直线和圆的位置关系
直线与圆的位置关系—知识讲解
直线与圆的位置关系—知识讲解责编:常春芳【学习目标】1.理解并掌握直线与圆的三种位置关系;2.理解切线的判定定理和性质定理.【要点梳理】要点一、直线与圆的位置关系1.直线和圆的三种位置关系:(1) 相交:当直线与圆有两个公共点时,叫做直线与圆相交.(2) 相切:当直线与圆有唯一公共点时,叫做直线与圆相切.这条直线叫做圆的切线,公共点叫做切点.(3) 相离:当直线与圆没有公共点时,叫做直线与圆相离.2.直线与圆的位置关系的判定和性质.直线与圆的位置关系能否像点与圆的位置关系一样通过一些条件来进行分析判断呢?由于圆心确定圆的位置,半径确定圆的大小,因此研究直线和圆的位置关系,就可以转化为直线和点(圆心)的位置关系.下面图(1)中直线与圆心的距离小于半径;图(2)中直线与圆心的距离等于半径;图(3)中直线与圆心的距离大于半径.一般地,直线与圆的位置关系有以下定理:如果⊙O的半径为r,圆心O到直线l的距离为d,那么,(1)d<r直线l与⊙O相交;(2)d=r直线l与⊙O相切;(3)d>r直线l与⊙O相离.要点诠释:这三个命题从左边到右边反映了直线与圆的位置关系所具有的性质;从右边到左边则是直线与圆的位置关系的判定.要点二、切线的判定定理和性质定理1.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.要点诠释:切线的判定定理中强调两点:一是直线与圆有一个交点,二是直线与过交点的半径垂直,缺一不可. 2.切线的性质定理:经过切点的半径垂直于圆的切线.【典型例题】类型一、直线与圆的位置关系【高清ID号:356966 关联的位置名称(播放点名称):经典例题1-2】1.在Rt△ABC中,∠C=90°,AC=3厘米,BC=4厘米,以C为圆心,r为半径的圆与AB有怎样的位置关系?为什么?(1)r=2厘米; (2)r=2.4厘米; (3)r=3厘米【答案与解析】解:过点C作CD⊥AB于D,在Rt△ABC中,∠C=90°, AC=3,BC=4,得AB=5,,∴AB·CD=AC·BC,∴AC BC34CD===2.4AB5∙⨯(cm),(1)当r=2cm时,CD>r,∴圆C与AB相离;(2)当r=2.4cm时,CD=r,∴圆C与AB相切;(3)当r=3cm时,CD<r,∴圆C与AB相交.【总结升华】欲判定⊙C与直线AB的关系,只需先求出圆心C到直线AB的距离CD的长,然后再与r比较即可.举一反三:【变式】已知⊙O的半径为10cm,如果一条直线和圆心O的距离为10cm,那么这条直线和这个圆的位置关系为()A. 相离B. 相切C. 相交D. 相交或相离【答案】B.类型二、切线的判定与性质2.如图所示,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,以D为圆心,DB长为半径作⊙D.求证:AC是⊙D的切线.【思路点拨】作垂直,证半径.【答案与解析】证明:过D作DF⊥AC于F.∵∠B=90°,∴DB⊥AB.又AD平分∠BAC,∴ DF=BD=半径.∴ AC与⊙D相切.【总结升华】如果已知条件中不知道直线与圆有公共点,其证法是过圆心作直线的垂线段,再证明垂线段的长等于半径的长即可.3.(2016•三明)如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.【思路点拨】(1)直线DE与圆O相切,理由如下:连接OD,由OD=OA,利用等边对等角得到一对角相等,等量代换得到∠ODE为直角,即可得证;(2)连接OE,设DE=x,则EB=ED=x,CE=8﹣x,在直角三角形OCE中,利用勾股定理列出关于x 的方程,求出方程的得到x的值,即可确定出DE的长.【答案与解析】解:(1)直线DE与⊙O相切,理由如下:连接OD,∵OD=OA,∴∠A=∠ODA,∵EF是BD的垂直平分线,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠ODA+∠EDB=90°,∴∠ODE=180°﹣90°=90°,∴直线DE与⊙O相切;(2)连接OE,设DE=x,则EB=ED=x,CE=8﹣x,∵∠C=∠ODE=90°,∴OC2+CE2=OE2=OD2+DE2,∴42+(8﹣x)2=22+x2,解得:x=4.75,则DE=4.75.【总结升华】此题考查了直线与圆的位置关系,以及线段垂直平分线定理,熟练掌握直线与圆相切的性质是解本题的关键.4.如图,AB为⊙O的直径,AC为⊙O的弦,AD平分∠BAC,交⊙O于点D,DE⊥AC,交AC的延长线于点E.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AE=8,⊙O的半径为5,求DE的长.【思路点拨】(1)连接OD,证明OD∥AD即可;(2)作DF⊥AB于F,证明△EAD≌△FAD,将DE转化成DF来求.【答案与解析】解:(1)直线DE与⊙O相切.理由如下:连接OD.∵AD平分∠BAC,∴∠EAD=∠OAD.∵OA=OD,∴∠ODA=∠OAD.∴∠ODA=EAD.∴EA∥OD.∵DE⊥EA,∴DE⊥OD.又∵点D在⊙O上,∴直线DE与⊙O相切.(2)如上图,作DF⊥AB,垂足为F.∴∠DFA=∠DEA=90°.∵∠EAD=∠FAD,AD=AD,∴△EAD≌△FAD.∴AF=AE=8,DF=DE.∵OA=OD=5,∴OF=3.。
直线与圆的三种位置关系
(1)若直线AB与⊙C相离,则r的取值范围为
____________
(2)若直线AB与⊙C相切,
B
则r的取值为____________
4
(3)若直线AB与⊙C相交,
则r的取值范围为____________ C
5
D
3A
思维拓展:
如图直线l1与l2垂直,垂足为O,AM⊥l1于M,AN⊥l2于 N,AM=4,AN=3,以A为圆心,R为半径作⊙A根据下列
类似点和圆的位置关系,直线和圆的位置关系 是否也可以用数量关系来刻画呢?
A
B
A
类似点和圆的位置关系,直线和圆的位 置关系是否也可以用数量关系来刻画呢?ຫໍສະໝຸດ .Odr .A
.B
.O
d r .D
l
C
H 相离
l 相切
1、直线与圆相离 <=> d>r 2、直线与圆相切 <=> d=r 3、直线与圆相交 <=> d<r
C
A
D
B
练习、在Rt△ABC中,∠C=90°,AC=3cm, BC=4cm,以C为圆心,r为半径的圆与AB 有怎样的位置关系?为什么? (1)r=2cm;(2)r=2.4cm; (3)r=3cm.
B
4
D
C
3A
练习2:在△ABC中,AB=5㎝,CB=4㎝,AC=3㎝,
以点C为圆心,r为半径画⊙C,
条件,确定R的取值范围。
L1
M
A
L2
O
N
1)若⊙A与两直线无公共点,则R的取值范围为____; 2)若⊙A与两直线共有一个公共点,则R的取值为__; 3)若⊙A与两直线共有两个公共点,则R的取值范围为_; 4)若⊙A与两直线共有三个公共点,则R的取值为____; 5)若⊙A与两直线共有四个公共点,则R的取值范围为_。
直线和圆的位置关系
直线和圆的位置关系一直线和圆的位置关系是几何学中的经典问题之一。
直线和圆的相交情况可以分为三种情况:相离、相切和相交。
在本文中,我们将探讨这些情况,并讨论在给定条件下如何确定直线和圆之间的位置关系。
相离的情况是指直线和圆不相交,也不相切。
换句话说,直线没有交叉或触及圆。
当直线与圆没有公共点时,它们被认为是相离的。
这种情况是最简单的情况,因为直线上的任意一点到圆的距离都大于圆的半径。
因此,如果给定一个直线和一个圆,并且它们的半径和位置都已知,我们可以通过计算直线上的任意一点到圆的距离,来确定它们是否相离。
接下来是相切的情况。
当直线与圆相切时,直线刚好触及圆的一个点。
在几何学中,相切的定义是两个图形仅有一个公共点。
对于直线和圆的情况而言,这个点就是直线与圆的切点。
在相切的情况下,直线的斜率与直线上的切点与圆心的连线的斜率相等。
因此,我们可以通过计算直线上两个点的斜率,并比较其与圆心的斜率是否相等,来确定它们是否相切。
最后是相交的情况。
当直线与圆相交时,它们有两个公共点。
如果给定一个直线和一个圆,并且它们的半径和位置都已知,我们可以通过解方程组来确定直线与圆的交点。
一种常见的方法是使用二次方程,通过将直线的方程和圆的方程联立,然后求解二次方程来计算交点的坐标。
如果二次方程有实数解,那么直线与圆相交;如果二次方程没有实数解,那么直线和圆不相交。
当直线与圆相交时,它们的交点具有很多有趣的性质。
例如,交点的坐标可以用来计算直线与圆的切线方程、直线与圆之间的夹角等。
另外,当直线与圆相交时,我们还可以根据交点和圆心的相对位置来判断交点的位置关系。
如果交点在圆心的左侧,那么直线与圆在交点处是外切的;如果交点在圆心的右侧,那么直线与圆在交点处是内切的。
总结起来,直线和圆的位置关系可以通过计算直线上的任意一点到圆的距离来判断它们是否相离;可以通过比较直线上两个点的斜率与圆心的斜率是否相等来判断它们是否相切;可以通过解方程组来计算直线和圆的交点,并根据交点和圆心的相对位置来判断交点的位置关系。
直线与圆、圆与圆的位置关系
直线与圆、圆与圆的位置关系一、直线与圆的位置关系:1、直线与圆的位置关系有三种:如图所示. (1)直线与圆相交:有两个公共点; (2)直线与圆相切:有一个公共点; (3)直线与圆相离:没有公共点.2、直线与圆的位置关系的判定的两种方法:直线l 和圆C 的方程分别为:Ax+By+C=0,x 2+y 2+Dx+Ey+F=0. 1)代数法判断直线与圆的位置关系:由l 和C 的方程联立方程组220Ax By C x y Dx Ey F ++=⎧⎨++++=⎩, ①若方程有两个不相等的实数根(△>0),则直线与圆相交; ②若方程有两个相等的实数根(△=0),则直线与圆相切; ③若方程无实数根(△<0),则直线与圆相离.2)几何法判断直线与圆的位置关系:圆心C(a ,b)到直线的距离d=22||Aa Bb C A B+++与半径r 作比较①若d<r 时,直线l 和圆C 相交;②若d=r 时,直线l 和圆C 相切;③若d>r 时,直线l 和圆C 相离. 3、圆的切线的求法:(1)当点(x 0,y 0)在圆x 2+y 2=r 2上时,切线方程为x 0x+y 0y=r 2;(2)若点(x 0,y 0)在圆(x -a)2+(y -b)2=r 2上时,切线方程为(x 0-a)(x -a)+(y 0-b)(y -b)=r 2; (3)斜率为k 且与圆x 2+y 2=r 2相切的切线方程为21y kx k =±+;斜率为k 且与圆(x -a)2+(y -b)2=r 2相切的切线方程的求法:先设切线方程为y=kx+m ,然后变成一般 式kx -y+m=0,利用圆心到切线的距离等于半径来列出方程求m ;(4)点(x 0,y 0)在圆外面,则切线方程为y -y 0=k(x -x 0),再变成一般式,因为与圆相切,利用圆心到直线距离 等于半径,解出k ,注意若此方程只有一个实根,则还有一条斜率不存在的直线,务必要补上. 4、直线与圆相交的弦长公式1)平面几何法求弦长公式:如图所示,直线l 与圆相交于两点A 、B ,线段AB 的长 即为直线l 与圆相交的弦长.设弦心距为d ,圆的半径为r ,弦长为AB ,则有 222()2AB d r +=,即AB=222r d - . 2)解析法求弦长公式:如图所示,直线l 与圆相交于两点A(x 1,y 1),B(x 2,y 2),当直线AB 的倾斜角存在时,联 立方程组,消元得到一个关于x 的一元二次方程,求得x 1+x 2和x 1x 2.于是2121212||()4x x x x x x -=+-,这样就求得2121221||1||1||AB k x x y y k=+-=+-。
直线和圆的位置关系
直线和圆的位置关系 【基础知识】1、直线和圆的位置关系:(1)相交:直线与圆有两个公共点时,叫做直线和圆相交,这时,直线叫做圆的割线,这两个公共点叫做交点。
(2)相切:直线与圆有一个公共点时,叫做直线与圆想切这时直线叫做圆的切线,唯一的(1) 切线的性质:定理:圆的切线垂直于经过切点的半径。
(2) 推论1:经过圆心且垂直于切线的直径必过切点。
(3) 推论2:经过切点且垂直于切线的直线必过圆心。
3、切线的判定定理及判定方法(1)切线判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线。
(2)切线的判定方法: ①与圆有唯一公共点的直线是圆的切线。
②到圆心的距离等于半径的直线是远的切线。
③经过半径外端并且垂直于这条半径的直线是圆的切线。
4、证明圆的切线的辅助线的方法:①连半径,证明垂直。
②做垂直,证半径。
例题1、如图,在三角形ABC 中,AD 是BC 边上的高,且AD=21BC ,E 、F 分别是AB 、AC 的中点,求证:以E 、F 为直径的的圆与BC 边相切。
【跟踪练习】1、已知:如图,以Rt△ABC的直角边AB为直径的半圆O,与斜边AC交于D,E是BC边上的中点,连接DE,求证:DE与半圆O相切.2、如图,已知CD是△ABC中AB边上的高,以CD为直径的⊙O交CA于点E,点G是AD的中点.求证:GE是⊙O的切线;5、三角形的内切圆(1)内切圆:和三角形三边都相切的圆叫做三角形的内切圆。
内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心,这个三角形叫做圆的外接三角形。
三角形的内心到三边的距离相等。
例题2.如图,在△ABC中,AB=AC,内切圆O与边BC,AC,AB分别切于D,E,F.(1)求证:BF=CE;(2)若∠C=30°,AC的长.例题3、如图,⊙I切△ABC的边分别为D,E,F,∠B=70°,∠C=60°,M是 DEF上的动点(与D,E不重合),∠DMF的大小一定吗?若一定,求出∠DMF的大小;若不一定,请说明理由.【跟踪练习】1.图1,⊙O内切于△ABC,切点为D,E,F.已知∠B=50°,∠C=60°,•连结OE,OF,DE,DF,那么∠EDF等于()A.40°B.55°C.65°D.70°图1 图2 图32.如图2,⊙O是△ABC的内切圆,D,E,F是切点,∠A=50°,∠C=60°,•则∠DOE=()A.70°B.110°C.120°D.130°3.如图3,△ABC中,∠A=45°,I是内心,则∠BIC=()A.112.5°B.112°C.125°D.55°6、切线长定理及切线长概念(1)切线长的概念:在经过员外一点的圆的切线上,这点和切点之间的线段的长,叫做这点倒圆的切线长。
九年级数学直线与圆的位置关系
点和圆的位置关系有几种?
A B C
点到圆心的距离为d, 圆的半径为r,则: 点在圆外 点在圆上 点在圆内 d>r; d=r; d<r.
直线与圆的位置关系
(地平线)
● ● ●
O
● ●
O
O
a(地平线)
O
O
一、直线与圆的位置关系
(用公共点的个数来区分)
特点: 直线和圆没有公共点, 叫直线和圆相离 特点: 直线和圆有惟一的公共点, 叫做直线和圆相切。 C
C
x
A
图形 直线与圆的 位置关系
.O r d ┐ l
.o d r ┐ l .
A
. B
.O d r ┐ . lC
相离
0 d>r
相切
1 d=r
相交பைடு நூலகம்
2 d<r
公共点的个数
圆心到直线的距离 d 与半径 r 的关系
公共点的名称 直线名称
切点
切线
已知⊙O的半径r=7cm,直线l1 // l2, 且l1与⊙O相切,圆心O到l2的距离为9cm. 求l1与l2的距离m.
.A
.A
.B
这时的直线叫切线
惟一的公共点叫切点。 特点: 直线和圆有两个公共点, 叫做直线和圆相交。
a(地平线)
观察太阳落山的照片,在太阳落山的过程中,太阳与 地平线(直线a)经历了哪些位置关系的变化?
看图判断直线l与 ⊙O的位置关系
(1) (2)
· O · O
l
(3) l l
· O
相离
相交
相切
课堂练习:
2、已知⊙O的半径为5cm, 圆心O与直线AB的距 离为d, 根据条件填写d的范围: 1)若AB和⊙O相离, 则 d > 5cm ; ; 2)若AB和⊙O相切, 则 d = 5cm
直线和圆的位置关系
设⊙O的圆心O到直线的距离为d,半径为r,d, r是方程(m+9)x2-(m+6)x +1=0的两根,且直线与 ⊙O相切时,求m的值?
解:由题意可得 b2-4ac= [-(m+6)]2-4(m+9)=0 解得 m1= -8 m 2= 0 当m=-8时原方程 为x2+2x+1=0 x1=x2= -1 (不符合题意舍去) 当m=0时原方程 为9x2-6x+1=0 x1=x2= 1 3 ∴ m=0
高桥初中 刘方霞
点 与 圆 的 位 置 关 系
点P在圆内 点P在圆上 点P在圆外
d<r
P
d=r
O
P
d>r
r
·
P
A
想想:
思考: 把海平面看作一条直线,太阳看作一 个圆,由此你能得出直线与圆的位置 关系吗?
思考: 把海平面看作一条直线,太阳看作一 个圆,由此你能得出直线与圆的位置 关系吗?
直线和圆的位置关系有三种:
5
D
3
A
例: Rt△ABC,∠C=90°AC=3cm, 解:过C作CD⊥AB,垂足为D。 在Rt△ABC中, BC=4cm,以C为圆心,r为 2 = 2 2 2 半径的圆与AB有怎样的位置 AB= 关系?为什么? =5(cm) (1)r=2cm;(2)r=2.4cm 根据三角形面积公式有 (3)r=3cm。 CD· AB=AC· BC
l
(二).直线与圆的位置关系 (数量特征)
.Or
相离
d
B A
直线与圆的位置关系的性质与判定
H
l
r .D
1、直线与圆相离
d>r
相切
.O
直线和圆的位置关系
直线和圆的位置关系
直线和圆的位置关系有三种,具体如下:
1、相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;
2、相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,
3、相离:直线和圆没有公共点时,叫做直线和圆相离。
直线定义:直线是由无数个点构成,两端都没有端点、可以百向两端无限延伸、不可测量长度的一条线。
圆的定义:在一个平面内,围绕一个点并以一定长度为距离旋转一周所形成的封闭曲线叫做圆。
直线和圆的位置关系
小结:直线与圆的位置关系:
图形 直线与圆的 位置关系
.O r d ┐ l .o d r ┐ l .
A
. B
.O d r ┐ . lC
相离
0 d>r
相切
1 d=r
相交
2 dቤተ መጻሕፍቲ ባይዱr
公共点的个数
圆心到直线的距离 d 与半径 r 的关系
公共点的名称 直线名称
切点
切线
交点
割线
24.2直线和圆的位置关系
点和圆的位置关系有几种?
A B C
点到圆心的距离为d, 圆的半径为r,则: 点在圆外 点在圆上 点在圆内
数量关系
d>r; d=r; d<r.
数形结合: 位置关系
同学们,在我们的生活中到处都 蕴含着数学知识,下面老师请同 学们欣赏美丽的
海上日出
从海上日出这种自然现象中可以抽象出哪些 基本的几何图形呢?
距离d与圆的半径r的关系来区分)
d r
直线和圆相交
d< r
d
r
直线和圆相切
d= r
r
d
∟
直线和圆相离 数量关系
d> r
数形结合: 位置关系
总结:
两 判定直线 与圆的位置关系的方法有 ____种:
直线 与圆的公共点 (1)根据定义,由________________
的个数来判断; 圆心到直线的距离d与半径r (2)根据性质,由_________________ 的关系来判断。 在实际应用中,常采用第二种方法判定。
O
O
O
l
A
l
相离
l
相交
相切
上述变化过程中,除了公共点的个数发生了变化, 还有什么量在改变?你能否用数量关系来判别直线 与圆的位置关系?
直线与圆、圆与圆的位置关系知识点及题型归纳
直线与圆、圆与圆的位置关系知识点及题型归纳知识点精讲一、 直线与圆的位置关系直线与圆的位置关系有3种,相离,相切和相交 二、 直线与圆的位置关系判断1. 几何法(圆心到直线的距离和半径关系) 圆心(,)a b 到直线0Ax By C ++=的距离,则d =则d r <⇔直线与圆相交,交于两点,P Q ,||PQ =d r =⇔直线与圆相切; d r >⇔直线与圆相离2. 代数方法(几何问题转化为代数问题即交点个数问题转化为方程根个数) 由2220()()Ax By C x a y b r++=⎧⎨-+-=⎩ ,消元得到一元二次方程20px qx t ++=,20px qx t ++=判别式为∆,则: 则0∆>⇔直线与圆相交; 0∆=⇔直线与圆相切; 0∆<⇔直线与圆相离.三、 两圆位置关系的判断是用两圆的圆心距与两圆半径的和差大小关系确定,具体是:设两圆12,O O 的半径分别是,R r ,(不妨设R r >),且两圆的圆心距为d ,则: 则d R r <+⇔两圆相交; d R r =+⇔两圆外切; R r d R r -<<+⇔两圆相离 d R r =-⇔两圆内切;0d R r ≤<-⇔两圆内含(0d =时两圆为同心圆) 四、 关于圆的切线的几个重要结论(1) 过圆222x y r +=上一点00(,)P x y 的圆的切线方程为200x x y y r +=.(2) 过圆222()()x a y b r -+-=上一点00(,)P x y 的圆的切线方程为200()()()()x a x a y b y b r --+--=(3) 过圆220x y Dx Ey F ++++=上一点00(,)P x y 的圆的切线方程为0000022x x y y x x y y D E F ++++⋅+⋅+= (4) 求过圆222x y r +=外一点00(,)P x y 的圆的切线方程时,应注意理解: ①所求切线一定有两条;②设直线方程之前,应对所求直线的斜率是否存在加以讨论.设切线方程为00()y y k x x -=-,利用圆心到切线的距离等于半径,列出关于k 的方程,求出k 值.若求出的k 值有两个,则说明斜率不存在的情形不符合题意;若求出的k 值只有一个,则说明斜率不存在的情形符合题意.题型讲解题型1 直线与圆的相交关系 思路提示研究直线与圆的相交问题,应牢牢记住三长关系,即半径长2l、弦心距d 和半径r 之间形成的数量关系222()2l d r +=.例9.28 已知圆O :225x y +=,直线l :cos sin 1(0)2x y πθθθ+=<<,设圆O 上到直线l 的距离等于1的点的个数为k ,则k =___________. 分析 先求出圆心到直线的距离,在进行判断解析 因为圆心(0,0)到直线l 的距离为1,又因为圆O 4个点符合条件. 评注 若圆O 上到直线l 的距离等于2的点的个数为k ,则2k =;若3k =,则圆O 上到直线l 的距离等于1变式1已知圆O :224x y +=,直线l :1x ya b+=,设圆O 上到直线l 的距离等于1的点的个数有两个,则2211a b +的取值范围___________. 例9.29 已知圆C :228120x y y +-+=,直线l :20ax y a ++=, (1) 当直线l 与圆C 相交时,求实数a 的取值范围;(2) 当直线l 与圆C 相交于,A B 两点,且AB =l 的方程.分析 根据点到直线距离等于半径来度量直线与圆相切问题;根据三长关系解决直线与圆相交问题. 解析 (1)圆C :22(4)4x y +-=,故圆心为(0,4)C ,因为直线l 与圆C 相交,所以圆心为(0,4)C 到直线l 的距离2d =<,解得34a <-,故实数a 的取值范围是3(,)4-∞-(2)由题意,直线l 与圆C 相交于,A B 两点,且AB =224+=,化简可得2870a a ++=,即1a =-或7a =-,故所求直线的方程为20x y -+=或7140x y -+=.评注 在处理直线与圆的相交问题时经常用到三长关系,即半弦长,弦心距,半径长构成直角三角形的三边.变式1 对任意的实数k ,直线1y kx =+与圆222x y +=的位置关系一定是( ) A .相离 B. 相切 C.相交但直线不过圆心 D.相交且直线过圆心变式 2 过点(1,2)--的直线l 被圆222210x y x y +--+=截得的弦长为,则直线l 的斜率为__________.变式3 已知直线l 经过点(1,3)P -且与圆224x y +=相交,截得弦长为l 的方程.例9.30 过点(1,1)P 的直线l 与圆22:(2)(3)9C x y -+-=相交于,A B 两点,则||AB 的最小值为( )A.解析 设圆心(2,3)C 到直线l 的距离d ,由弦长公式||AB ==可知当距离最大d 时,弦长||AB 最小.又||d CP ≤==,当直线l CP ⊥时取等号,故max d =.所以max ||4AB ===.故选B评注 过圆内一定点的所有弦中,过此点的直径为最长弦,过此点且垂直于该直径的弦为最短弦. 变式1 过点(11,2)A 做圆22241640x y x y ++--=的弦,其中弦长为整数的共有( ) A. 16 条 B. 17条 C. 32条 D. 34条例9.31 已知圆的方程为22680x y x y +--=.设该圆过点(3,5)的最长弦和最短弦分别是AC 和BD ,则四边形ABCD 的面积为( )A. 解析 22680x y x y +--=可化为22(3)(4)25x y -+-=,故圆心坐标(3,4),半径为5,点(3,5)在圆内,因为AC 最长,所以AC 为直径,即||10AC =,BD 最短,且BD 过点(3,5),所以||BD ==,所以1||||2S AC BD == B变式1 如图所示,已知AC ,BD 为圆O :224x y +=的两条相互垂直的弦,垂足为M ,则四边形ABCD 的面积的最大值为__________.例9.32 (2012北京海淀高三期末理13改编)已知圆22:(1)2C x y -+=,过点(1,0)M -的直线l 交圆C 于,A B 两点,若0CA CB ⋅=(C 为圆心),则直线l 的方程为__________. 解析 设直线:(1)l y k x =+,即:l 0kx y k -+= 则圆心到直线l 的距离为d =又0CA CB ⋅=,故CA CB ⊥,即△ABC 是等腰三角形,2C π∠=.所以sin142d r π====即k =±,故直线l :10x +=或10x ++= 变式 1 已知O 为平面直角坐标系的原点,过点(2,0)M -的直线l 与圆221x y +=交于,P Q 两点.若12OP OQ ⋅=-,求直线l 的方程.变式2 已知圆C :22(1)(6)25x y ++-=上的两点,P Q 关于直线l :8y kx =+对称,且0OP OQ ⋅=(O 为坐标原点),求直线PQ 的方程题型2 直线与圆的相切关系 思路提示若直线与圆相切,则圆心到直线的距离等于半径,切线的几何性质为:圆心和切点的连线垂直于切线. 例9.33 求经过点(1,7)-与圆2225x y +=相切的直线方程.分析 将点(1,7)-代入圆方程得221(7)5025+-=>,知点(1,7)-是圆外一点,故只需求切线的斜率或再求切线上另一点坐标.解析 解法一:依题意,直线的斜率存在,设所求切线斜率为k ,则所求直线方程为7(1)y k x +=-,整理成一般式为70kx y k ---=.由圆的切线的性质,5=,化简得3127120k k --=,解得43k =或34k =-. 故所求切线方程为:43250x y --=或34250x y ++=.解法二:依题意,直线的斜率存在,设所求切线方程为0025x x y y +=(00(,)x y 是切点),将坐标(1,7)-代入后得00725x y -=,由00002272525x y x y -=⎧⎪⎨+=⎪⎩,解得0043x y =⎧⎨=-⎩或0034x y =-⎧⎨=-⎩. 故所求切线方程为:43250x y --=或34250x y ++=.评注 已知圆外一点,求圆的切线方程一般有三种方法:①设切点,用切线公式法;②设切线斜率,用判别式法:③设切线斜率,用圆心到切线距离等于圆半径.一般地,过圆外一点可向圆作两条切线,在后两种方法中,应注意斜率不存在的情况.变式1 已知圆22:(1)(2)4C x y -+-=,求过点(1,5)P -的圆的切线方程.变式2 直线l (2)2y k x =-+与圆22:220C x y x y +--=相切,则的一个方向向量为( ) A. (2,2)- B. (1,1) C. (3,2)- D. 1(1,)2例9.34 自点(3,3)A -发出的光线l 射到x 轴上,被x 轴反射,其反射光线所在直线与圆224470x y x y +--+=相切,求入射光线l 所在直线的方程.分析 利用对称性解决此类反射问题.根据光学特征,对称性的使用既可以使用点的对称,也可以使用圆的对称.解析 已知圆22(2)(2)1x y -+-=关于x 轴的对称圆'C 的方程为22(2)(2)1x y -++=,可设光线所在直线方程为3(3)y k x -=+,所以直线l 与圆'C 相切,圆心'(2,2)C -到直线l 的距离1d ==,解得43k =-或34k =-. 所以光线所在的直线l 方程为4330x y ++=或3430x y +-=.变式 1 自点(3,3)A -发出的光线l 射到x 轴上,被x 轴反射,其反射光线'l 所在直线与圆224470x y x y +--+=相切,求反射光线'l 所在直线的方程.题型3 直线与圆的相离关系 思路提示关于直线与圆的相离问题的题目大多是最值问题,即直线上的点与圆上的点的最近或最远距离问题,这样的题目往往要转化为直线上的点与圆心距离的最近和最远距离再加减半径长的问题.例9.35 (1)直线:1l y x =-的点到圆22:4240C x y x y ++-+=上的点的距离最小值是____________. (2)由直线1y x =+上的点向圆22(3)(2)1x y -++=引切线,则切线长的最小值为( )分析 过直线1y x =+上任意一点向圆22(3)(2)1x y -++=引切线PQ ,即可得到1||PQ O Q PQ ⊥==,那么,当切线长PQ 取最小值时,即1O P 取最小值.解析 (1)圆C 可化为22(2)(1)1x y ++-=,故圆心(2,1)C -到直线1y x =-的距离d ==1d r -=(3) 过1O 作1O H 垂直于直线1y x =+于点H ,过H 作HR 相切圆1O 与R ,连接1O R ,则切线长的最小值为||HR ,圆心(3,2)-到直线10x y -+=的距离d ==,||HR =,故选A.变式1 已知点P 是直线40(0)kx y k ++=>上一动点,,PA PB 是圆22:20C x y y +-=的两切线,,A B 是切点,若四边形PACB 的最小面积是2,则k 的值为( )A. 3B.2C. 变式 2 已知圆22:1O x y +=和定点(2,1)A ,由圆O 外一点(,)P a b 向圆O 引切线PQ ,切点为Q ,且满足||||PQ PA =.(1)求实数,a b 间满足的等量关系; (2)求线段PQ 长的最小值.题型4 圆与圆的位置关系 思路提示已知两圆半径分别为12,r r ,两圆的圆心距为d ,则: (1) 两圆外离12r r d ⇔+<; (2)两圆外切12r r d ⇔+=; (3)两圆相交1212||r r d r r ⇔-<<+; (4)两圆内切12||r r d ⇔-=; (5)两圆内含12||r r d ⇔->;两圆外切和内切较为重要,这两种位置关系常与椭圆和双曲线的定义综合考查.例9.36 圆221:20O x y +-=和圆222:40O x y y +-=的位置关系是( )A. 外离B. 相交C. 外切D. 内切 分析 判断圆心距与两圆半径的关系解析 由圆221:20O x y +-=得1(0,0)O ,1r圆222:40O x y y +-=得2(0,2)O ,22r =,121212||||2r r O O r r -<=<+,两圆相交,故选B.变式1 在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是_________.变式2 在平面直角坐标系xOy 中,点(0,3)A ,直线l :24y x =-,设圆C 的半径为1,圆心在l 上, (1) 若圆心C 也在直线1y x =-上,过点A 作圆C 的切线,求切线方程;(2) 使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是_________.例9.37 已知两圆222610x y x y +---=和2210120x y x y m ++-+= (1)m 取何值时两圆外切.(2)m 取何值时两圆外切,此时公切线方程是什么?(3)求45m =时两圆的公共弦所在直线的方程和公共弦的长度.分析 把两圆的一般方程化为标准方程,求两圆的圆心距d ,判断d 与R r +,R r -的关系,再用圆的几何性质分别解决(2)(3)问. 解析 两圆的标准方程分别为22(1)(3)11x y -+-=,22(5)(6)61,(61)x y m m -+-=-<,圆心分别为(1,3),(5,6)M N(1) =25m =+(2) 小于两圆圆心距55=, 解得,两圆方程222610x y x y +---=与2210120x y x y m ++-+=,相减得861250x y +--+=代入,得43130x y +-+=.(3) 两圆的公共弦所在直线方程为2222(261)(101245)0x y x y x y x y +----+--+=,即43230x y +-=,所以公共弦长为=评注 应注意两圆位置关系由圆心距和两圆半径的和与差的大小关系来确定.变式1 若圆224x y +=与圆22260(0)x y ay a ++-=>,公共弦的长为a =___________.变式2 设两圆12,C C 都和两坐标轴相切,且都过点(4,1),则两圆的圆心距离12||C C =( )A. 4B. 有效训练题1. 已知点(,)P a b 在圆C :224x y +=内(异于圆心),则直线10ax by ++=与圆C 的位置关系是( ) A. 相交 B. 相切 C. 相离 D. 不能确定 2.已知a b ≠,且2sin cos 04a a πθθ+-=,2sin cos 04b b πθθ+-=,则连接2(,)a a ,2(,)b b 两点的直线与单位圆的位置关系是( )A. 相交B. 相切C. 相离D. 不能确定3.设,m n R ∈,若直线(1)(1)20m x n y +++-=与圆22(1)(1)1x y -+-=相切,则m n +的取值范围是( )A. 1⎡-⎣B. (),11⎡-∞⋃+∞⎣C. 2⎡-+⎣D. (),22⎡-∞-⋃++∞⎣4.若直线1x ya b+=经过点(cos ,sin )M αα,则( )A. 221a b +≤B. 221a b +≥ C.22111a b +≤ D. 22111a b +≥5.过点(1,1)P 的直线,将圆形区域22{(,)|4}x y x y +≤分两部分,使得这两部分的面积之差最大,该直线的方程为( )A. 20x y +-=B. 10y -=C. 0x y -=D. 340x y +-=6.若直线10x y -+=与圆22()2x a y -+=有公共点,则实数a 取值范围是( ) A. []3,1-- B. []1,3- C. []3,1- D. (][),31,-∞-⋃+∞7. 设,m n R ∈,若直线10mx ny +-=与x 轴相交于点A ,与y 轴相交于B ,且l 与圆224x y +=相交所得弦的长为2,O 为坐标原点,则△ABC 面积的最小值为___________8.过点(4,0)-作直线l 与圆2224200x y x y ++--=交于,A B 两点,如果||8AB =,则l 的方程为__________.9.在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则的最大值是_______. 10.已知点(3,1)M ,直线40ax y -+=及圆22(1)(2)4x y -+-=. (1)求过点M 的圆的切线方程;(2)若直线40ax y -+=与圆相切,求a 的值(3)若直线40ax y -+=与圆相交于,A B 两点,且AB 弦的长为a 的值11.已知圆M 的方程为22(2)1x y +-=(M 为圆心),直线的方程为20x y -=,点P 在直线l 上,,过点P 作圆M 的切线,PA PB ,切点为,A B . (1)若060APB ∠=,试求点的坐标;(2)若点P 的坐标为(2,1),过P 作直线与圆M 交于,C D 两点,当CD =CD 的方程;(3)求证:经过,,A P M 三点的圆必过定点,并求出所有定点的坐标.12. 已知圆C 过点(1,1)P ,且与圆222:(2)(2)(0)M x y r r +++=>关于直线20x y ++=对称. (1)求圆C 的方程;(2)设Q 为圆C 上的一个动点,求PQ MQ ⋅的最小值.(M 为圆M 的圆心);(3)过点P 作两条相异直线分别与圆C 相交于,A B ,且直线PA 和直线PB 的倾斜角互补,O 为坐标原点,试判断直线OP 和AB 是否平行?请说明理由.。
直线和圆的位置关系
A
3、直线L 和⊙O有公共点,则直线L与⊙O(
D
).
A、相离;B、相切;C、相交;D、相切或相交。
2、如图,已知∠BAC=30度,M为AC 上一点,且AM=6cm,以M为圆心、 r为半径的圆与直线AB有怎样的 位置关系?为什么? (1) r=2cm
D
(2) r=4cm
(3) r=3cm
挑战自我 已知⊙A的直径为6,点A的坐标为 (-3,-4),则பைடு நூலகம்轴与⊙A的位置关系是 相离 y轴与⊙A的位置关系是_____ 相切 。 _____,
一、直线与圆的位置关系(用公 共点的个数来区分)
(1)直线和圆有两个公共点, 叫做直线和圆相交, 这条直线叫做圆的割线,
这两个公共点叫做交点。
(2)直线和圆有唯一个公共点, 叫做直线和圆相切, 这条直线叫做圆的切线, 这个公共点叫做切点。 (3)直线和圆没有公共点时, 叫做直线和圆相离。
O
O
O
l
A
l
相离
l
相交
相切
除了用公共点的个数来判断位置关系(观察法), 你能否像判断点和圆的位置关系那样也找出一个量 来判断直线和圆的位置关系呢?
直线和圆的位置关系(用圆心0到直线l的
距离d与圆的半径r的关系来判断)
d r
直线和圆相交
d< r
d
r
直线和圆相切
d= r
r
d
∟
直线和圆相离
d> r
总结:
两 判定直线 与圆的位置关系的方法有 ____种:
直线和圆的位置关系
瓦屋头镇第二初级中学
点和圆的位置关系有几种?
A B C
点到圆心的距离为d, 圆的半径为r,则: 点在圆外 点在圆上 点在圆内 d>r; d=r; d<r.
直线与圆的位置关系
直线与圆的位置关系一、直线与圆的位置关系判定方法:(1)代数法:通过解直线方程与圆的方程所组成的方程组,根据解得个数来判断△>0表示直线和圆有2个交点,则相交△=0表示直线和圆有1个交点或者说2个重合的交点,则相切△<0表示直线和圆没有交点,则相离(2)几何法:由圆心到直线的距离d 与半径r 的大小关系来判断(1) 当d<r 时,直线与圆相交(2)当d=r 时,直线与圆相切(3)当d.>r 时,直线与圆相离倘若直线和圆的方程都告诉你让你判断它们之间的关系的时候,一般要结合图形解答,所以一般采用几何的方法,如果圆的方程告诉你了,但是直线的方程没有告诉你,让你根据一个点判断直线的斜率在什么范围内时用代数法。
例题1:直线0123=-+y x 与圆042422=-+++y x y x 的位置关系是例题2:已知圆822=+y x ,定点)0,4(P ,问P 点的直线的斜率在什么范围内取值时,这条直线与已知圆:(1) 相切 (2)相交 (3)相离?并写出过点P 的切线方程二、求圆的切线问题的方法(1)求过圆上一点),(00y x 的圆的切线方程:先求切点与圆心得连线的斜率k ,油垂直关系,知切线斜率为k 1-,由点斜式方程可求得切线的方程,如果0=k 或斜率不存在,则由图形可直接得切线方程为a x b y ==或。
(2)求过圆外一点),(00y x 的圆的切线方程:(1)几何方法:设切线方程为)(00x x k y y -=-即o y kx y kx =+--00 由圆心到直线的距离等于半径,可求得k ,切线方程即可求出(2)代数方法:设切线方程为)(00x x k y y -=-即00y kx kx y +-=,代入圆的方程,得到一个关于x 的一元二次方程,由0=∆求得k ,切线方程即可求出。
注意若此方程只有一个实根,则还有一条斜率不存在的直线。
例题1:圆的方程是1322=+y x 过其上一点(2,3)的切线方程?例题2:圆的方程是822=+y x ,过圆外一点(4,5)的切线方程?三、弦长问题的处理方法(1)几何法:即利用弦心距、弦长一半以及半径构成的直角三角形求解,即222)2(r d l =+(2)代数法:将直线方程与圆的方程练了,运用根与系数的关系,弦长公式是2121x x k AB -+=例题:求直线063:=-+y x l 被圆042:22=--+y y x C 截得的弦长(两种方法) 四、与圆有关的最值问题(1)运用几何及几何手段先确定达到最值的位置,再进行计算,(2)通过建立目标函数后,转化为函数的最值问题例题1:点P 在直线0102=++y x 上移动,PB PA ,与圆422=+y x 分别相切于B A ,两点,则PAOB 面积的最小值为?例题2:已知实数y x ,满足方程01422=+-+x y x ,求(1)xy 的最大值与最小值(2)x y -的最大值与最小值(3)22y x +的最大值与最小值求解与圆有关的最大(小)值问题,应考虑圆的对称性,常与圆心、半径、切线有关,可借助图形性质,利用数形结合的方法处理(1) 形如ax b y u --=的最值问题,可转化为过定点),(b a 的动直线的斜率的最值问题 (2) 形如by ax t +=的最值问题,可转化为斜率为定值的动直线的截距的最值问题(3) 形如222)()(b y a x d -+-=的最值问题,可转化为定点),(b a 的距离的最值问题圆与圆的位置关系一、圆与圆的位置关系及公切线的条数(1)⇔+>21r r d 外离⇔4条公切线 (2)⇔+=21r r d 外切⇔3条公切线(3)⇔+<<-2121r r d r r 相交⇔2条公切线 (4)d r r =-21⇔内切⇔1条公切线(5)⇔-<<210r r d 内含⇔无公切线例题:已知两圆4)2(22=+-y x 与1)4(22=+-y x ,求两圆的公切线?二、公共弦两圆相交时的公共弦所在的直线方程、两圆外切时的内公切线方程、两圆内切时的外公切线方程均是两圆方程作差, 消去二次项所得的直线方程。
直线和圆的位置关系知识点汇总
直线和圆的位置关系知识点汇总证明一条直线是圆的切线的常见方法有两种:①当直线和圆有一个公共点时,把圆心和这个公共点连接起来,然后证明直线垂直于这条半径,简称“作半径,证垂直”;②当直线和圆的公共点没有明确时,可过圆心作直线的垂线,再证圆心到直线的距离等于半径。
1.直线和圆的位置关系① 相交:直线和圆有两个公共点,这时我们说这条直线和圆相交,这条直线叫做圆的割线。
② 相切:直线和圆只有一个公共点,这时我们说这条直线和圆相切,这条直线叫做圆的切线,这个点叫做切点。
③ 相离:直线和圆没有公共点,这时我们说这条直线和圆相离。
④ 直线和圆的位置关系2.圆的切线① 切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。
如图,直线l就是⊙O的切线。
此外,经过圆心且垂直于切线的直线一定过切点;垂直于切线且过切点的直线必过圆心。
② 切线的性质定理圆的切线垂直于过切点的半径。
如上图,若直线l是⊙O的切线,A为切点,则l丄OA.3. 切线长① 切线长:经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长。
② 切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.如图,PA,PB是⊙O的两条切线,B切点分别为A,B,则PA=PB,∠OPA=∠OPB.4.切线的判定和性质的应用1辅助线的作法运用切线的性质来进行计算或论证的常见辅助线是连接圆心和切点,利用垂直构造直角三角形解决有关问题。
2 证明直线与圆相切的三种途径证直线和圆有唯一公共点(即运用定义)①.证直线过半径外端且垂直于这条半径(即运用判定定理)②.证圆心到直线的距离等于圆的半径(即证d=r③.当题目已知直线与圆的公共点时,一般用方法②,当题目未知直线与圆的公共点时,一般用方法③,方法①运用较少。
1、代数法:联立直线方程和圆方程,解方程组,方程组无解,则直线与圆相离,方程组有1组解,则直线与圆相切,方程组有2组解,则直线与圆相交。
《直线和圆的位置关系》教学设计
《直线和圆的位置关系》教学设计《直线和圆的位置关系》教学设计(精选5篇)教学设计是把教学原理转化为教学材料和教学活动的计划。
教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。
今天应届毕业生店铺为大家编辑整理了《直线和圆的位置关系》教学设计,希望对大家有所帮助。
《直线和圆的位置关系》教学设计篇1一、素质教育目标㈠知识教学点⒈使学生理解直线和圆的位置关系。
⒉初步掌握直线和圆的位置关系的数量关系定理及其运用。
㈡能力训练点⒈通过对直线和圆的三种位置关系的直观演示,培养学生能从直观演示中归纳出几何性质的能力。
⒉在7.1节我们曾学习了“点和圆”的位置关系。
⑴点P在⊙O上OP=r⑵点P在⊙O内OP<r⑶点P在⊙O外OP>r初步培养学生能将这个点和圆的位置关系和点到圆心的距离的数量关系互相对应的理论迁移到直线和圆的位置关系上来。
㈢德育渗透点在用运动的观点揭示直线和圆的位置关系的过程中向学生渗透,世界上的一切事物都是变化着的,并且在变化的过程中在一定的条件下是可以相互转化的。
二、教学重点、难点和疑点⒈重点:使学生正确理解直线和圆的位置关系,特别是直线和圆相切的关系,是以后学习中经常用到的一种关系。
⒉难点:直线和圆的位置关系与圆心到直线的距离和圆的关径大小关系的对应,它既可做为各种位置关系的判定,又可作为性质,学生不太容易理解。
⒊疑点:为什么能用圆心到直线的距离九圆的关径大小关系判断直线和圆的位置关系?为解决这一疑点,必须通过图形的演示,使学生理解直线和圆的位置关系必转化成圆心到直线的距离和圆的关径的大小关系来实现的。
三、教学过程㈠情境感知⒈欣赏网页flash动画,《海上日出》提问:动画给你形成了怎样的几何图形的印象?⒉演示z+z超级画板制作《日出》的简易动画,给学生形成直线和圆的位置关系的印象,像这样平面上给定一条定直线和一个运动着的圆,它们之间虽然存在着若干种不同的位置关系,如果从数学角度,它的若干位置关系能分为几大类?请同学们打开练习本,画一画互相研究一下。
直线与圆的位置关系
2.代数法(也叫公式法):设直线与圆相交于A(x1,y1),B(x2,y2)两点,
解方程组 消y后得关于x的一元二次方程,从而求
得x1+x2,x1x2,则弦长为|AB|= (此公式也叫做设而不求利用韦达定理求弦长公式 )
(其中x1,x2为两交点的横坐标.k为直线斜率).
2 2 x y 4 例1 、已知直线 y= x+1 与圆
(1)若点P(x0,y0)在圆C外,过点P的切线有两条.这时
可设切线方程为y-y0=k(x-x0),利用圆心C到切线的
距离等于半径求k.若k仅有一值,则另一切线斜率不
存在,应填上.也可用判别式Δ=0求k的值.
(2)若点P(x0,y0)在圆C上,过点P的切线只有一条.利用 圆的切线的性质,求出切线的斜率.k切= 1 , 代入 kCP 点斜式方程可得. 也可以利用结论:①若点P(x0,y0)在圆x2+y2=r2上,则过 该点的切线方程是x0x+y0y=r2.②若点P(x0,y0)在圆 (x-a) 2+(y-b) 2=r2上,则过该点的切线方程是(x0-a)(xa)+(y0-b)(y-b)=r2.
一.直线与圆的位置关系 想一想,平面几何中,直线与圆有哪几种位置关系?
平面几何中,直线与圆有三种位置关系:
(1)直线与圆相交,有两个公共点; (2)直线与圆相切,只有一个公共点; (3)直线与圆相离,没有公共点.
(1)
(2)
(3)
二.直线与圆的位置关系 那么,如何用直线和圆的方程判断它们之间的位 置关系? 判断直线与圆的位置关系有两种方法: 方法一:代数法,判断直线l与圆C的方程组成的 方程组是否有解.如果有解,直线l与圆C有公共 点.有两组实数解时,直线l与圆C相交;有一组实数 解时,直线l与圆C相切;无实数解时,直线l与圆C相 离. 方法二:几何法,判断圆C的圆心到直线l的距离 d与圆的半径r的关系.如果d< r ,直线l与圆C相交;如 果d= r ,直线l与圆C相切;如果d> r ,直线l与圆C相 离.
圆与直线的位置关系
圆与直线的位置关系在几何学中,圆和直线是常见的几何对象,它们之间的位置关系有着重要的理论和实际应用价值。
本文将探讨圆与直线的不同相交情况以及相应的性质和应用。
一、相交情况1. 直线与圆相交当一条直线与圆相交时,可能存在三种不同的相交情况:相离、相切和相交。
(1)相离情况:当直线不与圆相交,且直线与圆的中心距离大于圆的半径时,可以判断直线与圆相离。
(2)相切情况:当直线与圆相交,且直线与圆的中心距离等于圆的半径时,可以判断直线与圆相切。
相切的情况下,直线与圆只有一个交点。
(3)相交情况:当直线与圆相交,且直线与圆的中心距离小于圆的半径时,可以判断直线与圆相交。
相交的情况下,直线与圆有两个交点。
2. 直线与圆的位置关系在直线与圆相交的情况下,可以进一步讨论直线与圆的位置关系。
(1)两条切线:当直线与圆相交于两个交点时,这两个交点连同圆心构成的直线称为切线。
切线与圆的切点处于圆上,切线与圆的切点处的切线方向垂直于半径。
(2)割线:当直线与圆相交于两个交点时,这两个交点连同圆心构成的直线称为割线。
割线的两个端点分别处于圆的内部和外部。
二、圆与直线位置关系的性质和应用1. 直径与切线的关系当直线通过圆的圆心,并且与圆相交于两个交点时,该直线称为直径。
直径是圆上任意两点之间距离的最大值。
根据圆的性质,直径与圆上任意切点处的切线垂直。
2. 切线定理切线定理是指在圆上任取一点和该点处的切线,该点与圆心连线与切线的切点连线所夹的角等于切线和该点处的切线段之间的角。
该定理在解决相关几何问题时具有重要的应用价值。
3. 圆与直线的应用圆与直线的位置关系在很多实际问题中都有重要应用,例如:(1)导航定位:通过确定某一圆上的两个已知点和与该圆相切的直线,可以确定导航目标的位置与方向。
(2)机械设计:在机械设计中,圆与直线的位置关系可以用于确定零件的相对位置和运动轨迹,有助于提高机械系统的设计精度。
(3)轮胎与地面的摩擦力:轮胎与地面接触时,通过轮胎与地面的接触点构成的直线与圆的位置关系,可以分析轮胎与地面的摩擦力和抓地力,以提高汽车的行车安全性。
直线和圆的位置关系
”
60 r= 或5﹤r≤12 13
12 C
D
5
A
(2011甘肃兰州)如图,AB是⊙O 的直径,点D在AB的延长线上,DC切 ⊙O于点C,若∠A=25°,则∠D等于 D B (C ) A .20° B.30° C.40° D.50°
C
O
A
3 (变式)把条件中 “∠A=25°”改为“ tan D ,且 r 6 4 4
A
小结:1、直线与圆的位置关系:
图形 直线与圆的 位置关系
.O r d ┐ l .o d r ┐ l .
A
. B
.O d r ┐ . lC
相离
0 d>r
相切
1 d=r
相交
2 d<r
公共点的个数
圆心到直线的距离 d 与半径 r 的关系
公共点的名称 直线名称
切点
切线
交点
割线
小试牛刀
1、已知圆的直径为13cm,设直线和圆心的距离为d : 2 个公共点. 1)若d=4.5cm ,则直线与圆 相交 , 直线与圆有____ 1 个公共点. 相切 , 直线与圆有____ 2)若d=6.5cm ,则直线与圆______ 相离 , 直线与圆有____ 0 个公共点. 3)若d= 8 cm ,则直线与圆______ 2、已知⊙O的半径为5cm, 圆心O与直线AB的距离为d, 根据 条件填写d的范围: 1)若AB和⊙O相离, 则 d > 5cm 2)若AB和⊙O相切, 则 d = 5cm ; 3)若AB和⊙O相交,则 0cm≤ d < 5cm . ;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C D AC B C 342.4(c)m
C
B
AB 5
即圆心 C 到 AB 的距离 d = 2.4 cm.
(1) 当 r = 2 cm 时,有 d > r ,因此⊙C 和 AB 相离.
(2) 当 r = 2.4 cm 时, 有 d = r ,因此⊙C 和 AB 相切.
(3) 当 r = 3 cm 时, 有 d < r 精,选因课件此⊙C 和 AB 相交.
C 为圆心,r 为半径的圆与 AB 有怎样的关系?为什么?
(1)r = 2 cm ; (2) r = 2.4 cm ; (3) r = 3 cm .
解:过 C 作 CD⊥AB 于 D,在 Rt △ABC 中,
A
A B A2 C B2C 3 2 4 2 5
根据三角形面积公式有
D
CD ·AB = AC ·BC
精选课件
12
例1:在Rt△ABC中∠C= 90°,AC=3cm,BC=4cm,以C为圆心,
r为半径的圆与AB有怎样的关系?为什么?
(1) r=2cm
(2) r=2.4cm
(3) r=3cm
B
B
B
D
C
A
D
C
A
D
C
A
精选课件
13
例 在 Rt△ABC 中,∠C = 90°,AC = 3 cm , BC = 4 cm , 以
在实际应用中,常采用第二种方法判定。
精选课件
10
O
O
r ┐d
l
d
┐
l
直线与圆的位置关系判定方法:
直线和圆的位置关系 相交
公共点个数
2
圆心到直线距离 d 与半径 r 关系
公共点名称
d<r 交点
直线名称
精割选课线件
相切 1
d=r 切点 切线
O
d
┐
l
相离 0
d>r 无 无 11
三、练习与例题
1、已知圆的直径为13cm,设直线和圆心的距离为d :
1)若AB和⊙O相离, 则 d > 5cm ;
2)若AB和⊙O相切, 则 d = 5cm ;
3)若AB和⊙O相交,则 0cm≤ d < 5cm.
3.直线和圆有2个交点,则直线和圆__相__交_____;
直线和圆有1个交点,则直线和圆___相__切____;
直线和圆有没有交点,则直线和圆___相__离____;
r o
d l
r o
dl
r
od
l
(1)直线l 和⊙O相离 d>r (2)直线l 和⊙O相切 d=r (3)直线l 和⊙O相交 d<r
精选课件
9
总结:
判定直线 与圆的位置关系的方法有_两___种:
(1)根据定义,由__直__线___与__圆___的__公__共点 的个数来判断;
(2)根据性质,由__圆__心__到__直__线__的__距__离_ d与半径r 的关系来判断。
思考:一条直线和一个圆,如果有公共点能不能多于 两个呢?
精选课件
6
快速判断下列各图中直线与圆的位置关系
l
l
.O
.O1
.O2
.O
l
L
.
精选课件
7
1.直线外一点到这条直线 垂线段的长度叫点到直线 的距离。
.A
2、连结直线外一点与直线所
D
a
有点的线段中,最短的是_垂__线__段_?
精选课件
8
2、用圆心到直线的距离和圆半径的数量关系,来 揭示圆和直线的位置关系。
半径OA与直线L是不
.O
是一定垂直呢?
一定垂直
切线的性质定理:
L A
圆的切线垂直于过切点的半径
精选课件
18
切线长定理
A
如图:过⊙O外一点P
有两条直线PA、PB与 ⊙O相切.
O
P
在经过圆外一点的圆的切
线上,这点和切点间的线
段的长,叫做切线长.
B
切线长定理:从圆外一点引圆的两条切线,它们的 切线长相等,圆心和这一点的连线平分两条切线的 夹角. 平分切点所成的两弧;垂直平分切点所成的弦.
精选课件
1
一、复习提问
1、点和圆的位置关系有几种?
(1)d<r (2)d=r (3)d>r
点在圆内 点在圆上 点 在圆外
2、“大漠孤烟直,长河落日圆” 是唐朝诗人王 维的诗句,它描述了黄昏日落时分塞外特有的景 象。如果我们把太阳看成一个圆,地平线看成一 条直线,那你能根据直线与圆的公共点的个数想象 一下,直线和圆的位置关系有几种?
14
思考:
在⊙O中,经过半径OA的
外端点A作直线L⊥OA,
则圆心O到直线L的距离 是多少?__O__A__,直线L和
.O
⊙O有什么位置关系?
___相__切____.
L
A 经过半径的外端并且垂直于这条半径的直线是
圆的切线.
几何应用: ∵OA⊥L ∴精选L课是件 ⊙O的切线
15
圆O与直线l相切B,则过点A的直径A B与切线l有 怎样的位置关系? 垂直
B
O
A
l
精选课件
16
例1 直线AB经过⊙O上的点C,并且OA=OB,CA=CB,
求证:直线AB是⊙O的切线.
证明: 连接OC
∵OA=OB, CA=CB
∴△OAB是等腰三角形,OC 是底边AB上的中线
∴OC⊥AB
∴AB是⊙O的切线
精选课件
17
将上页思考中的问题
反过来,如果L是⊙O
的切线,切点为A,那么
这时直线叫做圆的切线. 唯一的公共点叫做切点.
(3)直线和圆没有公共点时,叫做直线和圆相离.
精选课件
5
1、直线与圆相离、相切、相交的定义。
相离
切点
切线
相切
交点
交点
割线
相交
直线和圆的位置关系是用直线和圆的公共点的个数 来定义的,即直线与圆没有公共点、只有一个公共点、 有两个公共点时分别叫做直线和圆相离、相切、相交。
精选课件
19
例1
已知,如图,PA、PB是⊙O的两条切线,A、B为切点. 直线 OP 交 ⊙O 于点 D、E,交 AB 于 C.
(1)写出图中所有的垂直关系;
(2)写出图中所有的全等三角形.
(3)如果 PA = 4 cm , PD = 2 cm , 求半径 OA 的长.
1)若d=4.5cm ,则直线与圆 相交 , 直线与圆有__2__个公共点. 2)若d=6.5cm ,则直线与圆_相__切___, 直线与圆有___1_个公共点.
3)若d= 8 cm ,则直线与圆_相__离___, 直线与圆有__0__个公共点. 2、已知⊙O的半径为5cm, 圆心O与直线AB的距离为d, 根据 条件填写d的范围:
精选课件
2
你发现这个自然现象反映出直线和圆的位置关系有哪几种?
a(地平线)
(3) (2) (1)
观察三幅太阳落山的照片,地平线与太阳的位置关 系是怎样的?
精选课件
3
ll
ll l
O
l
l lllll l
精选课件
4
直线和圆的位置关系
O
O
O
l
l
l
(1)直线和圆有两个公共点时,叫做直线和圆相交;
这时直线叫做圆的割线. (2)直线和圆有唯一公共点时,叫做直线和圆相切;