冻干制剂检查指南 FDA
冻干粉针剂等非灭菌的无菌制剂检查要点
冻干粉针剂等非灭菌的无菌制剂检查要点1. 引言无菌制剂是指不含微生物污染的药剂,通常用于注射、外用和眼耳鼻等部位应用。
冻干粉针剂等非灭菌无菌制剂是其中一类常见的制剂类型。
为确保这类制剂的质量和安全性,需要进行一系列的检查工作。
本文档将介绍冻干粉针剂等非灭菌无菌制剂检查的要点,并提供适用于Markdown文本的检查报告模板,以便进行记录和分享。
2. 检查要点2.1 包装外观检查•检查包装是否完整,无破损、变形或漏气现象。
•检查标签是否清晰、完整,包括药品名称、规格、生产日期、有效期限等信息。
•检查是否有异味或异物。
2.2 冻干粉针剂外观检查•检查冻干粉针剂是否呈现均一的粉末状,无结块、结晶或变色现象。
•检查针剂容器是否清洁,无明显污染或附着物。
2.3 渗透试验•根据产品规格要求,将制剂溶解在适当的溶剂中进行渗透试验。
•观察制剂在溶剂中的溶解情况,确保制剂能够充分溶解。
•检查溶液是否清澈、无悬浮物或沉淀物。
2.4 抑菌试验•根据规范要求进行抑菌试验,使用适当的培养基和微生物菌株。
•使用无菌操作技术进行试验,并设立对照组。
•观察培养基上是否有菌落生长,并比较对照组的结果。
•结果应符合规范的要求。
2.5 pH值测定•使用适当的pH试纸或pH计测定制剂的pH值。
•比较测定值与规格要求的范围,确保符合要求。
2.6 纯度检查•检查制剂是否含有杂质或有机溶剂残留。
•使用适当的分析方法,如高效液相色谱法(HPLC)或气相色谱法(GC),对制剂进行分析。
•结果应符合规范的要求。
3. 检查报告模板# 冻干粉针剂等非灭菌的无菌制剂检查报告## 1. 基本信息- 药品名称:- 规格:- 批号:- 生产日期:- 有效期限:## 2. 检查结果### 2.1 包装外观检查- [ ] 完整无破损- [ ] 标签清晰完整- [ ] 无异味或异物### 2.2 冻干粉针剂外观检查- [ ] 粉末呈均一状- [ ] 无结块、结晶或变色- [ ] 针剂容器清洁无污染### 2.3 渗透试验- [ ] 制剂充分溶解- [ ] 溶液清澈无悬浮物或沉淀物### 2.4 抑菌试验- [ ] 有无菌落生长- [ ] 结果符合规范要求### 2.5 pH值测定- [ ] pH值符合规格要求### 2.6 纯度检查- [ ] 无杂质或有机溶剂残留- [ ] 分析结果符合规范要求## 4. 总结与建议- 总结检查结果,并给出必要的建议或改进措施。
冻干检查指南(中英文对照)
GUIDE TO INSPECTIONS OFLYOPHILIZATION OF PARENTERALSNote: This document is reference material for investigators and other FDA personnel. The document does not bind FDA, and does no confer any rights, privileges, benefits, or immunities for or on any person(s).INTRODUCTIONLyophilization or freeze drying is a process in which water is removed from a product after it is frozen and placed under a vacuum, allowing the ice to change directly from solid to vapor without passing through a liquid phase. The process consists of three separate, unique, and interdependent processes; freezing, primary drying (sublimation), and secondary drying (desorption).冻干是将产品置于冷冻和真空的状态下,除去水分的过程。
在这个过程中冰有固态直接变为水蒸汽,而不经过液态。
这个过程由三个独立的分开的又相互影响的过程组成。
冷冻、主干燥(生化)和二次干燥(解吸附)。
The advantages of lyophilization include:冻干的优点:Ease of processing a liquid, which simplifies aseptic handling简单的液体过程,无菌处理简单。
FDA指南中文版
目录表I. 导言 (1)II. 背景 (2)III. 分析方法的类型 (3)A. 法定分析方法 (3)B. 可选择分析方法 (3)3 C. 稳定性指示分析 (3)IV. 对照品 (4)A. 对照品的类型 (4)B. 分析报告单 (4)C. 对照品的界定 (4)V. IND中的分析方法验证 (6)VI. NDA, ANDA, BLA 和PLA中分析方法验证的内容和格式 (6)A. 原则 (6)B. 取样 (7)C. 仪器和仪器参数 (7)D. 试剂 (7)E. 系统适应性实验 (7)F. 对照品的制备 (7)G. 样品的制备 (8)H. 分析方法 (8)L. 计算 (8)J. 结果报告 (8)VII. NDA,ANDA,BLA和PLA中的分析方法验证 (9)A. 非法定分析方法 (9)1.验证项目 (9)2. 其它分析方法验证信息 (10)a. 耐用性 (11)b. 强降解实验 (11)c. 仪器输出/原始资料 (11)3.各类检测的建议验证项目 (13)B. 法定分析方法 (15)VIII. 统计分析 (15)A. 总则 (15)B. 比较研究 (16)C. 统计 (16)IX. 再验证 (16)X. 分析方法验证技术包:内容和过程 (17)A. 分析方法验证技术包 (17)B. 样品的选择和运输 (18)C. 各方责任 (19)XI. 方法 (20)A. 高效液相色谱(HPLC) (20)B. 气相色谱(GC) (22)C. 分光光度法,光谱学,光谱法和相关的物理方法 (23)D. 毛细管电泳 (23)E. 旋光度 (24)F. 粒径相关的分析方法 (25)G. 溶出度 (26)H. 其它仪器分析方法 (27)附件 A:NDA,ANDA,BLA和PLA申请的内容 (28)附件 B:分析方法验证的问题和延误 (29)参考文献 (30)术语表 (32)I. INTRODUCTIONThis guidance provides recommendations to applicants on submitting analyticalprocedures, validation data, and samples to support the documentation of the identity, strength, quality, purity, and potency of drug substances and drug products.1. 绪论本指南旨在为申请者提供建议,以帮助其提交分析方法,方法验证资料和样品用于支持原料药和制剂的认定,剂量,质量,纯度和效力方面的文件。
冻干粉针剂(化学制剂)生产质量技术指导原则
冻干粉针剂(化学制剂)药品质量安全专项工作生产质量技术指导原则为了提高冻干粉针剂(化学制剂)生产质量风险评估、管理的有效性,指导企业在严格执行GMP的基础上,有序开展药品生产质量风险排查和生产质量研究,进一步完善企业内部质量管理制度。
在新版GMP实施前,我们在相关企业质量风险管理经验的基础上,针对关键工序和岗位,制定了本指导原则。
冻干粉针剂(化学制剂)的生产必须严格按精心设计并经验证的方案及规程进行,产品的无菌或其它质量特性绝不能只依赖与任何形式的最终处理或成品检验。
1.人员培训管理1.1称量、配制、灌封、过滤、冻干、无菌和内毒素项目检验等关键岗位新进人员经GMP知识、岗位操作等专业培训、考核合格后,经质量管理部门确认后才能上岗。
无菌区操作人员的培训、考核,应重点关注进、出无菌区的更衣和无菌操作要求(包括生产操作和安装时的姿势、动作幅度及速率等)。
1.2企业应定期对上述关键岗位操作人员,组织岗位操作SOP及相关管理制度再培训、再考核。
1.3冻干粉针剂灌装生产线的员工,应定期参加培养基模拟灌装试验。
灌装生产线的新员工经岗位培训后,在正式上岗生产的第一年,至少有一次参加成功的培养基模拟灌装试验。
2. 厂房、设备与设施2.1厂房、设备与设施管理2.1.1厂房和设备设施应采用经过验证的工艺和规程进行生产操作,并应保持持续的验证状态。
2.1.2设备管理部门应切实履行维护和维修职责,制定厂房和设备设施的预防维护计划, 相应的维护和维修应有记录。
生产管理部门应及时向设备管理部门上报设备运行的重要情况。
2.1.3厂房和设备设施维护和维修不得影响产品质量。
经改造、重大维修或停产一定时间以上的关键设备(如灭菌、灌装等设备)应进行再确认或评估,符合要求后方可用于生产。
2.2HVAC系统2.2.1洁净区的洁净要求应在2013年12月31前,符合《药品生产质量管理规范(2010年修订)》中相应洁净度的要求。
应开展HVAC系统验证,验证结果符合规定,并与实际生产相适应。
冻干制剂工艺验证方案
冻干制剂工艺验证方案1. 引言冻干制剂是一种干燥技术,通过控制温度和压力,将液体通过冻结和升华的方式将其转化成固体干粉。
这种干燥技术在医药领域中被广泛应用,用于制备稳定性较好的药物制剂。
工艺验证是确保冻干制剂工艺的有效性和一致性的重要步骤。
本文档旨在提供一个冻干制剂工艺验证方案。
2. 目标本工艺验证方案的目标是验证冻干制剂工艺以确保其满足以下要求:•制剂的理化性质稳定性良好;•制剂的活性成分保持稳定;•制剂的重构性能良好;•制剂的质量控制可靠。
3. 验证内容冻干制剂工艺验证主要包括以下内容:3.1 原料验证•确认原料的纯度和质量符合要求。
•验证原料的稳定性。
•确定原料的最佳使用浓度。
3.2 工艺参数验证•确定最佳的冻结速率和冻结温度。
•确定最佳的升华速率和升华温度。
•验证不同冻干时间对制剂质量的影响。
3.3 制剂性能验证•测定制剂的水分含量。
•测定制剂的粒径分布。
•测定制剂的重构时间和活性成分的恢复率。
•测定制剂的储存稳定性。
4. 实验设计4.1 原料验证实验设计•首先,对原料进行药学评价,包括纯度、质量和稳定性检测。
•然后,根据最佳使用浓度的要求,对原料进行不同浓度的使用实验。
•最后,根据实验结果确定最佳的使用浓度。
4.2 工艺参数验证实验设计•首先,确定不同冻结速率和冻结温度的实验组。
•然后,将实验组制备出的制剂进行质量评价,包括水分含量、重构时间和活性成分恢复率等。
•最后,根据实验结果确定最佳的冻结速率和冻结温度。
4.3 制剂性能验证实验设计•首先,对制剂进行水分含量和粒径分布的测定。
•然后,对制剂进行重构时间和活性成分恢复率的测定。
•最后,对制剂进行储存稳定性实验。
5. 结论经过以上实验设计和验证,可以得出以下结论:•原料的质量符合要求,并确定最佳的使用浓度。
•最佳的冻结速率和冻结温度为XXX。
•制剂的水分含量和粒径分布满足要求。
•制剂的重构时间和活性成分恢复率较高。
•制剂的储存稳定性良好。
冻干检查指南(中英文对照)
GUIDE TO INSPECTIONS OFLYOPHILIZATION OF PARENTERALSNote: This document is reference material for investigators and other FDA personnel. The document does not bind FDA, and does no confer any rights, privileges, benefits, or immunities for or on any person(s).INTRODUCTIONLyophilization or freeze drying is a process in which water is removed from a product after it is frozen and placed under a vacuum, allowing the ice to change directly from solid to vapor without passing through a liquid phase. The process consists of three separate, unique, and interdependent processes; freezing, primary drying (sublimation), and secondary drying (desorption).冻干是将产品置于冷冻和真空的状态下,除去水分的过程。
在这个过程中冰有固态直接变为水蒸汽,而不经过液态。
这个过程由三个独立的分开的又相互影响的过程组成。
冷冻、主干燥(生化)和二次干燥(解吸附)。
The advantages of lyophilization include:冻干的优点:Ease of processing a liquid, which simplifies aseptic handling简单的液体过程,无菌处理简单。
注射用冻干制剂新药申报中的药学常见问题和基本考虑
注射用冻干制剂新药申报中的药学常见问题和基本考虑注射用冻干制剂新药申报中的药学常见问题和基本考虑一、引言冻干制剂(lyophilized preparations)是指将药物溶液冷冻后,疏脱溶剂,得到固态制剂,再将制剂置于真空下加热,使水分直接从固态向气态转变而蒸发,最后封存得到的制剂。
冻干法主要是将药物冷冻,通过降低压力,使水分直接从固态向气态转变。
在新药申报过程中,冻干制剂的研发和申报面临着许多药学常见问题和基本考虑。
本文将从不同角度探讨这些问题和考虑。
二、冻干制剂申报中的关键问题1. 冻干工艺的优化和控制冻干工艺是制备冻干制剂的关键环节,对于制剂保持稳定、可复溶和成品合格至关重要。
冻干工艺主要包括预处理、冷冻、真空干燥和封闭等步骤。
在申报过程中,需要详细描述冻干工艺的参数和条件,以确保制备的冻干制剂质量可控。
2. 药物稳定性的评价和保护冻干制剂的稳定性直接影响制剂的质量和有效期。
在申报中,需要充分评价药物在冷冻和真空干燥过程中的稳定性,并采取相应的保护措施,如添加稳定剂、调整pH值等,以确保药物在制剂中的稳定性和活性。
3. 冻干制剂的复溶性和稳定性评价复溶性是指冻干制剂在溶液中的溶解度和稳定性。
复溶性的评价包括对冻干制剂溶解的步骤、条件和速度的研究,并在申报中提供相应的数据支持。
还需要评价制剂在复溶后的稳定性,以确保制剂在使用时的质量和可利用性。
4. 注射用冻干制剂的容器和封闭系统选择容器和封闭系统的选择对于冻干制剂的稳定性和有效性有重要影响。
在申报中,需要选择适合的容器和封闭系统,确保冻干制剂在制剂和保存过程中的质量和稳定性。
三、基本考虑及个人观点1. 品质控制品质控制是冻干制剂申报中不可或缺的一环。
在申报过程中,需要制定严格的品质控制标准,并建立相应的分析方法和质量控制流程。
个人观点是,应加强对制剂物理稳定性、化学稳定性和生物活性等方面的评价,以确保制剂质量和疗效的稳定性。
2. 存储条件和有效期的确定冻干制剂的存储条件和有效期是保证制剂质量和疗效的重要因素。
FDA文件清单
FDA的药品法规和指南大部分来自于其官方网站的新药研究和评价中心(CDER),网址为:/cder/guidance/index.htm。
按照我们的需要,选择如下指南:一、GMP 7 篇1、联邦法规21条-210和211部分-美国GMP2、无菌药CGMP09193、Q7A-原料药GMP4、21条关于新药、抗生素、生物制品的部分5、COMD1-医疗气体GMP6、CH9-1关于DMF内容的指导7、怎样做文件-Q7A指导二、FDA检查指南16篇1、FDA生物药品达标检查指南2、达标指南-药物质量保证3、计算机系统检查指南4、生物技术检查指南5、FDA制剂厂检查指南6、病毒去除检查指南7、冻干检查指南8、高纯水检查指南9、国外药厂检查10、口服固体制剂检查指南11、清洁验证检查指南12、人药达标检查指南13、实验室控制检查指南14、无菌药检查指南15、药品生产检查指南16、药品生产检查-中试三、验证2篇1、工艺验证原理指南(1987)2、CH27-人兽药申请中的灭菌过程验证四、变更控制5篇1、CGD1-蛋白药物和生物制品变更指南2、CGD3-生产革新的框架和质量保证3、CH3-批准后的变更-生物技术和生物合成系统4、CH4-NDA和ANDA批准后变更5、CH25-SUPAC-SS:放大和批准后变更五、ICH——质量部分34篇1、Q1A(R)-新药的稳定性试验2、Q1B-新药的光学稳定性实验3、Q1C-新剂型的稳定性试验4、Q1D-新药稳定性试验设计的支架和基质5、Q1E6、Q1E稳定性数据7、Q1F8、Q1F0508249、Q1f稳定性数据包装10、Q1F-在气候带3、4注册申请的稳定数据包装11、Q2A-分析步骤验证中的课题12、Q2B-分析步骤的验证-方法学13、Q3A-新药中的杂质14、Q3B(R)-新产品的杂质15、Q3C(M)16、Q3CM17、Q3C杂质-残余溶剂18、Q3C杂质附录4一类溶剂的毒性数据19、q3c杂质附录5_2类溶剂的毒性数据20、q3c杂质附录6_3类溶剂的毒性数据21、Q3C-杂质清单一揽表22、Q5A-细胞来源产品的病毒安全性评价23、Q5B-基因产品的细胞表达结构分析24、Q5B-生物制品中细胞物质的起源和特征25、Q5C-生物制品的稳定性试验26、Q5D27、Q5E28、Q5E(升级版?)29、Q6A130、Q6A-新药物质的试验程序和接受标准31、Q6B生物制品的检验程序和接受标准32、Q7A-原料药GMP33、Q8pharm药品开发34、Q9质量风险管理六、ICH——安全性评价15篇1、S1A对药物进行啮齿类长期致癌力研究的必要性2、S1B-药物的致癌性3、S1C补充-致癌力的剂量研究4、S1C药物致癌力研究的剂量选择5、S2A药物遗传毒性研究的一些特定方面6、S2B-测定遗传毒性的一组标准方法7、S3A-毒性动力学8、S3B-重复剂量的组织分布研究9、S4A-动物实验的慢毒性试验10、s5a-药物的生殖毒性11、S5B-生殖毒性的补充12、S6-生物药品临床前的安全评价13、S7B延迟的非临床评价14、S7-安全药理学研究15、s8immuno毒性研究七、ICH文件汇编16篇1、ich guidelines2、ICH:手册3、iche2转移个别安全问题的电子表格4、ichm4CTD一般问题和答案5、m4m2普通电子文件标准6、m4-药品注册CTD文件的组织7、m4e模块2和模块5临床研究报告8、m4q-模块2模块3问题和答案9、m4q1-CTD质量问题和答案10、m4s-人用药品注册CTD11、m4sq-CTD安全问题和回答12、第6届ICH大会汇编13、用电子表格形式提供法规的一般思考14、ICH全球合作组15、生物制品工艺改变比较(变更控制)16、药效的问题和回答八、实验室控制和质量管理。
冻干粉针剂主产验证要点
五、冻干粉针剂主产验证要点这里选择介绍冻干粉针剂生产验证要点,作为所有药物剂型生产工艺验证的典型剖析。
冻干粉针剂是环境及工艺控制条件要求很高的剂型。
冻干的工艺需要验证,通过验证确定冻干的程序,以保证产品的成型、水分、其他物理化学指标,以及产品的贮存稳定性。
除这些与具体产品品种相关的内容以外,还有一些共性的内容择要如下。
1、厂房与设施验证(l)净化空调系统(HVAC系统)验证要点说明:高效过滤器检漏、压差、换气次数等。
(2)生产厂房验证要点说明:布局及气流方向合理、温湿度、洁净度达规范标准。
)系统(3)充氮保护用氮气(N2验证要点说明:纯度符合工艺要求,微生物<1个/m3。
(4)压缩空气系统验证要点说明:微生物<1个/m3。
压力、无油性(对与产品直接质量相关的压缩空气的要求)。
(5)纯蒸汽系统验证要点说明:胶塞、无菌药液接受罐的灭菌应用纯蒸汽,其他可用经适当过滤的工业蒸汽。
纯蒸汽的冷凝水应达注射用水标准2、生产设备及工艺验证(1)纯化水系统验证要点说明:供水能力达设计标准,水质达中国药典标准。
(2)注射用水系统验证要点说明:供水能力达设计标准,水质达中国药典标准并须做澄明度检查。
(3)洗瓶及灭菌设备验证要点说明:洗瓶效果是使最终淋洗水样澄明度检查/不溶性微粒及细菌内毒素符合中国药典要求(最终淋洗水样应在瓶内充分振摇,以使水样具代表性);干热灭菌应不得检出微生物,细菌内毒素下降3个对数单位。
(4)洗塞机及洗塞程序验证要点说明:洗塞效果应使澄明度检查/不溶性微粒、菌检、细菌内毒素符合标准。
(5)配制罐系统验证要点说明:能力及功能上,如升降温速度、搅拌、喷淋清洁效果及称量准确度符合要求。
(6)灭菌器验证要点说明:用于口罩、工作服、手套、过滤器、灌装机部件等的灭菌器应做灭菌程序是否达到设定标准的验证试验;胶塞如用工业蒸汽灭菌,须先装人可灭菌的塑料袋,参照中国药典灭菌法的要求。
(7)药液除菌过滤器验证要点说明:除菌能力应符合除菌过滤器的要求,如起泡点压力不低于0.31MPa。
FDA 制剂生产厂检查指南
Dosage Form Drug Manufacturers cGMPs (10/93)FDA 制剂生产厂检查指南GUIDE TO INSPECTIONS OF DOSAGE FORM DRUG MANUFACTURER'S- CGMPR'SNote: This document is reference material for investigators and other FDA personnel. The document does not bind FDA, and does no confer any rights, privileges, benefits, or immunities for or on any person(s).注:此指南是FDA检查官和其工作人员的参考资料。
此文件不约束FDA,也不赋予任何人任何权利,特权,利益或豁免权。
I. 简介This document is intended to be a general guide to inspections of drug manufacturers to determine their compliance with the drug CGMPR's. This guide should be used with instructions in the IOM, other drug inspection guides, and compliance programs.A list of the inspection guides is referenced in Chapter 10 of the IOM. Some of these guides are:该文件旨在为检查药品生产厂家提供一个总体性的指导,以决定他们是否符合药物生产的cGMP法规。
该指南应该与IOM(Investigations Operations Manual,即检查操作手册),其他的药品检查指南,及法规符合性程序中的指导一起使用。
冻干制剂的特性及要点
最终灭菌法的思维方法
最终灭菌法
(1)为了达到最终的无菌化,采用热灭菌工程。 (2)因为是灭菌、故可进行挑战性试验。 (3)最终灭菌后的污染可能性为0。
最终灭菌 无菌试验
生物负荷管理
生物负荷
SAL 10-3 SAL 10-6
无菌操作法的思维方法
(1)无菌化(灭菌、除均等)以后、需进行无菌操作. (2)不可进行挑战性试验 →(不得不依赖PST.)
预期结果到底是什么呢? 这才是验证之所在
保证质量的方法(投入生产前)
这里,所谓的质量可以理解为[药品的本质、效力、质量及纯度]
所谓质量,就是保证[药品开发的漫长历史中所付出的辛劳在制造中得到反映] 所谓保证,就是证明[要求已经准确地反映到制造及工序管理中]
工程学 SOP构筑
药物筛选
研发
工业化
制造及工序管理
陈凯东 ・日挥㈱ GMP技术部 担当科长 ・医师
与沈阳药科大学的合作交流
与中国沈阳药科签订协议
以促进中国GMP的普及以及沈阳药科 大学普及和活动支援为目的、2005年 4月签订《GMP研究、推广及教育相关 协议》
在大学校内设置GMP研究室
在该大学内设置GMP研究室、定期举 办GMP讲座。2005年10月,举办了第一 次讲座。此外,同年12月,邀请该大 学药学院院长来日本的GMP讲座里发 表了「中国GMP现状」为题的报告。
作业人员的操作
更衣管理 操作管理 出状况时的处理 其他
设备的灭菌 灭菌操作
容器胶塞灭菌
〈SIP/高压蒸汽灭菌〉
无菌操作法的污染风险
污染类型
药品生产工艺 变质物污染
微生物污染 作业人员 生产环境
异物污染 原料 副原料 添加剂
冻干制品质量标准
冻干制品质量标准
冻干制品质量标准可以根据具体产品的性质和食品安全要求进行制定,以下是一般情况下冻干制品常见的质量标准:
1. 外观:冻干制品应具有均匀的外观,无异物、杂质和变质迹象。
2. 水分含量:水分含量应符合产品规定的范围,通常要求在2%以下。
3. 总菌落数:冻干制品的总菌落数应符合卫生标准要求,一般要求在1000 CFU/g以下。
4. 大肠菌群:大肠菌群数量应符合卫生标准要求,一般要求为不检出。
5. 沙门氏菌:沙门氏菌应不得检出。
6. 霉菌和酵母菌:霉菌和酵母菌数量应符合卫生标准要求,一般要求在100 CFU/g以下。
7. 添加剂残留物:冻干制品中的添加剂残留物不能超过国家或地区相关标准规定的限量。
8. 营养成分:冻干制品中的营养成分(如蛋白质、脂肪、碳水化合物、维生素等)应符合产品规定的要求。
请注意,以上标准仅为一般情况下的参考,实际标准应根据具体产品的特性和相关法规进行制定。
FDA《行业指南:注射产品可见颗粒的检查》,中英文对照版来了!
FDA《⾏业指南:注射产品可见颗粒的检查》,中英⽂对照版来了!⾏业指南:注射剂可见异物的检查》草案,该⽂件已完成翻译,现12⽉14⽇,FDA发布了《⾏业指南:注射剂可见异物的检查分享给⼤家,如下:Inspection of Injectable Productsfor Visible Particulates注射产品中可见颗粒的检查Guidance for Industry⾏业指南TABLE OFCONTENTS⽬录I. INTRODUCTION介绍II. STATUTORY AND REGULATORY FRAMEWORK法律法规框架III. CLINICAL RISK OF VISIBLE PARTICULATES可见颗粒物的临床风险IV. QUALITY RISK ASSESSMENT质量风险评估V. VISUAL INSPECTION PROGRAM CONSIDERATIONS⽬视检查的程序考虑A. 100% Inspection100%检查1. Components and Container Closure Systems部件和容器密封系统2. Facility and Equipment设施和设备3. Process⼯艺4. Special Injectable Product Considerations特殊注射产品的考虑B. Statistical Sampling统计学抽样C. Training and Qualification培训和确认D. Quality Assurance Through a Life Cycle Approach通过⽣命周期⽅法实现质量保证E. Actions To Address Nonconformance解决不符合问题的措施VI. REFERENCES参考⽂献I. INTRODUCTION介绍Visibleparticulates in injectable products can jeopardize patient safety. Thisguidanceaddresses the development and implementation of a holistic, risk-basedapproach to visibleparticulate control that incorporates product development,manufacturing controls, visualinspection techniques, particulate identification,investigation, and corrective actions designedto assess, correct, and preventthe risk of visible particulate contamination.2The guidance alsoclarifies that meeting an applicable United StatesPharmacopeia (USP)3compendialstandardalone is not generally sufficient for meeting the current goodmanufacturing practice (CGMP)requirements for the manufacture of injectableproducts. The guidance does not coversubvisible particulates4 or physical defects that products are typicallyinspected for along withinspection for visible particulates (e.g., containerintegrity flaws, fill volume, appearance of lyophilized cake/suspensionsolids).注射产品中的可见颗粒物会危及患者安全。
允咨读书会-fda检查要点以及企业注意事项
允咨读书会-FDA检查要点以及企业注意事项一、概述随着全球市场的开放和竞争的加剧,企业在向国际市场拓展的过程中需要面对各国的监管标准和规定。
美国食品药品监督管理局(FDA)作为全球知名的监管机构,其对企业的检查和审核要求严格而著称。
在这样的背景下,公司需要深入了解FDA的检查要点以及注意事项,以确保产品的合规性和市场的可持续发展。
二、FDA检查要点1. 产品质量和安全性在进行FDA检查时,产品质量和安全性是首要考虑的要点。
企业需要充分了解FDA对产品质量和安全性的标准和要求,从原材料采购到生产加工、包装运输等环节都需要符合相关规定,确保产品的质量和安全性达到FDA的要求。
2. 生产工艺和流程控制生产工艺和流程控制是FDA检查的关注焦点之一。
企业需要建立和实施科学的生产工艺和流程控制体系,确保产品在生产过程中的安全性和稳定性。
企业还需要做好生产记录的保存和管理工作,以便在FDA 检查时提供相关证据。
3. GMP和GDP要求良好的生产管理规范(GMP)和良好的分销规范(GDP)是FDA检查的重点内容。
企业需要建立符合GMP和GDP要求的生产和分销体系,并做好相关文件和记录的管理工作,以确保产品的合规性。
4. 数据和文件管理在FDA检查中,数据和文件管理是一个重要的要点。
企业需要建立完善的数据和文件管理体系,确保所有的生产、质量控制和分销记录都能够清晰地展现出来,以便在FDA检查时提供相关证据。
5. 控制措施和改进计划控制措施和改进计划是FDA检查的重要内容之一。
企业需要建立有效的控制措施,及时发现和处理生产中的问题,同时还需要建立健全的改进计划,不断提升产品的质量和生产的效率。
三、企业注意事项1. 重视合规意识企业在面对FDA检查时需要重视合规意识,建立并落实相关的质量管理体系和合规措施,确保产品的合规性和市场的可持续发展。
2. 建立完善的管理体系企业需要建立完善的管理体系,包括质量管理、生产管理、分销管理等,以确保产品在生产和分销环节符合FDA的要求。
FDA检查员手册的168个问题— 无菌企业自检清单
无菌企业自检清单— FDA检查员手册的168个问题常规问题1. 蒸汽灭菌柜(高压灭菌釜)的生产商是谁?2. 高压灭菌釜的型号,使用年限,内部容积是多少?3. 灭菌介质是什么(例如,蒸汽,高压,过热水,γ射线)?4. 如果是带夹层的,相对腔体内,夹层的压力/温度维持在什么水平?5. 使用什么类型的空气过滤器,多长时间检测一次完整性?6. 空气过滤器是疏水性的吗?滤壳是否带加热以预防冷凝水的产生?7. 灭菌周期是手动控制还是自动控制?8. 使用了什么类型的监测和控制传感器(例如汞-玻璃温度计,热电偶,热电阻,压力计)?9. 这些传感器是怎么校准的?适当时,美国国家标准与技术研究所(National Institute of Standards and Technology ,NIST)标准是否可追溯(或者海外公司可追溯至国家标准)?10. 该灭菌柜是否装有蒸汽分散器(对于这一类型灭菌柜,考虑带有多于一种类型的蒸汽入口线)?11. 如果该公司使用了一台以上的高压灭菌釜,当所有高压灭菌釜都同时运行时对应的系统的蒸汽产能是多少?12. 灭菌周期参数是什么?(应将受检药品的主工艺记录/SOP标准与已完成的工艺记录进行比较)13. 对于以下参数,该公司的标准和现场观察到的参数分别是多少:•时间•温度•压力(psi, 多少汞柱)14. 灭菌控制探头位置在哪儿?15. 问题13中的每个灭菌参数分别是如何监控的?与验证研究中达到的升温时间相比,灭菌过程中腔内温度的升温时间是否可重现?16. 每个高压灭菌周期内,每一个负载模式下监测的热点(冷点)是否最慢?17. 自上次现场检查以来,蒸汽灭菌系统是否有变更?是否对这些变更进行评估确认是否需要再验证?18. 是否使用了洁净蒸汽(控制细菌内毒素)?验证19. 该公司是否有书面验证规程并包括以下内容:•设计目标•设备的安装确认(Installation qualification ,IQ)•设备的运行确认(Operational qualification ,OQ)•产品的性能确认(Performance qualification ,PQ)(申请文件中提交的最大和最小负载,以及后续的所有变更)•关于该系统需要再验证的情况的描述•再验证的规程20. 验证文件是否包括了以下内容:A. 空载/负载热分布研究:•运行次数?•是否确定了冷点?•允许的偏差范围?•实际的偏差范围?•什么是最差情况的负载?B. 热穿透研究•是否对所使用的每种负载模式/每种尺寸的容器都做了热穿透?•每种负载模式做了几次实验?•是否确定了每种负载模式的冷点?•既定的负载配置是否在注册申请和/或后续报告变更(适用时)中提交?21. 使用的是何种温度测量系统?是否每一个热电偶都可以提供一个可独立印刷的读数?22. 使用的是何种类型的温度传感器,每次运行之前和之后是否对每个传感器进行了校准?23. 如果验证过程中使用了生物指示剂,请提供:•指示剂类型(子条,接种产品,安瓿)•指示剂来源•所使用的微生物,包括浓度和D值;•生物指示剂是否被用在“终点”或“数值下降”模式中?如果发现了任何阳性的生物指示剂(预期之外的),该公司是怎么处理的?23. 如果在研究过程中发现热分布或热穿透有偏差,该公司是怎么纠正或者允许这种偏差的?24. 该公司是否已经对各种尺寸/重量的容器,产品粘度等延迟时间都有确定,并对其灭菌周期进行了相应的调整?干热灭菌/除热原干热灭菌器主要用于盛装注射药品的玻璃容器的灭菌和除热原。
FDA检查流程
(一)FDA是如何对原料药厂进行检查的一、前言本文作者从1981年起开始涉及原料药的FDA申请事务,从1992年一直专门从事这项专业工作至今。
其间先后参与或主持了近20个原料药产品的FDA申请工作,制作归档了十几个DMF文件,与十多位美国代理商或美国终端用户的GMP符合及FDA申请顾问一起工作,九次参加FDA官员对我国一些制药企业进行的GMP符合性现场检查,其中8个品种通过了FDA的现场检查,从而积累了一些有益的经验。
作者现任北京康利华公司咨询服务有限公司终身董事和监事,仍专门从事FDA的申请工作。
本文就FDA对原料药管制的有关文件的学习了解,结合作者20年来的实际经验,对FDA官员对原料药厂如何进行现场检查作了简要的叙述,希望能给我国广大原料药企业提供有益的参考。
1.定义1.1原料药通过化学合成、微生物发酵、天然物提取分离、酶工程、DNA重组等技术和手段得到的具有药物活性、符合一定质量标准的物质。
原料药通常只供生产制剂之用,不可直接用于临床。
欧美对原料药的称呼有以下几种:Bulk Pharmaceutical Chemical简称BPC。
现常用:Active Pharmaceutical Ingredient简称API,或Drug Substance。
生产原料药的起始物料在生产过程中都要经历明显的化学变化,然后经分离纯化制成具有药物活性、且符合一定质量标准的原料药。
原料药又分为无菌(Sterile)和非无菌(Non—sterile)两种级别。
前者常用于生产非消化道给药的制剂药,后者常用于生产口服制剂或外用制剂,或再经过无菌处理生产非消化道制剂药。
1.2制剂药将原料药与辅料一起进一步加工,制成的适合临床应用的各种形式,所得到的产品为制剂药。
欧美常把制剂药称作:Finished Pharmaceutical,Finished Product,Dosage Form,Finished Dosage Form或Drug product。
冻干制剂说明书
冻干制剂说明书
冻干制剂是指将药物或其他物质经冷冻和真空干燥技术制成的固体制剂。
它通过将溶液或悬浮液冷冻成固态,然后在真空条件下将水分从固体状态直接转化为气体,从而实现了药物的脱水和长期保存。
以下是冻干制剂说明书中常见的内容:
1. 产品名称:包括通用名称和品牌名称。
2. 主要成分:列出制剂中的主要活性成分和辅助成分。
3. 适应症:描述制剂的主要用途和治疗病症。
4. 储存条件:指定制剂的理想储存条件,例如温度、湿度和光照要求。
5. 使用方法:详细说明制剂的使用方法,包括剂型、剂量、使用频率和使用途径。
6. 禁忌症:列出对该制剂使用有禁忌的情况,如过敏、药物相互作用等。
7. 不良反应:描述制剂可能引起的不良反应和副作用,并列举常见的症状。
8. 注意事项:提醒使用者在使用制剂时需要注意的事项,如特
殊人群的使用、可能影响驾驶能力的副作用等。
9. 药物相互作用:列出可能会发生的药物相互作用,并提醒在同时使用其他药物时应咨询医生或药师。
10. 药物过量:描述可能发生的药物过量症状和处理方法。
11. 产品包装:描述制剂的包装形式、规格和有效期。
12. 生产厂家信息:提供制剂的生产厂家信息,如名称、地址、联系方式等。
以上内容仅为常见的冻干制剂说明书内容,具体内容可能根据制剂类型和国家规定有所差异。
使用者应在使用前仔细阅读说明书,并按照说明书指导正确使用。
如有疑问或不明之处,应咨询医生或药师。
美国FDA生物技术产品/生物制品稳定性试验
生物技术产品质量生物技术产品/生物制品稳定性试验(草案FDA,1995,8)前言本文作为ICH制定的“新药半成品和成品指南””(1993年10月27日)的补充件。
总体来讲,该指南中所制定的原则适用于生物技术产品/生物制品,然而,因生物技术产品/生物制品确有不同的特性,在预计的储存期间,用来证实生物技术/生物品稳定性的任何一种已确定的试验方案都应考虑这些特性。
这些产品的活性成分是由典型的蛋白质和/或多肽组成,保持其分子构型并提高生物活性取决于非共价键和共价键强度。
这些产品对周围环境因素如:温度变化,氧、光、离子含量,切应力等等特别敏感,为了确保其生物活性并避免降解,严格的储存条件是必要的。
稳定性评估可能是综合性分析方法学所必须的。
对生物学活性的测定,是关键性稳定性研究的一个基本部分。
相应的物理化学、生物化学和免疫化学方法对于分子实体的分析和降解制品量的检出,也应是稳定性计划的一部分,无论是制品的纯度还是分子特性都允许利用这些方法学。
首先要关注的是:生物技术产品/生物制品申请者应拿出合适的支持其制品稳定性的数据,并应考虑到能影响制品效力、纯度和质量的诸多外部条件。
无论是半成品还是成品,支持一种被要求的储存期的主要数据,应以在长期、实际时间及实际条件下稳定性研究进行的。
因此,要使一种制品成功地发展成为商品,那么其相应的长期稳定性方案的产生就成为关键。
本文的目的是为那些关注稳定性研究模式的申请者提供指南,这些模式将被用来支持市场应用。
不言而喻,在检查与评估过程中,对最初稳定性资料应不断的更新。
附件的范围在此附件中,已采纳和解释的原则适用于:已充分定性的蛋白质、多肽及其衍生物和由其组成的制品以及从组织、体液、细胞培养物中分离的或以 rDNA生物技术生产的制品。
因此,此文件涉及如下制品稳定性资料的产生和提交:细胞因子(干扰素、白细胞介素、集落刺激因子、肿瘤坏死因子、促红细胞生成素、血纤维蛋白溶酶原、激活剂、血液血浆因子、生长激素和生长因子、胰岛素、单克隆抗体和由已充分鉴定的蛋白质、多肽制成的疫苗。
冻干粉检验标准
冻干粉检验标准
冻干粉是指将物质在低温下冷冻并进行真空干燥,使其迅速失去水分,成为粉末状的冻干物质。
冻干粉通常用于制药工业、食品工业和化妆品工业等领域。
以下是一些常见的冻干粉检验标准:
1. 外观检查:冻干粉应为无色或白色结晶或粉末状,无明显异物。
2. 水分含量:根据所需产品的特点和用途,冻干粉中的水分含量应符合相应的要求。
3. 总灰分含量:冻干粉中的总灰分含量应符合相应的要求。
4. pH值:冻干粉的pH值应符合相应的要求。
5. 溶解性:冻干粉在指定溶剂中的溶解性应符合相应的要求。
6. 含量测定:针对具体的物质,可以根据其含量测定方法进行相关的检验。
7. 重金属含量:冻干粉中的重金属含量应符合相应的国家标准或行业标准。
8. 微生物检验:冻干粉应进行微生物检验,包括总菌落计数、大肠菌群、霉菌和酵母菌等指标。
以上是一些常见的冻干粉检验标准,具体的标准要求会根据不同的冻干粉产品和行业而有所差异。
在进行冻干粉的检验时,还需要根据实际情况选择合适的检测方法和仪器设备。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
GUIDE TO INSPECTIONS OF LYOPHILIZATION OF PARENTERALSNote: This document is reference material for investigators and other FDA personnel. The document does not bind FDA, and does no confer any rights, privileges, benefits, or immunities for or on any person(s).INTRODUCTIONLyophilization or freeze drying is a process in which water is removed from a product after it is frozen and placed under a vacuum, allowing the ice to change directly from solid to vapor without passing through a liquid phase. The process consists of three separate, unique, and interdependent processes; freezing, primary drying(sublimation), and secondary drying (desorption).The advantages of lyophilization include:Ease of processing a liquid, which simplifies aseptic handlingEnhanced stability of a dry powderRemoval of water without excessive heating of the productEnhanced product stability in a dry stateRapid and easy dissolution of reconstituted productDisadvantages of lyophilization include:Increased handling and processing timeNeed for sterile diluent upon reconstitutionCost and complexity of equipmentThe lyophilization process generally includes the following steps:∙Dissolving the drug and excipients in a suitable solvent, generally water for injection (WFI).∙Sterilizing the bulk solution by passing it through a 0.22 micron bacteria-retentive filter.∙Filling into individual sterile containers and partially stoppering the containers under aseptic conditions.∙Transporting the partially stoppered containers to the lyophilizer and loading into the chamber under aseptic conditions.∙Freezing the solution by placing the partially stoppered containers on cooled shelves in a freeze-drying chamber or pre-freezing in another chamber.∙Applying a vacuum to the chamber and heating the shelves in order to evaporate the water from the frozen state.∙Complete stoppering of the vials usually by hydraulic or screw rod stoppering mechanisms installed in the lyophilizers.There are many new parenteral products, including anti-infectives, biotechnology derived products, and in-vitro diagnostics which are manufactured as lyophilized products. Additionally, inspections have disclosed potency, sterility and stabilityproblems associated with the manufacture and control of lyophilized products. In order to provide guidance and information to investigators, some industry procedures and deficiencies associated with lyophilized products are identified in this Inspection Guide.It is recognized that there is complex technology associated with the manufacture and control of a lyophilized pharmaceutical dosage form. Some of the important aspects of these operations include: the formulation of solutions; filling of vials and validation of the filling operation; sterilization and engineering aspects of the lyophilizer; scale-up and validation of the lyophilization cycle; and testing of the end product. This discussion will address some of the problems associated with the manufacture and control of a lyophilized dosage form.PRODUCT TYPE/FORMULATIONProducts are manufactured in the lyophilized form due to their instability when in solution. Many of the antibiotics, such as some of the semi-synthetic penicillins, cephalosporins, and also some of the salts of erythromycin, doxycycline and chloramphenicol are made by the lyophilization process. Because they are antibiotics, low bioburden of these formulations would be expected at the time of batching. However, some of the other dosage forms that are lyophilized, such as hydrocortisone sodium succinate, methylprednisolone sodium succinate and many of the biotechnology derived products, have no antibacterial effect when in solution.For these types of products, bioburden should be minimal and the bioburden should be determined prior to sterilization of these bulk solutions prior to filling. Obviously, the batching or compounding of these bulk solutions should be controlled in order to prevent any potential increase in microbiological levels that may occur up to the time that the bulk solutions are filtered (sterilized). The concern with any microbiological level is the possible increase in endotoxins that may develop. Good practice for the compounding of lyophilized products would also include batching in a controlled environment and in sealed tanks, particularly if the solution is to be held for any length of time prior to sterilization.In some cases, manufacturers have performed bioburden testing on bulk solutions after prefiltration and prior to final filtration. While the testing of such solutions may be meaningful in determining the bioburden for sterilization, it does not provide any information regarding the potential formation or presence of endotoxins. While the testing of 0.1 ml samples by LAL methods of bulk solution for endotoxins is of value, testing of at least 100 ml size samples prior to prefiltration, particularly for the presence of gram negative organisms, would be of greater value in evaluating the process. For example, the presence of Pseudomonas sp. in the bioburden of a bulk solution has been identified as an objectionable condition.FILLINGThe filling of vials that are to be lyophilized has some problems that are somewhat unique. The stopper is placed on top of the vial and is ultimately seated in the lyophilizer. As a result the contents of the vial are subject to contamination until they are actually sealed.Validation of filling operations should include media fills and the sampling of critical surfaces and air during active filling (dynamic conditions).Because of the active involvement of people in filling and aseptic manipulations, an environmental program should also include an evaluation of microbiological levels on people working in aseptic processing areas. One method of evaluation of the trainingof operators working in aseptic processing facilities includes the surface monitoring of gloves and/or gowns on a daily basis. Manufacturers are actively sampling the surfaces of personnel working in aseptic processing areas. A reference which provides for this type of monitoring is the USP XXII discussion of the Interpretation of Sterility Test Results. It states under the heading of "Interpretation of Quality Control Tests" that review consideration should be paid to environmental control data, including...microbial monitoring, records of operators, gowns, gloves, and garbing practices. In those situations in which manufacturers have failed to perform some type of personnel monitoring, or monitoring has shown unacceptable levels of contamination, regulatory situations have resulted.Typically, vials to be lyophilized are partially stoppered by machine. However, some filling lines have been noted which utilize an operator to place each stopper on top of the vial by hand. At this time, it would seem that it would be difficult for a manufacturer to justify a hand-stoppering operation, even if sterile forceps are employed, in any type of operation other than filling a clinical batch or very small number of units. Significant regulatory situations have resulted when some manufacturers havehand-stoppered vials. Again, the concern is the immediate avenue of contamination offered by the operator. It is well recognized that people are the major source of contamination in an aseptic processing filling operation. The longer a person works in an aseptic operation, the more microorganisms will be shed and the greater the probability of contamination.Once filled and partially stoppered, vials are transported and loaded into the lyophilizer. The transfer and handling, such as loading of the lyophilizer, should take place under primary barriers, such as the laminar flow hoods under which the vials were filled. Validation of this handling should also include the use media fills. Regarding the filling of sterile media, there are some manufacturers who carry out a partial lyophilization cycle and freeze the media. While this could seem to greater mimic the process, the freezing of media could reduce microbial levels of some contaminants. Since the purpose of the media fill is to evaluate and justify the aseptic capabilities of the process, the people and the system, the possible reduction of microbiological levels after aseptic manipulation by freezing would not be warranted. The purpose of a media fill is not to determine the lethality of freezing and its effect on any microbial contaminants that might be present.In an effort to identify the particular sections of filling and aseptic manipulation that might introduce contamination, several manufacturers have resorted to expanded media fills. That is, they have filled approximately 9000 vials during a media fill and segmented the fill into three stages. One stage has included filling of 3000 vials and stoppering on line; another stage included filling 3000 vials, transportation to the lyophilizer and then stoppering; a third stage included the filling of 3000 vials, loading in the lyophilizer, and exposure to a portion of the nitrogen flush and then stoppering. Since lyophilizer sterilization and sterilization of the nitrogen system used to backfill require separate validation, media fills should primarily validate the filling, transportation and loading aseptic operations.The question of the number of units needed for media fills when the capacity of the process is less than 3000 units is frequently asked, particularly for clinical products. Again, the purpose of the media fill is to assure that product can be aseptically processed without contamination under operating conditions. It would seem, therefore, that the maximum number of units of media filled be equivalent to the maximum batch size if it is less than 3000 units.After filling, dosage units are transported to the lyophilizer by metal trays. Usually, the bottom of the trays are removed after the dosage units are loaded into the lyophilizer. Thus, the dosage units lie directly on the lyophilizer shelf. There have been some situations in which manufacturers have loaded the dosage units on metal trays which were not removed. Unfortunately, at one manufacturer, the trays warped which caused a moisture problem in some dosage units in a batch.In the transport of vials to the lyophilizer, since they are not sealed, there is concern for the potential for contamination. During inspections and in the review of new facilities, the failure to provide laminar flow coverage or a primary barrier for the transport and loading areas of a lyophilizer has been regarded as an objectionable condition. One manufacturer as a means of correction developed a laminar flow cart to transport the vials from the filling line to the lyophilizer. Other manufacturers building new facilities have located the filling line close to the lyophilizer and have provided a primary barrier extending from the filling line to the lyophilizer.In order to correct this type of problem, another manufacturer installed a vertical laminar flow hood between the filling line and lyophilizer. Initially, high velocities with inadequate return caused a contamination problem in a media fill. It was speculated that new air currents resulted in rebound contamination off the floor. Fortunately, media fills and smoke studies provided enough meaningful information that the problem could be corrected prior to the manufacture of product. Typically, the lyophilization process includes the stoppering of vials in the chamber.Another major concern with the filling operation is assurance of fill volumes. Obviously, a low fill would represent a subpotency in the vial. Unlike a powder or liquid fill, a low fill would not be readily apparent after lyophilization particularly for a biopharmaceutical drug product where the active ingredient may be only a milligram. Because of the clinical significance, sub-potency in a vial potentially can be a very serious situation.For example, in the inspection of a lyophilization filling operation, it was noted that the firm was having a filling problem. The gate on the filling line was not coordinated with the filling syringes, and splashing and partial filling was occurring. It was also observed that some of the partially filled vials were loaded into the lyophilizer. This resulted in rejection of the batch.On occasion, it has been seen that production operators monitoring fill volumes record these fill volumes only after adjustments are made. Therefore, good practice and a good quality assurance program would include the frequent monitoring of the volume of fill, such as every 15 minutes. Good practice would also include provisions for the isolation of particular sections of filling operations when low or high fills are encountered.There are some atypical filling operations which have not been discussed. For example, there have also been some situations in which lyophilization is performed on trays of solution rather than in vials. Based on the current technology available, it would seem that for a sterile product, it would be difficult to justify this procedure. The dual chamber vial also presents additional requirements for aseptic manipulations. Media fills should include the filling of media in both chambers. Also, the diluent in these vials should contain a preservative. (Without a preservative, the filling of diluent would be analogous to the filling of media. In such cases, a 0% level of contamination would be expected.)LYOPHILIZATION CYCLE AND CONTROLSAfter sterilization of the lyophilizer and aseptic loading, the initial step is freezing the solution. In some cycles, the shelves are at the temperature needed for freezing, while for other cycles, the product is loaded and then the shelves are taken to the freezing temperature necessary for product freeze. In those cycles in which the shelves are precooled prior to loading, there is concern for any ice formation on shelves prior to loading. Ice on shelves prior to loading can cause partial or complete stoppering of vials prior to lyophilization of the product. A recent field complaint of a product in solution and not lyophilized was attributed to preliminary stoppering of a few vials prior to exposure to the lyophilization cycle. Unfortunately, the firm's 100% vial inspection failed to identify the defective vial.Typically, the product is frozen at a temperature well below the eutectic point.The scale-up and change of lyophilization cycles, including the freezing procedures, have presented some problems. Studies have shown the rate and manner of freezing may affect the quality of the lyophilized product. For example, slow freezing leads to the formation of larger ice crystals. This results in relatively large voids, which aid in the escape of water vapor during sublimation. On the other hand, slow freezing can increase concentration shifts of components. Also, the rate and manner of freezing has been shown to have an affect on the physical form (polymorph) of the drug substance.It is desirable after freezing and during primary drying to hold the drying temperature (in the product) at least 4-5o below the eutectic point. Obviously, the manufacturer should know the eutectic point and have the necessary instrumentation to assure the uniformity of product temperatures. The lyophilizer should also have the necessary instrumentation to control and record the key process parameters. These include: shelf temperature, product temperature, condenser temperature, chamber pressure and condenser pressure. The manufacturing directions should provide for time, temperature and pressure limits necessary for a lyophilization cycle for a product. The monitoring of product temperature is particularly important for those cycles for which there are atypical operating procedures, such as power failures or equipment breakdown.Electromechanical control of a lyophilization cycle has utilized cam-typerecorder-controllers. However, newer units provide for microcomputer control of the freeze drying process. A very basic requirement for a computer controlled process is a flow chart or logic. Typically, operator involvement in a computer controlledlyophilization cycle primarily occurs at the beginning. It consists of loading the chamber, inserting temperature probes in product vials, and entering cycle parameters such as shelf temperature for freezing, product freeze temperature, freezing soak time, primary drying shelf temperature and cabinet pressure, product temperature for establishment of fill vacuum, secondary drying shelf temperature, and secondary drying time.In some cases, manufacturers have had to continuously make adjustments in cycles as they were being run. In these situations, the lyophilization process was found to be non-validated.Validation of the software program of a lyophilizer follows the same criteria as that for other processes. Basic concerns include software development, modifications and security. The Guide to Inspection of Computerized Systems in Drug Processing contains a discussion on potential problem areas relating to computer systems. A Guide to the Inspection of Software Development Activities is a reference that provides a more detailed review of software requirements.Leakage into a lyophilizer may originate from various sources. As in any vacuum chamber, leakage can occur from the atmosphere into the vessel itself. Other sources are media employed within the system to perform the lyophilizing task. These would be the thermal fluid circulated through the shelves for product heating and cooling, the refrigerant employed inside the vapor condenser cooling surface and oil vapors that may migrate back from the vacuum pumping system.Any one, or a combination of all, can contribute to the leakage of gases and vapors into the system. It is necessary to monitor the leak rate periodically to maintain the integrity of the system. It is also necessary, should the leak rate exceed specified limits, to determine the actual leak site for purposes of repair.Thus, it would be beneficial to perform a leak test at some time after sterilization, possibly at the beginning of the cycle or prior to stoppering. The time and frequency for performing the leak test will vary and will depend on the data developed during the cycle validation. The pressure rise found acceptable at validation should be used to determine the acceptable pressure rise during production. A limit and what action is to be taken if excessive leakage is found should be addressed in some type of operating document.In order to minimize oil vapor migration, some lyophilizers are designed with a tortuous path between the vacuum pump and chamber. For example, one fabricator installed an oil trap in the line between the vacuum pump and chamber in a lyophilizer with an internal condenser. Leakage can also be identified by sampling surfaces in the chamber after lyophilization for contaminants. One could conclude that if contamination is found on a chamber surface after lyophilization, then dosage units in the chamber could also be contaminated. It is a good practice as part of the validation of cleaning of the lyophilization chamber to sample the surfaces both before and after cleaning.Because of the lengthy cycle runs and strain on machinery, it is not unusual to see equipment malfunction or fail during a lyophilization cycle. There should be provisions in place for the corrective action to be taken when these atypical situations occur. Inaddition to documentation of the malfunction, there should be an evaluation of the possible effects on the product (e.g., partial or complete meltback. Refer to subsequent discussion). Merely testing samples after the lyophilization cycle is concluded may be insufficient to justify the release of the remaining units. For example, the leakage of chamber shelf fluid into the chamber or a break in sterility would be cause for rejection of the batch.The review of Preventive Maintenance Logs, as well as Quality Assurance Alert Notices, Discrepancy Reports, and Investigation Reports will help to identify problem batches when there are equipment malfunctions or power failures. It is recommended that these records be reviewed early in the inspection.CYCLE VALIDATIONMany manufacturers file (in applications) their normal lyophilization cycles and validate the lyophilization process based on these cycles. Unfortunately, such data would be of little value to substantiate shorter or abnormal cycles. In some cases, manufacturers are unaware of the eutectic point. It would be difficult for a manufacturer to evaluate partial or abnormal cycles without knowing the eutectic point and the cycle parameters needed to facilitate primary drying.Scale-up for the lyophilized product requires a knowledge of the many variables that may have an effect on the product. Some of the variables would include freezing rate and temperature ramping rate. As with the scale-up of other drug products, there should be a development report that discusses the process and logic for the cycle. Probably more so than any other product, scale-up of the lyophilization cycle is very difficult.There are some manufacturers that market multiple strengths, vial sizes and have different batch sizes. It is conceivable and probable that each will have its own cycle parameters. A manufacturer that has one cycle for multiple strengths of the same product probably has done a poor job of developing the cycle and probably has not adequately validated their process. Investigators should review the reports and data that support the filed lyophilization cycle.LYOPHILIZER STERILIZATION/DESIGNThe sterilization of the lyophilizer is one of the more frequently encountered problems noted during inspections. Some of the older lyophilizers cannot tolerate steam under pressure, and sterilization is marginal at best. These lyophilizers can only have their inside surfaces wiped with a chemical agent that may be a sterilant but usually has been found to be a sanitizing agent. Unfortunately, piping such as that for the administration of inert gas (usually nitrogen) and sterile air for backfill or vacuum break is often inaccessible to such surface "sterilization" or treatment. It would seem very difficult for a manufacturer to be able to demonstrate satisfactory validation of sterilization of a lyophilizer by chemical "treatment".Another method of sterilization that has been practiced is the use of gaseous ethylene oxide. As with any ethylene oxide treatment, humidification is necessary. Providing a method for introducing the sterile moisture with uniformity has been found to be difficult.A manufacturer has been observed employing Water For Injection as a final wash or rinse of the lyophilizer. While the chamber was wet, it was then ethylene oxide gas sterilized. As discussed above, this may be satisfactory for the chamber but inadequate for associated plumbing.Another problem associated with ethylene oxide is the residue. One manufacturer had a common ethylene oxide/nitrogen supply line to a number of lyophilizers connected in parallel to the system. Thus, there could be some ethylene oxide in the nitrogen supply line during the backfilling step. Obviously, this type of system is objectionable.A generally recognized acceptable method of sterilizing the lyophilizer is through the use of moist steam under pressure. Sterilization procedures should parallel that of an autoclave, and a typical system should include two independent temperature sensing systems. One would be used to control and record temperatures of the cycle as with sterilizers, and the other would be in the cold spot of the chamber. As with autoclaves, lyophilizers should have drains with atmospheric breaks to prevent back siphonage. As discussed, there should also be provisions for sterilizing the inert gas or air and the supply lines. Some manufacturers have chosen to locate the sterilizing filters in a port of the chamber. The port is steam sterilized when the chamber is sterilized, and then the sterilizing filter, previously sterilized, is aseptically connected to the chamber. Some manufacturers have chosen to sterilize the filter and downstream piping to the chamber in place. Typical sterilization-in-place of filters may require steaming of both to obtain sufficient temperatures. In this type of system, there should be provisions for removing and/or draining condensate. The failure to sterilize nitrogen and air filters and the piping downstream leading into the chamber has been identified as a problem on a number of inspections.Since these filters are used to sterilize inert gas and/or air, there should be some assurance of their integrity. Some inspections have disclosed a lack of integrity testing of the inert gas and/or air filter. The question is frequently asked how often should the vent filter be tested for integrity? As with many decisions made by manufacturers, there is a level of risk associated with the operation, process or system, which only the manufacturer can decide. If the sterilizing filter is found to pass the integrity test after several uses or batches, then one could claim its integrity for the previous batches. However, if it is only tested after several batches have been processed and if found to fail the integrity test, then one could question the sterility of all of the previous batches processed. In an effort to minimize this risk, some manufacturers have resorted to redundant filtration.For most cycles, stoppering occurs within the lyophilizer. Typically, the lyophilizer has some type of rod or rods (ram) which enter the immediate chamber at the time of stoppering. Once the rod enters the chamber, there is the potential for contamination of the chamber. However, since the vials are stoppered, there is no avenue for contamination of the vials in the chamber which are now stoppered. Generally, lyophilizers should be sterilized after each cycle because of the potential for contamination of the shelf support rods. Additionally, the physical act of removing vials and cleaning the chamber can increase levels of contamination.In some of the larger units, the shelves are collapsed after sterilization to facilitate loading. Obviously, the portions of the ram entering the chamber to collapse the shelves enters from a non-sterile area. Attempts to minimize contamination have included wiping the ram with a sanitizing agent prior to loading. Control aspects have included testing the ram for microbiological contamination, testing it for residues of hydraulic fluid, and testing the fluid for its bacteriostatic effectiveness. One lyophilizer fabricator has proposed developing a flexible "skirt" to cover the ram.In addition to microbiological concerns with hydraulic fluid, there is also the concern with product contamination.During steam sterilization of the chamber, there should be space between shelves that permit passage of free flowing steam. Some manufacturers have placed "spacers" between shelves to prevent their total collapse. Others have resorted to a two phase sterilization of the chamber. The initial phase provides for sterilization of the shelves when they are separated. The second phase provides for sterilization of the chamber and piston with the shelves collapsed.Typically, biological indicators are used in lyophilizers to validate the steam sterilization cycle. One manufacturer of a Biopharmaceutical product was found to have a positive biological indicator after sterilization at 121oC for 45 minutes. During the chamber sterilization, trays used to transport vials from the filling line to the chamber were also sterilized. The trays were sterilized in an inverted position on shelves in the chamber. It is believed that the positive biological indicator is the result of poor steam penetration under these trays.The sterilization of condensers is also a major issue that warrants discussion. Most of the newer units provide for the capability of sterilization of the condenser along with the chamber, even if the condenser is external to the chamber. This provides a greater assurance of sterility, particularly in those situations in which there is some equipment malfunction and the vacuum in the chamber is deeper than in the condenser.Malfunctions that can occur, which would indicate that sterilization of the condenser is warranted, include vacuum pump breakdown, refrigeration system failures and the potential for contamination by the large valve between the condenser and chamber. This is particularly true for those units that have separate vacuum pumps for both the condenser and chamber. When there are problems with the systems in the lyophilizer, contamination could migrate from the condenser back to the chamber. It is recognized that the condenser is not able to be sterilized in many of the older units, and this represents a major problem, particularly in those cycles in which there is some equipment and/or operator failure.As referenced above, leakage during a lyophilization cycle can occur, and the door seal or gasket presents an avenue of entry for contaminants. For example, in an inspection, it was noted that during steam sterilization of a lyophilizer, steam was leaking from the unit. If steam could leak from a unit during sterilization, air could possibly enter the chamber during lyophilization.Some of the newer lyophilizers have double doors - one for loading and the other for unloading. The typical single door lyophilizer opens in the clean area only, and。