'=对于观察者来说,反射面相当于另一波源,观察者接收到的来自反射面的频率为2RS S u u u v u vu v u v u u vνννν++''===--- A 处的观察者听到的拍频为212RR S S S u v vu v u vνννννν+''∆=-=-=-- 所以波源的频率为3400.24339820.4S u v Hz Hz v νν--=∆=⨯= 15-18 解:平面电磁波波动方程的标准形式为222221y y E E x u t ∂∂=∂∂, 222221z zH H x u t ∂∂=∂∂ 与平面电磁波的标准方程相比较,可知波速为82.0010/u m s ==⨯ 所以介质的折射率为1.50cn u== 15-19 解:由电磁波的性质可得00E H =而 000B H μ=, 真空中的光速c =所以0E B c==从而可得 0008703000.8/0.8/310410B E H A m A m c μμπ-====⨯⨯⨯ 磁场强度沿y 轴正方向,且磁场强度和电场强度同相位,所以0.8cos(2)3y H vt ππ=+[SI ]第十六章 几何光学一、选择题 16-1 A 16-2 B 16-3 B 16-4 C 二、填空题16-5 6.0S cm '=,12V = 16-6 80f cm '=16-7 34s cm '=-,2V =- 16-8 左,2R 三、计算题16-9 解:设空气的折射率为n ,玻璃的折射率为n ',则 1n =, 1.5n '= 因为 2r = 所以物方焦距4nrf cm n n=='- 像方焦距6n rf cm n n ''=='- 又因为 1f fs s'+='而 8s cm = 所以 12s cm '=(实像)1ns y V y n s''==-=-' 其中 0.1y cm = 所以 0.1y Vy cm '==-16-10 分析:将球面反射看作n n '=-时球面折射的特例,可由折射球面的成像规律求解。

华侨大学大学物理下练习答案

华侨大学大学物理下练习答案

练习一 (磁)1. (C)2.a4I0πμ, ⊗ 3.)412(R 2I 0ππμ+-, ⊗4. 可看成许多平行的无限长载流直导线组成,其中一宽为θRd dl =的直导线载有电流dl RIdI π=θθπμθπd sin R 2I )2cos(dB dB 20x -=+= ⎰-=-=ππμθθπμ02020x RId sin R 2I B θθπμθπd cos R 2I )2sin(dB dB 20y =+= 0d cos R2I B 020y ==⎰πθθπμ )T (i1037.6i RI B 620O -⨯-=-=πμ5. 将此盘看成无数同心带电圆环组成,半径为r 的圆环带电 rdr 2dq πσ⋅=圆环转动形成的电流为 rdr dq 2dI ωσπω==则 dr r dIdB ωσμμ00212== 各B d 同向 R 21dr 21dB B 00Rσωμωσμ===∴⎰⎰练习二 (磁)1. (B)2. 变量 ,1I ομ-3. 1∶1, 304. 由电流的对称性分析可知,磁感线形成同心圆,与轴等距离的圆环上B的大小相等,方向沿圆周的切向。

在横截面上以轴点为圆心,作半径为r 的圆形环路则 (1) a r < ⎰=⋅Ll d B 0, 0=∴B(2) b r a << I a b a r rB l d B L )()(22222--==⋅⎰ππμπο ,ra b Ia r B )(2(22)22--=∴πμο (3) b r >I rB l d B L⎰==⋅ομπ2,rIB πμο2=∴ 5. 取电流元 dI=(I/b)dx则 )x r b (b 2Idx)x r b (2dIdB 00-+=-+=πμπμ各B d同向,故rbr lnb 2I )x r b (b 2IdxB b00+=-+=⎰πμπμ 方向向里练习三 (磁)1.(B )2. 03. 1∶14.取面积元xdx ahydx dS ==,它距长直载流导线为 (b+x ) m d φ=S d B ⋅=xdx ahx b I⋅+)(2πμο=dx xb ba hI )1(2+-πμο ∴ m φ=⎰m d φ=ahIπμο2dx xb ba)1(0⎰+-=ahI πμο2[b ab ln b a +-]5. 在横截面上以轴点为圆心作半径为r 的圆形环路,由环路定理可得:R r < 222r R I rB ππμπο⋅= r R I B 22πμο=内R r ≥ I rB ομπ=2 rIB πμο2=外 矩形纵截面 外内S S S +=,其总磁通量为:⎰⎰⋅+⋅=S 外S 内m S d B S d Bφ)m 1l (2ln 212I ldr r 2I ldr R2Ir R 2R 0R20=+=+=⎰⎰)(πμπμπμο练习四 (磁)1. (D)2. (B)3. (B)4. AB 处的B )6a3b (2IB AB -=πμο,⊗,受力)6a3b (2aI I F 211-=πμο, 方向AB ⊥向左1I 在BC 上与1I 相距x 的电流元l d I 2处的xIB πμο21=,⊗,由B l d I F⨯=⎰22 及 2330cos dxdx dl ==得 6a 3b 3a 3b ln 3I I 23dx x 2I I F 21a 33b a63b 212-+=⋅=⎰+-πμπμοο 方向:在∆平面里BC ⊥向外 同理知23F F =,CA F ⊥3向外(在∆平面里)。

大学物理下作业答案.docx

大学物理下作业答案.docx

静电场(一)一. 选择题:1.解:在不考虑边缘效应的情况下,极板间的电场等同于电荷均匀分布,密度为o = ±q/S的两面积无限大平行薄板之间的电场一-匀强电场,一板在另一板处之电场强度为£ = o/(2s0),方向垂直于板面.所以,极板间的相互作用力F =q・E = q2 /(2件)。

故选(B)。

2.解:设置八个边长为a的立方体构成一个大立方体,使A(即Q)位于大立方体的中心.所以通过大立方体每一侧面的电场强度通量均为q/(6&o),而侧面abed是大立方体侧面的1/4,所以通过侧面abed的电场强度通量等于q/(24%).选(C)。

3.解:寸亘•丞=jpdV/£°适用于任何静电场.选(A)。

4.解:选(B)。

5.解:据高斯定理知:通过整个球面的电场强度通=q/&. ■内电荷通过昂、&的电通量相等且大于零; 外电荷对品的通量为负,对&的通量为正. 所以0>1 <0>2 •故(D)对。

二. 填空题:1.解:无限大带电平面产生的电场E= —2&oA L 八(5 2(5 3(5A 区:E A= ------------------ = ------2s0 2s02g0CL L b 2b bB 区:E R = ------------ = ------2s0 2s 02s0C区"c=三+至=至2s n 2s n 2s n2.解:据题意知,P点处场强方向若垂直于OP,则入在P点场强的OP分量与Q在P点的场强E QP一定大小相等、方向相反.即Jcp = ------------- c os——= ----------- =也冲= -------- , O — aA .2%。

3 4%。

4%。

之3. 解:无限长带电圆柱体可以看成由许多半径为r 的均匀带电无限长圆筒叠加而成,因此 其场强分布是柱对称的,场强方向沿圆柱半径方向,距轴线等距各点的场强大学相等。

大学物理下习题答案

大学物理下习题答案

大学物理下习题答案在大学物理课程中,习题是帮助学生巩固理论知识和提高解题技能的重要部分。

然而,由于物理习题的多样性和复杂性,学生在解题时可能会遇到一些困难。

因此,提供一个习题答案集可以作为参考,帮助学生更好地理解物理概念和解题方法。

# 习题答案示例习题1:一个物体从静止开始自由下落,忽略空气阻力。

求物体下落10秒内通过的位移。

答案:根据自由落体运动的位移公式 \( s = \frac{1}{2} g t^2 \),其中 \( g \) 是重力加速度,取 \( g = 9.8 \, \text{m/s}^2 \),\( t = 10 \, \text{s} \)。

代入公式计算得:\[ s = \frac{1}{2} \times 9.8 \times 10^2 = 490 \, \text{m} \]习题2:一个质量为2kg的物体,受到一个恒定的力 \( F = 10 \,\text{N} \) 作用,求物体的加速度。

答案:根据牛顿第二定律 \( F = m a \),其中 \( m \) 是物体的质量,\( a \) 是加速度。

将已知数值代入公式得:\[ a = \frac{F}{m} = \frac{10}{2} = 5 \, \text{m/s}^2 \]习题3:一个电子在电场中受到的电场力为 \( F = 1.6 \times10^{-19} \, \text{N} \),求电子的电荷量。

答案:电子在电场中受到的力 \( F \) 与电荷量 \( q \) 和电场强度 \( E \) 之间的关系为 \( F = q E \)。

由于 \( F \) 已知,电场强度 \( E \) 为常数,通常取 \( E = 1 \, \text{N/C} \),可以解得电荷量:\[ q = \frac{F}{E} = 1.6 \times 10^{-19} \, \text{C} \]习题4:一个质量为0.5kg的物体以初速度 \( v_0 = 10 \,\text{m/s} \) 在水平面上滑行,摩擦力 \( f = 0.1 \, \text{N} \),求物体滑行的最大距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学物理作业本(下)姓名班级学号江西财经大学电子学院2005年10月第九章 稳恒磁场练 习 一1. 已知磁感应强度为20.2-⋅=m Wb B 的均匀磁场,方向沿x 轴正方向,如图所示。

求:(1) 通过图中abcd 面的磁通量;(2) 通过图中befc 面的磁通量;(3) 通过图中aefd 面的磁通量。

2. 如图所示,在被折成钝角的长直导线通中有20安培的电流。

求A 点的磁感应强度。

设a=2.0cm , 120=α。

3.有一宽为a的无限长薄金属片,自下而上通有电流I,如图所示,求图中P点处的磁感应强度B。

4.半径为R的圆环,均匀带电,单位长度所带的电量为 ,以每秒n转绕通过环心并与环面垂直的轴作等速转动。

求:(1)环心的磁感应强度;(2)在轴线上距环心为x处的任一点P的磁感应强度。

练习二1.一载有电流I的圆线圈,半径为R,匝数为N。

求轴线上离圆心x处的磁感应强度B,取R=12cm,I=15A,N=50,计算x=0cm,x=5.0cm, x=15cm各点处的B值;2.在一半径R=1.0cm的无限长半圆柱形金属薄片中,自上而下通有电流I=5.0A,如图所示。

求圆柱轴线上任一点P处的磁感应强度。

3.如图所示,两无限大平行平面上都有均匀分布的电流,设其单位宽度上的电流分别为1i 和2i ,且方向相同。

求:(1) 两平面之间任一点的磁感应强度;(2) 两平面之外任一点的磁感应强度;(3) i i i ==21时,结果又如何?4.10A 的电流均匀地流过一根长直铜导线。

在导线内部做一平面S ,一边为轴线,另一边在导线外壁上,长度为1m ,如图所示。

计算通过此平面的磁通量。

(铜材料本身对磁场分布无影响)。

练习三1.半径为R 的薄圆盘上均匀带电,总电量为q ,令此盘绕通过盘心且垂直盘面的轴线匀速转动,角速度为ω,求轴线上距盘心x 处的磁感应强度。

2.矩形截面的螺绕环,尺寸如图所示。

(1) 求环内磁感应强度的分布;(2) 证明通过螺绕环截面(图中阴影区)的磁通量,210ln 2D D NIh πμ=Φ 式中N 为螺绕环总匝数,I 为其中电流强度。

3.一根很长的同轴电缆,由一导体圆柱(半径为a )和一同轴导体圆管(内外半径分别为b 、c )构成,使用时,电流I 从一导体流出,从另一导体流回。

设电流都是均匀分布在导体的横截面上,如图所示。

求(1)导体柱内(r<a),(2)两导体之间(a<r<b),(3)导体圆管内(b<r<c),(4)电缆外(r>c)各点处磁感应强度的大小,并画出B--r 曲线。

4.一根外半径为1R 的无限长圆柱形导体管,管内空心部分的半径为2R ,空心部分的轴与圆柱的轴相平行但不重合,两轴间距离为a ,且a>2R 。

现在电流I 沿导体管流动,电流均匀分布在管的横截面上,而电流方向与管的轴线平等,如图所示,求:(1) 圆柱轴线上的磁感应强度的大小;(2) 空心部分轴线上的磁感应强度的大小;设R 1=10mm, 2R =0.5mm, a=5.0mm, I=20A.第十章 磁场对电流的作用练习四1. 如图所示,在长直导线AB 内通有电流A I 201=,在矩形线圈CDEF 中通有电流A I 102=,AB 与线圈共面,且CD 、EF 都与AB 平行,已知a=9.0cm,b=20.0cm,d=1.0cm ,求:(1)导线AB 的磁场对矩形线圈每边所作用的力;(2)矩形线圈所受到的合力和合力矩;(3) 如果电流2I 的方向与图中所示方向相反,则又如何?2. 有一根质量为m 的倒U 形导线,两端浸没在水银槽中,导线的上段l 处在均匀磁场B中,如图所示。

如果使一个电流脉冲,即电量⎰=idt q 通过导线,导线就会跳起来,假定电流脉冲的持续时间同导线跳起来的时间相比甚小,试由导线所达高度h ,计算电流脉冲的大小。

设m h m l kg m T B 30.020.0,1010,10.03==⨯==-和。

(提示:利用动量原理求冲量,并找出⎰idt 与冲量⎰Fdt 的关系)3. 横截面积20.2mm S =的铜线,变成U 形,其中O D OA '和两段保持水平方向不动,ABCD 段是边长为a 的正方形的三边,U 形部分可绕O O '轴转动。

如图所示,整个导线放在匀强磁场B 中,B 的方向竖直向上。

已知铜的密度33109.8-⋅⨯=m kg ρ,当这铜线中的电流I=10A 时,在平衡情况下,AB 段和CD 段与竖直方向的夹角为 15=α。

求磁感应强度B 。

4. 如图所示,一平面塑料圆盘,半径为R ,表面带有面密度为σ的剩余电荷。

假定圆盘绕其轴线A A '以角速度ω转动,磁场B 的方向垂直于转轴A A ',证明磁场作用于圆盘的力矩大小为 44BR M πσω=练习五1. 一个半径R=0.10 m 的半圆形闭合线圈,载有电流I=10A ,放在均匀外磁场中,磁场方向与线圈平面平行(如图所示),磁感应强度的大小T B 1100.5-⨯=。

(1) 求线圈所受磁力矩的大小和方向;(2) 在这力矩的作用下线圈转过 90(即转到线圈平面与B 垂直),求磁力矩作的功。

2. 一电子在T B 41070-⨯=的匀强磁场中作圆周运动,圆周半径r=0.3cm ,已知B 垂直于纸面向外,某时刻电子在A 点,速度v 向上,如图所示。

(1) 画出这电子运动的轨道;(2) 求这电子速度v 的大小;(3) 求这电子的动能k E 。

3. 在霍耳效应实验中,一宽1.0cm ,长4.0cm ,厚cm 30.10.1-⨯的导体,沿长度方向截有3.0A 的电流,当磁感应强度大小为B=1.5T 的磁场垂直地通过该导体时,产生5100.1-⨯V 的横向电压,求:(1) 载流子的漂移速度;(2) 每立方米的载流子数目。

练习六1. 一正方形线圈,由细导线做成,边长为a ,共有N 匝,可以绕通过其相对两边中点的一个竖直轴自由转动。

现有线圈中通有电流I ,并把线圈放在均匀的水平外磁场B 中,线圈对其转轴的转动惯量为J ,如图所示,求线圈绕其平衡位置作微小振动时的振动周期T 。

2. 如图所示,一电子在T B 41020-⨯=的磁场中沿半径为R=2cm 的螺旋线运动,螺距为h=5.0cm 。

(1) 磁场B 的方向如何?(2) 求这电子的速度。

3. 一环形铁芯横截面的直径为4.0mm ,环的平均半径R=15mm ,环上密绕着200匝的线圈,如图所示,当线圈导线中通有25mA 的电流时,铁芯的相对磁导率300=r μ,求通过铁芯横截面的磁通量。

4. 有一圆柱形无限长磁介质圆柱体,其相对磁导率为r μ,半径为R ,今有电流I 沿轴线方向均匀通过,求:(1) 圆柱体内任一点的B ;(2) 圆柱体外任一点的B ;(3) 通过长为L 的圆柱体的纵截面的一半的磁通量。

第十二章 电磁感应练习七1. 设有由金属丝绕成的没有铁芯的环形螺线管,单位长度上的匝数15000-=m n ,截面积为23102m S -⨯=,金属丝的两端和电源ε以及可变电阻串联成一闭合电路,在环上再绕一线圈A ,匝数N=5,电阻Ω=0.2R ,如图所示。

调节可变电阻,使通过环形螺线管的电流强度I 每秒降低20A 。

求:(1) 线圈A 中产生的感应电动势ε,以及感应电流I ;(2) 两秒内通过线圈A 任一横截面的感应电量q 。

2. 在图中具有相同轴线的两个导线回路,小回路在大回路上面距离x 处,设x>>R 。

因此,当大回路中有电流i 按图示方向流过时,小线圈所围面积内的磁场可看作是均匀的。

假定x 以等速率v dt dx =/而变化。

(1) 试确定穿过小回路的磁通量Φ和x 之间的关系;(2) 当x=NR 时(N 为一正数),小回路内产生的感应电动势的大小;(3) 若0>v ,确定小回路内感应电流的方向。

3. 如图所示,一长直导线载有I=5.0A 的电流,旁边有一矩形线圈ABCD ,长m l 20.01=,宽m l 10.02=,长边与长直导线平行且两者共面,AD 边与导线相距a=0.10m ,线圈共有1000匝。

令线圈以速度v 垂直与长直导线向右运动,10.3-⋅=s m v 。

求线圈中的感应电动势。

4. 横截面为正方形的一根导线ab ,长为l ,质量为m ,电阻为R 。

这根导线沿着两条平行的导电轨道无摩擦地下滑,轨道的电阻可忽略不计。

如图所示,另一根与ab 导线平行的无电阻的轨道,接在这两个平行轨道的底端,因而ab 导线与三条轨道组成一矩形的闭合导电回路。

导电轨道所在平面与水平面成θ角。

整个系统在竖直向上的均匀磁场B 中。

(1) 求证:导线ab 下滑时,所达到的稳定速度大小为:2)cos (sin θθBl mgR v =(2) 求证:这个结果与能量守恒定律是一致的。

练习八1. 如图所示,一均匀磁场被限制在半径R=20cm 的无限长圆柱形空间内,磁场以1)/4(/-⋅=s T dt dB π的恒定速率增加。

问图中线框abcda 的感生电流是多少?已知线框的电阻cm od oc cm ob oa R 30,10,6/,0.4=====Ω=πθ。

2. 在半径为R 的圆筒内,有方向与轴线平行的均匀磁场B ,以12100.1--⋅⨯s T 的速率减小,a 、b 、c 各点离轴线的距离均为r=5.0 cm ,试问电子在各点处可获得多大的加速度?加速度的方向如何?如果电子处在圆筒的轴线上,它的加速度又是多大?3. 一电子在电子感应加速器中半径为1.0m 的轨道作圆周运动,如果电子每转一周动能增加700eV ,计算轨道内磁通量的变化率。

4. 在两根通有反向电流I 的平行长直导线的平面内,有一矩形线圈放置如图所示,若导线中电流随时间的变化率为K dt dI /(大于零的恒量)。

试计算线圈中的感生电动势。

练习九1. 一截面为长方形的环式螺线管,共有N 匝,其尺寸如图所示。

证明:此螺线管的自感系数为ab h N L ln 22πμ =2. 一螺绕环,横截面的半径为a ,中心线的半径为R ,R>>a ,其上由表面绝缘的导线均匀地密绕两个线圈,一个匝1N ,另一个匝2N 。

求:(1) 两线圈的自感1L 和2L ;(2)两线圈的互感M ;(3)M 与1L 和2L 的关系。

3. 一圆形线圈1C 由50匝表面绝缘的细导线绕成,圆面积为20.4cm S =,将此线圈放在另一个半径为R=20cm 的圆形大线圈2C 的中心,两者同轴。

大线圈由100匝表面绝缘的导线绕成。

(1) 求这两线圈的互感系数M ;(2) 当大线圈中的电流以150-⋅s A 的变化率减小时,求小线圈1C 中的感应电动势。

4. 氢原子中电子在一圆轨道上运动,问这轨道中心处磁场能量密度有多大?玻尔氢原子模型中电子的轨道半径为m 11101.5-⨯,频率f 等于15108.6-⋅⨯s r 。

相关文档
最新文档