碳纤维表面改性研究进展(1).pdf

合集下载

碳纤维的表面改性方法研究新进展

碳纤维的表面改性方法研究新进展

近年 来 , 国 内外 研究 学者对 碳纤 维表 面 处理 的 研究 非 常多 , 虽 然改 性 方 法 多种 多 样 , 但它们 的 目
切 的任务 。本 文介 绍 了氧化处 理 、 涂覆 处 理 、 射线 、 激光 、 等离 子体 处理 等方 法对碳 纤 维增 强 复合 材料
界面 粘结度 的改性效 果 , 并 简 要归 纳 了 目前报 道 过 的C F表 面处理 技术 的研究 进展 。
成都纺织高等专科学校学报
J o u na r l o f C h e n g d u Te x t i l e C o l l e g e
3 4 1
1 2 3 期)
2 0 1 7年 1月
V o 1 . 3 4 , N o . 1 ( S u m 1 2 3
1 . 1 氧化处 理
处 曩 对 同 l h,
气 相氧化 法表 面改 性方法 、 液 相氧化 法 表 面改 性方 法 和 电化 学 氧 化 法表 面改 性 方法 是 常用 的氧
化 处理 方法 。
图 1 硝 酸处理碳 以看 出 , 在一定时 间内, 碳 纤 维 被 浓 硝 酸 和具 有 一 定 浓 度 的硝 酸进 行 表 面 处 理 , 处 理
沥青 基碳 纤维 、 纤 维素 基碳纤 维及 其他 有 机纤 维 基
碳纤 维 ¨ 。2 O世 纪 6 0年 代 以 来 ,P A N 基 碳 纤 维 以简 单 的生产 工 艺 、 优 异 的力 学 性 能 , 取 得 了碳 纤
的工程 。如 : 是 否 经过 表 面 处 理 的碳 纤 维 , 其 剪 切 强 度具 有 明显 的区别 , 其 区别见表 1 所示 。
挥 。因此 , 对 碳纤 维进 行表 面处理 是一 项非 常 必须

碳纤维表面和界面性能研究及评价

碳纤维表面和界面性能研究及评价

碳纤维表面和界面性能研究及评价一、本文概述碳纤维作为一种高性能的新型材料,因其独特的力学、热学和电学性能,在众多领域如航空航天、汽车制造、体育器材等中得到了广泛应用。

碳纤维的优异性能在很大程度上取决于其表面和界面的特性,因此,对碳纤维表面和界面性能的研究及评价具有非常重要的意义。

本文旨在全面深入地探讨碳纤维表面和界面的性能,包括表面形貌、化学结构、物理性质等方面,并通过对这些性能的评价,为碳纤维的制备、改性和应用提供理论依据。

文章将概述碳纤维的基本特性及其应用领域,然后重点介绍碳纤维表面和界面的性能研究方法,包括表面形貌观察、化学结构分析、物理性能测试等。

在此基础上,文章将评价不同表面处理方法和界面改性技术对碳纤维性能的影响,以期为提高碳纤维的综合性能和应用效果提供指导。

通过本文的研究,我们期望能够更深入地理解碳纤维表面和界面的性能特点,为碳纤维的进一步发展和应用提供有力支持。

也希望本文的研究成果能够为相关领域的研究人员和技术人员提供有益的参考和借鉴。

二、碳纤维表面性能研究碳纤维作为一种高性能的新型材料,其表面性能对其整体性能和应用领域具有重要影响。

因此,对碳纤维表面性能的研究成为了材料科学领域的一个研究热点。

碳纤维表面性能主要包括表面形貌、表面化学结构、表面能等方面。

表面形貌是指碳纤维表面的微观结构和粗糙度,它直接影响到碳纤维与基体之间的界面结合强度。

通过扫描电子显微镜(SEM)和原子力显微镜(AFM)等表征手段,可以观察到碳纤维表面的微观形貌,从而评估其表面质量。

表面化学结构是指碳纤维表面的官能团和化学键合状态,它决定了碳纤维的润湿性和与基体的相容性。

通过射线光电子能谱(PS)和傅里叶变换红外光谱(FTIR)等分析技术,可以揭示碳纤维表面的化学结构,为改善其界面性能提供理论依据。

表面能是指碳纤维表面单位面积上的自由能,它反映了碳纤维与液体或气体的相互作用能力。

表面能的大小直接影响到碳纤维的浸润性和粘附性。

碳纤维表面改性方法与实验处理装置的研究

碳纤维表面改性方法与实验处理装置的研究
j L  ̄ , o We i - mi n , LI U Ch e n g ( N o r t h e a s t F o r e s t r y U n i v e r s i t y 。 H a  ̄i n H e i l o n g j i a n g 1 5 0 0 4 0 , C h i n a )
mo r ph o l o g y o f p r o d u c e d s a mp l e s , wi t h t he r e s u h i n d i c a t i n g ha t t t h e r e e x i s t e t c h i n g g r o o v e s o n he t s u fa r c e o f t h e c rb a o n ib f e r
碳 纤维 表面 改 性方 法与 实 验 处 理装 置的 研 究
焦伟 民。 刘 诚 ( 东北林业大学 , 黑龙江 哈 尔滨 1 5 0 0 4 0 )

要: 分Байду номын сангаас 了几种常 用的碳 纤 维表 面改性处理 方法 , 设 计 了采 用液相氧化 法对碳纤 维进行 小批量表 面改性
的 实验装置并制取 了碳 纤维表 面改性样品。 利 用扫描 电镜 对制得 的样品表 面形貌进行观察 , 结果显 示, 经表 面改性 后的碳 纤维表 面 出现 了刻蚀 的沟槽 , 增加 了比表 面积 , 达到 了处理 目的 。 关键词 : 碳 纤维 ; 表 面改性 ; 方法 ; 装 置
第4 2 卷
第3 期
林 业 机 械 与 木 工 设 备 F O R E S T R Y M A C H I N E R Y&WO O D WO R K I N G E Q U I P M E N T

【精品文章】一文了解碳纤维表面改性技术

【精品文章】一文了解碳纤维表面改性技术

一文了解碳纤维表面改性技术
碳纤维以其优异的比强度、比模量、耐腐蚀、吸能等性能,在航空航天、国防军工、轨道交通、汽车等领域得到广泛应用,碳纤维增强复合材料的力学性能与碳表面形貌结构及化学组成直接相关。

通过对碳纤维表面进行改性,改变碳纤维表面活性及形貌,改善其浸润性,提高界面结合作用,能够充分发挥碳纤维高强度、高模量等优异性能。

 图1 聚丙烯腈基碳纤维
 碳纤维表面改性主要分为“表面化学改性”、“表面形貌改变”和“表面进行重建。

” 表面化学改性是指:向表面引入官能基团或分子链,可提高表面活性和表面自由能。

改变表面形貌是指:适度增加表面粗糙度,增加比表面积,可提高与树脂浸润的接触面积,同时可在碳纤维/树脂间形成机械锁链作用。

表面进行重建是指:将微纳米颗粒吸附或生长在碳纤维表面,对表面进行重建,得到全新的碳纤维表面三维结构,可提高碳纤维/树脂界面粘合性,同时避免对碳纤维本体的损伤。

下文将对不同的改性方法做解析。

 一、碳纤维表面化学改性
 1、表面引入官能基团
 碳纤维含碳量超过95%,表面呈现化学惰性,不利于与基体材料的化学键连接。

对碳纤维表面进行含氧、氮等基团改性,可提高碳纤维表面活性、提升碳纤维复合材料层间剪切强度等力学性能。

 研究者采用连续气相热化学法处理碳纤维,实现碳纤维表面羟基和羧基含量发生变化,氧含量达14%-24%。

碳纤维表面初始氧基团含量与碳纤维。

PBO_纤维表面改性处理的研究进展

PBO_纤维表面改性处理的研究进展

表面技术第53卷第1期PBO纤维表面改性处理的研究进展杨超杰,吴喜娜,魏浩,王国军*(哈尔滨工程大学 青岛创新发展基地,山东 青岛 266000)摘要:聚对苯撑苯并二噁唑(PBO)纤维因其比强度高、比模量高、耐热性好、阻燃性好以及优异的介电性能,现已在安全防护、建筑汽车等领域得到广泛应用。

由于PBO纤维表面光滑、化学惰性,导致其与基体树脂界面结合差,进一步影响复合材料的整体性能,这大大限制了PBO纤维优异综合性能的发挥,所以对PBO纤维表面进行改性处理显得尤为重要。

介绍了近年来国内外针对PBO纤维不同表面改性方法及对应复合材料性能改善程度的研究进展,从PBO纤维改性方法的分类入手,阐述了各种方法的基本原理。

通过对这些处理方法的比较,阐述了国内PBO纤维表面改性的研究进展,指出了国内外在PBO纤维表面改性处理上的差距,为未来的发展方向提供了参考。

PBO纤维表面改性方法包括化学刻蚀法、等离子体处理、表面涂层法、化学接枝法、紫外刻蚀法、上浆剂处理等。

各种改性技术各有利弊,在选择改性方法时,理应考虑达到工艺快捷有效、经济环保和无损纤维性能等指标。

未来,在PBO纤维表面改性的处理方法领域,将逐步向绿色环保的上浆剂处理方向发展。

关键词:聚对苯撑苯并二噁唑纤维;表面改性;界面;复合材料中图分类号:TB34 文献标志码:A 文章编号:1001-3660(2024)01-0048-08DOI:10.16490/ki.issn.1001-3660.2024.01.004Research Progress on Surface Modification of PBO FiberYANG Chaojie, WU Xina, WEI Hao, WANG Guojun*(Qingdao Innovation and Development Base, Harbin Engineering University, Shandong Qingdao 266000, China)ABSTRACT: PBO fiber has become the ultimate choice in many fields because of its high specific strength, high specific modulus, good heat resistance, good flame retardant and excellent dielectric properties, and has been widely used in aerospace, national defense weapons, safety protection, construction and automobile fields. Because the surface of PBO fiber is smooth and chemically inert, the interface between PBO fiber and matrix resin is poor, which further affects the overall performance of the composite material, and greatly limits the play of the excellent comprehensive performance of PBO fiber, so it is particularly important to modify the surface of PBO fiber. In this paper, the research progress of different surface modification methods of PBO fibers and the improvement of composite properties in recent years were reviewed. Surface modification was mainly made to change the chemical composition and structure of the surface, improve the number of polar groups and reactive groups;change the surface morphology, improve the roughness and specific surface area; increase the surface free energy and improve the surface wettability. All the above modification effects must minimize the negative effects on the bulk properties of fibers.Finally, it was pointed out that the current surface treatment methods of PBO fibers were still insufficient, and it was necessary收稿日期:2022-12-15;修订日期:2023-04-03Received:2022-12-15;Revised:2023-04-03引文格式:杨超杰, 吴喜娜, 魏浩, 等. PBO纤维表面改性处理的研究进展[J]. 表面技术, 2024, 53(1): 48-55.YANG Chaojie, WU Xina, WEI Hao, et al. Research Progress on Surface Modification of PBO Fiber[J]. Surface Technology, 2024, 53(1): 48-55.*通信作者(Corresponding author)第53卷第1期杨超杰,等:PBO纤维表面改性处理的研究进展·49·and urgent to find a green and efficient modification method. In recent years, with the development of fiber surface modification technology, PBO fiber modification methods have been fully developed, and the corresponding application fields have been expanded. In this paper, the different surface modification methods of PBO fiber and the improvement of the properties of composite materials were introduced. Starting from the classification of PBO fiber modification methods, the basic principles of each method were expounded, and the advantages and disadvantages of each method and the scope of application were clarified.Based on six modification methods, the surface modification methods of PBO fiber at home and abroad were investigated. By comparing these treatment methods, the research progress of PBO fiber surface modification at home and abroad was confirmed, the gap between domestic and foreign PBO fiber surface modification treatment was clear, and the future development direction was pointed out. PBO fiber surface modification methods include chemical etching, plasma treatment, surface coating, chemical grafting, ultraviolet etching, and sizing agent treatment. Each modification technology has its own advantages and disadvantages.When selecting a modification method, it is required to consider the fast and effective process, economic and environmental protection and non-destructive fiber properties. The surface treatment method of sizing agent can meet the above requirements.In recent years, the introduction of active nanoparticles such as graphene oxide, carbon nanotubes and silica into sizing agents to improve interface adhesion has become a research focus. The prepared nanocomposites not only have stronger interface, but also show many attractive functions, such as photothermal conversion, interface self-healing, etc. In addition, as a non-damaging method, surface sizing is an ideal method to achieve uniform UV shielding or light absorption ability on the surface of PBO fiber, which can effectively reduce UV intensity and block UV irradiation. In the future, in surface modification treatment of PBO fiber, the direction of environmental protection sizing agent treatment will be gradually developed.KEY WORDS: poly(p-phenylene-2,6-benzoxazole) fiber; surface modification; interface; composite materials聚对苯撑苯并二 唑(PBO)纤维因其优异的性能,特别是突出的力学性能、热稳定性、低密度,成为一种很有前途的增强先进复合材料的有机纤维之王[1]。

碳纤维表面处理技术的研究进展

碳纤维表面处理技术的研究进展

碳纤维表面处理技术的研究进展0 引言碳纤维是用分解温度低于熔融温度的纤维聚合物,通过千度以上固相热解而制成的,具有比强度高、比模量高、耐高温、耐腐蚀、耐疲劳、抗蠕变、导电、传热和热膨胀系数小等一系列优异性能,在航天、航空等高科技领域中被广泛用于碳纤维增强复合材料(CFRP)。

CFRP的综合性能不仅与增强相、基体相有关,更与两相的界面结合质量有关。

结合良好的界面能有效地传递载荷,充分发挥碳纤维高强度、高模量的特性,提高CFRP制品的力学性能。

众所周知,纤维的表面活性在很大程度上取决于其表面的表面能,活性官能团的种类和数量,酸碱交互作用和表面微晶结构等因素。

从表面形态上看,碳纤维的表面有很多孔隙、凹槽、杂质及结晶,这些对复合材料的粘结性能有很大影响。

从化学组成来看,碳纤维整体主要是碳、氧、氮、氢等元素,未经表面处理的碳纤维表面羟基、羰基等极性基团的含量较少,不利于其与基体树脂的粘结。

碳纤维的表面性质也受到其制备工艺的影响,A.Fjeldly等采用相同的表面处理方法,处理了不同牌号的碳纤维,发现其表面性质有很大差异。

碳纤维的类石墨结构决定了其表面呈化学惰性,不易被基体树脂浸润以及发生化学反应,与基体树脂的粘结性能较差,表现为CFRP的偏轴强度较低。

因此,要改善CFRP的界面性能,必须改善碳纤维的表面性能。

近年来对碳纤维表面进行改性处理,改善碳纤维与基体树脂之间的粘结强度,以充分发挥碳纤维的优异力学性能,一直是人们关注的问题。

目前常用的表面处理方法,都是在碳纤维表面发生一系列物理化学反应,增加其表面形貌的复杂性和极性基团的含量,从而提高碳纤维与基体树脂的界面性能,实现提高复合材料整体力学性能的最终目的。

1 常用的表面处理方法1.1 气相氧化法等)中,在加温、加催化剂气相氧化法是将碳纤维暴露在气相氧化剂(如空气、O3等特殊条件下使其表面氧化生成一些活性基团(如羟基和羧基)。

经气相氧化法处理的碳纤维所制成的CFRP,弯曲强度、弯曲模量、界面剪切强度(IFSS)和层间剪切强度(ILSS)等力学性能均可得到有效提高,但材料的冲击强度降低较大。

碳纤维的表面改性

碳纤维的表面改性
石墨的六方晶体结构
石墨层片的缺陷 及边缘碳原子
最基本的结构单元
石墨微晶 碳纤维的二级结构单元
碳纤维的三级结构单元: 石墨微晶组成原纤
维,直径50nm左右, 长度数百纳米。原纤维 呈现弯曲、彼此交叉的 许多条带状结构组成, 条带状的结构之间存在 针形空隙,大体沿纤维 轴平行排列。原Biblioteka 维最后由原纤维组成碳纤维的单丝
硝酸处理碳纤维对其抗拉强度的影响
碳纤维CF经HNO3表面处理后,有下列变化:
比表面积增加 表面被刻蚀,表面粗糙度增加
表面官能团增加 主要是-COOH
液相氧化对碳纤维表面性能的影响
处理条件 未处理
硝酸(24h)
酸性基团 (eq/g) 3 21
比表面积 (m2/g) 0.38 1.40
液相氧化法的缺点: 由于大量废酸废液产生,所以环境污染较大; 液相氧化多为间歇操作,所需处理时间较长,与CF生产线相
电化学氧化法的优点:
处理条件缓和、反应易控、操作简便; 处理时间短,可以直接与CF生产线相连。
如以碳酸氢铵为电解液对电化学改性PAN基C F进行了研究,结果表明,经电化学氧化后,碳 纤维表面粗糙度增大了1.1倍,表面C含量降 低了9.7%,O含量提高了53.8%,N 含 量增加了7.5倍,羟基(-OH)和羧基(- COOH)含量也有不同程度的增加,表面微晶 尺寸减小,表面活性碳原子数增加了78%,表 面取向指数减小了1.5%,改性后碳纤维和树 脂间的界面撕裂强度增大了26%,但改性过程 中的刻蚀作用使碳纤维拉伸强度降低了8.1%。
1.表面清洁法
杂质来源
碳纤维吸收的水分,纤维空隙中残留的有机热解产物以及 从环境中沾染的杂质。
如何处理?
将CF在惰性气体保护下加热到一定的高温并保温一定时间, 可以去除吸附水,并使其表面得到净化。

碳纤维表面改性

碳纤维表面改性

碳纤维表面改性(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--碳纤维表面处理研究现状碳纤维表面处理研究现状摘要:综述了碳纤维的应用领域,当前国内外的碳纤维的生产状况,分析了各种碳纤维表面处理的研究现状以及各方法的优缺点。

分析结果表明:国外对我国碳纤维生产进行了技术封锁,我国工业化碳纤维生产与日本等国有较大差距。

电化学氧化法对碳纤维表面处理效果较好,处理后碳纤维表面活性基团数量明显增多,生产条件易于控制,该方法很好应用于工业生产。

关键词:碳纤维;表面处理;电化学氧化法;引言随着国防科技要求的不断提高,航天航空、军事武器等高科技设备对材料的性能要求的提高,碳纤维复合材料以其耐高温,耐摩擦、导电、导热、耐腐蚀、高比强度等特点被广泛的应用于这些领域。

国外碳纤维材料生产研发较早,现今以日本,美国等国家的生产技术领先于世界。

碳纤维按其加工的先驱体不同可以分为:粘胶基碳纤维、沥青基碳纤维、聚丙烯腈基(PAN)碳纤维。

碳纤维作为一种增强相与金属、陶瓷、树脂等结合使复合材料的性能得到很大提高。

碳纤维表面的活性基团较少,表面光滑,为更好的与基体材料结合,需要在材料复合前对纤维进行一定表面处理。

碳纤维表面处理按当前的研究现状可以分为氧化法和非氧化法。

在此对纤维的生产状况做出一些介绍以及纤维表面处理的各种方法做比较。

1 碳纤维应用领域及国内外生产状况碳纤维复合材料具有卓越的物化性能,被广泛应用于航天航空、国防军事、体育用品、风能发电、石油开采以及医疗器械[1]。

碳纤维被用于制造飞机、航天器、卫星等,因碳纤维的轻质、高强度等特点,飞行器的噪音小,飞行所需的燃料消耗降低。

据有关报道,飞行器每降低1kg的质量,运载飞行器的火箭可以减轻500kg。

航天航空领域碳纤维的使用量从2008年的8200t,到2010年的1万t,预计今年将达到万t。

在飞机的制造中,纤维复合材料应用比例都明显的增加。

碳纤维表面处理及其复合材料性能研究

碳纤维表面处理及其复合材料性能研究

2020年01月碳纤维表面处理及其复合材料性能研究张安花(厦门新凯复材科技有限公司,福建厦门361021)摘要:碳纤维具有耐高温、导电、导热、耐腐蚀等性能,可制作成各种复合材料产品,应用于不同领域中。

为提升航空复合材料强度,研究使用浓硝酸、浓硝酸超声处理碳纤维表面,经处理会影响碳纤维表面的微结构、表面化学组成,达到增强复合材料性能效果。

关键词:碳纤维;表面处理;复合材料性能碳纤维主要和树脂等材料复合,具有增强作用,可制造出更先进的复合材料。

但因类石墨结构其表面存在一定化学惰性,很难浸润树脂及化学反应,表面难与树脂结合,进而影响复合材料强度。

故需改变碳纤维表面性质,以增加碳纤维表面的极性官能团及表面活化,进而更容易浸润和发生化学反应,使复合材料界面更紧密连接而增加强度。

通常采用偶联剂涂层法、氧化法、等离子等处理方法.在航空领域因耐燃效果需求高使用酚醛树脂,而市面上的碳纤维较少有偶联剂涂层适用酚醛树脂,本文研究液相氧化法与超声协同处理碳纤维表面,达到增加酚醛树脂碳纤维复合材料强度。

1实验方法1.1碳纤维表面处理方法(1)碳纤维表面的上浆剂脱除选用PAN 基碳纤维,型号为Toray T700,使用乙醇/丙酮进行回流处理,其体积比为1:1,处理时间为48h ,将碳纤维表面的上浆剂(即偶合剂)脱除(2)脱浆后碳纤维再进行表面处理处理方法有两种:第一,在浓硝酸中浸泡,温度为60℃,处理时间为2h ;第二,浓硝酸超声处理2h ,浓度为65%,250E II 型超声波,功率和频率分别为250W 和40kHz 。

所有处理工作的结束后,去离子水清洗碳纤维,使其为中性,再在真空中烘干,温度为80℃,直到碳纤维恒重量为止。

1.2复合材料制备采用碳纤维与PF475酚醛树脂制成复合材料预浸布,酚醛树脂与异丙醇制成固成份70%的树脂,使用缠绕法进行制作预浸材,制成纤维含量FAW 100g/m 2,树脂含量RC%37%,用55度将溶剂烘烤至VC%1%以下的预浸材,再将预浸材进行积层堆叠成试片,采用成型温度160度,时间50min 进行加压固化,制成2mm 厚度复材试片。

碳纤维表面改性研究进展

碳纤维表面改性研究进展
Abstract :The progress of carbon fiber (CF) modification work at home and abroad was reviewed,the modification effects of surface grafting,coating,oxidation and plasma treatment on CF were compared which previded some references for the carbon fiber surface modification work. It is pointed out that the chemical grafting method stands out from other modification methods because it can precisely control the quality and distribution of graft polymer on CF surface, realize high-density grafting, significantly improve CF surface roughness, and improve interface adhesion and mechanical properties of the composite material. This will provide valuable guidance for the design and manufacture of CF composites for different applications.
Keywords: carbon fiber ;coating method ;plasma treatment ;surface grafting method ;surface oxidation method

碳纤维表面改性

碳纤维表面改性

采用溶液聚合的方法,CF+溶剂+单体+引发剂
选择的接枝单体有: 一、胺类 1、苯胺 OCF+苯胺+盐酸 2、1,6-己二胺 引发剂过硫酸胺
表面接枝有聚合物的CF
表面包覆有聚苯胺的短碳纤维
利用氯化亚砜将碳纤维氧化处理产生的羧基转化为酰氯,进一步与1,6己二胺发生亲核取代反应,在碳纤维表面上接枝胺基。 3、对胺基苯甲酸
粘胶基
沥青基 木质素纤维基
高模量CF
超高强CF
其他有机纤维 基
高性能CF
超高模CF
高强-高模CF
中强-中模CF 等
三、碳纤维的制备:
粘胶基具有环状分子结构,所以可以直接进行碳化或石墨化处理
四、碳纤维的性能及用途:
炭纤维具有很多优良的性能:强度高、模量高、密度小,耐高温、耐低温性 能好,耐酸性能好,热膨胀系数小,导热系数大、导电性能好,防原子辐射、 能使中子减速,生物相容性好等。 此外, 炭纤维兼备纺织纤维的柔软可加工性,易于复合、设计自由度大,可进 行多种设计,以满足不同产品的性能与要求 。 碳纤维很少直接使用,大多是经过深加工制成中间产物或复合材料。应用碳纤维 后可以大大提高产品强度、减轻结构质量、延长使用寿命和增加安全可靠性,因 此,从国防军工到民用工业,包括航空航天、清洁能源、土木建筑、交通运输等 领域,碳纤维复合材料都获得进一步的应用。做复合材料时基体可以是树脂、陶 瓷、橡胶、金属等。
2、皮芯层结构
CF由皮层、芯层及中间过渡区组成。 皮层:微晶较大,排列有序。 芯层:微晶减小,排列紊乱,结构不均匀。
碳纤维材料的产品有四种形式:丝腈基 按原 丝类 型分 类
通用级CF:拉伸强度<1.4GPa, 拉伸模量<140GPa 高强度CF 按碳纤维 性能分类

碳纤维表面改性及其在尼龙复合材料中的应用研究进展

碳纤维表面改性及其在尼龙复合材料中的应用研究进展

工 程 塑 料 应 用ENGINEERING PLASTICS APPLICATION第47卷,第7期2019年7月V ol.47,No.7Jul. 2019141doi:10.3969/j.issn.1001-3539.2019.07.026碳纤维表面改性及其在尼龙复合材料中的应用研究进展张顶顶1,张福华1,杨吉祥1,李晓峰1,李彦希2,曾骥1(1.上海海事大学海洋科学与工程学院,上海 201306; 2.浙江四兄绳业有限公司,浙江台州 317016)摘要:对近几年碳纤维(CF)表面改性及其在CF 增强尼龙(CFRPA)复合材料中的应用研究情况进行了综述,将CF 表面改性方法划分为干法改性、湿法改性和纳米材料多尺度改性三大类。

其中干法改性包括气相氧化法、等离子体氧化法和辐照处理;湿法改性包括液相氧化法、阳极电解氧化法和上浆处理法;纳米材料多尺度改性包括石墨烯、碳纳米管等纳米材料改性。

比较了各种表面改性方法的优缺点,并对CFRPA 复合材料中CF 表面改性技术的发展进行了展望。

关键词:碳纤维;尼龙;复合材料;界面结合;表面改性中图分类号:TQ327.3 文献标识码:A 文章编号:1001-3539(2019)07-0141-06Research Progress on Surface Modification of Carbon Fiber and Its Application in Polyamide CompositesZhang Dingding 1, Zhang Fuhua 1, Yang Jixiang 1, Li Xiaofeng 1, Li Yanxi 2, Zeng Ji 1(1. College of Ocean Science and Engineering , Shanghai Maritime University , Shanghai 201306, China ;2. Zhejiang Four Brothers Rope Co. Ltd., Taizhou 317016, China)Abstract :Research situations of surface modification of carbon fiber (CF) and its application in CF reinforced polyamide (CFRPA) composites in recent years were reviewed. Accordingly ,the surface modi fication of CF can be classi fied into dry modi fica-tion methods ,wet modi fication methods and nanomaterials multi-scale modi fication methods. The dry modi fication methods include gas phase oxidation ,plasma oxidation and irradiation treatment ,the wet modi fication methods include liquid phase oxidation ,anodic electrolytic oxidation and sizing treatment , the nanomaterials multi-scale modi fication methods include graphene modi fication and carbon nanotube modi fication. The advantages and disadvantages of various surface modi fication methods were compared ,and the development of CF surface modi fication technology in CFRPA composites was prospected.Keywords :carbon fiber ;polyamide ;composite ;interfacial bonding ;surface modi fication 碳纤维(CF)增强热塑性树脂复合材料具有轻质高强,耐腐蚀和出色的热稳定性等优点,已广泛应用于航空航天、汽车、建筑等行业[1–6]。

碳纤维的表面处理技术

碳纤维的表面处理技术

碳纤维表面改性技术摘要碳纤维是一种高性能的材料,它在军事及工业等领域已得到广泛的应用,但由于表面结构的不足,而限制其在复合材料中的部分应用,因此,为了提高碳纤维复合材料的界面结合力,目前国内外的多种表面改性技术得到广泛的应用,主要包括氧化处理,表面涂层法,射线、激光辐射改性及其他处理方法等。

关键词碳纤维,表面改性,氧化处理,表面涂层1 前言碳纤维是纤维状的碳素材料,含碳量在85%以上,它是利用各种有机纤维在惰性气体中、高温状态下碳化而制得[1]。

碳纤维具有十分优异的力学性能,具有比强度高、比模量高等优异特性,在国民经济各个领域得到广泛应用。

是目前已大量生产的高性能纤维中具有最高的比强度和最高的比模量的纤维,特别是在2000℃以上的高温惰性环境中,碳材料是唯一强度不下降的物质,是其他主要结构材料(金属及其合金)所无法比拟的。

除了优异的力学性能外,碳纤维还兼具其他多种优良性能,如低密度、耐高温、耐腐蚀、耐摩擦、抗疲劳、震动衰减性高、电及热传导性高、热膨胀系数低、光穿透性高,非磁体但有电磁屏蔽性等。

作为高性能纤维的一种,碳纤维既有碳材料的固有特性,又兼备纺织纤维的柔软可加工性,是先进复合材料最重要的增强材料,已在军事及民用工业的各个领域取得广泛应用,从航天、航空、汽车、电子、机械、化工、轻纺等民用工业到运动器材和休闲用品等。

因此,碳纤维被认为是高科技领域中新型工业材料的典型代表,为世人所瞩目。

碳纤维产业在发达国家支柱产业升级乃至国民经济整体素质提高方面,发挥着非常重要的作用,对我国产业结构的调整和传统材料的更新换代也有重要意义,对国防军工和国民经济有举足轻重的影响[2]。

2 碳纤维的简介碳纤维一般是用分解温度低于熔融点温度的纤维状聚合物通过千度以上固相热解而制成的,其含碳量在85%以上,在热裂解过程中排出其它元素,形成石墨晶格结构。

根据性能的不同可分为高强度、高模量碳纤维,活性碳纤维和离子交换碳纤维。

碳纤维表面改性研究进展

碳纤维表面改性研究进展

碳纤维表面改性研究进展刘保英;王孝军;杨杰;丁涛【摘要】碳纤维因其优异的综合性能常被用作树脂基体的增强材料。

然而由于碳纤维与树脂基体之间的界面结合性能较差,其增强的复合材料的力学性能往往与理论值相差甚远,因此必须对碳纤维进行表面改性,以提高其与聚合物基体的界面粘结性能。

本文作者综述了国内外关于碳纤维表面改性技术的研究进展,概述了涂层法、氧化法、高能辐射法等改性方法对碳纤维增强复合材料界面强度的改性效果。

%Carbon fiber (CF) has been widely used as a reinforcement of polymer composite due to its excellent comprehensiveperformance .However ,the strength of CF reinforced resin ma‐trix composite is always much lower than the theoretically predicted value due to smooth sur‐face and chemical inertness of c arbon fiber which lead to a poor interface between CF and res‐ins .Thus ,the research on surface modification of carbon fiber is very important in the compos‐ites applications .This article presents an overview of some surface modification methods of CF ,such as coating method ,oxidation process and high‐energy radiation treatment ,and intro‐duces the modified effect of each method on the interfacial strength of carbon fiber reinforced polymer composite .【期刊名称】《化学研究》【年(卷),期】2015(000)002【总页数】10页(P111-120)【关键词】碳纤维;表面改性;研究进展【作者】刘保英;王孝军;杨杰;丁涛【作者单位】四川大学高分子科学与工程学院,四川成都610065; 河南大学化学化工学院,河南开封475004;四川大学分析测试中心,四川成都 610064;四川大学高分子科学与工程学院,四川成都610065; 四川大学分析测试中心,四川成都610064;河南大学化学化工学院,河南开封475004【正文语种】中文【中图分类】O64碳纤维(CF)以其高比强度、高比模量、小的线膨胀系数、低密度、耐高温、抗腐蚀、优异的热及电传导性等特点,被称为新材料之王,常用作高性能树脂基复合材料的增强材料,广泛应用于飞机制造、国防军工、汽车、医疗器械、体育器材等方面[1-2].工业化生产的碳纤维按前驱体原料的不同可以分为:聚丙烯腈基(PAN-based)、黏胶基、沥青基碳纤维和气相生长碳纤维[2-6].与另外3种碳纤维相比,PAN基碳纤维生产工艺简单,产品力学性能优异,产量约占全球碳纤维总产量的90%以上[5].自1962年问世以来,PAN基碳纤维取得了长足的发展,成为碳纤维工业生产的主流[7].由于碳纤维原丝表面由大量惰性石墨微晶堆砌而成,所以原丝表面呈非极性[8-9],表面能小,与树脂基体的浸润性差,界面结合性能差.此外,高性能的碳纤维表面光滑,比表面积小,这也使得纤维与基体之间不能形成有效的机械锚合作用,纤维与树脂基体之间的界面强度下降.因此,必须对碳纤维进行表面改性,以提高其与聚合物基体的界面粘结性能.目前对碳纤维的表面改性主要针对以下3个方面来进行:一是在纤维表面引入羰基、羧基和羟基等活性官能团,提高纤维表面的树脂润湿性和化学键合作用[10];二是对纤维表面进行刻蚀,提高纤维表面粗糙度,增大纤维比表面积,进而实现与树脂基体之间形成机械互锁结构[11];三是去除纤维表面的弱界面层.针对碳纤维表面结构特性,研究者提出了很多方法对其进行表面改性,概括起来可以分为涂层法、氧化法、高能辐射处理法等.涂层法主要是在纤维表面形成一种能够与增强纤维和树脂基体发生物理化学作用的,具有一定结构、厚度和剪切强度的中间层,进而实现复合材料的界面增强.针对不同的树脂基体与增强纤维,可以通过表面涂层技术设计不同的涂层结构,因此该处理方法具有较大的灵活性,常见的有上浆剂处理、偶联剂涂覆、聚合物涂层、气相沉积等.碳纤维伸长变形能力小(<2%),脆性大,在加工卷绕过程中受到反复摩擦和拉伸,纤维易出现毛丝及单丝断裂等现象,进而影响碳纤维的强度和质量.毛丝的存在使基体树脂不能充分润湿碳纤维,在复合材料中易产生孔隙,影响复合材料的力学性能[12],因此在碳纤维最终成品之前需要对其进行上浆处理.上浆就是在纤维表面涂一层保护胶.浆料在纤维表面形成一层保护膜,把各单丝纤维互相粘合起来,防止相对滑移,并使纤维上伸向各个方向的毛羽贴附在保护膜上,从而使碳纤维的表面光滑,提高碳纤维的力学性能.上浆处理不仅可保护碳纤维的表面,减少单丝及单丝断裂现象,使碳纤维集束,改善深加工性能,而且有研究表明,选择合适的浆料能够有效地改善碳纤维与树脂基体之间的界面粘合性能.碳纤维上浆剂主要有溶液型和乳液型两种[13-14].溶液型上浆剂是将有机树脂如聚乙烯醇、环氧树脂、聚氨酯等溶解在丙酮等有机溶剂中配制而成的.这类上浆剂溶液的结构与基体树脂的结构相近,从而能够有效地提高树脂的浸润性并达到保护纤维的目的.但该类上浆剂中的溶剂易挥发使树脂残留在导辊上,在对通过的纤维产生更大的损伤的同时又污染了车间环境,因此目前国外常用乳液型上浆剂.乳液型上浆剂是以一种树脂为主体,配以一定量的乳化剂及其他助剂制成的乳液,如聚氨酯树脂型、环氧树脂型、复合树脂型等.这类上浆剂乳液中含有表面活性剂,可以有效提高纤维表面与树脂基体之间的润湿性;且它不易在导辊上残留树脂,无溶剂污染环境的问题,因此目前碳纤维生产线一般都采用乳液型上浆剂.上浆剂是国内外各个碳纤维公司的技术特色,其具体配方一直都是商业机密,相关专利很多,但其他文献报道较少[14-18].目前最常用且研究较为成熟的碳纤维上浆剂是环氧树脂型上浆剂,其能增强树脂基体,且具有优异的化学稳定性、粘结性、热稳定性及高的性价比等优点[19-21].此外针对一些高温热塑性树脂基复合材料如聚酰胺(PA)、聚碳酸酯(PC)、聚苯硫醚(PPS)、聚醚砜(PES)和聚醚醚酮(PEEK)聚酰亚胺(PI)等也开发出了含砜类耐高温上浆剂[22]、多面体低聚倍半硅氧烷(POSS)改性环氧树脂上浆剂[23-24]和聚酰亚胺复配环氧树脂上浆剂[25].目前市场上销售的碳纤维通常是表面涂覆有一层上浆剂的改性产品[18,26-28],而有关市售碳纤维表面上浆剂对复合材料的界面强度的影响的研究结论并不统一.大部分研究表明[29-33],上浆剂的存在有利于树脂与纤维界面的粘结,能够有效地提高复合材料的界面强度,从而提升材料的机械强度,然而也有部分学者认为上浆剂的存在不利于复合材料界面强度的提升[34-35].DAI等[34]通过微球脱粘(microbond)微观试验方法考察了T300B和T700SC碳纤维表面经丙酮退浆前后碳纤维增强环氧树脂(Epoxy)复合材料的界面强度变化.他们认为退浆处理后复合材料的界面强度要优于未处理的复合材料,上浆剂的存在不利于CF/Epoxy体系界面强度的提高.作者同时认为上浆剂的存在可能会在纤维与基体之间形成弱界面层,从而导致界面在材料破坏过程中提前失效.DILSIZ和WIGHTMAN[35]研究了经Ultem®聚酰亚胺和聚氨酯上浆处理前后Zoltek®碳纤维表面性能以及其与环氧树脂界面的结合强度.作者通过表面能理论及纤维和基体表面酸-碱理论分析认为,上浆剂与树脂基体的相容性决定了纤维与基体之间界面相的形成及其粘结强度.上浆剂的存在降低了纤维表面能,掩盖了酸-碱活性点,上浆后纤维表面羟基减少,纤维表面能降低.纤维断裂实验进一步证实上浆剂的存在使复合材料的界面剪切强度下降.ZHANG等[36]研究了不同分子量的环氧型上浆剂对CF/Epoxy复合材料界面强度的影响,认为只有分子量适当的上浆剂才能提高复合材料的IFSS,分子量太高或太低均导致树脂与纤维界面结合性能变差.YAO等[37]通过microbond试验方法研究了退浆前后T700碳纤维与双马来酰亚胺(BMI)和环氧树脂的界面剪切强度.作者发现上浆剂的存在能够提高CF/Epoxy复合材料的界面强度,但是对CF/BMI的影响则恰恰相反,纤维退浆处理后与BMI的界面结合反而增强.作者认为这主要是源于上浆剂与Epoxy和BMI发生不同程度的反应引起的.偶联剂通常是分子结构中具有两种不同性质官能团的化学物质,能够在树脂基体与增强材料之间形成“分子桥”作用,从而改善有机材料与无机材料之间的界面作用,提高复合材料的性能.硅烷偶联剂是公认的可用于材料表面处理、复合材料界面改性和胶黏剂的高效偶联剂[38],常作为无机纤维增强或者填料填充聚合物复合材料的界面改性剂[39-40].其作用机理是,硅烷偶联剂首先接触空气中的水分发生水解反应,之后脱水缩合形成低聚物.这种低聚物能够与无机材料表面的羟基形成氢键,进一步受热脱水形成共价键,实现与无机材料的结合.硅烷偶联剂与无机材料的作用是从羟基作用开始的,因此对于表面含有羟基的无机材料如玻纤、二氧化硅等,这类偶联剂的作用效果较好;而对于表面无羟基的无机材料如碳纤维、炭黑、石墨等,其作用效果并不是很好.目前关于偶联剂对纤维增强复合材料的改性研究主要集中在玻纤[41-42]、天然纤维[43],对碳纤维相关改性研究报道较少.YANG等[44]通过将硅烷偶联剂与环氧树脂直接共混的方法对树脂基体进行改性,制备单取向碳纤维布增强环氧树脂.通过这种方法制备的复合材料的层间剪切强度提高42%,树脂基体对碳纤维的浸润能力提高.龚克等[45]将碳纤维在硅烷偶联剂水溶液中浸泡预处理后与聚四氟乙烯复合研制成型碳纤维增强的聚四氟乙烯复合材料.研究表明,经硅烷偶联剂改性后的碳纤维制备的复合材料的拉伸强度提高30%,抗磨损性能提升3倍.作者认为偶联剂的存在能够与碳纤维表面上浆剂组份中的有效成分形成化学键,进而改善碳纤维与树脂基体之间的界面结合,提高复合材料的机械性能.聚合物涂层是一种通过在碳纤维表面引入化学官能团及改变碳纤维的表面能来提高树脂基体与碳纤维之间的反应性及润湿性的表面处理方法.目前常通过原位化学接枝反应、界面缩聚、等离子体聚合和电化学聚合等方法实现[46-48],其中电化学聚合法较为常用.电化学聚合法[49]以碳纤维作为电极,电解液由溶解在溶剂中的聚合物单体组成(通常选用带有不饱和键的苯乙烯、醋酸乙烯、丙烯腈等作为电解液单体).在电场的作用下,这些聚合物单体在碳纤维表面发生聚合反应,形成具有一定厚度、均一、且带有特殊功能基团的聚合物膜.反应过程快速且稳定,可以通过单体选择和电流密度、单体浓度、温度等处理工艺的选择对处理强度进行控制.HUNG等[48]以苯酚、间苯二胺和丙烯酸为单体,通过电化学的方法对碳纤维表面进行改性,在碳纤维与环氧树脂之间形成可控界面,实现对CF/Epoxy复合材料的界面改性.研究表明,经处理后的碳纤维表面引入活性基团如-OH、-NH2、-COOH等,树脂基体在纤维表面的浸润性得到提高,从而使得CF/Epoxy复合材料的横向拉伸强度、纵向拉伸强度及层间剪切强度分别提升50%、64%和135%.该方法可以对界面官能团的引入实现量身定制,为复合材料的高性能化提供了可能. 气相沉积法是在一定温度压力下利用气态物质在纤维表面发生反应产生一层固态沉积物的过程.通过在碳纤维表面沉积一层碳纳米管(CNTs)、硼化物以及碳化物等晶须的方法实现纤维表面改性[50-53],进而应用于纤维增强复合材料的界面改性中. 碳纳米管(CNTs)是一维纳米材料,质量轻,具有优异的强度、刚度、韧性以及优越的导电和导热性能.将CNTs引入到纤维增强树脂基复合材料中可实现复合材料的多尺度增强,因而也有很多科研工作者试图通过表面沉积碳纳米管的方法对碳纤维表面进行改性处理,进一步改善复合材料的界面粘结性能.THOSTENSON等[52]采用气相化学沉积法直接在碳纤维表面生长CNTs (图1b),之后将碳纤维与树脂基体复合制备出多尺度CNTs/CF增强的复合材料.碳纳米管与树脂基体在碳纤维周围形成一层纳米复合材料鞘(图1c),有效地提高了复合材料界面层的剪切模量、屈服强度以及外力在树脂基体与增强纤维界面的传递效率.WICKS[54]采用气相沉积法在氧化铝纤维布上取向生长CNTs,通过CNTs在纤维布与树脂基体界面层形成架桥作用,实现纤维布/环氧复合材料的层内增刚和增韧,其作用机理详见图2.基于一些碳纤维复合材料在高温环境中成型及使用的需要,人们在碳纤维表面涂覆一层能够长期在高温环境下有效保护碳纤维并阻隔其氧化的涂层.最常见的材料就是硅系涂层如碳化硅(SiC)、氮化硅(Si3N4).这些涂层能够有效地在纤维表面产生一层硅保护层,具有优异的抗氧化性,能够保护高温下碳纤维表面不被攻击破坏,同时还与碳纤维具有一定的相容性.目前有关直接在碳纤维上生长SiC晶须的研究报道较少.MCHENRY等[50]首先在碳纤维表面沉积厚度为0.000 1 in的石墨层,然后采用SiC沉积生长的方法直接在较细的碳纤维上得到SiC晶须.RABOTNOV[55]和KOWBEL[56]等将SiC晶须引入碳纤维/环氧及碳/碳复合材料体系中,复合材料的层间剪切强度提高了200%~300%.作者认为在碳纤维表面均匀生长三维尺度SiC晶须能够增大纤维表面粗糙度及比表面积,提高界面层强度.此外,碳化硅涂层能够在纤维表面产生一层硅保护层,保护高温下碳纤维表面不被攻击破坏,进而提高复合材料的电气绝缘性和环境耐候性[57].纳米尺度的涂层微晶与微米尺度的碳纤维具有一定的相容性,涂层纤维可能嵌入有机或金属基体中形成层内增刚/层间增韧的多尺度增强复合体系[58].氧化法是一种针对碳纤维的表面处理技术,主要有液相氧化法、气相氧化法、阳极氧化法等.液相氧化法通常是将碳纤维浸泡在硝酸[59-60]、硫酸[61]、磷酸[62]、过氧化氢[8]、氨水[63]等具有氧化性的溶剂中进行氧化处理.随着反应时间的增加,纤维表面产生不同浓度的含氧官能团,同时纤维表面的粗糙度及比表面积也因刻蚀而增大.WU等[59]采用HNO3溶液对碳纤维进行氧化处理,研究发现,随着氧化时间的延长CF表面的酸性基团增多;但同时纤维的拉伸强度下降,质量有所损失.作者给出了可能的酸氧化机理(图3).ZHANG等[61]通过X射线能谱及拉曼光谱分析了H2SO4/HNO3对碳纤维表面的氧化机理.作者发现在氧化过程中碳纤维表面出现4个O1s、2个N1s和2个S2p峰.随着处理时间的延长,2个O1s、2个N1s和2个S2p峰消失,产生-COOH基团,且其含量不随其他基团的消失而发生变化.作者认为氧化过程主要是酸攻击碳纤维表面的碳原子,并为碳原子进一步氧化为-COOH做准备,最终碳纤维表面活性基团仅为-COOH.YU等[64]通过K2S2O8/AgNO3溶液组合对PAN基碳纤维表面进行氧化处理,在碳纤维表面引入羧基、羟基等功能基团,使得CF/Epoxy复合材料界面剪切强度提高62.5%.同时,该方法能够有效维持碳纤维表面形貌,避免了其他处理方法对碳纤维表面刻蚀引起的纤维强度破坏,从而能够最终实现复合材料综合性能提高.连续阳极氧化法[65]是将材料作为阳极置于电解质溶液中,利用电解作用对材料表面进行氧化处理的一种方法.阳极氧化过程缓和,反应过程可控,处理效果均匀显著,适合大规模生产应用.LUO等[66]将三维混编T300/PEEK复合纤维纱浸渍于5%的(NH4)2HPO4溶液中煮沸1 h进行阳极氧化处理,之后通过热压成型制备C3-D/PEEK复合材料.所得复合材料的冲击强度和弯曲强度较未经处理直接热压成型的复合材料分别提高25%和10%,断面拔出纤维长度较短且纤维表面残留有大量树脂基体.这些现象表明经预氧化处理后复合材料的界面强度提高.KING等[67]将沥青基和PAN基碳纤维在硫酸铵溶液中进行阳极氧化处理,通过单纤维断裂实验和短悬臂梁剪切实验测得其相应的CF/Epoxy复合材料的界面剪切强度分别提高400%和200%,而复合材料的纵向压缩强度和碳纤维的单丝强度未受氧化处理影响.作者认为复合材料的压缩强度与纤维和树脂基体间的剪切强度大小无关.FUKUNAGA和UEDA[68]揭示了阳极氧化处理对碳纤维表面的改性机理(图4).拉曼光谱分析表明,未处理沥青基碳纤维的表面由化学性质稳定面(基层)和易被氧化面(晶体边缘部分)构成.在表面处理过程中,这些不稳定的表面易被氧化,并沿晶界边缘产生裂缝,对晶体大小无影响.作者认为处理过程中产生的环氧活性基团及裂缝能够提高纤维与树脂基体之间的化学键作用及机械互锁能力,从而有效地提高树脂对纤维的粘附性.气相氧化法主要是通过空气、O2、O3、CO2、SO2等气体对碳纤维表面进行处理,使其表面发生氧化,活性基团增多的一种方法.其中空气氧化法[69]成本低,操作过程简单,无污染,为常用的方法.FUKUNAGA等[70]对比了空气氧化法和阳极氧化法对碳纤维表面改性的效果.经空气氧化法处理及阳极氧化处理的碳纤维/环氧复合材料的界面剪切强度较未处理试样均有明显提升,且空气氧化法处理效果优于阳极氧化法.高能辐射处理的原理是利用高能射线(如电子束、射线、X射线、紫外线等)发出的微粒子或者等离子体轰击纤维的表面,在纤维表面产生化学反应活性自由基或接枝活性官能团,通过在纤维表面与树脂基体间产生化学键合作用,提高树脂基体对碳纤维的润湿性[71].此外,高能射线对碳纤维表面进行适度刻蚀增大了纤维表面粗糙度,提高了纤维与基体界面间的机械锁合力,进而使得复合材料的界面强度得以改善.等离子体[72]是由大量处于基态或激发态的高能带负电荷的电子、带正电的离子及中性的原子、分子等粒子组成的导电介质,是一种具有高内能、高活性的化学物质.等离子体处理可以采用不同类型的气体如氩气、氧气、二氧化碳和水等对处理材料产生独特的表面性质.MONTES-MORN等[73]研究了氧等离子体处理对高模量沥青基碳纤维及高强度PAN基碳纤维表面结构组成及单丝强度的影响.通过纤维断裂实验结果表明,经等离子体氧化处理后碳纤维与聚碳酸酯树脂的界面剪切强度有明显提升,而纤维强度变化不大.作者认为等离子体处理能够在纤维表面产生所需活性基团的同时不损伤纤维自身的强度,因而这种处理方法具有商业应用前景.DILSIZ等[74]考察了烯丙基氰和二甲苯/空气/氩气氛围等离子体处理对碳纤维表面形貌、单丝强度及其与环氧树脂界面剪切强度的影响.研究表明,经等离子体处理后,CF单丝强度提高,断裂伸长率提高15%,其相应的CF/Epoxy复合材料的层间剪切强度和弯曲强度均有9%的提高.作者认为这是由于经等离子体沉积后碳纤维表面形成一层高分子膜,能够有效地填充纤维表面的裂缝和缺陷,进而提高了纤维的单丝强度.FUKUNAGA等[75]揭示了氧气或氩气等离子体处理与电化学氧化法对沥青基超高模量碳纤维表面改性机理.作者认为,未处理的碳纤维表面大量石墨片层的存在使得环氧树脂对纤维表面的润湿性较差(图5a).经阳极氧化法处理的碳纤维选择性在晶界处发生氧化反应,纤维表面的晶体尺寸没有变化,刻蚀作用仅发生在纤维晶界间,进而实现与树脂基体强有力的结合(图5b).而经氧等离子体处理的碳纤维,纤维表面层被刻蚀除去,晶体尺寸由13.2 nm下降到4.4 nm,基层中的芳环结构被破坏(图5c).因此,等离子体处理能够极大程度的增加纤维表面的活性点,进而提高树脂基体在碳纤维上的附着力.LI等[76]通过Co60γ射线对PAN基CF进行辐照处理.图6给出了所用设备、处理过程及纤维表面接枝反应示意图.研究表明,经辐照处理后纤维表面含氧极性基团增多,纤维表面粗糙度增加,与树脂之间的化学键作用力及机械锁合作用增强,进而实现对复合材料界面粘结性能的改善;而过度辐照处理会使CF表面粗糙度降低,不利于纤维与树脂间界面粘结性能的进一步提升.但是高能辐照处理效果有一定的时效性[77-79] ,且处理设备价格昂贵,对环境要求较高,因此这类处理方法的工业应用受到限制.综上所述,碳纤维因其综合性能优异,是增强聚合物基复合材料的理想材料.然而由于树脂基体对碳纤维表面的润湿性较差,因此形成的复合材料的界面结合性能较差,其增强复合材料的力学性能与理论值相去甚远.通过碳纤维表面改性的方法可以改善纤维与树脂基体的界面粘结强度,从而改善复合材料的综合力学性能.目前关于碳纤维的改性研究主要是通过在碳纤维表面引入极性基团或接枝聚合物来改变纤维比表面积,提高纤维表面树脂的润湿性能,进而达到改善纤维与树脂基体之间的界面性能,提高复合材料的力学性能的目的.所涉及到的改性方法很多,如涂层法、氧化法、高能辐射处理等,每种方法对复合材料界面性能的改善都有一定的效果和适用性.然而,目前这些改性方法的研究还处于理论和实验室研究阶段,尚需开展更深入和广泛的工作将其应用于工业生产过程,以拓宽碳纤维增强复合材料在更多领域的应用.【相关文献】[1] 贺福.碳纤维及其应用技术[M].北京:化学工业出版社,2004.[2] CHAND S.Review carbon fibers for composites [J].J Mater Sci,2000,35(6):1303-1313.[3] DONNET J B,WANT T K,PENG J C M,et al.Carbon fibers [M].3rd ed.Manhattan:Marcel Dekker Inc,1998.[4] BUCKLEY J D,EDIE D D.Carbon-carbon materials and composites [M].New York:William Andrew Publishing,1993.[5] GUPTA A,HARRISON I R.New aspects in the oxidative stabilization of PAN-based carbon fibers [J].Carbon,1996,34(11):1427-1445.[6] DARMSTADT H,SÜMMCHEN L,TING J M,et al.Effects of surface treatment on the bulk chemistry and structure of vapor grown carbon fibers [J].Carbon,1997,35(10):1581-1585.[7] 马刚峰,李峰,徐泽夕,等.聚丙烯腈基碳纤维研究进展[J].现代纺织技术,2011(3):58-60.[8] GUO H,HUANG Y D,MENG L H,et al.Interface property of carbon fibers/epoxy resin composite improved by hydrogen peroxide in supercritical water [J].MaterLett,2009,63(17):1531-1534.[9] FITZER E,GEIGL K-H,HÜTTNER W,et al.Chemical interactions between the carbon fibre surface and epoxy resins [J].Carbon,1980,18(6):389-393.。

非氧化法处理碳纤维表面改性的研究进展

非氧化法处理碳纤维表面改性的研究进展

2 . 1 气相沉积法 ( C V D ) 气相沉积是 利用气 态 物质在 一定 的 温度 、 压 力 条
钱春香 口 认为在对碳纤维进 行偶联 剂涂层处 理之 前, 碳纤维 的表 面含有 一定 量 的羧 基和 羟基 对碳纤 维
的力学性能有一 定 的作 用 。M. H. c h 0 i 等【 4 J 先对碳 纤 维进行硝酸氧化处理 , 后进行 偶联 剂涂层 处理 , 试 验发
须生长法 、 催化法及等离子体法 等非氧化法处理碳纤维表 面改性技术 的研究进展 , 并 简要 阐述 了各方法的优缺点 , 着重介绍 了等离子体处理碳纤维 , 希望 能为改性碳纤 维提供一 些
帮助 。
关键词 : 非氧化 法 碳纤维
1 前 言
表面改性 合材料层间剪切度可 提高 2 . 7倍 。还 可 以用 羧基铁
现: 碳纤维增强复合材料 的弯 曲强度 最高 , 且改 善了碳
纤维与树脂 之间的界 面结 合性 。刘 玉文等 先对碳 纤 维进行 阳极 预氧化 处理 , 再 对碳 纤 维进 行硅 烷偶联 剂
涂层处理 , 这样增加纤维表面 的羟基 数量 , 使其表 面与
偶联剂进行共 价键合 的活 性 点增 加 提 高纤 维 与树 脂 界 面黏接 强 度 。N o i f o 1 w a s h i t a等 用 正 己 烷 配 置 的
和酚醛等热解后 的沉 积 物来 提高 界面性 能 j 。此 外 ,
将金属 卤化物( 如Z r C 1 4 、 T i C 1 、 B C I 3 等) 置于氢气 中 , 在 1 0 0 0 ℃ 以上 高温气化 , 再沉积 于碳纤维表 面 , 可使碳 纤 维的耐高温氧化性 能大 幅度 改善 , 且 处 理后 碳纤维 的 力学性能基本不变。碳纤维 及制 品表面 涂覆有钾 或钠 的氧化物 , 再涂 以有机碳酸醋 , 于8 0 0 ℃下热解 , 可得到 二氧化 碳薄层 , 或者与 8 0 0—1 0 0 0 ℃ 中气化 的有 机碳 酸 酯接触 , 也可生成二氧化碳膜 , 这样 可 以明显改善纤 维 的耐高温氧化性 能。

碳纤维表面改性研究进展

碳纤维表面改性研究进展

碳纤维表面改性研究进展
殷永霞;沃西源
【期刊名称】《航天返回与遥感》
【年(卷),期】2004(025)001
【摘要】文章阐述了碳纤维增强树脂基复合材料中界面的粘接机理,介绍了碳纤维的表面结构与性能,重点综述了常用的碳纤维表面处理方法.
【总页数】4页(P51-54)
【作者】殷永霞;沃西源
【作者单位】北京空间机电研究所,北京,100076;北京空间机电研究所,北
京,100076
【正文语种】中文
【中图分类】V25
【相关文献】
1.碳纤维表面改性研究进展 [J], 杜帅;何敏;刘玉飞;李莉萍;张道海
2.碳纤维表面改性及其对碳纤维/树脂界面影响的研究进展 [J], 杨平军;袁剑民;何莉萍
3.碳纤维表面改性及其在尼龙复合材料中的应用研究进展 [J], 张顶顶;张福华;杨吉祥;李晓峰;李彦希;曾骥
4.碳纤维表面改性研究进展 [J], 战奕凯; 赵潜; 李莉萍; 刘玉飞; 龚勇吉; 何敏
5.聚酰胺/碳纤维复合材料中纤维表面改性研究进展 [J], 夏礼栋;张琦;高达利;吴长江;张师军
因版权原因,仅展示原文概要,查看原文内容请购买。

碳纤维表面改性

碳纤维表面改性

• 3.2.4聚合物涂层 • 碳纤维经表面处理后,再使其表面附着薄层聚合 物,这就是所谓的上浆处理。这层涂覆层即保护 了碳纤维表面,同时又提高了纤维对基体的浸润 性。常用的聚合物有聚乙烯醇、聚醋酸乙烯、聚 缩水甘油醚、酯环族环氧化合物等,这些聚合物 都含有两种基团,能同时与碳纤维表面及树脂结 合。树脂 浆料的用量一般为碳纤维质量的 0.4%一5%,最佳含量为0.9%~1.6 %
碳纤维表面处理改性
• • • • 3 .碳纤维的表面处理 3.1 氧化处理 3.1.1 气相氧化法(图右为o3氧化示意图) 气相氧化使用的氧化剂有空气、氧气、臭氧等含 氧气体。氧化处理后,碳纤维表面积增大,官能 氧化处理后, 氧化处理后 碳纤维表面积增大, 基团增多, 基团增多,可以提高复合材料界面的粘接强度和 材料的力学性能。 材料的力学性能。如把碳纤维在450℃下空气 中氧化10min,所制备的复合材料的剪切强度和 拉伸强度都有提高;采用浓度0.5~15mg /L的臭氧连续导入碳纤维表面处理炉对碳纤维 进行表面处理,经处理后碳纤维复合材料的层间 剪切强度可达78.4~105.8MPa;
• 3.1.3 电化学氧化 • 电化学氧化处理利用了碳纤维的导电性,一般 是将碳纤维作为阳极置于电解质溶液中。 • 机理:通过电解所产生的活性氧来氧化碳纤维 机理: 表面而引入极性基团, 表面而引入极性基团,从而改善纤维的浸润、 粘敷特性及与基体的键合状况,显著增加碳纤 维复合材料的力学性能。 • 碳纤维表面氧化状况可以通过改变反应温度、 反应温度、 电解质浓度、处理时间和电流密度等条件来进 电解质浓度、处理时间和电流密度 行控制。.
• 3.2.5表面生成晶须法 • 在碳纤维表面,通过化学气相沉积生成碳化硅、 硼化金属、二氧化钛、硼氢化合物等晶须,能明 显提高复合材料的层间剪切强度,并且晶须质量 只占纤维的0.5% ~4%,晶须含量在3 %~4%时层间性能达到最大。生长晶须的过程 包括成核过程以及在碳纤维表面生长非常细的高 强度化合物单晶的过程。尽管晶须处理能获得很 好的效果,但因费用昂贵、难以精确处理,故工 业上无法采用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年3月化学研究111第26卷第2期 CHEM ICAL RESEARCH http ://hxya cbpt. cnki. net.碳纤维表面改性研究进展刘保英1,2,王孝军3,杨杰1,3倡,丁涛2倡(1.四川大学高分子科学与工程学院,四川成都610065;2.河南大学化学化工学院,河南开封475004;3.四川大学分析测试中心,四川成都610064)摘要:碳纤维因其优异的综合性能常被用作树脂基体的增强材料.然而由于碳纤维与树脂基体之间的界面结合性能较差,其增强的复合材料的力学性能往往与理论值相差甚远,因此必须对碳纤维进行表面改性,以提高其与聚合物基体的界面粘结性能.本文作者综述了国内外关于碳纤维表面改性技术的研究进展,概述了涂层法、氧化法、高能辐射法等改性方法对碳纤维增强复合材料界面强度的改性效果.关键词:碳纤维;表面改性;研究进展中图分类号:O64文献标志码:A文章编号:1008-1011(2015)02-0111-10Research progress of surface modification of carbon fiberLIU Baoying1,2 , WANG Xiaojun3 , YANG Jie1,3倡 , DING Tao2倡( 1 . Colle ge o f Poly mer Science & Engineering , Sichuan Universit y , Cheng du 610065 , Sichuan , China ;2 . Colle ge o f Che m istr y and Che m ical Engineering , H enan University , K ai f eng 475004 , H enan ,China ; 3 . A naly tical & Testing Center , Sichuan University , Cheng du 610064 , Sichuan , China)Abstract : Carbon fiber (CF) has been widely used as a reinforcement of polymer composite due to its excellent comprehensive performance .However ,the strength of CF reinforced resin ma‐ trix composite is always much lower than the theoretically predicted value due to smooth sur ‐face and chemical inertness of carbon fiber w hich lead to a poor interface between CF and res ‐ ins .Thus ,the research on surface modification of carbon fiber is very important in the compos ‐ ites applications .This article presents an overview of some surface modification methods of CF ,such as coating method ,oxidation process and high‐energy radiation treatment ,and intro‐ duces the modified effect of each method on the interfacial strength of carbon fiber reinforced polymer composite .Keywords :carbon fiber ;surface modification ;research progress碳纤维(CF)以其高比强度、高比模量、小的线膨胀系数、低密度、耐高温、抗腐蚀、优异的热及电传导性等特点,被称为新材料之王,常用作高性能树脂基复合材料的增强材料,广泛应用于飞机制造、国防军工、汽车、医疗器械、体育器材等方面[1-2].工业化收稿日期:2014-09-15.基金项目:河南省教育厅科学技术研究重点项目(14A430042).作者简介:刘保英(1986-),女,讲师,研究方向为聚合物基复合材料改性研究倡通讯联系人 E mail ppsf scu edu cn.,‐ :@..,dingtao @ henu edu. cn..生产的碳纤维按前驱体原料的不同可以分为:聚丙烯腈基(PAN‐based)、黏胶基、沥青基碳纤维和气相生长碳纤维[2-6].与另外3种碳纤维相比,PAN基碳纤维生产工艺简单,产品力学性能优异,产量约占全球碳纤维总产量的90%以上[5].自1962年问世以来,PAN基碳纤维取得了长足的发展,成为碳纤维工业生产的主流[7].由于碳纤维原丝表面由大量惰性石墨微晶堆砌而成,所以原丝表面呈非极性[8-9],表面能小,与树脂基体的浸润性差,界面结合性能差.此外,高性能DOI :1014002/.j hxya.2015.02.001.|化学研究,2015,26(2):111-120112化学研究2015年的碳纤维表面光滑,比表面积小,这也使得纤维与基体之间不能形成有效的机械锚合作用,纤维与树脂基体之间的界面强度下降.因此,必须对碳纤维进行表面改性,以提高其与聚合物基体的界面粘结性能.目前对碳纤维的表面改性主要针对以下3个方面来进行:一是在纤维表面引入羰基、羧基和羟基等活性官能团,提高纤维表面的树脂润湿性和化学键合作用[10];二是对纤维表面进行刻蚀,提高纤维表面粗糙度,增大纤维比表面积,进而实现与树脂基体之间形成机械互锁结构[11];三是去除纤维表面的弱界面层.针对碳纤维表面结构特性,研究者提出了很多方法对其进行表面改性,概括起来可以分为涂层法、氧化法、高能辐射处理法等.1 涂层法涂层法主要是在纤维表面形成一种能够与增强纤维和树脂基体发生物理化学作用的,具有一定结构、厚度和剪切强度的中间层,进而实现复合材料的界面增强.针对不同的树脂基体与增强纤维,可以通过表面涂层技术设计不同的涂层结构,因此该处理方法具有较大的灵活性,常见的有上浆剂处理、偶联剂涂覆、聚合物涂层、气相沉积等.1 1.上浆剂处理碳纤维伸长变形能力小(<2%),脆性大,在加工卷绕过程中受到反复摩擦和拉伸,纤维易出现毛丝及单丝断裂等现象,进而影响碳纤维的强度和质量.毛丝的存在使基体树脂不能充分润湿碳纤维,在复合材料中易产生孔隙,影响复合材料的力学性能[12],因此在碳纤维最终成品之前需要对其进行上浆处理.上浆就是在纤维表面涂一层保护胶.浆料在纤维表面形成一层保护膜,把各单丝纤维互相粘合起来,防止相对滑移,并使纤维上伸向各个方向的毛羽贴附在保护膜上,从而使碳纤维的表面光滑,提高碳纤维的力学性能.上浆处理不仅可保护碳纤维的表面,减少单丝及单丝断裂现象,使碳纤维集束,改善深加工性能,而且有研究表明,选择合适的浆料能够有效地改善碳纤维与树脂基体之间的界面粘合性能.碳纤维上浆剂主要有溶液型和乳液型两种[13-14].溶液型上浆剂是将有机树脂如聚乙烯醇、环氧树脂、聚氨酯等溶解在丙酮等有机溶剂中配制而成的.这类上浆剂溶液的结构与基体树脂的结构相近,从而能够有效地提高树脂的浸润性并达到保护纤维的目的.但该类上浆剂中的溶剂易挥发使树脂残留在导辊上,在对通过的纤维产生更大的损伤的同时又污染了车间环境,因此目前国外常用乳液型上浆剂.乳液型上浆剂是以一种树脂为主体,配以一定量的乳化剂及其他助剂制成的乳液,如聚氨酯树脂型、环氧树脂型、复合树脂型等.这类上浆剂乳液中含有表面活性剂,可以有效提高纤维表面与树脂基体之间的润湿性;且它不易在导辊上残留树脂,无溶剂污染环境的问题,因此目前碳纤维生产线一般都采用乳液型上浆剂.上浆剂是国内外各个碳纤维公司的技术特色,其具体配方一直都是商业机密,相关专利很多,但其他文献报道较少[14-18].目前最常用且研究较为成熟的碳纤维上浆剂是环氧树脂型上浆剂,其能增强树脂基体,且具有优异的化学稳定性、粘结性、热稳定性及高的性价比等优点[19-21].此外针对一些高温热塑性树脂基复合材料如聚酰胺(PA )、聚碳酸酯(PC )、聚苯硫醚(PPS )、聚醚砜(PES )和聚醚醚酮(PEEK )聚酰亚胺(PI )等也开发出了含砜类耐高温上浆剂[22]、多面体低聚倍半硅氧烷(POSS)改性环氧树脂上浆剂[23-24]和聚酰亚胺复配环氧树脂上浆剂[25].目前市场上销售的碳纤维通常是表面涂覆有一层上浆剂的改性产品[18,26-28],而有关市售碳纤维表面上浆剂对复合材料的界面强度的影响的研究结论并不统一.大部分研究表明[29-33],上浆剂的存在有利于树脂与纤维界面的粘结,能够有效地提高复合材料的界面强度,从而提升材料的机械强度,然而也有部分学者认为上浆剂的存在不利于复合材料界面强度的提升[34-35].DAI等[34]通过微球脱粘(micro‐bond)微观试验方法考察了 T300B 和 T700SC 碳纤维表面经丙酮退浆前后碳纤维增强环氧树脂(Ep‐oxy )复合材料的界面强度变化.他们认为退浆处理后复合材料的界面强度要优于未处理的复合材料,上浆剂的存在不利于CF/Epoxy体系界面强度的提高.作者同时认为上浆剂的存在可能会在纤维与基体之间形成弱界面层,从而导致界面在材料破坏过程中提前失效.DILSIZ和WIG HT M AN[35]研究了经Ultem棆聚酰亚胺和聚氨酯上浆处理前后Zoltek 棆碳纤维表面性能以及其与环氧树脂界面的结合强度.作者通过表面能理论及纤维和基体表面酸‐碱理论分析认为,上浆剂与树脂基体的相容性决定了纤维与基体之间界面相的形成及其粘结强度.上浆剂的存在降低了纤维表面能,掩盖了酸‐碱活性点,上浆后纤维表面羟基减少,纤维表面能降低.纤维断裂实验进一步证实上浆剂的存在使复合材料的界面剪切强度下降.ZHANG等[36]研究了不同分子量的环氧型上浆剂对CF/Epoxy复合材料界面强度DOI :1014002/.j hxya.2015.02.001.|化学研究,2015,26(2):111-120第2期刘保英等:碳纤维表面改性研究进展113的影响,认为只有分子量适当的上浆剂才能提高复合材料的IFSS,分子量太高或太低均导致树脂与纤维界面结合性能变差.YAO等[37]通过microbond试验方法研究了退浆前后T700碳纤维与双马来酰亚胺(BMI)和环氧树脂的界面剪切强度.作者发现上浆剂的存在能够提高CF/Epoxy复合材料的界面强度,但是对CF/BMI的影响则恰恰相反,纤维退浆处理后与BMI的界面结合反而增强.作者认为这主要是源于上浆剂与Epoxy和BM I发生不同程度的反应引起的.1 2.偶联剂涂覆偶联剂通常是分子结构中具有两种不同性质官能团的化学物质,能够在树脂基体与增强材料之间形成“分子桥”作用,从而改善有机材料与无机材料之间的界面作用,提高复合材料的性能.硅烷偶联剂是公认的可用于材料表面处理、复合材料界面改性和胶黏剂的高效偶联剂[38],常作为无机纤维增强或者填料填充聚合物复合材料的界面改性剂[39-40].其作用机理是,硅烷偶联剂首先接触空气中的水分发生水解反应,之后脱水缩合形成低聚物.这种低聚物能够与无机材料表面的羟基形成氢键,进一步受热脱水形成共价键,实现与无机材料的结合.硅烷偶联剂与无机材料的作用是从羟基作用开始的,因此对于表面含有羟基的无机材料如玻纤、二氧化硅等,这类偶联剂的作用效果较好;而对于表面无羟基的无机材料如碳纤维、炭黑、石墨等,其作用效果并不是很好.目前关于偶联剂对纤维增强复合材料的改性研究主要集中在玻纤[41-42]、天然纤维[43],对碳纤维相关改性研究报道较少.YANG等[44]通过将硅烷偶联剂与环氧树脂直接共混的方法对树脂基体进行改性,制备单取向碳纤维布增强环氧树脂.通过这种方法制备的复合材料的层间剪切强度提高42%,树脂基体对碳纤维的浸润能力提高.龚克等[45]将碳纤维在硅烷偶联剂水溶液中浸泡预处理后与聚四氟乙烯复合研制成型碳纤维增强的聚四氟乙烯复合材料.研究表明,经硅烷偶联剂改性后的碳纤维制备的复合材料的拉伸强度提高30%,抗磨损性能提升3倍.作者认为偶联剂的存在能够与碳纤维表面上浆剂组份中的有效成分形成化学键,进而改善碳纤维与树脂基体之间的界面结合,提高复合材料的机械性能.1 3.聚合物涂层聚合物涂层是一种通过在碳纤维表面引入化学官能团及改变碳纤维的表面能来提高树脂基体与碳纤维之间的反应性及润湿性的表面处理方法.目前常通过原位化学接枝反应、界面缩聚、等离子体聚合和电化学聚合等方法实现[46-48],其中电化学聚合法较为常用.电化学聚合法[49]以碳纤维作为电极,电解液由溶解在溶剂中的聚合物单体组成(通常选用带有不饱和键的苯乙烯、醋酸乙烯、丙烯腈等作为电解液单体).在电场的作用下,这些聚合物单体在碳纤维表面发生聚合反应,形成具有一定厚度、均一、且带有特殊功能基团的聚合物膜.反应过程快速且稳定,可以通过单体选择和电流密度、单体浓度、温度等处理工艺的选择对处理强度进行控制.HUNG 等[48]以苯酚、间苯二胺和丙烯酸为单体,通过电化学的方法对碳纤维表面进行改性,在碳纤维与环氧树脂之间形成可控界面,实现对CF/Epoxy 复合材料的界面改性.研究表明,经处理后的碳纤维表面引入活性基团如-O H、-N H2、- COO H等,树脂基体在纤维表面的浸润性得到提高,从而使得CF/Epoxy复合材料的横向拉伸强度、纵向拉伸强度及层间剪切强度分别提升50%、64%和135%.该方法可以对界面官能团的引入实现量身定制,为复合材料的高性能化提供了可能.1 4.气相沉积法气相沉积法是在一定温度压力下利用气态物质在纤维表面发生反应产生一层固态沉积物的过程.通过在碳纤维表面沉积一层碳纳米管(CN Ts)、硼化物以及碳化物等晶须的方法实现纤维表面改性[50-53],进而应用于纤维增强复合材料的界面改性中.碳纳米管(CN Ts)是一维纳米材料,质量轻,具有优异的强度、刚度、韧性以及优越的导电和导热性能.将CN Ts引入到纤维增强树脂基复合材料中可实现复合材料的多尺度增强,因而也有很多科研工作者试图通过表面沉积碳纳米管的方法对碳纤维表面进行改性处理,进一步改善复合材料的界面粘结性能.T HOST ENSON等[52]采用气相化学沉积法直接在碳纤维表面生长CN Ts(图1b),之后将碳纤维与树脂基体复合制备出多尺度CN Ts/CF增强的复合材料.碳纳米管与树脂基体在碳纤维周围形成一层纳米复合材料鞘(图1c),有效地提高了复合材料界面层的剪切模量、屈服强度以及外力在树脂基体与增强纤维界面的传递效率.WICKS[54]采用气相沉积法在氧化铝纤维布上取向生长CN Ts,通过CN Ts在纤维布与树脂基体界面层形成架桥作用,实现纤维布/环氧复合材料的层内增刚和增韧,其作用机理详见图2.DOI :1014002/.j hxya.2015.02.001.|化学研究,2015,26(2):111-120114化学研究2015年图1碳纤维表面(a)和表面生长碳纳米管后(b)的扫描电镜照片(SEM)及复合材料在纤维/基体界面处的透射电镜照片(TEM)(c)[52]Fig 1. SEM images of carbon fibers (a) before and (b) after nanotube grow th and TEM image of thenanocomposite structure near the fiber /matrix interface (c)[52]图2绒毛纤维增强树脂基复合材料示意图[54]Fig 2. Illustration of fuzzy‐fiber‐reinforced plastic (FFRP )[54]基于一些碳纤维复合材料在高温环境中成型及使用的需要,人们在碳纤维表面涂覆一层能够长期在高温环境下有效保护碳纤维并阻隔其氧化的涂层.最常见的材料就是硅系涂层如碳化硅(SiC)、氮化硅(Si3N4).这些涂层能够有效地在纤维表面产生一层硅保护层,具有优异的抗氧化性,能够保护高温下碳纤维表面不被攻击破坏,同时还与碳纤维具有一定的相容性.目前有关直接在碳纤维上生长SiC 晶须的研究报道较少.MCHENRY等[50]首先在碳纤维表面沉积厚度为0000.1in的石墨层,然后采用SiC 沉积生长的方法直接在较细的碳纤维上得到SiC 晶须.RABO TNOV [55]和 KOWBEL[56]等将SiC 晶须引入碳纤维/环氧及碳/碳复合材料体系中,复合材料的层间剪切强度提高了200%~300%.作者认为在碳纤维表面均匀生长三维尺度SiC 晶须能够增大纤维表面粗糙度及比表面积,提高界面层强度.此外,碳化硅涂层能够在纤维表面产生一层硅保护层,保护高温下碳纤维表面不被攻击破坏,进而提高复合材料的电气绝缘性和环境耐候性[57].纳米尺度的涂层微晶与微米尺度的碳纤维具有一定的相容性,涂层纤维可能嵌入有机或金属基体中形成层内增刚/层间增韧的多尺度增强复合体系[58].2 氧化法氧化法是一种针对碳纤维的表面处理技术,主要有液相氧化法、气相氧化法、阳极氧化法等.液相氧化法通常是将碳纤维浸泡在硝酸[59-60]、硫酸[61]、磷酸[62]、过氧化氢[8]、氨水[63]等具有氧化性的溶剂中进行氧化处理.随着反应时间的增加,纤维表面产生不同浓度的含氧官能团,同时纤维表面的粗糙度及比表面积也因刻蚀而增大.WU等[59]采用HNO3溶液对碳纤维进行氧化处理,研究发现,随着氧化时间的延长CF表面的酸性基团增多;但同时纤维的拉伸强度下降,质量有所损失.作者给出了可能的酸氧化机理(图3).ZHANG等[61]通过X射线能谱及拉曼光谱分析了H2SO4/HNO3对碳纤维表面的氧化机理.作者发现在氧化过程中碳纤维表面出现4个O1s、2个N1s和2个S2p峰.随DOI :1014002/.j hxya.2015.02.001.|化学研究,2015,26(2):111-120第2期刘保英等:碳纤维表面改性研究进展115着处理时间的延长,2个O1s、2个N1s和2个S2p峰消失,产生-COO H基团,且其含量不随其他基团的消失而发生变化.作者认为氧化过程主要是酸攻击碳纤维表面的碳原子,并为碳原子进一步氧化为-COO H做准备,最终碳纤维表面活性基团仅为- COO H .YU 等[64]通过 K2 S2 O8/AgNO3溶液组合对PAN基碳纤维表面进行氧化处理,在碳纤维表面引入羧基、羟基等功能基团,使得CF/Epoxy复合材料界面剪切强度提高625%..同时,该方法能够有效维持碳纤维表面形貌,避免了其他处理方法对碳纤维表面刻蚀引起的纤维强度破坏,从而能够最终实现复合材料综合性能提高.图3氧化石墨碎片可能存在的结构等[59]Fig 3. A possible model structure of a partially[59] oxidized graphitic fragment连续阳极氧化法[65]是将材料作为阳极置于电解质溶液中,利用电解作用对材料表面进行氧化处理的一种方法.阳极氧化过程缓和,反应过程可控,处理效果均匀显著,适合大规模生产应用.LU O等[66]将三维混编T300/PEEK复合纤维纱浸渍于5%的(N H4)2HPO4溶液中煮沸1h进行阳极氧化处理,之后通过热压成型制备C3‐D/PEEK复合材料.所得复合材料的冲击强度和弯曲强度较未经处理直接热压成型的复合材料分别提高25%和10%,断面拔出纤维长度较短且纤维表面残留有大量树脂基体.这些现象表明经预氧化处理后复合材料的界面强度提高.KING等[67]将沥青基和PAN基碳纤维在硫酸铵溶液中进行阳极氧化处理,通过单纤维断裂实验和短悬臂梁剪切实验测得其相应的CF/Epoxy 复合材料的界面剪切强度分别提高400%和200%,而复合材料的纵向压缩强度和碳纤维的单丝强度未受氧化处理影响.作者认为复合材料的压缩强度与纤维和树脂基体间的剪切强度大小无关.FUKUNAGA 和 UEDA[68]揭示了阳极氧化处理对碳纤维表面的改性机理(图4).拉曼光谱分析表明,未处理沥青基碳纤维的表面由化学性质稳定面(基层)和易被氧化面(晶体边缘部分)构成.在表面处理过程中,这些不稳定的表面易被氧化,并沿晶界边缘产生裂缝,对晶体大小无影响.作者认为处理过程中产生的环氧活性基团及裂缝能够提高纤维与树脂基体之间的化学键作用及机械互锁能力,从而有效地提高树脂对纤维的粘附性.气相氧化法主要是通过空气、O2、O3、CO2、SO2等气体对碳纤维表面进行处理,使其表面发生氧化,活性基团增多的一种方法.其中空气氧化法[69]成本低,操作过程简单,无污染,为常用的方法.FUKU‐NAGA 等[70]对比了空气氧化法和阳极氧化法对碳纤维表面改性的效果.经空气氧化法处理及阳极氧化处理的碳纤维/环氧复合材料的界面剪切强度较未处理试样均有明显提升,且空气氧化法处理效果优于阳极氧化法.3 高能辐射处理高能辐射处理的原理是利用高能射线(如电子束、g射线、X射线、紫外线等)发出的微粒子或者等离子体轰击纤维的表面,在纤维表面产生化学反应活性自由基或接枝活性官能团,通过在纤维表面与树脂基体间产生化学键合作用,提高树脂基体对碳纤维的润湿性[71].此外,高能射线对碳纤维表面进行适度刻蚀增大了纤维表面粗糙度,提高了纤维与基体界面间的机械锁合力,进而使得复合材料的界面强度得以改善.等离子体[72]是由大量处于基态或激发态的高能带负电荷的电子、带正电的离子及中性的原子、分子等粒子组成的导电介质,是一种具有高内能、高活性的化学物质.等离子体处理可以采用不同类型的气体如氩气、氧气、二氧化碳和水等对处理材料产生独特的表面性质.M ON T ES‐M OR樿N等[73]研究了氧等离子体处理对高模量沥青基碳纤维及高强度PAN 基碳纤维表面结构组成及单丝强度的影响.通过纤维断裂实验结果表明,经等离子体氧化处理后碳纤维与聚碳酸酯树脂的界面剪切强度有明显提升,而纤维强度变化不大.作者认为等离子体处理能够在纤维表面产生所需活性基团的同时不损伤纤维自身的强度,因而这种处理方法具有商业应用前DOI :1014002/.j hxya.2015.02.001.|化学研究,2015,26(2):111-120。

相关文档
最新文档