电网系统中谐波的产生及其治理
电网中谐波产生的原因、危害及治理措施
电网中谐波产生的原因、危害及治理措施作者:黄贤丽张金刚来源:《科技资讯》 2015年第9期黄贤丽张金刚(华能集团济宁运河发电有限公司山东济宁 272000)摘要:随着我国经济的快速发展,电力用户中大量非线性电力设备的应用,谐波问题越发引起人们的广泛关注。
在电网诞生之初,谐波就存在,因为发电机和变压器本身就能够产生谐波,但由于量小,并不会产生危害。
然而,随着用电设备种类的增多,以及具有谐波放大效应的并联电容器的广泛应用,谐波的危害变得越来越严重。
大量谐波的存在会污染电网、影响电网中的设备和负荷,因此问题不容忽视。
了解谐波产出的原因及危害,有助于我们更好地制定治理措施。
文章对谐波产生的原因及危害进行了分析,并出了若干治理措。
关键词:基波谐波源谐波治理中图分类号:TM73 文献标识码:A 文章编号:1672-3791(2015)03(c)-0255-011 谐波源如果电网中的电压或电流波形是不理想的正弦波,表明其中有频率高于50Hz的电压或电流成分,该成分即为谐波。
随着非线性电力电子器件组成的电气传动自动化装置的广泛应用和容量的不断增加,谐波污染给公用电网和其他用电设备的带来的影响日益显著。
所以必须考虑谐波产生的原因和它带来的危害,以及如何将危害减少到最小。
凡是能向电网注入谐波电流或谐波电压的电气设备统称为谐波源。
例如:换流设备、电弧炉、铁芯设备、照明设备、某些生活日用电器等非线性电气设备。
整流器、逆变器和变频装置等这一类电气设备,这些设备的用途就是强行切断或连通电流,因此通常要用整流元件的导通、截止特性,而正是这一过程会导致了大量谐波电流的产生。
工业上钢铁企业中所用的电弧炉也是一个很大的谐波源。
电弧炉的熔化过程中,会发生填料不完全融化并结焦成块状固体的现象,这会导致电弧阻抗不稳定。
当电极插入熔化金属时,电极间会产生金属性短路,此时,短路电流的限制通常要依靠电炉变压器的阻抗和所串连的电抗器来完成。
如果电弧的负阻抗特性(电弧的阻抗随电流的增大而急剧减小)和熔化期三相电极出现反复不规则短路以及断弧现象,那么此时电弧炉就会产生谐波电流。
电力谐波的产生原因及抑制方法
电力谐波的产生原因及抑制方法电力谐波是指电力系统中产生的非正弦波形,它由于交流电系统中的非线性负载、电力线上的电容器和电感器等因素引起。
电力谐波在电力系统中的存在可能会导致设备的故障、能源浪费和电网负载能力的下降。
因此,对电力谐波的产生进行有效的抑制是非常重要的。
1.非线性负载:非线性负载是电力谐波的主要源头。
非线性负载通常包括电力电子设备,如电视、计算机、UPS电源、逆变器、风力发电机等。
这些设备的工作原理会产生非线性电流,进而导致电网中谐波的产生。
2.电容器和电感器:电容器和电感器也会对电力谐波的产生做出贡献。
在电力系统中,电容器和电感器常用于无功补偿和电能储存。
然而,由于电容器和电感器的等效电路具有谐振特性,它们会对电力谐波起到放大的作用。
3.电网接地方式:电网的接地方式也会影响电力谐波的产生。
当电网采用不完全中性接地时,地线电流会导致电子设备的谐波污染。
抑制电力谐波的方法有多种,下面将介绍几种常见的方法:1.优化电力系统设计:对于新建的电力系统,可以采用谐波抑制措施进行设计。
例如,将非线性负载远离主要的电源和敏感设备,减少非线性负载对谐波的干扰。
2.增加电力系统的容量:增加系统容量可以降低电力谐波对设备的影响。
通过增加设备的容量,可以减少设备的负载率,从而降低了负载谐波。
3.应用谐波滤波器:谐波滤波器是目前应用最广泛的抑制电力谐波的方法之一、谐波滤波器可将电力谐波从电网中滤除,从而减少对设备的影响。
4.提高设备的抗谐波能力:可以通过改善设备的设计或增加额外的抗谐波装置,使得设备能够更好地抵抗电力谐波的干扰。
5.加强监测和管理:及时监测电力谐波的产生和影响程度,对于谐波超标的情况进行调整和管理。
可以采用在线监测系统对电力谐波进行实时监测,并根据监测结果采取适当的措施。
综上所述,电力谐波的产生原因主要是非线性负载、电容器和电感器以及电网接地方式等因素的综合作用。
为了有效抑制电力谐波,需要采用适当的方法,包括优化电力系统设计、增加系统容量、应用谐波滤波器、提高设备的抗谐波能力以及加强监测和管理等。
电力系统中的谐波及其抑制措施
电力系统中的谐波及其抑制措施谐波是电力系统中常见的一种电信号,它是由电力系统中非线性设备引起的。
谐波会导致电力系统不稳定、设备损坏和通信干扰等问题,因此谐波的抑制是电力系统设计和运行中的重要问题。
谐波的产生原理是电力系统中的非线性元件(如整流器、变频器、电弧炉等)在电压或电流作用下,产生不对称的电压或电流波形,导致谐波频率的波形在电力系统中传播和扩散。
常见的谐波频率包括3次、5次、7次等奇次谐波,以及2次、4次、6次等偶次谐波。
谐波对电力系统的影响包括以下几个方面:1.电力系统不稳定:谐波产生的电压波形失真会导致电力系统的电压稳定性下降,可能导致设备的过电压或欠电压现象,进而影响到电力系统的正常运行。
2.设备损坏:谐波电流会导致电力设备内部的电机、变压器等元件温度升高,进而影响到设备的寿命和可靠性。
3.通信干扰:谐波会在电力线上传播,通过电网对通信系统产生干扰,降低通信系统的传输质量。
为了抑制谐波,可以采取以下几种措施:1.使用谐波滤波器:谐波滤波器是一种专门用于抑制谐波的滤波器。
它可以根据谐波频率的不同,选择相应的滤波器进行安装,从而削弱或消除谐波成分。
2.控制负载谐波含量:减少非线性装置的使用,或者采用符合电力系统标准的电气设备,可以降低谐波的产生和传播。
3.设备绝缘和保护:合理选择电力设备的额定容量和绝缘等级,增加设备的绝缘保护,提高设备的抗谐波能力。
4.进行谐波分析和监测:对电力系统中的谐波进行分析和监测,及时了解谐波的产生和传播情况,以便采取相应的措施进行调整和优化。
5.增加电力系统的容量和稳定性:通过增加线路容量、改善电力系统的稳定性,可以降低谐波对电力系统的影响。
综上所述,谐波是电力系统中的一个重要问题,对电力系统的稳定性和设备的正常运行产生不利影响。
通过采取谐波滤波器、控制负载谐波含量、设备绝缘和保护、谐波分析和监测、以及增加电力系统的容量和稳定性等措施,可以有效地抑制谐波,维护电力系统的正常运行。
谐波产生的根本原因及治理对策
谐波的产生主要是来自下列具有非线性特性的电气设备:(1)具有铁磁饱和特性的铁芯没备,如:变压器、电抗器等;(2)以具有强烈非线性特性的电弧为工作介质的设备,如:气体放电灯、交流弧焊机、炼钢电弧炉等;(3)以电力电子元件为基础的开关电源设备,如:各种电力变流设备(整流器、逆变器、变频器)、相控调速和调压装置,大容量的电力晶闸管可控开关设备等,它们大量的用于化工、电气铁道,冶金,矿山等工矿企业以及各式各样的家用电器中。
以上这些非线性电气设备(或称之为非线性负荷)的显著的特点是它们从电网取用非正弦电流,也就是说,即使电源给这些负荷供给的是正弦波形的电压,但由于它们只有其电流不随着电压同步变化的非线性的电压-电流特性,使得流过电网的电流是非正弦波形的,这种电流波形是由基波和与基波频率成整数倍的谐波组成,即产生了谐波,使电网电压严重失真在电力系统中对谐波的抑制就是如何减少或消除注入系统的谐波电流,以便把谐波电压控制在限定值之内,抑制谐波电流主要有四方面的措施: 1)降低谐波源的谐波含量。
也就是在谐波源上采取措施,最大限度地避免谐波的产生。
这种方法比较积极,能够提高电网质量,可大大节省因消除谐波影响而支出的费用。
2)采取脉宽调制(PWM)法。
采用脉宽调制(PWM)技术,在所需要的频率周期内,将直流电压调制成等幅不等宽的系列交流电压脉冲,这种方法可以大大抑制谐波的产生。
3)在谐波源处吸收谐波电流。
这类方法是对已有的谐波进行有效抑制的方法,这是目前电力系统使用最广泛的抑制谐波方法。
4)改善供电系统及环境。
对于供电系统来说,谐波的产生不可避免,但通过加大供电系统短路容量、提高供电系统的电压等级、加大供电设备的容量、尽可能保持三相负载平衡等措施都可以提高电网抗谐波的能力。
选择合理的供电电压并尽可能保持三相电压平衡,可以有效地减小谐波对电网的影响。
谐波源由较大容量的供电点或高一级电压的电网供电,承受谐波的能力将会增大。
电网谐波的产生、危害及消除
浅析电网谐波的产生、危害及消除[摘要]当今,谐波是损害电能质量的重要因素之一,对大部分设备的正常工作影响甚大,所以,谐波治理工作越来越受到关注。
本文首先对电网谐波的产生及危害情况进行阐述,文章主要分析了电网谐波消除措施及优缺点,重点结合实例阐明磁通补偿型零序滤波装置的优良效果。
[关键词]配电网;谐波污染;滤波中图分类号:tm231.7 文献标识码:a 文章编号:1009-914x (2013)14-0260-02当今,很多电力电子装置中都配有整流装置。
逆变器、直流斩波器所需的直流电源主要来自整流电路,常用的晶闸管相控整流电路或二极管整流电路都是严重的谐波源。
各类开关电源、变频器、荧光灯的用量越来越多,使电源的谐波污染日益突出,谐波电压和谐波电流引起电源波形的严重畸变,影响供电质量。
低压电容器无功补偿装置上还可能由于谐波的放大,产生并联电容器的损坏或谐波事故,因此对电网的谐波治理和无功补偿装置的改进是当前电力系统中亟待解决的重要问题。
1 谐波的产生和危害1.1 谐波的产生电网谐波的产生主要有以下三个方面的原因:第一,由电源产生。
供电装置也就是发动机,实际情况下,三相绕组的对称性以及铁心的均匀程度都无法做到理想化,是产生谐波的一个因素。
第二,由配电系统产生。
这里主要指的是电力变压器,因为为了追求设计时的经济性,电力变压器的磁通密度一半被控制在磁化曲线近饱和段的水平,夹杂不少3次谐波,谐波含量与饱和程度成正比。
第三,由用电设备产生。
这是最主要的因素,大部分谐波产生于此。
一般用电设备中的谐波源有晶闸管整流装置;变频设备;家用电器。
此外,工业现场和民用建筑通常会采用三相四线制供电方式。
自动化设备、变频空调等家用电器、照明电源及不间断电源等等设备均会在电网中产生零序谐波电流,总量很大。
1.2 谐波的危害电网谐波的危害也是主要有三个方面:第一,危害供配电线路。
电网系统中电力线路和电力变压器通常装有电磁式继电器和感应式继电器做保护,而谐波对此类保护装置的影响较为明显,容易导致误动作情况的发生,降低了系统的稳定性和可靠性。
电网系统中谐波的产生及其治理
电网系统中谐波的产生及其治理摘要:随着电力电子技术的广泛应用与发展,用户向公用电网注入谐波电流的电气设备或在公用电网中产生谐波电压的电气设备,统称谐波源。
常见谐波源主要有电弧炉;换流设备;变压器;开关电源设备;低压小容量家用电器以及电力拖动设备等各种非线性用电设备,接入电网后均向电网大量注入谐波电流,这些都是谐波源。
影响电网电压波形质量的主要矛盾是非线性用电设备,也就是说非线性用电设备是主要的谐波源,从而引起电网的谐波“污染”。
关键词:谐波的产生谐波的危害抑制谐波的方法电网中的谐波对与之并联的其他用电设备造成不良影响。
例如引起电动机转矩降低,增加震动噪声,增加消耗;使继电保护装置产生误动作;使电网功率因数补偿电容过流发热;造成计算机及精密电子仪器运行不正常,诸如此类的不良影响被人们称为电力公害,如不认真对待并采取相应措施,将影响电力电子技术的进一步的发展。
1谐波的产生1.1电弧加热设备如电弧炉、电焊机等。
电弧加热设备是由于电弧在70伏以上才会起弧,才会有弧电流,并且灭弧电压略低于起弧电压,造成弧电流与弧电压的非线性。
此外,弧电流的波形还有一定的非对称性。
正是由于弧电流是非正弦波,电弧炉的冶炼过程分为两个阶段,及熔化期和精炼期。
在溶化期,炉内大部分填料未能全部熔化,电弧阻抗不稳定。
有时因电极插入熔化金属中而在电极间形成金属性短路,电极端部反复短路,电流发生不规则的变化由此产生谐波电流。
虽然谐波的成分非常复杂,但是由于三相负载不对称所以3次谐波为主且含量很大,但由于其工作的间断性产生的谐波多为间谐波,特点是持续时间短,频谱杂乱。
造成电弧加热设备对电网的谐波污染比较大,而且多为18次以下的低次谐波污染。
在精炼期内,电弧炉的电流稳定,且不超过额定值,谐波含量不大,以3次谐波及5次谐波为主。
其实电焊机的广泛应用,电焊机应用的同时率就更小了,对整个电网的影响比较小,但局部低压电网的电压和电流变化很大,有较大的谐波1.2交流整流的直流用电设备如电解、电力机车、充电装置、电镀等。
谐波治理的原理
谐波治理的原理谐波治理是一种针对电网谐波问题的技术措施。
在电力系统中,谐波是指频率是基波频率的整数倍的电压和电流成分,它们会引起电网中的谐波电压和电流增加,从而导致设备的过热、损坏,影响电网的安全稳定运行。
谐波治理的原理主要包括:谐波发生的机理、谐波产生与传输的特性以及谐波的抑制方法。
首先,谐波发生的机理主要涉及非线性负载的存在。
例如,电力电子设备(如变流器、电力电子变压器等)的普及应用,导致电网中存在大量非线性负载。
这些非线性负载的工作特性决定了它们电流与电压之间存在非线性关系,产生的电流包含了频率是基波频率的整数倍的谐波分量。
接着,谐波的产生与传输的特性主要与电网的拓扑结构有关。
电网中存在大量的线路与变压器,谐波电流在传输过程中会经过这些元件,导致电压波形被扭曲,且谐波电流的影响范围会扩散到整个电网中。
基于以上的分析,谐波治理的方法主要包括以下几个方面:1. 谐波源的控制:在电网中,非线性负载是主要的谐波源。
为了降低谐波电流的产生,可以通过优化非线性负载的设计和选择,减小它们的谐波电流分量。
2. 谐波发生源的隔离:对于谐波较大的设备或非线性负载,可以将其与电网隔离,使用独立供电或者采用特殊设备来加以管理。
3. 电网设备的优化设计:通过优化电网的拓扑结构,减小电缆和变压器等设备的阻抗,降低谐波电流的影响,减少谐波电压的产生。
4. 谐波滤波器的应用:谐波滤波器是一种针对谐波电流或电压进行补偿的装置。
它可以通过选择合适的电抗元件,抵消谐波电流分量,从而降低谐波电压。
5. 谐波控制计算机的使用:谐波控制计算机是一种自动化管理谐波的技术手段。
通过对电网进行全面的监测和分析,可以根据实际情况进行合理的调整和优化,达到谐波治理的效果。
总之,谐波治理的原理是在深刻理解谐波的产生和传输机理的基础上,采取不同的方法和手段,从源头上减小谐波的产生,降低谐波对电网运行的影响,确保电网的安全稳定运行。
谐波治理需要综合考虑电网的特性和需求,在设计和运行中充分考虑谐波问题,采取相应的措施进行处理,以提高电网的电能质量和运行可靠性。
谐波产生的原因及其治理措施概述
3 武 乡和信发 电有 限公 司,山西 武乡 .
摘要:指出随着电力__ 的迅猛发展 ,电能质量引发的相关问题 日 r, -k l 益引起人们的重视 , 究有关 研
电能 质量 中谐 波的成 因 以及 抑制措 施 成为 电力 工作 者的重要 课题 之 一 ,针 对 电力 系统 谐波 源的 分
类 、产生原 因及 抑制谐 波 的措施 进行 了分析 。
关键 词 :电能质 量 ;谐 波 源 ;谐 波危 害 ;谐 波抑 制措施
中 图分 类号 :7 1. 6 +3 2 文献 标识 码 :A 文章 编号 :17 — 3 0 2 1 )6 0 2 — 3 6 1 0 2 (0 0 — 0 2 0 1
理工作 ;
流 ,脉动数为2 ,特征谐波为全部奇数次谐波 ,电 力机车产生的非正弦电流通过牵引供 电系统的接触
网注入牵引站 ,并通过牵引站注入到与之相连的供
郭
徽 ( 94 ) 男 , 建 莆 田人 , 07年 毕 业 于江 苏 18一 , 福 20
大学工业工程专业,09 20 年人福州大学电力工程系攻渎硕士 ;
源 ,这是 由于非 线性 负荷 的 内阻抗通 常情 况下 比系 统 阻抗大 很 多 。
11 变 压器 .
路 。此类设备所产生的谐波既有电流源型的,也有 电压源型的。其谐波分量也仅有奇数次谐波 ,以5 、 7 1 3 为 主 。有 资料 显 示 ,此 类 设 备所 产 生 、1 、1次 的谐 波分 量有 时 可高 达基 波分 量 的3 %。 由于变 流 0
第 6期( 总第 19 ) 6期
谐波原理及治理方法
谐波原理及治理方法一、1. 何为谐波?在电力系统中谐波产生的根本原因是由于非线性负载所致。
当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,即电路中有谐波产生。
谐波频率是基波频率的整倍数,根据法国数学家傅立叶(M.Fourier)分析原理证明,任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量。
谐波是正弦波,每个谐波都具有不同的频率,幅度与相角。
谐波可以区分为偶次与奇次性,第3、5、7次编号的为奇次谐波,而2、4、6、8等为偶次谐波,如基波为50Hz时,2次谐波为l00Hz,3次谐波则是150Hz。
一般地讲,奇次谐波引起的危害比偶次谐波更多更大。
在平衡的三相系统中,由于对称关系,偶次谐波已经被消除了,只有奇次谐波存在。
对于三相整流负载,出现的谐波电流是6n±1次谐波,例如5、7、11、13、17、19等,变频器主要产生5、7次谐波。
“谐波”一词起源于声学。
有关谐波的数学分析在18世纪和19世纪已经奠定了良好的基础。
傅里叶等人提出的谐波分析方法至今仍被广泛应用。
电力系统的谐波问题早在20世纪20年代和30年代就引起了人们的注意。
当时在德国,由于使用静止汞弧变流器而造成了电压、电流波形的畸变。
1945年J.C.Read发表的有关变流器谐波的论文是早期有关谐波研究的经典论文。
到了50年代和60年代,由于高压直流输电技术的发展,发表了有关变流器引起电力系统谐波问题的大量论文。
70年代以来,由于电力电子技术的飞速发展,各种电力电子装置在电力系统、工业、交通及家庭中的应用日益广泛,谐波所造成的危害也日趋严重。
世界各国都对谐波问题予以充分和关注。
国际上召开了多次有关谐波问题的学术会议,不少国家和国际学术组织都制定了限制电力系统谐波和用电设备谐波的标准和规定。
谐波研究的意义,道理是因为谐波的危害十分严重。
谐波使电能的生产、传输和利用的效率降低,使电气设备过热、产生振动和噪声,并使绝缘老化,使用寿命缩短,甚至发生故障或烧毁。
浅析谐波产生的原因-影响及抑制措施
浅析谐波产生的原因\影响及抑制措施摘要:随着高科技的飞速发展,各种新型用电设备也不断地问世和使用,致使产生的高次谐波越来越多。
而电力系统受到谐波影响后,轻则影响系统的运行效率,重则损坏设备以至危害电力系统的安全运行。
本文主要对谐波的产生与危害进行分析,并对店里系统抑制谐波的措施进行探讨,从而保证供电质量。
关键词:谐波;产生原因;影响;抑制措施一、谐波的概念谐波是指对周期性交流分量进行傅立叶级数分解,得到的频率为基波频率大于1整数倍的分量。
通俗地说谐波是一个周期电气量的正弦分量,其频率为基波频率的整数倍。
二、谐波的产生(一)以电力电子元件为基础的开关电源设备,如:各种电力变流设备(整换流装置、变频器)、相控调速和调压装置,大容量的电力晶闸管可控开关设备、电力机车、家用电器等,它们大量的用于化工、电气铁道,冶金,矿山等共矿企业以及各式各样的家用电器中。
(二)具有铁磁饱和特性设备,如变压器、电抗器等;变压器中的谐波电流是由励磁回路的非线性引起的,正常情况下,所加电压为额定电压,铁芯工作在线性范围内,谐波电流含量不大,但在轻载时电压升高,铁芯工作在饱和区,此时谐波电流就会大大增加。
在变压器正常工作过程中,如果有暂态扰动、负载剧烈变化都会产生大量谐波。
三、谐波的危害一般来讲,具有非线性特性或者对电流进行周期性开闭的电气设备对容量相对较大的电力系统影响不很明显,而对容量小的系统,谐波产生的干扰就不可忽视,谐波电流和谐波电压的出现,对公用电网是一种污染,它使用电设备所处的环境恶化,给周围的通信系统和公用电网以外的设备带来危害。
谐波污染对电力系统的危害严重性主要表现在:(一)对供电线路的影响谐波对供电线路产生了附加谐波损耗。
由于集肤效应和邻近效应,使线路电阻随频率增加而提高,造成电能的浪费;由于中性线正常时流过电流很小,故其导线较细,当大量的三次谐波电流流过中性线时,会使导线过热、绝缘老化、寿命缩短、损坏甚至发生火灾。
电力系统中电流谐波的监测与治理
电力系统中电流谐波的监测与治理在当今高度依赖电力的社会中,电力系统的稳定和高效运行至关重要。
然而,电流谐波的存在却给电力系统带来了诸多问题。
电流谐波不仅会影响电力设备的正常运行,降低电能质量,还可能引发电力故障,甚至造成严重的安全隐患。
因此,对电力系统中电流谐波的监测与治理成为了电力领域的一个重要课题。
一、电流谐波的产生要理解电流谐波的监测与治理,首先需要了解它的产生原因。
电流谐波主要来源于电力系统中的非线性负载。
常见的非线性负载包括电力电子设备,如变频器、整流器、逆变器等;电弧炉、电焊机等工业设备;以及一些家用电器,如节能灯、计算机电源等。
这些非线性负载在工作时,其电流和电压的关系不再是简单的线性关系,从而导致电流波形发生畸变,产生了谐波成分。
例如,在变频器中,通过对电源进行整流和逆变操作来改变电机的转速。
在这个过程中,由于半导体器件的开关动作,电流会出现高频的脉动,从而产生谐波。
二、电流谐波的危害电流谐波对电力系统的危害是多方面的。
首先,它会增加电力设备的损耗。
谐波电流在电力线路和变压器中流动时,会产生额外的热量,导致设备温度升高,降低其使用寿命。
其次,谐波会影响电力测量仪表的准确性。
例如,电能表可能会因为谐波的存在而计量不准确,给电力用户和供电部门带来经济损失。
再者,谐波还会干扰通信系统。
在电力线路附近的通信线路中,谐波可能会引起噪声,影响通信质量。
此外,严重的谐波还可能导致电力系统的电压波动和闪变,影响电气设备的正常运行,甚至引发电力系统的故障。
三、电流谐波的监测为了有效地治理电流谐波,首先需要对其进行准确的监测。
电流谐波的监测方法主要包括以下几种:1、基于傅里叶变换的谐波分析这是目前最常用的方法之一。
通过对采集到的电流信号进行快速傅里叶变换(FFT),可以将其分解为不同频率的谐波分量,从而得到各次谐波的幅值和相位信息。
2、谐波功率测量除了测量谐波的电压和电流幅值外,还可以通过测量谐波功率来评估谐波的影响。
电力谐波的产生原因及其抑制方法
电力谐波的产生原因及其抑制方法电力谐波指的是电力系统中出现的非正弦波形,是由于电力系统中的非线性负载和电力设备等产生的。
它会对电力系统的稳定性和运行质量产生不利影响,因此需要采取相应的抑制方法来减小谐波水平。
1.非线性负载:电力系统中广泛使用的非线性负载设备,如电弧炉、变频器、电子设备等,其负载特性是非线性的,会导致电流与电压的失配,产生谐波。
2.电力设备:电力系统中的电力设备,如变压器、发电机、变电设备等,其磁化和饱和特性也会引起谐波。
3.电力系统的并联谐振:当电容、电感等元件在电力系统中呈并联连接时,会出现谐振现象,从而产生谐波。
4.电力系统的不对称操作:电力系统中的不对称运行,如三相电流不平衡、电压不平衡等,也会引起谐波的产生。
为了减小电力谐波的影响,可以采取以下几种抑制方法:1.滤波器和补偿器:通过安装合适的谐波滤波器和补偿器,将谐波电流或电压引入这些设备中,并通过调节参数来抑制谐波。
2.谐波控制器:使用专门的谐波控制器,通过对电流进行监测和控制,实现对谐波的有效消除和抑制。
3.谐波发生器:使用谐波发生器对电力系统进行谐波注入,从而实现对谐波的消除或者切除。
4.谐波滤波器:在电力系统中添加谐波滤波器,通过对谐波进行吸收或变换,并将其回馈到电网中,以减小谐波的扰动。
5.调整电力设备:对电力设备进行调整和优化,减小非线性特性,从而降低谐波的产生。
总结起来,电力谐波的产生是由于电力系统中的非线性负载和电力设备等因素所致。
为了有效抑制电力谐波,可以采取滤波器、补偿器、控制器等方法,以减小谐波的影响。
此外,对电力设备进行调整和优化也是降低谐波的有效手段。
对于电力系统的设计和运行,应该重视谐波抑制的问题,从而保证电力系统的正常运行和供电质量。
电力系统谐波问题分析及防治措施
电力系统谐波问题分析及防治措施摘要:电力谐波会增加电能损耗、降低设备寿命,威胁电力设备和用电设备安全可靠运行,并对周边的通讯等设施造成干扰。
分析电网谐波的产生和影响,并及时提出谐波的综合治理办法,对于防止谐波危害、提高电能质量是十分必要的。
本文概述了谐波及其产生、谐波的危害,以及谐波治理方法。
关键词:电力系统;谐波;来源;危害;治理方法谐波的定义与来源1、谐波的定义国际上对谐波公认的定义是:“谐波是一个周期电气量的正弦波分量,其频率为基波频率的整数倍”。
在电力系统中,谐波分为谐波电压和谐波电流,其对系统的影响通常用“谐波含有率”和“总谐波畸变率”两个参数来衡量。
具体定义如下:谐波含有率:第h次谐波分量方均根值与基波分量方均根值之比。
HRU(h次谐波电压含有率),HRI(h次谐波电流含有率);总谐波畸变率:除基波外的所有谐波分量在一个周期内的方均根值与基波分量方均根值之比。
U,I;THD(总谐波电压畸变率),THD(总谐波电流畸变率);谐波含有率仅反应单次谐波在总量中的比重,而总谐波畸变率则概括地反映了周期波形的非正弦畸变程度。
谐波按矢量相序又可分有正序谐波、负序谐波和零序谐波。
所谓正序是指,3个对称的非正弦周期相电流或电压在时间上依次滞后120°,而负序滞后240°,零序則是同相。
其特征如表1:表1 正序谐波=3h-2,负序谐波=3h-1,零序谐波=3h。
在平衡的三相系统中,由于对称关系,不会在供电电网中产生任何偶次谐波。
谐波的定义与来源具体来说谐波产生的原因有以下三个方面:(1) 发电源的质量不高而产生的谐波发电机的结构中,由于三相绕组在制作上无法做到绝对对称,铁心也很难做到绝对均匀一致,所以磁通密度沿空间的分布只能做到接近正弦分布,所以磁通中都有高次谐波,电势中也就有高次谐波,其中三次谐波占主要成分[2]。
(2) 输配电系统产生的谐波在输配电系统中则主要是变压器产生谐波,变压器饱和时的励磁电流只含有奇次谐波,以3次谐波最大,可达额定电流0.5%,对于三相变压器,3倍次谐波的磁通经由邮箱外壳构成闭合磁路,因而磁通中对应该次的谐波较小(单相铁芯的10%),绕组中有三角形接法时,零序性谐波电流在闭合的三角形接线中环流而不会注入电网。
论电网系统中谐波产生、危害及抑制方法
1 2 由 非 线 性 负 载 所 致 . l 2 1 非 线 性 负栽 - .
谐 波 产 生 的另 一 个 原 因是 由 于 非 线 性 负 载 。 当 电 流 流 经 线 性 负 载 时 , 载 上 电流 与 施 加 电 压 呈 线 性 关 系 ; 电 流 2 谐 波 的危 害 负 而 谐 波 研 究 的意 义 , 于 谐 波 的 危 害 十 分 严 重 , 要 表 现 在 主 流 经 非 线 性 负 载 时 , 负载 上 电 流 为 非 正 弦 电 波 , 产 生 了 则 即
配电网谐波的产生和治理
配电网谐波的产生和治理配电网谐波问题是电力系统运行中的重要问题之一,其产生主要是由于非线性负载设备(如电子设备、控制器等)在工作时对电力系统所产生的非线性负载电流所致。
谐波电流会对电力系统造成很大的影响,如增加导线的损耗和发热、使电机转矩降低、影响电线通讯,甚至损坏电气设备等。
因此,为了保证电力系统的安全、稳定和经济运行,必须对谐波进行治理。
谐波产生的根本原因是非线性负载的存在。
非线性负载设备的电阻、电感和电容之间的交互作用会导致谐波电流的产生。
谐波电流会引起电流和电压的波形失真,导致电力系统频率变化,进而破坏电力系统的稳定性及其正常运行。
为了解决谐波问题,目前主要有以下几种治理方法:1.滤波器治理法此方法主要是采用谐波滤波器或其他滤波器装置来消除谐波电流,使得电力系统中的电压和电流波形变得更加纯净。
一般情况下,谐波滤波器分为无源型和有源型两种。
无源型谐波滤波器系列分为低通、中通和高通滤波器等,可以抑制电力系统中的谐波电流。
有源型谐波滤波器可以根据控制策略主动地向电网注入谐波电流,以抵消非线性负载设备所产生的谐波电流,从而有效地降低谐波水平。
此方法主要是采用特制变压器来消除谐波电流。
例如,增强高阻抗变压器可以有效地消除电力系统中的谐波电流,因为其具有较高的阻抗值和适宜的数值。
3.实施控制策略此方法主要是采用某些电力电子装置来控制谐波电流。
例如,采用PWM变频器可以控制驱动电动机所需的电压和频率,从而控制谐波电流的发生。
可以采用降低负载功率、改变谐波源的位置、增加谐波滤波器等控制策略,也可以利用电力电子装置控制谐波电流的波形,以有效地降低谐波水平。
4.优化配电网络此方法主要是对电力系统的布局和设计进行优化调整,以减少谐波电流的产生。
例如,采用低谐波负载设备、减少非线性负载设备、缩短负载以及配电线路的长度等,将可以有效地降低谐波电流和谐波水平。
总之,谐波治理是电力系统运行的重要问题,需要采取多种手段来降低谐波水平。
配电网谐波的产生和治理
配电网谐波的产生和治理发布时间:2021-01-28T09:40:04.253Z 来源:《当代电力文化》2020年第25期作者:张金瑞[导读] 配电网的供电可靠性直接关系到生产安全、企业经济效益和人们的日常生活张金瑞摘要:配电网的供电可靠性直接关系到生产安全、企业经济效益和人们的日常生活,随着电动机使用变频器的增加,给配电网埋下了巨大的谐波和电磁污染,甚至造成配电设备和用电设备的损坏。
因此,抓好配网的专业管理具有极其重要的意义。
变频调速是20世纪以来,电气传动领域划时代的技术进步。
电机合理的采用变频器驱动有一定的节能效果,变频器使得电动机控制系统调节方便、维护简单、利于优化运行,被越来越多的应用在电动机调速系统中。
但是由于变频器、节电器等电子设备的特殊工作方式在给系统节能的同时,却给电网带来极大的电力谐波和电磁污染。
本文从电力谐波的起因、谐波的危害及谐波的治理等几个方面进行了较为深刻的阐述。
得出了一些具有指导意义的理论成果,以减少谐波对油田电网的污染,保证配电网的安全运行。
?关键词:配电网;谐波的产生;危害;谐波治理;安全运行?一、电力谐波的来源?(一)换流装置产生的谐波,变频器等整流、调速设备的电源部分采用的是整流滤波原理,基本采用的是二极管整流和电容滤波电路。
这种电路在电源的线电压大于电容器两端的直流电压时,整流桥中才有充电电流。
因此,充电电流总是出现在电源电压的振幅值附近,呈不连续的冲击波形式。
它具有很强的高次谐波成分。
资料表明,输入电流中的5次谐波和7次谐波的谐波分量是最大的。
?(二)单相全控桥式整流,理想状态下,交流侧电流为连续周期方波,只含有2K±1次谐波电流,不含直流和偶次谐波分量。
?(三)三相全控桥式整流,理想的三相桥式整流交流侧电流为断续周期方波,只含有6K±1次谐波电流。
由于三相全波整流不接中性线,所以三次倍数的谐波走不通,也就是零序电流走不通。
但在等效三相负载的中性点对电源的中性点有较大的三次谐波电压应特别注意。
电力系统中的谐波分析及消除方法
电力系统中的谐波分析及消除方法摘要:本文针对电力系统中普遍存在的谐波问题进行了分析研究,首先概述了谐波的危害,然后介绍了三种谐波检测的方法,最后从改造谐波源的角度提出了几种谐波抑制方法。
关键词:电力谐波检测治理0 引言目前,谐波与电磁干扰、功率因数降低被列为电力系统的三大公害,因而了解谐波产生的机理,研究和清除供配电系统中的高次谐波,对改于供电质量、确保电力系统安全、经济运行都有着十分重要的意义。
1 电力系统谐波危害1.1 谐波会使公用电网中的电力设备产生附加的损耗,降低了发电、输电及用电设备的效率。
大量三次谐波流过中线会使线路过热,严重的甚至可能引发火灾。
1.2 谐波会影响电气设备的正常工作,使电机产生机械振动和噪声等故障,变压器局部严重过热,电容器、电缆等设备过热,绝缘部分老化、变质,设备寿命缩减,直至最终损坏。
1.3 谐波会引起电网谐振,可能将谐波电流放大几倍甚至数十倍,会对系统构成重大威胁,特别是对电容器和与之串联的电抗器,电网谐振常会使之烧毁。
1.4 谐波会导致继电保护和自动装置误动作,造成不必要的供电中断和损失。
1.5 谐波会使电气测量仪表计量不准确,产生计量误差,给供电部门或电力用户带来直接的经济损失。
1.6 谐波会对设备附近的通信系统产生干扰,轻则产生噪声,降低通信质量;重则导致信息丢失,使通信系统无法正常工作。
1.7 谐波会干扰计算机系统等电子设备的正常工作,造成数据丢失或死机。
1.8 谐波会影响无线电发射系统、雷达系统、核磁共振等设备的工作性能,造成噪声干扰和图像紊乱。
2 谐波检测方法2.1 模拟电路消除谐波的方法很多,即有主动型,又有被动型;既有无源的,也有有源的,还有混合型的,目前较为先进的是采用有源电力滤波器。
但由于其检测环节多采用模拟电路,因而造价较高,且由于模拟带通滤波器对频率和温度的变化非常敏感,故使其基波幅值误差很难控制在10%以内,严重影响了有源滤波器的控制性能。
供电系统谐波的产生原因和抑制方法
供电系统谐波的产生原因和抑制方法电气系统中的电气设备产生的电压或电流波形非理想的正弦波时,即说明其中含有频率高于50Hz的电压或电流成分,将频率高于50Hz的电流或电压成分称之为谐波。
谐波对电气设备的正常工作有不利影响,因此,研究谐波的危害与抑制方法,对保证电网的电力质量十分必要。
(1)谐波是如何产生的?谐波来自于三个方面:一是发电设备产生的谐波;二是输配电系统产生的谐波;三是供电系统的电气设备(如变频器、电炉等)等产生的谐波,其中以供电系统的电气设备产生的谐波居多,具体如下:1)晶闸管整流设备:由于晶闸管整流在电力机车、铝电解槽、充电装置、开关电源等许多方面得到了越来越广泛的应用,给电网造成了大量的谐波。
晶闸管整流装置采用移相控制,从电网吸收的是缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,显然在留下部分中含有大量的谐波。
如果整流装置为单相整流电路时则含有奇次谐波电流,其中3次谐波的含量可达基波的30%;接容性负载时则含有奇次谐波电压,其谐波含量随电容值的增大而增大。
如果整流装置为三相全控桥脉冲整流器,变压器原边及供电线路含有5次及以上奇次谐波电流;如果是12脉冲整流器,也含有11次及以上奇次谐波电流。
经统计表明:由整流装置产生的谐波占所有谐波的近40%,这是最大的谐波源。
2)变频装置:变频装置常用于风机、水泵、电梯等设备中,由于采用了相位控制,谐波成份很复杂,除含有整数次谐波外,还含有分数次谐波,这类装置的功率一般较大,随着变频调速的使用的增多,对电网造成的谐波也越来越多。
3)电弧炉、电石炉:由于加热原料时电炉的三相电极很难同时接触到高低不平的炉料,使得燃烧不稳定,引起三相负荷不平衡,产生谐波电流,经变压器的三角形连接线圈而注入电网。
其中主要是2~7次的谐波,平均可达基波的8%~20%,最大可达45%。
4)气体放电类电光源:荧光灯、高压汞灯、高压钠灯与金属卤化物灯等属于气体放电类电光源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电网系统中谐波的产生及其治理
发表时间:2017-10-19T14:10:17.037Z 来源:《防护工程》2017年第16期作者:商伟光
[导读] 电网中的谐波对与之并联的其他用电设备造成不良影响。
吉林卓创新材料有限公司吉林磐石 132311
摘要:随着电力电子技术的广泛应用与发展,用户向公用电网注入谐波电流的电气设备或在公用电网中产生谐波电压的电气设备,统称谐波源。
常见谐波源主要有电弧炉;换流设备;变压器;开关电源设备;低压小容量家用电器以及电力拖动设备等各种非线性用电设备,接入电网后均向电网大量注入谐波电流,这些都是谐波源。
影响电网电压波形质量的主要矛盾是非线性用电设备,也就是说非线性用电设备是主要的谐波源,从而引起电网的谐波“污染”。
关键词:谐波的产生谐波的危害抑制谐波的方法
电网中的谐波对与之并联的其他用电设备造成不良影响。
例如引起电动机转矩降低,增加震动噪声,增加消耗;使继电保护装置产生误动作;使电网功率因数补偿电容过流发热;造成计算机及精密电子仪器运行不正常,诸如此类的不良影响被人们称为电力公害,如不认真对待并采取相应措施,将影响电力电子技术的进一步的发展。
1谐波的产生
1.1电弧加热设备
如电弧炉、电焊机等。
电弧加热设备是由于电弧在70伏以上才会起弧,才会有弧电流,并且灭弧电压略低于起弧电压,造成弧电流与弧电压的非线性。
此外,弧电流的波形还有一定的非对称性。
正是由于弧电流是非正弦波,电弧炉的冶炼过程分为两个阶段,及熔化期和精炼期。
在溶化期,炉内大部分填料未能全部熔化,电弧阻抗不稳定。
有时因电极插入熔化金属中而在电极间形成金属性短路,电极端部反复短路,电流发生不规则的变化由此产生谐波电流。
虽然谐波的成分非常复杂,但是由于三相负载不对称所以3次谐波为主且含量很大,但由于其工作的间断性产生的谐波多为间谐波,特点是持续时间短,频谱杂乱。
造成电弧加热设备对电网的谐波污染比较大,而且多为18次以下的低次谐波污染。
在精炼期内,电弧炉的电流稳定,且不超过额定值,谐波含量不大,以3次谐波及5次谐波为主。
其实电焊机的广泛应用,电焊机应用的同时率就更小了,对整个电网的影响比较小,但局部低压电网的电压和电流变化很大,有较大的谐波
1.2交流整流的直流用电设备
如电解、电力机车、充电装置、电镀等。
交流整流直流用电设备的谐波产生的原因是由于整流设备有一个阀电压,在小于阀电压时,电流为零。
这类用电设备为了提供平稳的直流电源,在整流设备中加入滤波电容和滤波电感,从而使阀电压提高,加激了谐波的产生量。
为了控制直流用电设备的电压和电流,在整流设备中应用了可控硅,这使得该类设备的谐波污染更严重,而且谐波的次数比较低。
一般情况下,小型整流设备采用6脉冲装置,大型整流采用12脉冲装置。
一般情况下,相数愈多最低次谐波频率愈高,其幅值愈小及相数愈多交流分量愈小。
1.3交流整流再逆变用电设备
如变频调速、变频空调等。
变频器的主电路一般为交一直一交组成,外部输入380V/50Hz的工频电源经三相桥路不可控整流成直流电压,经电容滤波及大功率晶体管开关元件逆变为频率可变的交流电压。
在整流回路中,输入电流的波形为不规则的矩形波,这种脉动电流和电网的沿路阻抗共同形成脉动电压降叠加在电网的电压上,使电压发生畸变,经傅里叶分析可知,这种非同期正弦波电流是由于频率相同的基波和频率大于基波频率的谐波组成。
交流整流再逆变用电设备,在交流变直流过程中产生的谐波与上述的交流整流直流用电设备一样,它在直流逆变成交流时又有逆变波形反射到交流电流,这类设备产生的谐波分量不仅有低次谐波,也有高次谐波。
虽然这类设备单台容量比上述两类设备容量要小,但它的分布面广,数量多,是推广使用的技术手段,因此它的谐波污染较普遍。
2谐波的危害
2.1谐波在无功补偿中的危害
因为电容器可能使电网中的谐波电流放大,过大的谐波电流可能使电容器寿命缩短、鼓肚、爆裂甚至烧损。
有时甚至在电网中产生谐振,使电器设备受到严重损坏,破坏电网的正常运行。
谐波放大时,大量的谐波电流在电网与补偿电容之间往复交换,使包括变压器及电容器等电网上的设备出现过载并产生机械振动,释放大量的热量,加快损耗设备的同时也使电网正常运行的可靠性大大降低。
所以谐波放大是动态无功功率补偿设计中要考虑的首要问题。
(1)谐波使公用电网的元件产生了附加的谐波损耗,降低了发电、输电及用电设备的使用率,大量的三次谐波流过中线时会使线路过热甚至发生火灾。
(2)谐波影响各种电气元件的正常工作。
谐波对电机的影响除引起附加损耗外,还会产生机械振动、噪音和过电流,使电容器、电缆等设备过热,绝缘老化、寿命缩短以至损坏。
(3)谐波会引起公用电网局部的并联谐振和串联谐振,从而使谐波放大,这就使上述的危害大大的增加,甚至引起严重事故。
(4)谐波会对临近的通讯系统产生干扰,导致通讯质量降低,甚至信息的丢失,使通讯系统无法正常工作。
3抑制谐波的方法
3.1安装适当的电抗器
变频器的输入侧功率因数取决于装置内部的AC-DC变换电路系统,可利用并联功率因数教正DC电抗器,电源侧串联AC电抗器的方法,使进线电流的THDV大约降低30%-50%,是不加电抗器谐波电流的一半左右。
3.2装设有源电力滤波器
除传统的LC调试滤波器目前还在应用外,目前谐波抑制的一个重要趋势是采用有源电力滤波器。
它串联或是并联于主电路中,实时从补偿对象中检测出谐波电流,由补偿装置产生一个与该谐波电流大小相等,方向想反的补偿电流,从而使电网电流只含基波分量。
这种滤波器能对频率和幅值都变化的谐波进行跟踪补偿,其特性不受系统的影响,无谐波放大的危险,因而倍受关注,在日本等国已获得广泛应
用。
3.3采用多相脉冲整流
在条件允许或是要求谐波限制在比较小的情况下,可采用多相整流的方法。
12相脉冲整流THDV大约为10%-15%,18相脉冲整流的THDV约为3%-8%,满足国际标准的要求。
缺点是需要专用变压器,不利于设备的改造,价格较高。
结束语
本文分析了在电网系统中谐波的产生和构成成分,论述了谐波对电网系统的危害。
进而介绍谐波的抑制方法。
随着电力工业的迅速发展,为节约能源,改善供电品质,提高无功补偿水平。
总之,谐波问题的解决方法可分为预防性的和补救性两种,滤波的最后结果是要使系统的谐波含量满足国家标准的要求或用户对谐波的要求。
除了上述介绍的几种方法,抑制谐波的技术措施还有很多,但大都依据以下几个原则:抑制谐波电流的产生与注入;改善装置的功率因数与无功功率补偿;多种补偿功能一体化。
参考文献:
[1]温和,滕召胜,胡晓光.谐波存在时的改进电能计量方法及应用[J].仪器仪表学报,2011(01).
[2]韩兴,蔚永军.谐波存在时的改进电能计量方法及[J].黑龙江科技信息,2014(35).
[3]分布式光伏接入配电网谐波分布研究[D].王磊.华北电力大学2015
[4]电网谐波分析的频率估计与跟踪[D].黄廷波.河海大学2006。