(完整版)初中几何变换——翻折
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学几何变换之
轴对称
一、知识梳理
1、轴对称基本要素:对称轴。
2、基本性质:
(1)对应线段、对应角相等
(2)对应点所连线段被对称轴垂直平分 (3)对称轴上的点到对应点的距离相等 (4)对称轴两侧的几何图形全等 3、应用
翻折问题、最值问题等
二、常考题型
类型一:轴对称性质
1、如图,在平行四边形ABCD 中,13=AB ,4=AD ,将平行四边形ABCD 沿AE 翻折后,点B 恰好与点C 重合,则折痕AE 的长为__________.
第1题
第2题
第3题
2、如图, 矩形
中,AB =8,BC =6,P 为AD 上一点, 将△ABP 沿BP 翻折至△EBP , PE
与CD 相交于点O ,且OE =OD ,则AP 的长为__________.
3、如图,在△ABC 中,AB =AC ,BC =24,tanC =2,如果将△ABC 沿直线l 翻折后,点B 落在边
AC 的中点E 处,直线l 与边BC 交于点D ,那么BD 的长为
。
4、如图,菱形纸片ABCD中,∠A=600,将纸片折叠,点A、D分别落在A’、D’处,且A’
的值为。
D’经过B,EF为折痕,当D’F CD时,CF
FD
5、如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=23,则四边形MABN的面积是。
第4题第5题第6题
6、如图,已知边长为5的等边三角形ABC纸片,点E在AC边上,点F在AB边上,沿着EF 折叠,使点A落在BC边上的点D的位置,且,则CE的长是。
7、如图1,在矩形纸片ABCD中,AB=83,AD=10,点E是CD的中点.将这张纸片依次折叠两次:第一次折叠纸片使点A与点E重合,如图2,折痕为MN,连接ME、NE;第二次折叠纸片使点N与点E重合,如图3,点B落在B′处,折痕为HG,连接HE,则tan∠EHG = .
图2 图3
8、如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.
(1)求证:△ABG≌△AFG;
(2)求BG的长.
类型二:轴对称应用
1、菱形ABCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为.
2、如图,∠AOB=30°,点M、N分别是射线OA、OB上的动点,OP平分∠AOB,且OP=6,当△PMN的周长取最小值时,四边形PMON的面积为.
3、如图,在锐角△ABC中,AB=6,∠BAC=60°,∠BAC的平分线交BC于点D,点M,N分别是AD 和AB上的动点,则BM+MN的最小值为。
4、如图,在等边△ABC中,AB=4,点P是BC边上的动点,点P关于直线AB,AC的对称点分别为M,N,则线段MN长的取值范围是.
类型三:动点与轴对称
1、如图,在矩形ABCD 中,AB=32, 点E 是边BC 的一个三等分点(CE 、 、C D 与B 在一条直线上时,∆EFG 的周长是 。 G D' E D B C A 第1题 第2题 2、如图,在矩形ABCD 中,AB=5, AD=13, E 、F 分别是AB 、AD 边上的动点,将∆ABE 向下翻折,点A 落在BC 边上A 、处,则A 、B 的最小值是 。 3、如图,正方形ABCD 的边长为6,EF 是正方形ABCD 的一条对称轴,G 、H 分别在AB 、CD 上,将图形沿GH 对折后,点C 落在E 处,求tan ANE = 。 N M G A N E A C D 第3题 第4题 4、如图,在Rt ∆ABC 中AC=4,BC=3, D 是AB 边上一动点,点E 与点A 关于直线CD 对称,当DE//BC 时,AD= 。 5、如图,在Rt∆ABC中,AB=4, BC=3, D是AB边上一动点,DE//BC,A、A、关于DE对称, 当∆A、EC为直角三角形是AD= 。 A'E A C B D 类型四:综合应用 1、如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长AP交CD于F点, (1)求证:四边形AECF为平行四边形; (2)若△AEP是等边三角形,连结BP,求证:△APB≌△EPC; (3)若矩形ABCD的边AB=6,BC=4,求△CPF的面积. 2、如图(1),在矩形ABCD中,把∠B、∠D分别翻折,使点B、D分别落在对角线BC上的点 E、F处,折痕分别为CM、AN. (1)求证:△AND≌△CBM. (2)请连接MF、NE,证明四边形MFNE是平行四边形,四边形MFNE是菱形吗?请说明理由?(3)P、Q是矩形的边CD、AB上的两点,连结PQ、CQ、MN,如图(2)所示,若PQ=CQ,PQ ∥MN。且AB=4,BC=3,求PC的长度. 3、已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t. (Ⅰ)如图①,当∠BOP=300时,求点P的坐标; (Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m; (Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).