配电系统的防雷与接地(标准版)
防雷接地技术标准及规范

通信、计算机、监测监控网络机房设置防雷接地技术规范指导意见第一部分:总则第一条:本技术指导意见适用于集团公司所有通信、计算机、监测监控设备及机房。
第二条:通信、计算机、监测监控设备和机房的接地及防雷应做到确保人身和通信设备的安全以及通信设备的正常工作。
第二部分:机房及设备防雷接地的技术标准和条例第三条:机房及设备防雷接地应执行下列技术标准和条例:YDJ26-89《通信局(站)接地设计暂行技术规范》(综合楼部分);YD 2011-93《微波站防雷与接地设计规范》;YD 5068-98《移动通信基站防雷与接地设计规范》;YD 5078-98《通信工程电源系统防雷技术规定》;YD 过 5098-2001《通信局(站)雷电过电压保护设计规范》;GA371-2001《计算机信息系统实体安全技术要求》;GB2887-2000《电子计算机场地通用规范》;GB50174-93《电子计算机房设计规范》;GBJ57-83《建筑防雷设计规范》;YD5003-94《电信专用房屋设计规范》;《煤矿安全规程》;《通讯机房静电防护通则》; 以上标准是为了解决综合通信大楼、交换局、数据局、模块局、接入网站、IP 网站、移动通信基站、卫星地球站、微波站、监测监控机房及设备等因雷电感应通过电源线、信号线、网络数据线、天馈线、遥控系统、监控系统引入的雷害,确保通信设备的安全和正常运行而编制的。
第四条:所有通信、计算机、监测监控网络机房安装的防雷产品应当符合国务院气象主管机构规定的使用要求;所有通信、计算机、监测监控场(站)、机房所建防雷设施应符合相关技术标准、规范。
第五条:从事通信、计算机、监测监控网络机房防雷工程的企业,应当持有国务院气象主管机构颁发的《防雷工程专业设计资质证》和《防雷工程专业施工资质证》;工程设计、施工人员应当持有气象主管机构颁发的《防雷工程专业设计资格证》和《防雷工程专业施工资格证》。
工程完工后,应将设计施工单位及个人的资质资格证复印件及竣工验收资料等存档备查。
防雷防静电接地电阻的标准

接地电阻的要求(常用标准的规定)建筑物接地电阻的要求依据GB 50057-94(2000版)《建筑物防雷设计规范》第三章、建筑物的防雷措施;第二节、第一类防雷建筑物的防雷措施要求,第3.2.1条:防雷电感应的接地装置应和电气设备接地装置共用,其工频接地电阻不应大于10Ω。
第三节、第二类防雷建筑物的防雷措施要求,第3.3.4条:每根引下线的接地电阻不小于10Ω,防直击雷接地装置宜和防雷电感应、电气设备、信息系统等共用接地装置。
第3.3.9条:避雷器、电缆金属外皮、钢管和绝缘子铁脚、金具等应连在一起接地,其冲击接地电阻不应大于10Ω。
架空和直接埋地的金属管道在进出建筑物处应就近与防雷的接地装置相连;当不相连时,架空管道应接地,其冲击接地电阻不应大于10Ω。
本规范第.2.0.3条四、五、六款所规定的建筑物,引人、引出该建筑物的金属管道在进出处应与防雷的接地装置相连;对架空金属管道尚应在距建筑物约25m处接地一次,其冲击接地电阻不应大于10Ω。
第四节、第三类防雷建筑物的防雷措施要求,第3.4.2条:每根引下线的冲击接地电阻不宜大于30Ω。
第3.4.9条:避雷器、电缆金属外皮和绝缘子铁脚、金具等应连在一起接地,其冲击接地电阻不宜大于30Ω。
电源系统接地电阻的要求依据JGJ/T16-92《民用建筑电气设计规范》第14章接地与安全:第14.7.5.3条要求,当机房接地与防雷接地系统共用时,接地电阻要求小于1Ω。
因此对于监控机房和通讯机房接地均应与建筑物防雷地等共用同一接地装置,接地电阻要求小于1Ω。
依据GB50089-98《民用爆破器材工厂设计安全规范》第12章:电气;第12.6.4条:在电缆与架空线连接处,应装设避雷器。
避雷器、电缆金属外皮、钢管和绝缘子铁脚、金具等应连在一起接地,其冲击接地电阻不宜大于10Ω。
第12.7.2条:输送危险物质的各种室外架空管,应每隔20~25米接地一次,每处冲击接地电阻不应大于10Ω。
接地电阻国家标准

接地装置及其运行维护1概述电气设备的任何部分与大地(土壤)间作良好的电气连接称为接地。
接地是确保电气设备正常工作和安全防护的重要措施。
电气设备接地通过接地装置实施。
接地装置由接地体和接地线组成。
与土壤直接接触的金属体称为接地体;连接电气设备与接地体之间的导线(或导体)称为接地线。
2接地的类型(1)工作接地为满足电力系统或电气设备的运行要求,而将电力系统的某一点进行接地,称为工作接地,如电力系统的中性点接地;(2)防雷接地为防止雷电过电压对人身或设备产生危害,而设置的过电压保护设备的接地,称为防雷接地,如避雷针、避雷器的接地;(3)保护接地为防止电气设备的绝缘损坏,将其金属外壳对地电压限制在安全电压内,避免造成人身电击事故,将电气设备的外露可接近导体部分接地,称为保护接地,如:①电机、变压器、照明器具、手持式或移动式用电器具和其他电器的金属底座和外壳;②电气设备的传动装置;③配电、控制和保护用的盘(台、箱)的框架;④交直流电力电缆的构架、接线盒和终端盒的金属外壳、电缆的金属护层和穿线的钢管;⑤室内、外配电装置的金属构架或钢筋混凝土构架的钢筋及靠近带电部分的金属遮拦和金属门;⑥架空线路的金属杆塔或钢筋混凝土杆塔的钢筋以及杆塔上的架空地线、装在杆塔上的设备的外壳及支架;⑦变(配)电所各种电气设备的底座或支架;⑧民用电器的金属外壳,如洗衣机、电冰箱等。
(4)重复接地在低压配电系统的TN-C系统中,为防止因中性线故障而失去接地保护作用,造成电击危险和损坏设备,对中性线进行重复接地。
TN-C系统中的重复接地点为:①架空线路的终端及线路中适当点;②四芯电缆的中性线;③电缆或架空线路在建筑物或车间的进线处;④大型车间内的中性线宜实行环形布置,并实行多点重复接地;(5)防静电接地为了消除静电对人身和设备产生危害而进行的接地,如将某些液体或气体的金属输送管道或车辆的接地;(6)屏蔽接地为防止电气设备因受电磁干扰,而影响其工作或对其它设备造成电磁干扰的屏蔽设备的接地。
防雷,接地。标准参照

防雷与接地系统1.1设计概述根据《电力设备过电压保护设计技术规程》中的规定,将年平均雷暴日超过40天的地区称为多雷区,而超过90天作为强雷区,此类地区的企业单位应予以重点的防护。
根据统计数据表明,珠江三角地区的年雷暴日达到了80天以上,基本上处于强雷区,因此,对于防雷不能带有任何的侥幸心理,若因雷击而导致生命和财产的重大损失是很难用时间和金钱来弥补的,针对雷电防护的专项工程应是刻不容缓的。
雷电流的时间虽然短暂,但它巨大的破坏性是目前人类还无法控制的,现阶段通过人力主动化解雷电的危害也是不现实的,我们只能通过努力被动地将雷击的能量给予阻挡并将它泄放入大地,以避免所带来的灾害。
雷击和线路过电压会出现多种有害的效应,基本上会有以下几种表现形式:直击雷击、感应雷击、电磁脉冲辐射、雷电过电压侵入和反击。
雷击及过电压的保护是一项系统的工作,需要根据不同的特性给予相应而全面的防护。
完备的系统防雷方案包括外部防雷和内部防雷两个方面:∙外部防雷包括避雷针、避雷带、引下线、接地极等等,其主要的功能是为了确保建筑物本体免受直击雷的侵袭,将可能击中建筑物的雷电通过避雷针、避雷带、引下线等,泄放入大地。
∙内部防雷系统是为保护建筑物内部的设备以及人员的安全而设置的。
在需要保护设备的前端安装合适的避雷器,使设备、线路与大地形成一个有条件的等电位体。
将可能进入的雷电流阻拦在外,并使内部设施所感应到的雷电流得以安全泄放入地,确保后接设备的安全。
1.2设计依据GB50169-92《电气装置安装工程接地装置施工及验收规范》GB 50057-1994(2000版):《建筑物防雷设计规范》;YDJ 26-89:《通信局(站)接地设计暂行技术规定》;GB 7450-87:《电子设备雷击保护导则》;IEC 61643-1-1998:接至低压电力配电系统的浪涌保护器;IEC 61644-1-1999:接至电信网络的信号接口保护器;1.3抗干扰系统及其设计1. 防止静电干扰静电感应主要来自两个方面,其一是室外高压输电线、雷电等外界电场,其二是室内环境、地板材料、整机结构等的内部系统。
配电系统的防雷与接地问题

配电系统的防雷与接地问题摘要:变电站是集中分配和变换电能电压与电流的场所,也是维系电厂与电力系统之间的纽带,承担着电压变换与分配的重要任务,如果变电站发生雷击事故,不仅会对电厂造成巨大的经济损失,还可能引发一系列的安全问题,所以加强变电站配电系统的防雷工作是不可忽视的问题。
本文从变电站配电系统的接地与防雷内容进行分析,研究了变电站配电系统对接地设计的要求。
关键词:变电站;配电系统;防雷与接地引言:现代的电力系统得到了快速的发展,在工程承建时,变电站配电系统通常由土建企业施工,那么就可能存在施工人员对防雷接地重视程度不足的问题,或是由于技术操作不规范而导致防雷接地施工的质量不合格,针对变电站配电系统的防雷与接地问题,技术人员应当寻求更有效的线路防雷保护措施,并对施工质量加以严格的要求,以保护变电站配电系统中的各项设备。
自然界中产生的雷电伴随着高电压,如果击中变电站配电系统,会瞬间释放大量的电荷,可能导致变电站配电系统瘫痪,或者损坏相关电气设备,将雷电以接地的方式进行引流,才使保护变电站配电系统的良策。
一、变电站配电系统的接地与防雷的相关内容(一)接地电阻接地电阻是指电流在流经地面以后,由流经点和某点之间的物理值概念,即为接地极与电位为零的远方接地极之间的欧姆定律电阻。
在变电站配电系统防雷接地中测量电阻值时,假设雷电流在地下疏散40后电流值等于0,由于土壤结构的不同,接地电阻值也会存在不同[1]。
(二)接地种类变电站配电系统中的接地种类包括工作接地、雷电保护接地、过电压保护接地、防静电保护接地等等。
工作接地就是电力系统的电气装置中,为保护系统的运行所设置的必要的接地;雷电保护接地是专为雷电保护装置设置向大地泄放雷电流的接地;过电压保护接地是为消除雷击和过电压对周围造成的影响而设置的接地;防静电接地是为了消除生产过程中产生的静电而产生的接地。
除此之外,还有屏蔽接地,是为了防止雷电产生的电磁干扰对通信和计算机系统所采取的接地措施;保护接地是包括电气设备的金属外壳、配电装置的构架与线路塔杆等等,绝缘损坏是可能会带电,为防止造成人员触电的危险事故,设置接地措施可以避免危险事故的发生。
2024年配电系统的防雷与接地(三篇)

2024年配电系统的防雷与接地雷电的危害,大家是有目共睹的。
然而,近几年随着电网的改造,特别是城网改造和变电所自动化系统的建设,大家可能对这些设备的防雷接地保护还是认识不足,以致造成了多起雷害事故,造成自动化系统的瘫痪和一些电网设备事故,损失是比较严重的。
因此,我们有必要探讨一下供、配电系统的防雷接地问题,为设计和施工人员提供一定的帮助。
1电力线路的防雷与接地1.1输电线路的防雷与接地输电线路的防雷,应根据线路的电压等级、负荷性质和系统运行方式,并结合当地地区雷电活动的强弱、地形地貌特点及土壤电阻率高低等情况,通过技术经济比较,采用合理的防雷方式。
(1)35kV线路不宜全线架设避雷线,一般在变电所的进线段架设1~2km的避雷线,同时在雷电活动强烈的地段架设避雷线,或者安装线路金属氧化物避雷器。
(2)110kV线路应全线架设避雷线,山区应采用双避雷线;但在年平均雷暴日数不超过15日或运行经验证明雷电活动轻微的地区,可不架设避雷线。
(3)220kV线路应全线架设避雷线,同时应采用双避雷线。
对于架设避雷线的线路,应注意杆塔上避雷线对边导线的保护角,一般采用20°~30°保护角,同时做好杆塔的接地。
根据土壤电阻率的不同,杆塔的工频接地电阻,不宜大于表1所列数值。
表1杆塔的接地电阻地壤电阻率(Ω·m)100及以下100以上至500500以上至1000工频接地电阻(Ω)101520对于35kV线路装设的金属氧化物避雷器的技术参数,一般应满足以下条件:①持续运行电压(有效值)不小于40.8kV;②额定电压(有效值)不小于51kV;③直流1mA参考电压不小于73kV(范围在73~74kV之间);④标准放电电流5kA等级下残压(峰值)不大于:雷电冲击134kV、操作冲击114kV、陡波冲击154kV。
⑤xxμs方波电流(峰值)200A。
⑥对绝缘配置,根据线路污秽等级要求确定。
与输电线路一样,配电线路的防雷也可采用避雷线或者避雷器,对于不同电压等级和不同线路采取的措施也不一样。
防雷防静电接地电阻的标准

接地电阻的要求(常用标准的规定)建筑物接地电阻的要求依据GB 50057-94(2000版)《建筑物防雷设计规范》第三章、建筑物的防雷措施;第二节、第一类防雷建筑物的防雷措施要求,第3.2.1条:防雷电感应的接地装置应和电气设备接地装置共用,其工频接地电阻不应大于10Ω。
第三节、第二类防雷建筑物的防雷措施要求,第条:每根引下线的接地电阻不小于10Ω,防直击雷接地装置宜和防雷电感应、电气设备、信息系统等共用接地装置。
第条:避雷器、电缆金属外皮、钢管和绝缘子铁脚、金具等应连在一起接地,其冲击接地电阻不应大于10Ω。
架空和直接埋地的金属管道在进出建筑物处应就近与防雷的接地装置相连;当不相连时,架空管道应接地,其冲击接地电阻不应大于10Ω。
本规范第.条四、五、六款所规定的建筑物,引人、引出该建筑物的金属管道在进出处应与防雷的接地装置相连;对架空金属管道尚应在距建筑物约25m处接地一次,其冲击接地电阻不应大于10Ω。
第四节、第三类防雷建筑物的防雷措施要求,第条:每根引下线的冲击接地电阻不宜大于30Ω。
第条:避雷器、电缆金属外皮和绝缘子铁脚、金具等应连在一起接地,其冲击接地电阻不宜大于30Ω。
电源系统接地电阻的要求依据JGJ/T16-92《民用建筑电气设计规范》第14章接地与安全:第14.7.5.3条要求,当机房接地与防雷接地系统共用时,接地电阻要求小于1Ω。
因此对于监控机房和通讯机房接地均应与建筑物防雷地等共用同一接地装置,接地电阻要求小于1Ω。
依据GB50089-98《民用爆破器材工厂设计安全规范》第12章:电气;第12.6.4条:在电缆与架空线连接处,应装设避雷器。
避雷器、电缆金属外皮、钢管和绝缘子铁脚、金具等应连在一起接地,其冲击接地电阻不宜大于10Ω。
第条:输送危险物质的各种室外架空管,应每隔20~25米接地一次,每处冲击接地电阻不应大于10Ω。
第条:危险区域应采取相应的防静电措施。
凡生产、加工或储存危险品的过程中,有可能积聚静电电荷的金属设备、金属管道和导电物体,均应直接接地,接地电阻不应大于100Ω。
配电系统的防雷与接地范本(2篇)

配电系统的防雷与接地范本配电系统是现代工业生产和民用建筑中不可或缺的关键设施之一。
然而,频繁的雷电活动给配电系统带来了很大的挑战,因为它们可能导致设备损坏、系统故障甚至火灾等严重后果。
因此,在设计和安装配电系统时,必须重视防雷措施和接地系统的建设。
本文将详细介绍配电系统的防雷与接地范本。
一、防雷范本1. 选择合适的设备防雷措施的第一步是选择具有良好防雷性能的设备。
对于配电系统来说,主要的设备包括变压器、开关柜、电缆等。
这些设备应具有防雷等级符合国家标准要求,并经过权威机构的检测和认证。
2. 合理布置设备在设计和布置配电系统时,应考虑雷电冲击的传播路径和能量分散问题。
首先,应将设备布置在有利于雷电放电扩散和分散的位置。
其次,设备之间的间距应根据设备的防雷等级和供电要求进行合理规划,避免因电气设备之间的相互干扰而引发雷电事故。
3. 安装避雷装置为了有效地防范雷电对配电系统的影响,必须安装合适的避雷装置。
避雷装置不仅能够减少雷电对设备的直接冲击,还能引导雷电电流通过合适的导体通道,将雷电能量导入地下。
常见的避雷装置包括避雷针、避雷网和避雷线等。
安装避雷装置时,应根据设备的特点和周围环境的条件进行合理布置。
4. 导引和耦合装置的安装为了进一步提高配电系统的防雷性能,可以安装导引和耦合装置。
导引装置的作用是引导雷电电流尽快地传导和扩散,减少电流对设备的影响。
耦合装置则可以将雷电冲击与设备分离,减少雷电对设备的直接侵害。
导引和耦合装置的选择和安装位置应根据具体的配电系统特点和环境条件进行合理设计。
二、接地范本1. 设计合理的接地系统配电系统的接地系统是保证系统安全运行的重要组成部分。
在设计接地系统时,应根据配电网络的规模和特点进行合理规划。
首先,应确定合适的接地电阻的目标值,以确保接地系统的正常运行。
其次,应根据配电系统的整体结构和布置,合理确定接地线路的长度和布置形式。
最后,应选择合适的接地方式,如电力接地和电子设备接地等。
防雷及接地系统设计准则

1.4 当防雷及等电位采用共同接地时,接地电阻应按各系统中的要求的最小值设置(≤1Ω)。
1.5 分层机电设备接地,兹分为水泵、配电盘、强弱电间、桥架及母线、3大运营商机房、外露风机及冷却水塔、发电机等。
1.6 弱电设备指建物内外监控设备浪涌保护,及室外立柱监控设备防雷保护。
二 建筑物本体防雷设计
2.1 接地体的设置类型:①筏板或箱形基础,②独立基础,③桩基。
表2.2 雷区防护分区 LPZ0A区 电磁场没有衰减,各类物体都可能遭到直接雷击,属于完全暴露的不设防区。 LPZ0B区 电磁场没有衰减,各类物体很是遭受直接雷击,属于充分暴露的直击雷防护区。
LPZ1区
由于建筑物的屏蔽措施,流经各类导体的雷电流比直击雷防护区LPZOB区进一步 减小,电磁场得到了初步的衰减,各类物体不可能遭受直接雷击。
2.7 屋顶彩灯或屋顶外轮廓照明装置的设计的原则
2.7.1 屋顶照明装置应设有防雷保护装置,同时其线路必须穿金属管。
2.7.2 供屋顶照明用配电盘内需设浪涌保护器,并就近与防雷装置连接。
三 分层机电设备等电位设计
3.1 一般规定
3.1.1
总等电位由紫铜板制成,应将建筑物内保护干线、接地干线、设备进线总管、建筑物金属构件、集中采暖季空调系统的升压管等导 电体进行连接,总等电位联结均采用各种型号的等电位卡子,不允许在金属管道上焊接。
2.2.2
规格:当钢筋≥φ16时,应利用两根钢筋(绑扎或焊接)作为一组引下线;当钢筋≥φ10时,应利用四根钢筋(绑扎或焊接)作为一组引下 线。
2.2.3 室外需接地的设备:外墙引下线在地坪下0.8~1m处用40X4或φ12mm镀锌导体引出与室外接地线焊接,并作防腐处理。
2.2.4
N-S接零保护系统与接地、防雷

配电室或总配电箱处
中间处(分配电箱处)
末端处(开关箱处)
6、保护零线上每一处重复接地装置的接地阻不应大于10Ω
7、做防雷接地机械上的 电气设备,所连接的PE线 必须同时做重复接地,同 一台机械电气设备的重复 接地和机械的防雷接地可 共用同一个接地体,防雷 装置的冲击接地电阻值不 大于30Ω
谢谢
在TN-S接零保护系统中最基本的一点就是PE线的正确引出、设置和使用,PE线的引出位置或PE线 与N线最初分开点必须在总电源进户端或总配电箱中总漏保RCD的电源侧,工作零线与保护零线 分开后,不得再作电气连接,而且在任何情况下不得混用。保护零线要做不少于三处的重复接地 ,3处的重复接地点应接在配电系统(线路)的首端处、中间处、末端处。具体地应设在总配电箱处 、分配电箱、一个或几个开关箱处。
在TN-S接零保护系统中,通过总漏电保护器的工作零线与保护零线不得在做电气连接
不得再做电气连接
PE线严禁装设开关或熔断器、严禁通过工作电流、严禁断线
TN-S系统中,电气设备不带电的外露的可导电部分应做接零保护
接地体的设置
1、接地体不得采用铝导体做接地体或地下接地线
2、垂直接地体宜采用角钢、钢管或光面圆钢,不得采用螺纹钢
3、每一接地装置的接地线应采用2根以上的导体, 在不同点与接地体做电气连接。垂直接地体宜采 用2.5m长角钢;垂直接地体的间距一般不小于 5m,接地体顶面埋深不应小于0.5m
4、接地体上的接线端子处宜采用螺栓焊接; 接地线与接地端子的连接处宜采用铜鼻压接,
不能直接缠绕。工作接地的电阻不大于4Ω
5、TN系统中的保护零线除必须 在配电室或总配电箱处做重复 接地处,还必须在配电系统的 中间处和末端处做重复接地。
DK
供电工程电气供电系统的防雷与接地ppt课件

1-接地体 2-流散电场 3-接地电流的地中电位分布
IE
3 1
2
≈20m
1 2
UE
续上页
(三)接地类型 1. 功能性接地 为保证电力系统和电气设备达到正常工作要求而进行的接地,例如电 源中性点的直接接地或经消弧线圈等的接地,又称工作接地。
2. 保护性接地 为了保证电网故障时人身和设备的安全而进行的接地。包括:
E E
5
1-接地体 2-接地干线 3-接地支线 4-电气设备 5-连接扁钢
2024/1/27
续上页 (二) 接地电流与对地电压 电气设备在发生接地故障时,电流将
通过接地体以半球形向大地中散开,如图 所示。
在距离接地体越远的地方,半球的球 面积越大,其散流电阻越小,相对于接地 点处的电位就越低。
电气设备的接地部分,如:接地的外 露可导电部分和接地体等,与零电位的 “大地”之间的电位差,称为接地部分的 对地电压。
变配电所中一般需要通过装设阀式避雷器或氧化锌避雷器对变压器进 行雷电侵入波的防护。
避雷器的选择,必须使其伏秒特性与变压器伏秒特性合理配合,并且 避雷器的残压必须小于变压器绝缘耐压所能允许的程度。
避雷器应尽可能靠近变压器安装。避雷器接地线应与变压器低压侧 接地中性线及金属外壳连在一起接地。
续上页
1~2km 架空线
安全保护接地
为防止由带电导体的绝缘损坏所造成人体受到 间接电击,而将电气设备的外露可导电部分进 行的接地。
过电压保护接地 为防止过电压对电气设备和人身安全的危害而 进行的接地,如防雷接地。
防静电接地
为了消除静电对电气设备和人身安全的危害而 进行的接地。
3. 功能性与保护性合一的接地(如屏蔽接地)
配电系统的防雷措施

(一)架空裸导线防雷
1、装设避雷线保护: 架空线路安装避雷线,沿线及设备均可 得到保护。由于线路绝缘薄弱,耐雷水平 低,所以10kV架空线路一般不装避雷线 (可以装设进线段保护),但特殊地段需 装避雷线时,混凝土电杆都要按设计要求 做接地处理。
2、装设避雷器保护: 对于10kV裸导线,采用避雷器进行防 雷保护的成本高,施工很不方便,目前基 本上是一些雷电活动频繁的线段安装避雷 器,同时按照要求做好杆塔的接地。但电 杆上装设柱上开关或电缆头时,均需要装 设避雷器来保护,设备的金属外壳和避雷 器共同接地。
1、配电网一般靠变电站出线侧和配电变压器高压侧 的避雷器保护,线路中缺少避雷线保护而易受雷 击,即使这些避雷器动作,较高的雷电过电压也 会使线路绝缘子击穿放电。目前6~10 kV电网所 用避雷器(包括新型氧化锌或老式碳化硅的、带 或不带间隙的)较杂,其额定电压、动作电压及 其残压差异较大。而配电网又极易由雷电过电压 引发弧光接地过电压(可达3.5 倍系统最大运行电 压,系统最大运行电压约为额定电压的1.05~1.1 倍;最高时可达到额定电压的1.15倍)和铁磁谐 振过电压(可达3倍最高运行电压),经常导致避雷 器爆炸。另外还有些避雷器因质量差而在运行中 受潮,或间隙动作后不能可靠熄弧而爆炸,造成 电网接地短路事故。
2、电网中避雷器接地存在较多问题: ①受场所限制。相当多配电型避雷器接地电 阻超标(达上百欧姆); ②接地引下线损坏。引下线有些用带绝缘外 皮的铝线,内部折断不易发现,两端头连 接头易氧化锈蚀;还有些在埋入土中与接 地体连接处产生电化学腐蚀甚至断裂(这在 环境污秽场所中较为严重),使避雷器等防 雷设备形同虚设。
这种接地法的目的: 一旦线路落雷时,避雷器放电,雷电流 经集中接地体流入大地的同时,有一部分 雷电流沿电缆金属外皮流入变电站内接地 网,这样在电缆外皮产生螺旋形磁场,相 当于增加电缆的电感使波阻抗加大,因此, 经电缆芯线侵入变电站的截断雷电波很快 衰减,使波幅和陡度都有所减小,有利于 保护变压器的安全。
接地与防雷安全要求(二篇)

接地与防雷安全要求(1)所有电气设备的金属外壳以及和电气设备连接的金属构架等,除有特殊规定外,均应有可靠的接地(零)保护。
(2)在施工现场专用的中性点直接接地的供电系统中,必须采用接零保护,且须设专用保护零线,不得与工作零线共用。
(3)专用保护零线应由工作接地线或由配电室的零线或第一级漏电保护器电源侧的零线引出。
(4)在中性点不直接接地供电系统中,则必须采用接地保护。
(5)所有电气设备的保护零线应以并联方式与零干线连接。
零线上严禁装设开关或熔断器。
(6)严禁利用大地做零线或相线。
(7)重复接地线与保护线相连,与电气设备相连接的保护零线应用截面不小于2.5mm攩2攪的绝缘多股铜线。
保护零线除须在配电室或总配电箱处做重复接地外,还必须在配电线路中间处和末端处作重复接地。
(8)施工现场的塔式起重机,井字架和金属脚手架,当其高度超过20m时,要设置防雷和重复接地装置,其接地电阻不大于10欧姆。
接地与防雷安全要求(二)的重要性不言而喻。
在现代社会的各个领域,都需要接地与防雷措施来保障人们的生命安全和设备设施的正常运行。
无论是居住环境、工业生产还是通信系统,都离不开接地与防雷安全的要求。
首先,接地是指将电气设备或设施与地面之间建立起良好的电气连接。
接地系统的建立可以有效地防止电气设备的漏电、电弧及其他电气故障造成的电击风险,保障人员的人身安全。
同时,接地系统还能确保电气设备的正常运行,提高设备的可靠性和稳定性。
因此,在各类建筑、电气设备安装和工业化生产过程中,接地的规范要求是必不可少的。
其次,防雷安全也是一项非常重要的要求。
雷电是自然界中的一种灾害性天气现象,其高能电流和高电压可能对人类、建筑物和设备造成巨大威胁。
为了防止雷击事故的发生,必须采取一系列防雷措施。
首先,建筑物的外部应设置良好的避雷装置,例如避雷针和避雷网,来导引雷电流到地面;其次,室内的电气设备应当采取屏蔽和防护措施,以防止不必要的雷电干扰和损坏。
防雷接地极机房防雷接地防雷接地施工方案

防雷接地极机房防雷接地防雷接地施工方案一、雷电概述雷电的描述雷电是由天空中云层间的相互高速运动、剧烈磨擦,使高端云层和低端云层带上相反电荷。
此时,低端云层在其下面的大地上也感应出大量的异种电荷,形成一个极大的电容,当其场强达到一定强度时,就会产生对地放电,这就是雷电现象。
在气象学中,常用雷暴日数、年平均雷暴日数、年平均地面落雷密度,来表征某个地方雷电活动的频繁程度和强度。
此外,也使用年雷闪频数来评价雷电活动,它是指1000平方公里范围内一年共发生雷闪击的次数。
大量观测统计资料表明,一个地区的雷闪频数与雷暴日数成线性关系.通常,建筑行业的防雷,更多的注重。
雷暴日的多少;航空、航海、气象、通信等行业越来越关心年雷闪频数的多少。
我国一般按年平均雷暴日数将雷电活动区分为少雷区(<15天)、中雷区(<15-40天)、多雷区(>41—90天)、强雷区(〉90天).我国的雷电活动,夏季最活跃,冬季最少。
全球分布是赤道附近最活跃,随纬度升高而减少,极地最少。
雷电的破坏雷电的破坏主要是由于云层间或云和大地之间以及云和空气间的电位差达到一定程度(25—30kV/cm)时,所发生的猛烈放电现象。
通常雷击有三种形式,直击雷、感应雷、球形雷.直击雷是带电的云层与大地上某一点之间发生迅猛的放电现象.感应雷是当直击雷发生以后,云层带电迅速消失,地面某些范围由于散流电阻大,出现局部高电压,或在直击雷放电过程中,强大的脉冲电流对周围的导线或金属物产生电磁感应发生高电压、而发生闪击现象的二次雷。
球形雷是球状闪电的现象。
1)直击雷破坏;当雷电直接击在建筑物上,强大的雷电流使建(构)筑物水份受热汽化膨胀,从而产生很大的机械力,导致建筑物燃烧或爆炸。
另外,当雷电击中接闪器,电流沿引下线向大地泻放时,这时对地电位升高,有可能向临近的物体跳击,称为雷电“反击”,从而造成火灾或人身伤亡。
2)感应雷破坏;感应雷破坏也称为二次破坏。
浅析35KV线路接地电阻与防雷(标准版)

( 安全技术 )单位:_________________________姓名:_________________________日期:_________________________精品文档 / Word文档 / 文字可改浅析35KV线路接地电阻与防雷(标准版)Technical safety means that the pursuit of technology should also include ensuring that peoplemake mistakes浅析35KV线路接地电阻与防雷(标准版)摘要:本文介绍了宜宾芙蓉电力公司35KV供电系统的运行方式及线路特点,分析了35KV供电线路接地和防雷系统上存在的一些问题;论述了35KV线路接地设计的必要性和接地装置的设计原则;阐述了接地电阻的降阻措施和如何提高35KV线路的防雷措施,提出了使用“避雷器在线监测仪”技术方案的建议,通过避雷器在线监测仪的使用,不断掌握本地的雷电参数、输电线路的落雷次数,从而有针对性地、逐步地完善、优化35KV供电系统的防雷体系。
关键词:35KV线路接地电阻防雷一、35KV供电系统概况宜宾芙蓉电力公司供电系统,由宜宾供电局武家岩110/35KV变电站供电,通过巡电东(344)、巡电西(345),两条专线至电厂35KV 中央变电站,又通过35KV中央变电站分别向:白皎变电所、杉矿变电所、红卫变电所、珙泉变电所、新林变电所供电,形成了以电厂35KV中央变电站,为中心的川煤芙蓉集团公司珙县区域的供电网络。
电厂35KV中央变电站已于2007年实现了微机综合自动化系统改造。
白皎变电所、杉矿变电所分别在2010、2012年也进行了微机综合自动化系统改造。
1、系统正常运行方式宜宾供电局武家岩110/35KV变电站,通过两台40MVA变电器,分别以馈出开关344(巡电东)、345(巡电西)向电厂35KV中央变电站Ⅰ、Ⅱ母线供电;35KV中央变电站为单母线系统,母联开关(300)断开,Ⅰ、Ⅱ母线分段运行,形成分别以白皎、杉矿、珙泉变电所进行的双回供电;红卫、新林变电所单回供电的供电体系。
防雷检测配电室标准

防雷检测配电室标准全文共四篇示例,供读者参考第一篇示例:防雷检测配电室标准是为了确保配电室内的设备和人员免受雷击危害的一项重要措施。
随着科技的发展和人们对安全意识的不断提高,配电室的防雷检测标准也在不断完善和更新,以确保配电室的安全性和可靠性。
一、配电室防雷检测的重要性配电室是电力系统中的重要组成部分,承担着电能分配、传输和控制的重要功能。
在雷电活动频繁的地区,配电室往往成为雷击的重要目标,一旦遭受雷击,将对电力系统造成严重的损失,甚至危及人员生命安全。
配电室的防雷检测至关重要。
1. 遵循国家相关法律法规和标准:配电室的防雷检测标准应当符合国家相关法律法规和标准的要求,确保配电室的设计、施工和运行符合国家标准。
2. 科学合理:配电室的防雷检测标准应当基于科学原理,合理地确定配电室的雷击危险性及防护要求,确保配电室的防雷设施能够有效地防范雷击风险。
3. 经济适用:配电室的防雷检测标准应当考虑到投资成本和运行成本,确保在保障安全的前提下,最大限度地降低投资和运行成本。
4. 可操作性:配电室的防雷检测标准应当具有一定的可操作性,便于实施和监督,确保配电室的防雷设施能够有效地运行和维护。
1. 配电室的雷击危险性评估:应根据配电室的地理位置、气象条件等因素,对配电室的雷击危险性进行评估,确定配电室的防雷等级。
3. 配电室的防雷施工要求:应根据配电室的防雷设计要求,对防雷设施的施工进行监督和检验,确保防雷设施的安装质量和效果。
四、配电室防雷检测标准的实施和监督1. 实施:配电室的防雷检测标准应当由专业人员进行实施,保证实施的科学性和可靠性。
通过以上对防雷检测配电室标准的介绍,我们可以看出,配电室的防雷检测标准是确保配电室安全的重要手段。
只有遵循科学的原则,制定合理的标准,才能有效地防范雷击风险,保障电力系统的安全和可靠运行。
希望相关部门和企业能够重视配电室的防雷检测工作,加强标准的制定和实施,确保配电室的安全性和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
配电系统的防雷与接地(标准
版)
Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management.
( 安全管理 )
单位:______________________
姓名:______________________
日期:______________________
编号:AQ-SN-0628
配电系统的防雷与接地(标准版)
雷电的危害,大家是有目共睹的。
然而,近几年随着电网的改造,特别是城网改造和变电所自动化系统的建设,大家可能对这些设备的防雷接地保护还是认识不足,以致造成了多起雷害事故,造成自动化系统的瘫痪和一些电网设备事故,损失是比较严重的。
因此,我们有必要探讨一下供、配电系统的防雷接地问题,为设计和施工人员提供一定的帮助。
1电力线路的防雷与接地
1.1输电线路的防雷与接地
输电线路的防雷,应根据线路的电压等级、负荷性质和系统运行方式,并结合当地地区雷电活动的强弱、地形地貌特点及土壤电阻率高低等情况,通过技术经济比较,采用合理的防雷方式。
(1)35kV线路不宜全线架设避雷线,一般在变电所的进线段架设
1~2km的避雷线,同时在雷电活动强烈的地段架设避雷线,或者安装线路金属氧化物避雷器。
(2)110kV线路应全线架设避雷线,山区应采用双避雷线;但在年平均雷暴日数不超过15日或运行经验证明雷电活动轻微的地区,可不架设避雷线。
(3)220kV线路应全线架设避雷线,同时应采用双避雷线。
对于架设避雷线的线路,应注意杆塔上避雷线对边导线的保护角,一般采用20°~30°保护角,同时做好杆塔的接地。
根据土壤电阻率的不同,杆塔的工频接地电阻,不宜大于表1所列数值。
表1杆塔的接地电阻
地壤电阻率(Ω·m)100及以下100以上至500500以上至1000 工频接地电阻(Ω)101520
对于35kV线路装设的金属氧化物避雷器的技术参数,一般应满足以下条件:
①持续运行电压(有效值)不小于40.8kV;
②额定电压(有效值)不小于51kV;
③直流1mA参考电压不小于73kV(范围在73~74kV之间);
④标准放电电流5kA等级下残压(峰值)不大于:
雷电冲击134kV、操作冲击114kV、陡波冲击154kV。
⑤2000μs方波电流(峰值)200A。
⑥对绝缘配置,根据线路污秽等级要求确定。
1.2配电线路的防雷与接地
与输电线路一样,配电线路的防雷也可采用避雷线或者避雷器,对于不同电压等级和不同线路采取的措施也不一样。
(1)10kV裸导线线路。
对于10kV裸导线线路,原则上可以采用避雷线进行防雷保护,但由于成本高,施工不方便,目前基本上都不采用避雷线,而是在一些雷电活动频繁的线段安装避雷器,同时按照要求做好杆塔的接地。
(2)10kV绝缘线线路。
由于近几年城网改造,北京地区城镇线路基本上都换成了交联聚乙烯架空绝缘线,但其防雷措施与原来的裸导线线路的防雷措施并没有变化,致使发生了数十起雷击绝缘线断线事故。
对于架空绝缘线目前可采取以下防雷措施:①安装避雷线,
此种方法避雷效果最好,但可行性和难度大,成本高。
②提高线路绝缘子耐压水平,将10kV绝缘子换为防雷绝缘子,将大大提高防雷水平。
③在多雷区或者按照一定档距安装线路避雷器,减少雷击断线事故。
④延长闪烁路径,导致电弧容易熄灭,局部增加绝缘强度,如在导线与绝缘子相连处加强绝缘,以及采用长闪烁路径避雷器等。
⑤局部剥离绝缘导线,使之局部成为裸导线,从而电弧能在剥离部分滑动,而不是固定在某一点烧蚀,同时也可为以后施工提供一个挂地线点。
(3)低压配电线路。
低压线路应从变压器出口处安装低压避雷器或击穿保险器,同时做好接地,接地装置的接地电阻不应大于4Ω。
中性点直接接地的低压电力网中的中性线应在电源点接地。
低压配电线路,在干线和分支线终端处应重复接地,每年重复接地装置的接地电阻应不大于10Ω,对于较长的线路,重复接地应不少于3处。
特别是为防止雷电波沿低压配电线路侵入用户,对于接户线上的绝缘子铁角应接地,接地电阻应小于30Ω,这一点对于我们进行的一户一表改造工作尤其应引起重视。
1.3电力电缆线路的防雷与接地
电力电缆由于其本身结构特点和与其他电气设施连接的要求,根据不同电压等级采取不同的防雷方法。
对于35kV及以下电压等级的电力电缆,基本上应采取在电缆终端头附近安装避雷器,同时终端头金属屏蔽、铠装必须接地良好。
对于110kV及以上的高压电缆,当电缆线路遭受雷电冲击电压作用时,在金属护套的不接地端或交叉互连处会出现过电压,可能会使护层绝缘发生击穿,应采取以下保护方案之一:①电缆金属护套一端互连接地,另一端接保护器。
②电缆金属护套交叉互连,保护器Y0接线。
③电缆金属护套交叉互连,保护器Y接线或Δ接线。
④电缆金属护套一端互连接地加均压线。
⑤电缆金属护套一端互连接地加回流线。
2电气设备与电子设备的防雷与接地
2.1变电所设备的防雷与接地
变电所设备的防雷离不开建筑物的防雷,按照最新的国家强制性标准GB50054-95,对建筑物与设备的防雷接地应采用等电位连接,而不是传统上分别做独立的接地网。
所谓等电位连接,就是把
建筑物本身和其内外各种导电物用导体(电气上)焊接起来,以保证等电位。
由于雷电流峰值非常大,流经之处都立即升至很高的电位(相对于大地而言),因此对于附近尚处在大地电位的电气、电子设备和人产生旁侧闪烁,容易引起设备和人身事故。
所以等电位连接是防雷的关键措施这一。
(1)所内建筑物的防雷。
建筑物本身的防雷装置是建筑物内电气设备及系统防雷的第一道屏障,建筑物本身的防雷性能直接影响到内部的电气设备的防雷,因此首先必须重视建筑物本体的防雷。
现代建筑物防雷主要由顶部避雷带、网状接闪器、建筑物的梁、柱、楼板和四周墙体内的主钢筋作引下线,利用地下钢筋混凝土基础作为接地体。
在建筑物设计和施工时就要考虑到作为网状接闪器、引下线和接地体的钢筋网络之间的电气连接,使之成为较理想的"法拉第笼"式避雷器。
防雷网与建筑物钢筋混凝土相结合,已成为国内外公认的经济可靠的防雷方式,因此在设计、施工时都应预留从各层楼板、梁、柱内钢筋焊出接头,以便与室内外接地线相连。
(2)室外设备的防雷。
为了防止直击雷,室外可根据需要,安装一支或多支避雷针,计算其保护范围,以达到保护室外所有设备要求为原则。
同时对于室外架构母线和变压器中性点应加装避雷器保护,室外做一接地网,所有设备的接地引下线都与该接地体焊接,以保证等电位。
为了防止雷击产生过电压,各种设备的绝缘水平应能满足电压对该设备的绝缘要求,我们在设备定货和出厂试验时应严格把关,按照规程要求确保设备绝缘耐压水平,以防雷害击穿。
这种防雷结构有很多优点:①可避免"绕击";②能起"法拉第笼"的屏蔽作用,可大大削弱雷电电磁脉冲的侵入;③因建筑物各层的梁、柱、楼板、墙体的钢筋和金属管线等导电体在电气上已连成一体,做到几乎处处电位相等,从而保证了设备的安全;④"笼"式避雷装置的引下线是由为数众多的钢筋组成,大大分散了雷电流,并削弱了建筑物内信息设备所受到的脉冲电磁场冲击幅值;⑤接地体是分布在地下四周的钢筋混凝土基础,可形成均匀分布的均压网,与大地接触面广,接地电阻低且又稳定。
(3)室内设备的防雷。
室内各种金属屏、柜外皮均应与底座槽钢可靠焊接或用螺栓连接,保证接触良好,同时槽钢应与电缆沟道内的电缆支架用镀锌扁钢焊接起来,形成一个整体,与室外接地网形成一个完整的大接地网。
2.2计算机、通讯等自动化设备的防雷接地
大楼内计算机等电子设备的第一道保护屏障,由于通讯电台必须通过信号电缆与通讯塔上天线相连,因此对于通讯电缆外皮必须做好接地(多点重复接地),并与大楼的接地网连接起来形成等电位,同时可以加装避雷器。
对于通讯电台应加串口保护器如SD25-V24/24,其它电子设备的通讯接口都应加装相应的串口保护器,其实就是各种小防雷器(OBO、PHOENIX都有相应接口的保护器),这里就不再一一列举。
对于大楼内的电子设备,最重要的就是将各个独立的接地网连接成一个共用接地系统,其它如分开、独立、专用等接地方案都是不妥的,在工程中也没有实际意义。
对于所有大楼内的电气、电子设备,应
该逐级采取防雷保护措施,首先做好大楼和电源的防雷接地,然后在机房和各设备端口安装相应的避雷器,才能真正防止雷电波的侵入和反击。
3结束语
配电系统的防雷与接地应从工程设计阶段就认真加以考虑,根据各地的实际情况,采取切实可行的防雷方案,选用质量可靠的电气设备和可靠性高的防雷设备,同时真正按照等电位的原则,做好符合要求的共用接地网,综合考虑防雷与接地,只有这样我们的线路和设备才能避免遭受雷击的危害。
XXX图文设计
本文档文字均可以自由修改。