2018届吉林省长春市普通高中高三一模考试数学试题卷(理科)(解析版)

合集下载

吉林省长春市2018届高三数学上学期第五次月考一模试题理201801150195

吉林省长春市2018届高三数学上学期第五次月考一模试题理201801150195

2018届高三年级第一次模拟(第五次月考)考试数学试题(理科)第Ⅰ卷一、选择题:(本大题共12小题,每小题5分;在每小题给出的四个选项中,只有一项是符合题目要求的.)(1)若集合lg2,1M x y N x x,则M Nxx(A)(0,2)(B)0,1(C)1,2(D),12i(2)在复平面内,复数z的共轭复数的模为12i(A)25(B)(C)(D)552555(3)下列命题中,为真命题的是(A),使得.x R ex001(B)x.sin xsin2(x k,k Z)(C)x R,2x x2.(D)若命题p:,使得0010,x2xx R则p:x R,x2x10.(4)执行如图所示的程序框图,输出的T=(A)29 (B)44 (C)52 (D)62(5)设等差数列的前n项和为,若,则a S S S48,820a a aa n n13141516(A)12 (B)8 (C)20 (D)160.91a0 3c 2log 2a ,b ,c4 .b(6)已知,,则的大小关系是26(A ) a b c (B ) c a b (C ) c b a(D )b c a12 222(7)若则的大小关系 Sx dx Sdx S e dx1, 2, 3 ,,x, S S S112131x(A )(B )SSSSSS123213(C ) (D )SSSSSS231321- 1 -x 2 0(8)设变量 x , y 满足约束条件 x y 3 0 ,则目标函数 zx 6y 的最大值为2x y 3 0(A )3 (B )4(C )18(D )401(9)设函数,则使得 f (x )f (2x 1)成立的 x 的取值范围是f (x) exx221(A ),1 31(B ),1,31 1(C ),3 31 1(D ), , 3 3(10)若抛物线 y 2 4x 的焦点是 F ,准线是l ,点 M( 4,m)是抛物线上一点,则经过点 F 、 M且与l 相切的圆共 (A ) 0 个 (B )1个(C ) 2 个 (D ) 4 个(11)在正四棱柱中,,动点分别在线段ABCD A B C DAA 1 4, AB BC 2P ,Q 11 1 1C 1D , ACPQ上,则线段长度的最小值是2 2 23 4(A ) (B )(C )(D )3332 5 3xx f (x) eaxx(12) 已知有两个零点,下列说法正确的是12(A )a e(B ) xx122(C ) x 1 x 21(D )有极小值 且xxxx122 0第Ⅱ卷二、填空题:(本大题共 4小题,每小题 5分.)x y 22(13)若双曲线 1 的左、右焦点分别为25 16F 1, F 2 ,点 P 在双曲线上,且 PF,则 13P F2等于1(14)设 为第二象限角,若 tan( ) ,则 2sincos ________4 2(15)2,2上随机地取一个数 k ,则事件“直线 y =kx 与圆(x - 5)2 + y 2 = 9 相交”发生的概率为2 1(16)已知 O 是 ABC 外心,若 AO ABAC ,5 4- 2 -则cos BAC三、解答题:(本大题共6小题,其中17-21小题为必考题,每小题12分;第22—23题为选考题,考生根据要求做答,每题10分)(17)(本小题满分12分)在△ABC中,角A、B、C的对边分别为a、b、c,面积为S,已知cos2C cos2A3.a c b222(Ⅰ)求证:a、b、c成等差数列;(Ⅱ)若B,S83,求b.3(18)(本小题满分12分)如图,AB为圆O的直径,点E,F在圆O上,AB//EF,矩形ABCD和圆O所在的平面互相垂直,已知AB2,EF1.(Ⅰ)求证:平面DAF平面CBF;(Ⅱ)当AD的长为何值时,二面角D FE B的大小为60.(19)(本小题满分12分)aa中,.已知数列a11,a1n n N*nna3n(Ⅰ)求的通项公式;a an nn(Ⅱ)数列b满足b31a,数列的前项和为,nb n Tn n nn n n2n若不等式对一切n N*恒成立,求的取值范围.1Tnn n12(20)(本小题满分12分)x y322椭圆C:(1a b0)的离心率为,过其右焦点F与长轴垂直的弦长为a b2222.(Ⅰ)求椭圆C的方程;(Ⅱ)设椭圆C的左右顶点分别为A,B,点P是直线x2上的动点,直线PA与椭圆另一交点为M,直线PB与椭圆另一交点为N.求证:直线MN经过一定点.(21)(本小题满分12分)已知函数f(x)lnx ax.- 3 -(Ⅰ)讨论f(x)的单调性;(Ⅱ)当函数f(x)有两个不相等的零点x,x时,证明: x x e2.1212请考生在22、23二题中任选一题作答,如果多做,则按所做第一题记分.(22)(本小题满分10分)选修4-4:坐标系与参数方程在极坐标系中,设圆:=4 cos与直线:=(∈R)交于两点.C l A,B14(Ⅰ)求以AB为直径的圆C的极坐标方程;2(Ⅱ)在圆任取一点,在圆上任取一点,求的最大值.C M C N MN12(23)(本小题满分10分)选修4-5:不等式选讲设函数f x x22x1.(Ⅰ)求不等式f x1的解集;(Ⅱ)若关于x的不等式f x t t2在0,1上无解,求实数t的取值范围.32- 4 -数 学 试 题(理科)答案 一. BADA,CBBC,ADCB103 二.13. 13 14. 15.16.108三.17. 【解】 1 2(Ⅰ)由正弦定理得:sin cos 2 C sin cos 2 A 3 sinACB22 21cos C1 cos A 3 即sin Asin C sin B2 2 2∴sin A sin C sin A cos C cos A sin C 3sin B即sin A sin C sin(A C ) 3sin B∵sin(A C ) sin B∴sin A sin C 2sin B 即 a c 2b ∴ a ,b ,c 成等差数列。

吉林省长春市普通高中2018届高三质量检测(三)数学(理)试卷

吉林省长春市普通高中2018届高三质量检测(三)数学(理)试卷

长春市普通高中20怡届高三质量监测(三〉数学试题卷(理科)耆生硕知: t 各试空分试聰砂答題卡,構分150井,石试时间】20分钟.2. 淬聴乩 在斟SF 抬宼位据匕境写学检.班纽 社名和准警证号.3. 希有答案必皱耳在务朗左上,打龙试总上无效. 4号试黠忆 製需上殳界轉卡一一、谨择題:本鏈共M 小题,每小眩空井"吞每小赵给出的四个选项中、只商一项是符 合题目毀滾的一 (t > 设集 fr.l^{x||x|<l), B = {x\x(x-3)<U}.刪 dURz(A)卜IQ U) (0.1)(C) (-13><D> (1,3)(2> 若埶数工=则|=|=[-i迅行运兀跑的摆辿們式仃纵横:老种瞄 式(如图所示).如吟松位数时*輝阿拉时汁数 样.把朴牛数旳的数码从圧到右抑列,«H 他栽码的序式胡徑覘* 釧町 个仏 百肯、力中t [网做虫 紬粘卜位.丁世・十万何用槌式展叮;•以 此芟他 例俎H66用S7并盂小祖肚二II 丄「刚翳71用券尊可劇为 2 占丄 Tl (B) HT X X I (C) i T± ■ (D> TIT 丄 1F_J5)榔ift 眈/(.¥)'Sin(2.i h 3)的用傑向f I T ft <J 个讯位曙f i!函数耳(灯二COS 2x 的 r 3 牌傑.測凸的ffl 诃门打;T S JT1 1,7 1?肚 l A )一 CID 二 fC>心—— 12J2 12 12 数学试独艸科〉 詭1贞(搖4就)(B) 0CD)迈(3) 中国有个名旬“运磬桂犍Z 中.决胖『咐之外■・其中的“溥”療您赴描<*hf P 经)中记朝的算靜.古代川订为廉址行计 ■ KSA#几寸长的小竹棍摆机平血LI II 01 Illi hli T T nr >± X = ms痢数 /(x) = l + /+—为til 图所不程用Hi 图是为r 求出满足2"-^ >28抑扯小偶 如、那么唯白框中的迥旬及巌后输岀的”悄分別是(A) n = n + l ^1 6(BJ M = “ + 2和 6 (CJ H = rt 4-1 S (D) n = n + 2^ml_«j(7} (T 本用间的W 摆放在恪架时同一栏上「變求屮、乙第本肝必坝摆做张幅攔• W* 丁两点书謝须相邻,则小岡的建旗方汎有I )种.(A) 24CB )36 «:1 48(8> 某几何縊的 濒用如图所同;(单册cm ),则劇L 何体的体扔E 帕趴cm >是<A) 4^3 〔B 〉罗厉(C )2血 (D)語(9) LABlA^flC 的内的对边分别为,b * Ci 齐 2/fttwi /?兰fjgs ( + c ix>s A・ h-2 ・则△屛賦曲 紂的城人Fi 圧<M I⑹ J3 <C)2(D )4(IQ) |2扫1边怏为2的竽追決形MC ・0为肚的中点・以』£>为析腿将4仏「 折诫zm, ant 凡乩GDIB 点的球的泯面机为 (A) 2JT口昇 M(C) 4ffCD)Ml) 口甜悠曲线三-亠 "的左后柄忙建点仃劭为幷利巧•种儿和支卜一存症一nr rtv -\点尸淌址丹;丄怦;,何冷△丹•出的圍舉为L 则谀取曲冀的禺心率为(A)—【1口 — <C> 2 <Di 32 2(12)已知定又域为H 的甫H/QO 的用乂择ii 点亿I),H 对*wR ,都有 广⑴八2. /(1QU 313T -11) < 3- log 7;: | T 为CA )似心) &B )(-oo,0}U<OJ) (C) Y 」)3 (-LO>U(0J)G'r 试趣连t 理斟】 苹2 1「人4 i ;CSC' -1A =2" ft'訂/畔上/二、填空砸:本SLh 4小題,旬小趣5分.“0(IJ)设实fltxj需足釣束策林・4一丫一$心0*聊二二” + 2y們最大值为x + V 5L °i456y口m涯Ift点圈井折町知=y』』x找性机羌. 为㈱确fjo.i),畠/(盘)耳2,则实数“的联恒盘国虽lag, Jr J:>O P(15)(15)乜殛长为2的弄蝮白柳△#放屮…讨为斜边/R的屮0,点P为该平记内-动啟苦冈卜2・M(S4'PS + 4XPC*/*A7)的眾小值屋______________•三、解答麵:共期分解答应舄生女字说明、证明过程或演算歩骤一第17-21掘为必考建, 毎个试强考生都叠须作答.第2篁苗趣为选考题*考生根揣要求件答•<-)必考题:共60分.(17)Ct耶题満分俺和仪进列{叫}的4沖项和为乙+吐忆二用",在正项巒说戳列{和也爲-吋(1)求{叫}和仏讣的期琨企式;< JD址1打二务求麹列{□}的li沏顶和匚-(18)(本小题満分门分)树立和躅行41録朮育山就是金血阚山・甲排人与自然和躅共牛"'射理念越来拯怎入人心.已圧威了全代门応穆叮*造祖方41的肚性劭环一据此旅H站推! 11T关严卞奁文明翅设进展愴况的确杳.大凰的蟒计截霍憲明・雾与谓査舟中关注此问趣的约占闕需刀!从需与调査的人郡中册应出200人■笄谒这200人按年岭分第I 组P5J5),閉2 ^{25,35).谊J犯[3翼45)「第4疑[4畀55)・笫3姐[5黑祐“再到的频率分布口方團如團所示i< \)求左的th(ri)現在熨从年龄鞍小的第b 2t 3蛆中用务层抽样的方世抽胞门人・再从这门人中樂机抽取J人迥订何卷英許・求在f I组巴帔拯到[人的刑覆F.^3 坦褫扯到2人的魄率;(IU)苕从所有参与调査的人中址意选出J A-记关注"诜丈明”的人数为片I 求X的分布対与期卑.灶学试軀隹f;T i!h u:(K- 4 )(旳〉(:本小题満分门分)在如图瞬示的儿忖悴屮,PA.1平面A BCD t E.F卧訓杲im AD, PH的中点・PA -AB = \(I)求证:EF#平面DO1;(II j求平面EFX7与平面/YX?所或锐二面角的金径值.rio> {本小题満分M分)托平删倒处坐栋承4 E油【関q的方用为"7口於虫・阀匚的方程^(i+ty+Z^b动岡卍与BIG内切切.< [)诜动訂関心厂的比迹E的厅楼:(ID巴知理-2』)制02,(1}为甲面内的两个宦点*过(14)点的氏战丿与轨迹E空于川』B两点、求0ii® APBQ的鈕大值.CD (本小趣滿分订労)已知隅議/"(工)冃”-4工*5-耳,(1〕若/'(刃在R上垦单魁递增喀咯求"的取遠范凤(It) ^g(T)-^/(X).当Q1时.若竄斗)乜(对"童(冊卜眞中^! < ftf < Jj -求i吐Jf t + x2< 2m(-)進考降垄】0处请考生在22、工3题中任选一题柞答一如果务傩*则按所做的第一12计*<22)(本申題満分苗分)选^4-4:坐标系与参賞方程选讲在氏期坐标JfiQ巾.以坐悔亂虫为楼血,X轴正半输为极挡建宜极劭标氛*曲啦;:"畑話— R「“如?"H )求G弓匚;交点的極磋标;〔II)设点a在G」:・觅=亍囲・欢动点尸的极坐标方翟(23)(本小麓潘分4份)选捲1黛不等武逸讲己知函数f (工)=|纠*|2x*3| + m・meR.〔I )当耐=—2时.求不等式/(i)^3的解能:£ [[)讨卜滋F(F,0h都有一广(工)$工+二怔戍立+求椭的眾值施阴■耽学试啦養!呷孑门第斗旬{扛4亟)长春市普通高中2018届高三质量监测(三)数学(理科)试题参考答案及评分标准一、选择题(本大题共 12小题,每小题5分,共60分) 1. C 2. A 3. C4. D5.C6. D7. A8. B9. B10. D11. B12. B简答与提示: 1. 【命题意图】本题考查集合的运算 .【试题解析】C A 二{x| -1 ::: x ::: 1}, B 二{ x| 0 ::: x :: 3}, AUB =(一1,3).故选 C. 2. 【命题意图】本题考查复数 . 【试题解析】A z =i,|z|=1.故选A.3. 【命题意图】本题考查中华传统文化中的数学问题 . 【试题解析】C 由算筹含义.故选C.4.【命题意图】本题主要考查函数的图象及性质【试题解析】D 由函数是偶函数,排除 A ,C ,当x ・(0, —),tanx .0.故选D.25.【命题意图】本题考查三角函数的相关知识 .【试题解析】C 由题意知,a = -一 • k 二,k • Z .故选C.126. 【命题意图】本题主要考查算法的相关知识 . 【试题解析】D 根据程序框图.故选 D7.【命题意图】本题考查计数原理的应用 . 【试题解析】A 由题意知A 2A 3A ; =24.故选A.8.【命题意图】本题主要考查三视图问题 .【试题解析】B 由题意可知该几何体为正三棱柱去掉一个小三棱锥,12. 【命题意图】本题是考查导数在研究函数单调性上的应用【试题解析】B 令F(x) = f(x)+2x ,有L(x)=f(x 七 刃,所以F(x)在定义域内 单调递增,由 f(1)=1,得 F® =f) 2 3 ,因为 f(log 2 |3x —1|) v3—log 出 |3x —1|9.V=4E 」2G 」°W .故选B.3 3【命题意图】本题主要考查解三角形的相关知识 .【试题解析】B 由题意知B=60,由余弦定理,2ac =a2c 一 4 — 2ac - 4,有 ac 空 4,故 S2 2ac = a c - 4,故1acsin B 乞、3 .故选 B.210.11.【命题意图】本题主要考查球的相关问题 .【试题解析】 D 折后的图形可放到一个长方体中,其体对角线长为 故其外接球的半径为 5,其表面积为2【命题意图】本题考查双曲线的相关知识 1+1+3二、一 5,5二.故选D.【试题解析】B 由双曲线可知S PFF=m 2-1 = 3,m 2= 4,从而』.故选B.2等价于 f (log 2|3x -1|) 2log 2|3x -1|:::3,令 t=log 2|3x -1|,有 f (t ) 2t :::3,则有t :1,即 log 2 |3x-1| :::1,从而 0 :::| 3x _ 1| ::: 2,解得 x :: 1,且 x 严 0.故选 B. 二、填空题(本大题共 4小题,每小题5分,共20分)13. 9 14. 1.715. (_::,_1]U[4, ::) 16. 48-32、、2简答与提示: 13. 【命题意图】本题考查线性规划问题 . 【试题解析】由可行域可确定目标函数在 (1,4)处取最大值9.14.【命题意图】本题考查回归方程的相关知识.【试题解析】将 x=3.2代入回归方程为y? = x ・1可得y -4.2,贝U 4m = 6.7 , 解得m= 1.675,即精确到0.1后m 的值约1.7. 15. 【命题意图】本题考查分段函数的相关知识1【试题解析】当X _0,(—)x_2,x _-1,当x 0 竄_4x_,故(::〒]4lh : .216. 【命题意图】本题考查平面向量的相关知识 【试题解析】由题意可知其最小值为48 - 32-、2.三、解答题17. (本小题满分12分)【命题意图】本题考查数列的基本方法及数列求和2【试题解析】解:(1) Q S n = n 2 -n ,令n =1 , q =0a . =Sn -S n 」=2 n -1 , n — 2a n =2 n-1 又 Q 数列仏?为等比,b 2 二 a 2=2 , b 4 二 a 5=8—=q = 4,又各项均为正• q = 2 , - bn = 2°4b 2(2)由(1)得:c n 二 n-1 -2nT n =0 2-1 23-1 23 L n-12n=1 222 23L n-1 2n2T n 二 1 232 24Ln - 2 2n n-1 2n 1-T n =222324L 2n - n-1 2n 1T n = n -2 2n 14 18. (本小题满分12分)【命题意图】本小题主要考查学生对频率分布直方图的理解以及分布列的相关知识 【试题解析】解:(1)由 10 0.010 0.015 a 0.030 0.010 =1,得 a = 0.035,(2)第1, 2, 3组的人数分别为20人,30人,70人,从第1, 2, 3组中用分层抽样的 方法抽取12人,则第1 , 2, 3组抽取的人数分别为 2人,3人,7人.设从12人中随机抽取3人,第1组已被抽到1人为事件A ,第3组抽到2人为事件B ,汁""1尹 1-2n 1n 1=2-n-12-4C ;CP AB G 32P(A) " C2C1O - C |C ;0C 2则 P B|A 二21 50(3)从所有参与调查的人中任意选出4概率为P , X 的可能取值为0,54 3 1.P X =0 二咖--)3:5 125 1人,关注“生态文明”的 1,2, 3.14 1 4 2 12Px" 话 19. 2 4 2 4 1 48 343P X =2 二C 3(y (1-匸) ,P X =3 二C 3(匚) 5 5 125 5想象能力、推理论证能力和运算求解能力 • 【试题解析】答案:(1 )取PC 中点M ,连接DM ,MF64 125本题考查学生的空间1丁 M ,F 分别是 PC, PB 中点,二 MF 〃CB MF =^CB ,, 21E 为 DA 中点,ABCD 为矩形,.DE/CB’DE -^CB ,2.MF // DE, MF = DE ,.四边形DEFM 为平行四边形.EF // DM , EF -平面 PDC , DM 二平面 PDC ,. EF // 平面 RDC(2PA_平面ABC ,且四边形 ABCD 是正方形,.AD, AB, AP 两两垂直, 原点,AP AB AD x, y, z A-xyz 则 P 1,0,0 , D 0,0,1,C 0,1,1, E(0,0,设平面EFC 法向量为m =(x, y,z),1 1 1;),F(;,;,°) 2 2 21 1 11 1 EF 十,,),FC =(, ,1)EF n = 0则一11,取 m = 3,-1,2y z = 0召2 T T则设平面 PDC 法向量为 n 2=(x,y,z), PD= (-1,0,1),PC =(-1,1,1),即 \FC n =0PD n 2 PC n 2 4 T cos : n 1,=0 -0_ x + z = 0 -* 「x + y + z = 0,取宀1。

最新-吉林省长春市2018届高三数学第一次模拟试题理(附解析)精品

最新-吉林省长春市2018届高三数学第一次模拟试题理(附解析)精品

最新-吉林省长春市2018届⾼三数学第⼀次模拟试题理(附解析)精品2018年长春市⾼中毕业班第⼀次调研测试数学试题卷(理科)考⽣须知:1.本试卷分试题卷和答题纸,满分150分,考试时间120分钟.2.答题前,在答题纸密封区内填写学校、班级、姓名和准考证号.3.所有答案必须写在答题纸上,写在试卷上⽆效.4.考试结束,只需上交答题纸. 参考公式:柱体体积公式:Sh V =,其中S 为底⾯⾯积,h 为⾼.锥体体积公式:Sh V 31=,其中S 为底⾯⾯积,h 为⾼. 第Ⅰ卷 (选择题,共60分)⼀、选择题(本⼤题包括12⼩题,每⼩题5分,共60分,每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的,请将正确选项填写在答题纸上)1. 设集合{}2,A xx x =∈R ≤,{}2|,12Byy x x ==--≤≤,则?R ()A B 等于 A.RB.(,2)(0,)-∞-+∞C.(,1)(2,)-∞-+∞D.? 2. 若复数2)(i a +在复平⾯内对应的点在y 轴负半轴上,则实数a 的值是A.1B.1-C.2D.2-3. “2a <-”是“函数()3f x a x =+在区间[1,2]-上存在零点”的A.充分不必要条件B.必要不充分条件D.既不充分也不必要条件4. 阅读右侧程序框图,输出的结果s 的值为 A.0 B.23C.3D.23-5. 在AB C △中,3A π∠=,3B C =,A B C ∠=A.4π或34πB.34πC.4πD.6π 6. 设a b 、是两条不同的直线,αβ、是两个不同的平⾯,则下列四个命题:①若a ⊥b ,a ⊥α,b ?α,则b ∥α;②若a ∥α,a ⊥β,则α⊥β;③若a ⊥β,α⊥β,则a ∥α或a ?α;④若a ⊥b ,a ⊥α,b ⊥β,则α⊥β. 其中正确命题的个数为 A.1 B.2 C.3 D.4 7. ⼀个空间⼏何体的正视图和侧视图都是边长为1的正⽅形,俯视图是⼀个直径为1的圆,那么这个⼏何体的全⾯积为A.3π2B.2πC.3πD.4π 8. 函数c o s ()(0,0)y x ω?ω?πA.2π=xB.2π=xC.2x =D.1x =9. 在△ABC 中,P 是B C 边中点,⾓A B C 、、的对边分别是a b c 、、,若0c A C a P A b P B ++=,则△ABC 的形状为A.直⾓三⾓形B.钝⾓三⾓形C.等边三⾓形D.等腰三⾓形但不是等边三⾓形.10. 类⽐“两⾓和与差的正弦公式”的形式,对于给定的两个函数:()xxS x a a -=-,()x xC x a a-=+,其中0a >,且1a ≠,下⾯正确的运算公式是①()()()()()S x y S x C y C x S y +=+;②()()()()()S x y S x C y C x S y -=-;③2()()()()()S x y S x C y C x S y +=+;④2()()()()()S x y S x C y C x S y -=-.A.①②B.③④C.①④D.②③11. 设1e 、2e 分别为具有公共焦点1F 、2F 的椭圆和双曲线的离⼼率,P 是两曲线的⼀个公共点,且满⾜1212P F P F F F +=,的值为B.2D.1恒成⽴. 如果实数m n 、满⾜不等式组22(623)(8)03f m m f n n m ?-++-?,那么22m n +的取值范围是 A.(3, 7)B.(9, 25)C.(13, 49)D. (9, 49)第Ⅱ卷(⾮选择题,共90分)本卷包括必考题和选考题两部分,第13题-21题为必考题,每个试题考⽣都必须作答,第22题-24题为选考题,考⽣根据要求作答.⼆、填空题(本⼤题包括4⼩题,每⼩题5分,共20分,把正确答案填在答题纸中的横线上). 13. 若等差数列{a n }的前5项和5S =25,且23a =,则4=a .14. 已知直线1l 与圆2220x y y ++=相切,且与直线2:l 3460x y +-=平⾏,则直线1l 的⽅程是 .15. 设2,[0,1]1(),(1,]x x f x x e x∈?=?∈??(e 为⾃然对数的底数),则0()e f x dx ?的值为 . 16. 已知函数,0()2,0x e x f x x x ?=?-=+k x f f 给出下列四个命题:①存在实数k ,使得⽅程恰有1个实根;②存在实数k,使得⽅程恰有2个不相等的实根;③存在实数k,使得⽅程恰有3个不相等的实根;④存在实数k,使得⽅程恰有4个不相等的实根.其中正确命题的序号是(把所有满⾜要求的命题序号都填上).三、解答题(本⼤题包括6⼩题,共70分,解答应写出⽂字说明,证明过程或演算步骤).17.(本⼩题满分12分)如图,在平⾯直⾓坐标系中,锐⾓α和钝⾓β的终边分别与单位圆交于A,B两点.⑴如果A、B两点的纵坐标分别为45、12,求c o sα和sinβ⑵在⑴的条件下,求c o s()βα-的值;⑶已知点C(1-,求函数()f O A O Cα=?的值域.18.(本⼩题满分12分)已知数列{}n a满⾜11a=,121(*)n na a n+=+∈N.⑴求数列{}n a的通项公式;⑵若数列{}n b满⾜()31231112144441nnb nba----=+,求数列{}n b的通项公式.19.(本⼩题满分12分)如图,在底⾯为直⾓梯形的四棱锥P A B C D -中9ADBC ABC∠=,∥°,P D⊥平⾯A B C D,A D=1,A B4B C=.⑴求证:B D⊥P C;⑵求直线AB与平⾯PDC所成的⾓;⑶设点E在棱P C上,P E P Cλ=,若DE∥平⾯PAB,求λ的值.20.(本⼩题满分12分)已知点(1,0)A- ,(1,0)B,动点M的轨迹曲线C满⾜2A MBθ∠=,2B Mθ=,过点B的直线交曲线C于P、Q两点. (1)求A M B M+的值,并写出曲线C的⽅程;(2)求△APQ⾯积的最⼤值.21.(本⼩题满分12分)已知函数()1(0,)xf xeax a e=-->为⾃然对数的底数.⑴求函数()f x的最⼩值;⑵若()f x≥0对任意的x∈R恒成⽴,求实数a的值;⑶在⑵的条件下,证明:)1n n n nn n enn n n n e-++++<∈-N其中.APECDB请考⽣在22、23、24三题中任选⼀题做答,如果多做,则按所做的第⼀题记分. 22. (本⼩题满分10分)选修4-1:⼏何证明选讲.如图,⊙O 内切△ABC 的边于D 、E 、F ,AB =AC ,连接AD 交⊙O 于点H ,直线HF 交BC 的延长线于点G . ⑴证明:圆⼼O 在直线AD 上;⑵证明:点C 是线段GD 的中点.23. (本⼩题满分10分)选修4-4:坐标系与参数⽅程选讲. 在极坐标系中, O 为极点, 半径为2的圆C 的圆⼼的极坐标为(2,)3π.⑴求圆C 的极坐标⽅程;⑵P 是圆C 上⼀动点,点Q 满⾜3O P O Q=,以极点O 为原点,以极轴为x 轴正半轴建⽴直⾓坐标系,求点Q 的轨迹的直⾓坐标⽅程.24. (本⼩题满分10分)选修4-5:不等式选讲. 已知函数()|1||22|.f xx x =-++⑴解不等式()5f x >;⑵若不等式()()f x a a <∈R 的解集为空集,求a 的取值范围.2018年长春市⾼中毕业班第⼀次调研测试数学(理科)试题参考答案及评分标准1.B 2.B 3.A 4. B 5. C 6. D 7.A 8.D 9.C 10.B 11.A 12.C 简答与提⽰:1. B 化简A 为[2,2]-,化简B 为[4,0]-,故()A B =R e(,2)(0,)-∞-+∞.2. B ai a i a 21)(22+-=+在复平⾯内对应的点在y 轴负半轴上,则210,a -=且0a <,∴1.a =-3. A()3f x a x =+在区间[1,2]-上存在零点,则(1)(2)0f f -<,即(3)(23)0a a -+<,∴3a >或32a <-,∴“2a <-”是“3a >或32a <-”的充分不必要条件,∴“2a <-”是“函数()3f x a x =+在区间[1,2]-上存在零点”的充分不必要条件. 4. B ()sin3n f x π=的函数值构成周期为6的数列,且(1)(2)(3)(4)(5f f f f f f +++++=,则(1)(2)(2011)f f +++= (2011)f =(1)f =s i n 3π= 5. C由正弦定理sin C =,⼜3B C =,A B ,∴A C >,则C 为锐⾓,故4C π=.BG C D H FAO E6. D 由空间线⾯位置关系容易判断①②③④均正确.7. A ⼏何体为底⾯半径为12,⾼为1的圆柱,全⾯积为21132()21222πππ+??=. 8. D 由c o s ()y x ω?=+为奇函数,得2k π?π=+()k ∈Z ,⼜0?π<<,∴2π=.y x xπππ=+=-,当1x =时,s in 12y π=-=-,∴1x =是其⼀条对称轴. 9. C 由题意知11()()022c A Ca A B A C b A B A C -++-=,∴()022a b a b c A C A B +---=,∴()22a b a b c A C A B+--=,⼜A B 、A C 不共线,∴0202a ba b c -?=+?-=??,∴.a b c ==10. B 经验证,只有③④正确.11. A 设1212||,||,||2P F m P F n F F c ===,不妨设m n >.由1212P F P F F F +=知,∠1290F P F =,则2224m n c +=,∴12c e m n =+,22ce m n=-,∴2222212112()24mn e e c ++===. 12. C 由(1)(1)0f x f x -++=得(1)(1)f x f x -=-+,⼜22(623)(8)0f m m f n n -++-<,∴22(623)[1(81)]f m m f n n -+<-+--,∴222(623)[1(81)](28)f m m f n n fn n -+<---=-+. ∵()f x 是R 上的增函数,∴2623m m -+<228n n-+,∴22(3)(4)4m n -22(3)(4)4(3)m n m -+-=>内的点到原点的距离,故7<,∴221349.m n <+< ⼆、填空题(本⼤题共4⼩题,每⼩题5分,共20分) 13. 7 14. 3410x y +-=或3490 x y ++= 15.4316. ①②简答与提⽰:13. 7 依题意35a =,23a =,则2d =,∴47.a =14. 3410x y +-=或3490x y ++= 设直线1:340l x y b ++=,与圆22(1)1x y ++=相切,故|4|1,5b -=∴9b =或1,b =-∴所求直线⽅程为3410x y +-=或3490x y ++=.。

吉林省长春市普通高中2018届高三上学期质量监测理数试题Word版含解析

吉林省长春市普通高中2018届高三上学期质量监测理数试题Word版含解析

吉林省长春市普通高中2018届上学期质量监测高三理数试题一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.复数1z ,2z 在复平面内对应的点关于直线y x =对称,且132z i =+,则12z z ⋅=( ) A. 1213i + B. 1312i + C. 13i - D. 13i【答案】D.考点:复数的运算.2若实数a ,b R ∈且a b >,则下列不等式恒成立的是( ) A.22a b > B. 1ab> C. 22a b > D. lg()0a b -> 【答案】C. 【解析】试题分析:根据函数的图象与不等式的性质可知:当a b >时,22a b >为正确选项,故选C. 考点:不等式的性质.3.设集合2{|30}A x x x =-<,{|||2}B x x =<,则A B =( ) A. {}|23x x << B. {}|20x x -<< C. {}|02x x << D. {}|23x x -<<【答案】C. 【解析】试题分析:由题意可知{|03}A x x =<<,则{|22}B x x =-<<,∴{|02}A B x x =<<,故选 C.考点:集合的关系.4.运行如图所示的程序框图,则输出的S 值为( )A. 99212-B. 99212+C. 1010212-D. 1010221+【答案】A. 【解析】试题分析:由算法流程图可知,输出结果是首项为12,公比也为12的等比数列的前9项和,即为99212-,故选A.考点:程序框图.5.设等差数列{}n a 的前n 项和为n S ,10a >且65911a a =,当n S 取最大值时,n 的值为( ) A. 9 B. 10 C. 11 D. 12【答案】B.考点:等差数列的通项公式及其前n 项和.6.几何体三视图如图所示,则该几何体的体积为( )A.323B. 2163π-C. 403D. 8163π-【答案】C.【解析】试题分析:该几何体可视为长方体挖去一个四棱锥,∴其体积为14022422233⨯⨯-⨯⨯⨯=,故选C.考点:空间几何体体积计算.7.已知变量X 服从正态分布(24)N ,,下列概率与(0)P X ≤相等的是( ) A.(2)P X ≥ B.(4)P X ≥ C.(04)P X ≤≤ D. 1(4)P X ≥-【答案】B. 【解析】试题分析: 由变量X 服从正态分布(2,4)N 可知,2x =为其密度曲线的对称轴,因此(0)(4)P X P X ≤≥=,故选B.考点:正态分布的性质.8.函数sin(2)3y x π=-与2cos(2)3y x π=+的图象关于直线x a =对称,则a 可能是( )A. 24πB. 12πC. 8πD. 1124π【答案】A.考点:三角函数的图象和性质.9.已知AB 为圆:O 22(1)1x y -+=的直径,点P 为直线10x y -+=上任意一点,则PA PB ⋅的最小值为( )A.1C. 2D.【答案】A. 【解析】试题分析:由题意得,设(1cos ,sin )A θθ+,(,1)P x x +,则(1cos ,sin )B θθ--, ∴(1cos ,sin 1)PA x x θθ=+---,(1cos ,sin 1)PB x x θθ=-----, ∴(1cos )(1cos )(sin 1)(sin 1)PA PB x x x x θθθθ⋅=+---+-----22222(1)cos (1)sin 211x x x θ=--+---=+≥,当且仅当0x =时,等号成立,故选A. 考点:1.圆的标准方程;2.平面向量数量积及其运用.10.已知函数()f x 满足()(2)2f x f x +-=,当(0,1]x ∈时,2()f x x =,当(1,0]x ∈-时,()2f x +=,若定义在(1,3)-上的函数()()(1)g x f x t x =-+有三个不同的零点,则实数t 的取值范围是( ) A. 1(0,]2B. 1[,)2+∞C. (0,6+D. (0,6-【答案】D. 【解析】试题分析:当(1,0]x ∈-时,1(0,1]x +∈,∴22()2211xf x x x -=-=-=++,即()f x 在(1,1]x ∈-上的解析式为22(1,0]()1(0,1]xx f x x x x -⎧ ∈-⎪=+⎨⎪ ∈⎩,又∵()(2)2f x f x +-=,∴()f x 的图象关于(1,1)点对称,可将函数()f x 在(1,3)x ∈-上的大致图象如下图所示,令()0()(1)g x f x t x =⇒=+,而(1)y t x =+表示过定点(1,0)-斜率为t 的直线,由图可知为其临界位置,当[1,2)x ∈时,2()(2)2f x x =--+,联立2(1)(2)2y t x y x =+⎧⎨=--+⎩,并令0∆=,可求得6t =-,因此直线的斜率t的取值范围是(0,6-,故选D.考点:1函数与方程;2.数形结合的数学思想.11.小明试图将一箱中的24瓶啤酒全部取出,每次小明在取出啤酒时只能取出三瓶或四瓶啤酒,那么小明取出啤酒的方式共有( )种. A. 18 B. 27 C. 37 D . 212【答案】C. 【解析】试题分析:由题可知,取出酒瓶的方式有3类,第一类:取6次,每次取出4瓶,只有1种方式;第二类:取8次,每次取出3瓶,只有1种方式;第三类:取7次,3次4瓶和4次3瓶,取法为37C ,为35种;共计37种取法,故选C.考点:排列组合.12.过双曲线22115y x -=的右支上一点P ,分别向圆221:(4)4C x y ++=和圆2:C 22(4)1x y -+=作切线,切点分别为M ,N ,则22||||PM PN -的最小值为( ) A. 10 B. 13 C. 16D. 19【答案】B.考点:圆锥曲线综合题.二、填空题(本大题共5个小题,每小题5分,共20分,把答案填在题中的横线上.)13.已知实数x ,y 满足2040240x y x y x y ≤≤≥-+⎧⎪+-⎨⎪+-⎩,则2y x -的最小值为___________.【答案】1. 【解析】试题分析:根据不等式组获得可行域如下图,令2z y x =-,可化为2y x z =+,因此当直线过点(1,3)时,z 取得最小值为1,故填:1.考点:线性规划.14.已知向量(13)a =,,2(0,1)b t =+,则当[t ∈时,||||ba t b-的取值范围是_________. 【答案】. 【解析】试题分析:由题意,||bb 为(0,1),根据向量的差的几何意义,||||b a t b -表示||b tb 向量终点到a 终点的距离,当t =时,该距离取得最小值为1,当t =时,根据余弦定理,可算得该距离||||b a t b-的取值范围是,故填:.考点:平面向量的线性运算.15.已知0>a ,6)x-展开式的常数项为15,则2(a ax x dx -+=⎰___________.【答案】2233π++考点:1.二项式定理;2.定积分的计算.16.已知数列{}n a 中,对任意的*n N ∈,若满足123n n n n a a a a s ++++++=(s 为常数),则称该数列为4阶等和数列,其中s 为4阶公和;若满足12n n n a a a t ++⋅⋅=(t 为常数),则称该数列为3阶等积数列,其中t 为3阶公积,已知数列{}n p 为首项为1的4阶等和数列,且满足3423212p p p p p p ===;数列{}n q 为公积为1的3阶等积数列,且121q q ==-,设n S 为数列{}n n p q ⋅的前n 项和,则2016S = ___________. 【答案】2520-. 【解析】试题分析:由题意可知,11p =,22p =,34p =,48p =,51p =,62p =,74p =,88p =,91p =,102p =,114p =,128p =,131p =,……,又∵{}n p 是4阶等和数列,因此该数列将会照此规律循环下去,同理,11q =-,21q =-,31q =,41q =-,51q =-,61q =,71q =-,81q =-,91q =,101q =-,111q =-,121q =,131q =-,……,又∵{}n q 是3阶等积数列,因此该数列将会照此规律循环下去,由此可知对于数列{}n n p q ⋅,每12项的和循环一次,易求出11221212...15p q p q p q ⋅+⋅++⋅=-,因此2016S 中有168组循环结构,故2016151682520S =-⨯=-,故填:2520-.考点:1.新定义问题;2.数列求和.三、解答题 (本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分12分)已知函数2()2sin cos f x x x x =+(1)求函数()f x 的最小正周期和单调减区间;(2)已知ABC ∆的三个内角A ,B ,C 的对边分别为a ,b ,c ,其中7a =,若锐角A满足()26A f π-=sin sin 14B C +=,求ABC ∆的面积. 【答案】(1)最小正周期:π,单调递减区间:7[,]1212k k ππππ++()k Z ∈;(2)试题解析:(1)2()2sin cos sin2f x x x x x x =+=2sin(2)3x π=+,因此()f x 的最小正周期为22T ππ==,()f x 的单调递减区间为3222232k x k πππππ≤≤+++, 即7[,]1212x k k ππππ∈++()k Z ∈;(2)由()2sin(2())2sin 26263A A f A πππ-=-+==,又∵A 为锐角,∴3A π=,由正弦定理可得2sin a R A ===,sin sin 2b c B C R ++==,则1314b c +==,由余弦定理可知,22222()21cos 222b c a b c bc a A bc bc +-+--===, 可求得40bc =,故1sin 2ABC S bc A ∆==.考点:1.三角恒等变形;2.正余弦定理解三角形. 18.(本小题满分12分)近年来我国电子商务行业迎来篷布发展的新机遇,2015年双11期间,某购物平台的销售业绩高达918亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系.现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.(1)是否可以在犯错误概率不超过0.1%的前提下,认为商品好评与服务好评有关? (2)若将频率视为概率,某人在该购物平台上进行的5次购物中,设对商品和服务全好评的次数为随机变量X :①求对商品和服务全好评的次数X 的分布列(概率用组合数算式表示); ②求X 的数学期望和方差.2()0.150.100.050.0250.0100.0050.0012.072 2.7063.841 5.024 6.6357.87910.828P K k k≥(22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)【答案】(1)可以;(2)详见解析. 【解析】试题分析:(1)得到对应的列联表,根据条件中给出的数据以及公式计算相应的值,比较大小即可判断;(2)计算离散型随机变量X 取到各个可能值时对应的概率,列出分布列后即可求解.试题解析:由题意可得关于商品和服务评价的22⨯列联表:22200(80104070)11.11110.8281505012080K ⨯⨯-⨯=≈>⨯⨯⨯,可以在犯错误概率不超过0.1%的前提下,认为商品好评与服务好评有关;(2)每次购物时,对商品和服务都好评的概率为25,且X 的取值可以是0,1,2,3,4,5, 其中53(0)()5P X ==;14523(1)()()55P X C ==;223523(2)()()55P X C ==;332523(3)()()55P X C ==;441523(4)()()55P X C ==;52(5)()5P X ==,X 的分布列为:由于~(5,)5X B ,则525EX =⨯=,5(1)555DX =⨯⨯-=.考点:1.独立性检验;2.离散型随机变量的概率分布与期望和方差. 19.(本小题满分12分)在四棱锥P ABCD -中,底面ABCD 是菱形,PD ⊥平面ABCD ,点1D 为棱PD 的中点,过1D 作与平面ABCD 平行的平面与棱PA ,PB ,PC 相交于1A ,1B ,1C ,60BAD ︒∠=.(1)证明:1B 为PB 的中点;(2)若2AB =,且二面角1A AB C --的大小为60︒,AC ,BD 的交点为O ,连接1B O ,求三棱锥1B ABO -外接球的体积. 【答案】(1)详见解析;(2)12548π.试题解析:(1)连接11B D ,∵面//ABCD 面1111A B C D ,面PBD 面ABCD BD =,面PBD 面111111A B C D B D =,∴11//BD B D ,即11B D 为PBD ∆的中位线,∴1B 为PB 中点;(2)以O 为原点,OA 方向为x 轴,OB 方向为y 轴,1OB 方向为z 轴,建立空间直角坐标系O xyz -,则A ,(0,1,0)B ,1(0,0,)B t,(C,从而()AP t =,(,0)AB =,则13(3,3,)n t=,又∵2(0,0,1)n =,∴1212123||1cos ,2||||n n n n n n ⋅<>===⋅,则32t =,由题可知,OA OB ⊥,1OA OB ⊥,1OB OB ⊥,即三棱锥1B ABO -外接球为以OA ,OB ,1OB 为长、宽、高的长方体外接球,则该长方体的体对角线长为52d ==,即外接球半径为54,则三棱锥1B ABO -外接球的体积为33445125()33448V R πππ===. 考点:1.面面平行的性质;2.二面角的求解;3.空间向量在立体几何中的运用.20.(本小题满分12分)椭圆22221(0)x y a b a b +=>>的左右焦点分别为1F ,2F ,且离心率为12,点P 为椭圆上一动点,12F PF ∆内切圆面积的最大值为3π. (1)求椭圆的方程; (2)设椭圆的左顶点为1A ,过右焦点2F 的直线l 与椭圆相交于A ,B 两点,连结1A A ,1A B 并延长交直线4x =分别于P ,Q 两点,以PQ 为直径的圆是否恒过定点?若是,请求出定点坐标;若不是,请说明理由.【答案】(1)22143x y +=;(2)详见解析. 试题解析:(1) 已知椭圆的离心率为12,不妨设c t =,2a t =,即b =,其中0t >,又12F PF ∆内切圆面积取最大值3π时,半径取最大值为r =12122F PF F PF r S C ∆∆=⋅,由12F PF C ∆为定值,因此12F PF S ∆也取得最大值,即点P 为短轴端点,因此12(22)22r c b a c ⋅⋅=⋅+,112(42)22t t t ⋅=+,解得1t =, 则椭圆的方程为22143x y +=;(2)设直线AB 的方程为1x ty =+,11(,)A x y ,22(,)B x y 联立221143x ty x y =+⎧⎪⎨+=⎪⎩可得22(34)690t y ty ++-=,则122634t y y t -+=+,122934y y t -=+, 直线1AA 的方程为11((2))(2)y y x x =----, 直线1BA 的方程为22((2))(2)y y x x =----, 则116(4,)2y P x +,226(4,)2y Q x +,假设PQ 为直径的圆是否恒过定点(,)M m n , 则116(4,)2y MP m n x =--+,226(4,)2y MQ m n x =--+, 2121266(4)()()022y y MP MQ m n n x x ⋅=-+--=++,即2121266(4)()()033y y MP MQ m n n ty ty ⋅=-+--=++, 即22121221212(3612)18()(4)03()9nt y y n y y n m t y y t y y --+++-=+++,2222(3612)(9)18(6)(4)093(6)9(34)nt n t n m t t t t ----++-=-+-++,即2269(4)0nt n m -++-=,若PQ 为直径的圆是否恒过定点(,)M m n ,即不论t 为何值时,0MP MQ ⋅=恒成立,因此,0n =,1m =或7m =,即恒过定点(1,0)和(7,0).考点:1.椭圆的标准方程及其性质;2.直线与椭圆的位置关系;3.圆锥曲线中的定点问题.21.(本小题满分12分) 已知函数22ln ()a x f x x -=在点(1,(1))f 处的切线与直线41y x =-+平行. (1)求实数a 的值及()f x 的极值;(2)若对任意1x ,2x 1(0,]e∈,有1222221212()()||>f x f x k x x x x --⋅,求实数k 的取值范围; 【答案】(1)1a =,()f x 有极小值为21()f e e =-;(2)(,4]-∞. 【解析】 试题分析:(1)首先求导,根据导数的几何意义可求得a 的值,再根据导数的取值情况确定原函数的极值点;(2)将原不等式变形为122212()()||4f x f x x x ->-,再构造对应函数,将问题等价转化为求函数最值即可.试题解析:(1)由题意得3224ln ()a x f x x --+'=,又∵(1)4f '=-,解得1a =, 令33224ln 44ln ()0a x x f x x x --+-+'===,解得x e =,即()f x 有极小值为21()f e e =-;(2)由1222221212()()||f x f x k x x x x ->-⋅,可得122212()()||11f x f x k x x ->-,令21()()g f x x =,则()l n g x x x x =+,其中2[,)x e ∈+∞,()2ln g x x '=+,又∵2[,)x e ∈+∞,则()2ln 4g x x ≥'=+,即122212()()||411f x f x x x ->-,因此实数k 的取值范围是(,4]-∞.考点:导数的综合运用.请考生在22,23题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4—4:坐标系与参数方程.在直角坐标系xOy 中,曲线1C的参数方程为2cos sin x t y t αα=+⎧⎪⎨=⎪⎩(t 是参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为8cos()3πρθ=-. (1)求曲线2C 的直角坐标方程,并指出其表示何种曲线;(2)若曲线1C 与曲线2C 交于A ,B 两点,求||AB 的最大值和最小值.【答案】(1)曲线2C的直角坐标方程为2240x y x +--=,其表示一个圆;(2)最小值为8.【解析】试题分析:(1)利用cos x ρθ=,sin y ρθ=可将2C 的极坐标方程化为相应直角方程,即可求解;(2)联立1C ,2C 的方程,将||AB 表示为相应的函数关系式,从而求解.试题解析:(1)对于曲线2C 有8cos()3πρθ=-,即24cos sin ρρθθ=+,因此曲线2C 的直角坐标方程为2240x y x +--=,其表示一个圆;(2)联立曲线1C 与曲线2C的方程可得:2130t t α-⋅-=,12||||AB t t =-===||AB的最小值为8.考点:1.极坐标方程与直角坐标方程的相互转化;2.直线与圆的位置关系.23.(本小题满分10分)选修4—5:不等式选讲.设函数()|2|||()f x x x a a R =++-∈.(1)若不等式()0f x a +≥恒成立,求实数a 的取值范围;(2)若不等式3()2f x x ≥恒成立,求实数a 的取值范围. 【答案】(1)1a ≥-;(2)(,4]-∞.【解析】试题分析:(1)对a 的取值分类讨论,将问题等价转化为不等号左边的最小值不小于0即可;(2)由题意可知,问题等价于函数()y f x =的图象恒在32y x =的上方,画出两个函数图象,即可得到关于a 的不等式,从而求解.试题解析:(1)当0a ≥时,()0f x a +≥恒成立,当0a <时,要保证()f x a ≥-恒成立,即()f x 的最小值|2|a a ≥--,解得1a ≥-;(2)根据函数()f x 图象的性质可知,当322a a +=时,3()2f x x ≥恒成立,即4a =,∴a 的取值范围是(,4]-∞时,3()2f x x ≥恒成立.考点:1.绝对值不等式;2.分类讨论的数学思想;3.恒成立问题;4数形结合的数学思想.。

吉林省长春市普通高中2018届高三质量检测(三)数学(理)试卷(扫描版)

吉林省长春市普通高中2018届高三质量检测(三)数学(理)试卷(扫描版)

长春市普通高中2018届高三质量监测(三)数学(理科)试题参考答案及评分标准一、选择题(本大题共12小题,每小题5分,共60分)1. C2. A3. C4. D5.C6. D7. A8. B9. B 10. D 11. B 12. B简答与提示:1. 【命题意图】本题考查集合的运算. 【试题解析】C {|11},{|03},(1,3)A x x B x x A B =-<<=<<=-U .故选C.2. 【命题意图】本题考查复数.【试题解析】A ,||1z i z ==.故选A.3. 【命题意图】本题考查中华传统文化中的数学问题.【试题解析】C 由算筹含义. 故选C.4. 【命题意图】本题主要考查函数的图象及性质.【试题解析】D 由函数是偶函数,排除A ,C ,当(0,)2x π∈,tan 0x >.故选D.5. 【命题意图】本题考查三角函数的相关知识.【试题解析】C 由题意知,,12a k k ππ=-+∈Z .故选C.6. 【命题意图】本题主要考查算法的相关知识.【试题解析】D 根据程序框图.故选 D 7. 【命题意图】本题考查计数原理的应用.【试题解析】A 由题意知23223224A A A =.故选A.8. 【命题意图】本题主要考查三视图问题.【试题解析】B 由题意可知该几何体为正三棱柱去掉一个小三棱锥,123V =⋅=故选B.9. 【命题意图】本题主要考查解三角形的相关知识.【试题解析】B 由题意知60B =︒,由余弦定理,224ac a c =+-,故22424ac a c ac =+-≥-,有4ac ≤,故1sin 2ABC S ac B ∆=≤故选B. 10. 【命题意图】本题主要考查球的相关问题.【试题解析】D 折后的图形可放到一个长方体中,其体对角线长为,5π.故选D. 11. 【命题意图】本题考查双曲线的相关知识.【试题解析】B 由双曲线可知122213,4PF F S m m ∆=-==,从而2e =.故选B.12. 【命题意图】本题是考查导数在研究函数单调性上的应用.【试题解析】B 令()()2=+F x f x x ,有()()20''=+>F x f x ,所以()F x 在定义域内单调递增,由1)1(=f ,得(1)(1)23=+=F f ,因为2(log |31|)3|31|-<--x x f 等价于22(log |31|)2log |31|3-+-<x x f ,令2log |31|=-x t ,有()23+<f t t ,则有1<t ,即2log |31|1-<x ,从而0|31|2x<-<,解得1,<x 且0≠x . 故选B. 二、填空题(本大题共4小题,每小题5分,共20分)13. 9 14. 1.7 15. (,1][4,)-∞-+∞U16. 48-简答与提示:13. 【命题意图】本题考查线性规划问题.【试题解析】由可行域可确定目标函数在(1,4)处取最大值9. 14. 【命题意图】本题考查回归方程的相关知识.【试题解析】将 3.2x =代入回归方程为ˆ1yx =+可得 4.2y =,则4 6.7m =, 解得 1.675m =,即精确到0.1后m 的值约1.7.15. 【命题意图】本题考查分段函数的相关知识.【试题解析】当10,()2,12x x x ≤≥≤-,当20,log 2,4x x x >≥≥,故(,1][4,)-∞-+∞U .16. 【命题意图】本题考查平面向量的相关知识. 【试题解析】由题意可知其最小值为48-三、解答题17. (本小题满分12分)【命题意图】本题考查数列的基本方法及数列求和. 【试题解析】解:(1)Q 2n S n n =-,∴令1n =,10a =()121n n n a S S n -=-=-,()2n ≥∴()21n a n =- 又Q 数列{}n b 为等比,222b a ==,458b a == ∴2424bq b ==,又各项均为正∴2q =,∴12n n b -= (2)由(1)得:()12nn c n =-⋅∴()()()23021231212n n T n =+-⋅+-⋅++-⋅L ()23122212n n =⋅+⋅++-⋅L()()341212222212n n n T n n +=⋅+⋅++-⋅+-⋅L()2341222212n n n T n +-=++++--⋅L()()2112121212n n n -+-=--⋅-()112124n n n ++=--⋅-∴()1224n n T n +=-⋅+18. (本小题满分12分)【命题意图】本小题主要考查学生对频率分布直方图的理解以及分布列的相关知识.【试题解析】解:(1)由()100.0100.0150.0300.0101a ⨯++++=,得0.035a =, (2)第1,2,3组的人数分别为20人,30人,70人,从第1,2,3组中用分层抽样的方法抽取12人,则第1,2,3组抽取的人数分别为2人,3人,7人.设从12人中随机抽取3人,第1组已被抽到1人为事件A ,第3组抽到2人为事件B ,则()()1227312122121021031221|.()50C C P AB C P B A C C C C P A C ===+(3)从所有参与调查的人中任意选出1人,关注“生态文明”的概率为4,5P =X 的可能取值为0,1,2,3. ()033410(1)5125P X C ∴==-=,()112344121()(1)55125P X C ==-=()221344482()(1)55125P X C ==-=,()3334643()5125P X C ===~(3,)5X B Q ,()3.55E X np ==⨯=19. (本小题满分12分)【命题意图】本小题以四棱锥为载体,考查立体几何的基础知识. 本题考查学生的空间想象能力、推理论证能力和运算求解能力. 【试题解析】答案:(1)取PC 中点M ,连接MF DM , F M ,Θ分别是PB PC ,中点, CB MF CB MF 21,//=∴,E Θ为DA 中点,ABCD 为矩形,CB DE CB DE 21,//=∴,DE MF DE MF =∴,//,∴四边形DEFM 为平行四边形⊄∴EF DM EF Θ,//平面PDC ,⊂DM 平面PDC ,//EF ∴平面RDC(2)⊥PA Θ平面ABC ,且四边形ABCD 是正方形,AP AB AD ,,∴两两垂直,以A 为原点,AP ,AB ,AD 所在直线为z y x ,,轴,建立空间直角坐标系xyz A -则(),0,0,1P ()(),1,1,0,1,0,0C D 111(0,0,),(,,0)222E F设平面EFC 法向量为1(,,)n x y z =u r ,111(,,)222EF =-u u u r ,11(,,1)22FC =-u u u r则⎪⎩⎪⎨⎧=⋅=⋅0011n FC n EF , 即⎪⎩⎪⎨⎧=++-=-+021210z y x z y x ,取()2,1,31-=n 则设平面PDC 法向量为2(,,)n x y z =u u r ,(1,0,1)PD =-u u u r ,(1,1,1)PC =-uu u r则⎪⎩⎪⎨⎧=⋅=⋅0022n n , 即⎩⎨⎧=++-=+-00z y x z x , 取()1,0,12=n 121212311021cos ,14||||n n n n n n ⨯+-⨯+⨯⋅<>===⋅u r u u ru r u u r u r u u r .∴平面EFC 与平面PDC 所成锐二面角的余弦值为1475. 20. (本小题满分12分)【命题意图】本小题考查椭圆的标准方程及直线与椭圆的位置关系,考查学生的逻 辑思维能力和运算求解能力. 【试题解析】解:(1)设动圆C 的半径为r ,由题意知12||3,||1CC r CC r =-=+从而有12||||4CC CC +=,故轨迹E 为以12,C C 为焦点,长轴长为4的椭圆,并去 除点(2,0)-,从而轨迹E 的方程为221(2)43x y x +=≠-. (2)设l 的方程为1x my =+,联立221431x y x my ⎧+=⎪⎨⎪=+⎩, 消去x 得22(34)690m y mx ++-=,设点1122(,),(,)A x y B x y ,有12122269,,3434m y y y y m m --+==++则2212(1)||34m AB m +==+, 点(2,0)P -到直线l(2,0)Q 到直线l从而四边形APBQ的面积222112(1)23434m S m m +=⨯=++令1t t =≥,有224241313t S t t t==++,函数13y t t =+在[1,)+∞上单调递增, 有134t t +≥,故2242461313t S t t t==≤++,即四边形APBQ 面积的最大值为6.21. (本小题满分12分)【命题意图】本小题主要考查函数与导数的相关知识,以导数为工具研究函数的方法,考查学生解决问题的综合能力. 【试题解析】解:(1)Q ()f x 的定义域为x R ∈且单调递增,∴在x R ∈上,()240x af x x e'=-+≥恒成立,即:(42)x a x e ≥- ∴设()(42)x h x x e =- x R ∈ ,∴()(22)x h x x e '=-,∴当(,1)x ∈-∞时()0h x '>,∴()h x 在(,1)x ∈-∞上为增函数, ∴当[1,)x ∈+∞时()0h x '≤,∴()h x 在[1,)x ∈+∞上为减函数,∴max ()(1)2h x h e == Q max [(42)]x a x e ≥-,∴2a e ≥,即[2,)a e ∈+∞ .(2)Q ()()()245xxg x e f x x x e a ==-+-Q ()()()122g x g x g m += [)1,m ∈+∞,∴()()()12222112245452452x x m x x e a x x e a m m e a -+-+-+-=-+- ∴()()()1222211224545245x x m x x e x x e m m e -++-+=-+∴设()()245x x x x e ϕ=-+ x R ∈,则()()()122x x m ϕϕϕ+=, ∴()()210x x x e ϕ'=-≥ ∴()x ϕ在x R ∈上递增且()10ϕ'=令()1,x m ∈-∞,()2,x m ∈+∞∴设()()()F x m x m x ϕϕ=++-,()0,x ∈+∞∴()()()2211m x m x F x m x e m x e +-'=+----Q 0x > ∴0m x m x e e +->>,()()()22112220m x m x m x +----=-≥∴()0F x '≥,()F x 在()0,x ∈+∞上递增, ∴()()()02F x F m ϕ>=,∴()()()2m x m x m ϕϕϕ++->,()0,x ∈+∞,令1x m x =-∴()()()112m m x m m x m ϕϕϕ+-+-+>即:()()()1122m x x m ϕϕϕ-+>又Q 12()()2()x x m ϕϕϕ+=,∴()()()()12222m x m x m ϕϕϕϕ-+->即:()()122m x x ϕϕ->Q 1x m <,2x m >∴12m x m ->, Q ()x ϕ在x R ∈上递增∴122m x x ->,即:122x x m +<,得证.22. (本小题满分10分)【命题意图】本小题主要考查极坐标系与参数方程的相关知识,本小题考查考生的方程思想与数形结合思想,对运算求解能力有一定要求. 【试题解析】 (1)联立⎩⎨⎧==θρθρcos 43cos ,23cos ±=θ,20πθ<≤Θ,6πθ=,32=ρ交点坐标)6π.(2)设()θρ,P ,()00,θρQ 且.cos 400θρ=0[0,)2πθ∈,由已知,32QP OQ =得⎪⎩⎪⎨⎧==θθρρ0052θρcos 452=∴,点P 的极坐标方程为10cos ,[0,)2πρθθ=∈.23. (本小题满分10分)【命题意图】本小题主要考查不等式的相关知识,具体涉及到绝对值不等式解法等内容. 本小题重点考查化归与转化思想.【试题解析】(1)当2m =-时,()41(0)32232=1(0)2345()2x x f x x x x x x ⎧+≥⎪⎪⎪=++--⎨⎪⎪--≤-⎪⎩<<当4130x x +≤⎧⎨≥⎩解得12x ≤≤0;当30132x -≤<<,恒成立.当45332x x --≤⎧⎪⎨≤-⎪⎩解得322x -≤≤-,此不等式的解集为1[2]2-,.()43+(0)3223=3(0)2343()2x m x f x x x m m x x m x ⎧+≥⎪⎪⎪=++++-⎨⎪⎪--+≤-⎪⎩(2)<<当(,0)x ∈-∞时,()33(0)2223=343()2m x f x x x m x m x ⎧+-⎪⎪=+++⎨⎪--+≤-⎪⎩<<当302x -<<时,()=3+f x m ,当()3=432x f x x m ≤---+,单调递减,∴f (x )的最小值为3+m ,设()()20g x x x x=+<当20,x x x ->-+≥-2=x x --时,取等号2x x∴+≤即x g(x)取得最大值.要使()2f x x x≥+恒成立,只需3m +≥-m ≥-.。

届吉林省长春市普通高中高三一模考试数学试题卷理科解析版

届吉林省长春市普通高中高三一模考试数学试题卷理科解析版

2018届吉林省长春市普通高中高三一模考试题数学试题卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设为虚数单位,则(?1+2i)(2?i)=()A. 5iB. ?5iC. 5D. -5【答案】A【解析】由题意可得:(?1+2i)(2?i)=?2+4i+i?2i2=5i.本题选择A选项.2. 集合{a,b,c}的子集的个数为()A. 4B. 7C. 8D. 16【答案】C【解析】集合{a,b,c}含有3个元素,则其子集的个数为23=8.本题选择C选项.3. 若图是某学校某年级的三个班在一学期内的六次数学测试的平均成绩y关于测试序号x的函数图像,为了容易看出一个班级的成绩变化,将离散的点用虚线连接,根据图像,给出下列结论:①一班成绩始终高于年级平均水平,整体成绩比较好;②二班成绩不够稳定,波动程度较大;③三班成绩虽然多数时间低于年级平均水平,但在稳步提升.其中正确结论的个数为()A. 0B. 1C. 2D. 3【答案】D【解析】通过函数图象,可以看出①②③均正确.故选D.4. 等差数列{a n}中,已知|a6|=|a11|,且公差d>0,则其前n项和取最小值时的n的值为()A. 6B. 7C. 8D. 9【答案】C【解析】因为等差数列中,,所以,有,所以当时前项和取最小值.故选C......................5. 已知某班级部分同学一次测验的成绩统计如图,则其中位数和众数分别为()A. 95,94B. 92,86C. 99,86D. 95,91【答案】B【解析】由茎叶图可知,中位数为92,众数为86. 故选B.6. 若角α的顶点为坐标原点,始边在x轴的非负半轴上,终边在直线y=?√3x上,则角α的取值集合是()A. {α|α=2kπ?π3,k∈Z} B. {α|α=2kπ+2π3,k∈Z}C. {α|α=kπ?2π3,k∈Z} D. {α|α=kπ?π3,k∈Z}【答案】D【解析】因为直线y=?√3x的倾斜角是2π3,所以终边落在直线y=?√3x上的角的取值集合为{α|α=kπ?π3,k∈Z}或者{α|α=kπ+2π3,k∈Z}.故选D.7. 已知x>0,y>0,且4x+y=xy,则x+y的最小值为()A. 8B. 9C. 12D. 16【答案】B【解析】由题意可得:4y +1x=1,则:x+y=(x+y)(4y +1x)=5+4xy+yx≥5+2√4xy×yx=9,当且仅当x=3,y=6时等号成立,综上可得:则x+y的最小值为9.本题选择B选项.点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.8. 《九章算术》卷五商功中有如下问题:今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何.刍甍:底面为矩形的屋脊状的几何体(网格纸中粗线部分为其三视图,设网格纸上每个小正方形的边长为1丈),那么该刍甍的体积为()A. 4立方丈B. 5立方丈C. 6立方丈D. 12立方丈【答案】B【解析】由已知可将刍甍切割成一个三棱柱和一个四棱锥,三棱柱的体积为3,四棱锥的体积为2,则刍甍的体积为5.故选B.9. 已知矩形ABCD的顶点都在球心为O,半径为R的球面上,AB=6,BC=2√3,且四棱锥O?ABCD的体积为8√3,则R等于()A. 4B. 2√3C. 4√7D. √139【答案】A【解析】由题意可知球心到平面ABCD的距离 2,矩形ABCD所在圆的半径为2√3,从而球的半径R=4.故选A.10. 已知某算法的程序框图如图所示,则该算法的功能是()A. 求首项为1,公差为2的等差数列前2017项和B. 求首项为1,公差为2的等差数列前2018项和C. 求首项为1,公差为4的等差数列前1009项和D. 求首项为1,公差为4的等差数列前1010项和【答案】C【解析】由题意可知S=1+5+9+?+4033,为求首项为1,公差为4的等差数列的前1009项和.故选C.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.11. 已知O为坐标原点,设F1,F2分别是双曲线x2?y2=1的左、右焦点,点P为双曲线上任一点,过点F1作∠F1PF2的平分线的垂线,垂足为H,则|OH|=()A. 1B. 2C. 4D. 12【答案】A【解析】延长交于点,由角分线性质可知根据双曲线的定义,,从而,在中,为其中位线,故.故选A.点睛:对于圆锥曲线问题,善用利用定义求解,注意数形结合,画出合理草图,巧妙转化.12. 已知定义在R上的奇函数f(x)满足f(x+π)=f(?x),当x∈[0,π2]时,f(x)=√x,则函数g(x)=(x?π)f(x)?1在区间[?3π2,3π]上所有零点之和为()A. πB. 2πC. 3πD. 4π【答案】D【解析】f(x+π)=f(−x)=?f(x)?T=2π,g(x)=(x−π)f(x)−1=0?f(x)=1x?π作图如下:,四个交点分别关于(π,0)对称,所以零点之和为2×2π=4π,选D.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知角α,β满足?π2<α?β<π2,0<α+β<π,则3α?β的取值范围是__________.【答案】(?π,2π)【解析】结合题意可知:3α?β=2(α?β)+(α+β),且:2(α?β)∈(?π,π),(α+β)∈(0,π),利用不等式的性质可知:3α−β的取值范围是(−π,2π).点睛:利用不等式性质求某些代数式的取值范围时,多次运用不等式的性质时有可能扩大变量的取值范围.解决此类问题一般是利用整体思想,通过“一次性”不等关系的运算求得待求整体的范围,是避免错误的有效途径.14. 已知平面内三个不共线向量a ⃑,b ⃑⃑,c ⃑两两夹角相等,且|a ⃑|=|b ⃑⃑|=1,|c ⃑|=3,则|a ⃑+b ⃑⃑+c ⃑|=__________. 【答案】2【解析】因为平面内三个不共线向量a ⃑,b ⃑⃑,c ⃑两两夹角相等,所以由题意可知,a ⃑,b ⃑⃑,c ⃑的夹角为120°,又知|a ⃑|=|b ⃑⃑|=1,|c ⃑|=3,所以a ⃑.b ⃑⃑=?12 ,a ⃑?c ⃑=b ⃑⃑?c ⃑=?32,|a ⃑+b ⃑⃑+c ⃑|= √1+1+9+2×(?12)+2×(?32)+2×(?32)=2 故答案为2.15. 在ΔABC 中,三个内角A,B,C 的对边分别为a,b,c ,若(12b?sinC)cosA =sinAcosC ,且a =2√3,ΔABC 面积的最大值为__________. 【答案】3√3【解析】由(12b −sinC)cosA =sinAcosC 可得12bcosA =sin (A +C )=sinB ,cosA2=sinB b=sinA a,得 tanA =√3,A =π3,由余弦定理12=b 2+c 2?bc ≥2bc?bc =bc , ΔABC 面积的最大值为12×12×√32=3√3,当且仅当b =c 时取到最大值,故答案为3√3.【方法点睛】本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 除了直接利用两定理求边和角以外,恒等变形过程中,一般来说 ,当条件中同时出现ab 及b 2 、a 2 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答. 16. 已知圆锥的侧面展开图是半径为3的扇形,则圆锥体积的最大值为__________. 【答案】2√3π【解析】设圆锥的底面半径为R ,由题意可得其体积为:V =13Sℎ=13×πR 2×√9?R 2=2π×√R 2×R 2×(9?R 2)=23π×3√3=2√3π.当且仅当R =√6时等号成立.综上可得圆锥体积的最大值为2√3π.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17. 已知数列{a n}的前n项和S n=2n+1+n?2.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log2(a n?1),求证:1b1b2+1b2b3+1b3b4+?+1b n b n+1<1.【答案】(Ⅰ)a n=2n+1;(Ⅱ)证明见解析.【解析】试题分析:(Ⅰ)利用已知条件,推出新数列是等比数列,然后求数列{a n}的通项公式;(Ⅱ)化简b n=log2(a n?1)=log22n=n,则1b n b n+1=1n−1n+1,利用裂项相消法和,再根据放缩法即可证明结果.试题解析:(Ⅰ)由{S n=2n+1+n−2S n−1=2n+(n−1)−2(n≥2),则a n=2n+1(n≥2). 当n=1时,a1=S1=3,综上a n=2n+1.(Ⅱ)由b n=log2(a n−1)=log22n=n.1 b1b2+1b2b3+1b3b4+...+1b n b n+1=11×2+12×3+13×4+...+1n(n+1)=(1−12)+(12−13)+(13−14)+...+(1n−1n+1)=1−1n+1<1. 得证.18. 长春市的“名师云课”活动自开展以来获得广大家长和学生的高度赞誉,在我市推出的第二季名师云课中,数学学科共计推出36节云课,为了更好地将课程内容呈现给学生,现对某一时段云课的点击量进行统计:(Ⅰ)现从36节云课中采用分层抽样的方式选出6节,求选出的点击量超过3000的节数.(Ⅱ)为了更好地搭建云课平台,现将云课进行剪辑,若点击量在区间[0,1000]内,则需要花费40分钟进行剪辑,若点击量在区间(1000,3000]内,则需要花费20分钟进行剪辑,点击量超过3000,则不需要剪辑,现从(Ⅰ)中选出的6节课中随机取出2节课进行剪辑,求剪辑时间X的分布列与数学期望.【答案】(Ⅰ)2;(Ⅱ)1003.【解析】试题分析:(Ⅰ)因为 36节云课中采用分层抽样的方式选出6节,所以12节应选出12×636=2节;(Ⅱ)X的所有可能取值为0,1,2,3,根据古典概型概率公式分别求出各随机变量的概率,从而可得分布列,由期望公式可得结果..试题解析:(Ⅰ)根据分层抽样,选出的6节课中有2节点击量超过3000. (Ⅱ)X的可能取值为0,20,40,60P(X=0)=1C62=115P(X=20)=C31C21C62=615=25P(X=40)=C21+C32C62=515=13P(X=60)=C31C62=315=15则X的分布列为0 20 40 60即EX=1003.19. 如图,四棱锥P?ABCD中,底面ABCD为菱形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设PA=1,∠ABC=60°,三棱锥E?ACD的体积为√38,求二面角D?AE?C的余弦值.【答案】(Ⅰ)证明见解析;(Ⅱ)√1313.【解析】试题分析:(Ⅰ) )连接BD交AC于点O,连接OE,根据中位线定理可得PB//OE,由线面平行的判定定理即可证明PB//平面AEC;(Ⅱ)以点A为原点,以AM方向为x轴,以AD方向为y轴,以AP方向为z轴,建立空间直角坐标系,分别求出平面CAE与平面DAE的一个法向量,根据空间向量夹角余弦公式,可得结果.试题解析:(Ⅰ)连接BD交AC于点O,连接OE在△PBD中,PE =DEBO =DO }?PB//OE OE?平面ACE PB?平面ACE}?PB//平面ACE(Ⅱ)V P−ABCD =2V P−ACD =4V E−ACD =√32,设菱形ABCD 的边长为aV P−ABCD =13S ?ABCD ?PA =13×(2×√34a 2)×1=√32,则a =√3.取BC 中点M ,连接AM .以点A 为原点,以AM 方向为x 轴,以AD 方向为y 轴,以AP 方向为z 轴, 建立如图所示坐标系.D(0,√3,0),A(0,0,0),E(0,√32,12),C(32,√32,0) AE⃑⃑⃑⃑⃑⃑=(0,√32,12),AC ⃑⃑⃑⃑⃑⃑=(32,√32,0), n 1⃑⃑⃑⃑⃑=(1,−√3,3),n 2⃑⃑⃑⃑⃑=(1,0,0) cosθ=|n1⃑⃑⃑⃑⃑⃑?n 2⃑⃑⃑⃑⃑⃑||n 1⃑⃑⃑⃑⃑⃑|?|n 2⃑⃑⃑⃑⃑⃑|=√1+3+9=√1313, 即二面角D −AE −C 的余弦值为√1313.【方法点晴】本题主要考查线面平行的判定定理以及利用空间向量求二面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离. 20. 已知椭圆C 的两个焦点为F 1(?1,0),F 2(1,0),且经过点E(√3,√32).(Ⅰ)求椭圆C 的方程;(Ⅱ)过F 1的直线与椭圆C 交于A,B 两点(点A 位于x 轴上方),若AF 1⃑⃑⃑⃑⃑⃑⃑⃑=λF 1B ⃑⃑⃑⃑⃑⃑⃑⃑,且2≤λ<3,求直线的斜率k 的取值范围. 【答案】(Ⅰ)x 24+y 23=1;(Ⅱ)0<k ≤√52. 【解析】试题分析:(1)由题意可得a =2,c =1,b =√3,则椭圆方程为x 24+y 23=1. (2)联立直线与椭圆的方程,结合韦达定理得到关于实数k 的不等式,求解不等式可得直线的斜率k 的取值范围是k=√52. 试题解析:(1)由椭圆定义2a =|EF 1|+|EF 2|=4,有a =2,c =1,b =√3,从而x 24+y 23=1.(2)设直线l:y =k (x +1)(k >0),有{y =k (x +1)x 24+y 23=1 ,整理得(3k 2+4)y 2−6k y −9=0, 设A (x 1,y 1),B (x 2,y 2),有y 1=−λy 2,y 1y 2=−λ(1−λ)2(y 1+y 2)2,(1−λ)2λ=43+4k 2,λ+1λ−2=43+4k 2, 由于2≤λ<3,所以12≤λ+1λ−2<43,12≤43+4k 2<43,解得0<k ≤√52. 3+4k 2=8,k =±√52,由已知k =√52.21. 已知函数f (x )=e x ,g (x )=ln (x +a )+b .(Ⅰ)若函数f (x )与g (x )的图像在点(0,1)处有相同的切线,求a,b 的值; (Ⅱ)当b =0时,f (x )?g (x )>0恒成立,求整数a 的最大值;(Ⅲ)证明:ln2+(ln3?ln2)2+(ln4?ln3)3 +?+[ln(n +1)?lnn]n <ee?1. 【答案】(Ⅰ)1,1;(Ⅱ)2;(Ⅲ)证明见解析.【解析】试题分析:(Ⅰ)求出f′(x )与g′(x ),由f(1)=g(1)且f ′(1)=g ′(1)解方程组可求a,b 的值;(Ⅱ)f (x )−g (x )>0恒成立等价于e x ≥ln(x +a)恒成立,先证明当a ≤2时恒成立,再证明a ≥3时不恒成立,进而可得结果;(Ⅲ))由e x >ln(x +2),令x =−n+1n,即e−n+1n>ln(−n+1n+2),即e −n+1>ln n (−n+1n+2),令n =1,2,3,4... ,各式相加即可得结果.试题解析:(Ⅰ)由题意可知,f(x)和g(x)在(0,1)处有相同的切线, 即在(0,1)处f(1)=g(1)且f ′(1)=g ′(1), 解得a =1,b =1.(Ⅱ)现证明e x ≥x +1,设F(x)=e x −x −1, 令F ′(x)=e x −1=0,即x =0,因此F(x)min =F(0)=0,即F(x)≥0恒成立, 即e x ≥x +1, 同理可证lnx ≤x −1.由题意,当a ≤2时,e x ≥x +1且ln(x +2)≤x +1,即e x ≥x +1≥ln(x +2), 即a =2时,f(x)−g(x)>0成立.当a ≥3时,e 0<lna ,即e x ≥ln(x +a)不恒成立. 因此整数a 的最大值为2. (Ⅲ)由e x >ln(x +2),令x =−n+1n,即e−n+1n>ln(−n+1n+2),即e −n+1>ln n (−n+1n+2)由此可知,当n =1时,e 0>ln2, 当n =2时,e −1>(ln3−ln2)2, 当n =3时,e −2>(ln4−ln3)3, ……当n =n 时,e −n+1>[ln(n +1)−lnn]n .综上:e 0+e −1+e −2+...+e −n+1>ln2+(ln3−ln2)2+(ln4−ln3)3+...+[ln(n +1)−lnn]n11−1e>e 0+e −1+e −2+...+e −n+1>ln2+(ln3−ln2)2+(ln4−ln3)3+...+[ln (n +1)−lnn ]n .即ln2+(ln3−ln2)2+(ln4−ln3)3+...+[ln(n +1)−lnn]n <ee−1.(二)选考题:请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知点P 的直角坐标为(1,2),点M 的极坐标为(3,π2),若直线过点P ,且倾斜角为π6,圆C 以M 圆心,3为半径. (Ⅰ)求直线的参数方程和圆C 的极坐标方程; (Ⅱ)设直线与圆C 相交于A,B 两点,求|PA|?|PB|. 【答案】(Ⅰ){x =1+√32ty =2+12t(t 为参数),ρ=6sinθ;(Ⅱ)7. 【解析】试题分析:(1)根据直线参数方程形式直接写出直线的参数方程,根据直角三角形关系得ρ=6sinθ,即为圆C 的极坐标方程(2)利用ρsinθ=y,x 2+y 2=ρ2将圆C 的极坐标方程化为直接坐标方程,将直线参数方程代入,利用韦达定理及参数几何意义得|PA |?|PB |=|t 1t 2|=7 试题解析:(Ⅰ)直线的参数方程为{x =1+√32t,y =2+12t, (t 为参数), 圆的极坐标方程为ρ=6sinθ .(Ⅱ)把{x =1+√32t,y =2+12t,代入x 2+(y −3)2=9,得t 2+(√3−1)t −7=0, ∴t 1t 2=−7,设点A,B 对应的参数分别为t 1,t 2,则|PA |=|t 1|,|PB |=|t 2|,|PA |?|PB |=7. 23. 选修4-5:不等式选讲设不等式||x +1|?|x?1||<2的解集为A .(Ⅰ)求集合A ;(Ⅱ)若a,b,c ∈A ,求证:|1?abcab?c |>1.【答案】(Ⅰ){x|?1<x <1};(Ⅱ)证明见解析.【解析】试题分析:(1)根据绝对值定义将不等式化为三个不等式组,分别求解,最后求并集(2)利用分析法证明,将所求不等式转化为(1−a 2b 2)(1−c 2)>0,再根据a,b,c ∈A ,证明(1−a 2b 2)(1−c 2)>0试题解析:(1)由已知,令f(x)=|x +1|−|x −1|={2(x ≥1)2x(−1<x <1)−2(x ≤−1)由|f(x)|<2得A ={x|−1<x <1}.(2)要证|1−abcab−c |>1,只需证|1−abc|>|ab −c|,只需证1+a 2b 2c 2>a 2b 2+c 2,只需证1−a 2b 2>c 2(1−a 2b 2)只需证(1−a 2b 2)(1−c 2)>0,由a,b,c ∈A ,则(1−a 2b 2)(1−c 2)>0恒成立.点睛:(1)分析法是证明不等式的重要方法,当所证不等式不能使用比较法且与重要不等式、基本不等式没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.(2)利用综合法证明不等式,关键是利用好已知条件和已经证明过的重要不等式.。

2018年吉林省长春市东北师大附中高考数学一模试卷(理科)

2018年吉林省长春市东北师大附中高考数学一模试卷(理科)

2018年吉林省长春市东北师大附中高考数学一模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数2i1+i的模为()A.1 2B.√22C.√2D.22. 已知集合A={x|y=√9−x2},B={x|x≥a}.若A∩B=A,则实数a的取值范围为()A.(−∞, −3]B.(−∞, −3)C.(−∞, 0)D.[3, +∞)3. 从标有数字1,2,3,4,5的五张卡片中,依次抽出2张(取后不放回),则在第一次抽到卡片上的数字是奇数的情况下,第二次抽到卡片上的数字是偶数的概率为()A.1 4B.12C.13D.234. 已知sin(π3−a)=13,则cos(5π6−a)=()A.1 3B.−13C.2√23D.−√235. 若中心在原点,焦点在y轴上的双曲线的一条渐近线经过点(−2, 4),则它的离心率为()A.√52B.2C.√3D.√56. (x2+2)(1x−1)5展开式中的常数项是()A.12B.−12C.8D.−87. 某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x的值()A.2B.3C.32D.928. 已知函数f(x)=√3sinωx+cosωx(ω>0)的图象的相邻两条对称轴之间的距离是π2,则该函数的一个单调增区间为()A.[−π3,π6] B.[−5π12,π12] C.[π6,2π3] D.[−π3,2π3]9. 辗转相除法是欧几里德算法的核心思想,如图所示的程序框图所描述的算法就是辗转相除法,若输入m=8251,n=6105,则输出m的值为()A.148B.37C.333D.010. 底面是正多边形,顶点在底面的射影是底面中心的棱锥叫做正棱锥.如图,半球内有一内接正四棱锥S−ABCD,该四棱锥的侧面积为4√3,则该半球的体积为()A.4π3B.2π3C.8√2π3D.4√2π311. 已知抛物线C:y2=2x,直线l:y=−12x+b与抛物线C交于A,B两点,若以AB为直径的圆与x轴相切,则b的值是()A.−15B.−25C.−45D.−8512. 在△ABC,∠C=90∘,AB=2BC=4,M,N是边AB上的两个动点,且|MN|=1,则CM→⋅CN→的取值范围为()A.[114,9] B.[5, 9] C.[154,9] D.[114,5]二、填空题(每题5分,满分20分,将答案填在答题纸上)在△ABC中,AB=2,AC=√7,∠ABC=2π3,则BC=________.若x,y满足约束条件{x−1≥0,x−y≤0,x+y−4≤0,则yx+1的最大值为________.甲、乙、丙三位教师分别在哈尔滨、长春、沈阳的三所中学里教不同的学科A、B、C,已知:①甲不在哈尔滨工作,乙不在长春工作;②在哈尔滨工作的教师不教C 学科; ③在长春工作的教师教A 学科;④乙不教B 学科. 可以判断乙教的学科是________.已知函数f(x)=xlnx +12x 2,x 0是函数f(x)的极值点,给出以下几个命题: ①0<x 0<1e ;②x 0>1e ;③f(x 0)+x 0<0;④f(x 0)+x 0>0;其中正确的命题是________.(填出所有正确命题的序号)三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)已知正项数列{a n }满足:4S n =a n 2+2a n −3,其中S n 为数列{a n }的前n 项和.(1)求数列{a n }的通项公式;(2)设b n =1a n2−1,求数列{b n }的前n 项和T n .某商场按月订购一种家用电暖气,每销售一台获利润200元,未销售的产品返回厂家,每台亏损50元,根据往年的经验,每天的需求量与当天的最低气温有关,如果最低气温位于区间[−20, −10],需求量为100台;最低气温位于区间[−25, −20),需求量为200台;最低气温位于区间[−35, −25),需求量为300台.公司销售部为了确定11月份的订购计划,统计了前三年11月份各天的最低气温数据,得到下面的频数分布表:以最低气温位于各区间的频率代替最低气温位于该区间的概率. (1)求11月份这种电暖气每日需求量X (单位:台)的分布列;(2)若公司销售部以每日销售利润Y (单位:元)的数学期望为决策依据,计划11月份每日订购200台或250台,两者之中选其一,应选哪个?如图,四棱锥P −ABCD 中,平面PAD ⊥平面ABCD ,且PA =PD ,底面ABCD 为矩形,点M 、E 、N 分别为线段AB 、BC 、CD 的中点,F 是PE 上的一点,PF =2FE .直线PE 与平面ABCD 所成的角为π4.(1)证明:PE ⊥平面MNF ;(2)设AB =AD ,求二面角B −MF −N 的余弦值.已知椭圆C:x 2a 2+y 2b2=1(a >b >0)过抛物线M:x 2=4y 的焦点F ,F 1,F 2分别是椭圆C 的左、右焦点,且F 1F →⋅F 1F 2→=6.(1)求椭圆C 的标准方程;(2)若直线l 与抛物线M 相切,且与椭圆C 交于A ,B 两点,求△OAB 面积的最大值.已知函数f(x)=e x ,g(x)=lnx ,ℎ(x)=kx +b .(1)当b =0时,若对任意x ∈(0, +∞)均有f(x)≥ℎ(x)≥g(x)成立,求实数k 的取值范围;(2)设直线ℎ(x)与曲线f(x)和曲线g(x)相切,切点分别为A (x 1, f(x 1)),B (x 2, g(x 2)),其中x 1<0. ①求证:x 2>e ;②当x ≥x 2时,关于x 的不等式a(x 1−1)+xlnx −x ≥0恒成立,求实数a 的取值范围. [选修4-4:坐标系与参数方程选讲]已知曲线C 1的极坐标方程为:ρ=4cosθ,以极点为坐标原点,以极轴为x 轴的正半轴建立直角坐标系,曲线C 2的参数方程为:{x =3−12t,y =√32t, (t 为参数). (1)求出曲线C 1的直角坐标方程和曲线C 2的普通方程;(2)设曲线C 1与曲线C 2相交于P ,Q 两点,点A(3,0),求|AP|⋅|AQ|的值. [选修4-5:不等式选讲]已知不等式|2x −5|+|2x +1|>ax −1. (1)当a =1时,求不等式的解集;(2)若不等式的解集为R ,求a 的范围.参考答案与试题解析2018年吉林省长春市东北师大附中高考数学一模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】C【考点】复数的运算【解析】利用复数代数形式的乘除运算化简,再由复数模的计算公式求解.【解答】∵2i1+i =2i(1−i)(1+i)(1−i)=2+2i2=1+i,∴|2i1+i|=|1+i|=√2.2.【答案】A【考点】交集及其运算【解析】此题暂无解析【解答】解:集合A={x|y=√9−x2}={x|9−x2≥0}={x|−3≤x≤3},B={x|x≥a}.若A∩B=A,则A⊆B,所以a≤−3,所以实数a的取值范围是(−∞,−3].故选A.3.【答案】B【考点】古典概型及其概率计算公式【解析】设事件A表示“第一张抽到奇数”,事件B表示“第二张抽取偶数”,则P(A)=35,P(AB)=3 5×24=310,利用条件概率计算公式能求出在第一次抽到奇数的情况下,第二次抽到偶数的概率.【解答】解:从标有1,2,3,4,5的五张卡片中,依次抽出2张,设事件A 表示“第一张抽到奇数”,事件B 表示“第二张抽取偶数”, 则P(A)=35,P(AB)=35×24=310,则在第一次抽到奇数的情况下,第二次抽到偶数的概率为: P(B|A)=P(AB)P(A)=31035=12. 故选B . 4.【答案】 B【考点】两角和与差的三角函数 【解析】直接由已知结合同角三角函数基本关系式求得cos(5π6−a). 【解答】∵ sin(π3−a)=13,∴ cos(5π6−a)=cos[π2+(π3−a)] =−sin(π3−a)=−13. 5.【答案】 A【考点】双曲线的特性 【解析】先求渐近线带入点的坐标,再用c 2=a 2+b 2求离心率. 【解答】解:∵ 焦点在y 轴上的双曲线的渐近线方程是y =±ab x , ∴ 4=−ab ⋅(−2),∴ ab =2,a =2b ,a 2=4b 2=4c 2−4a 2,e =√52.故选A . 6.【答案】 B【考点】 二项式定理的应用 【解析】写出二项式(1x −1)5的通项,由x 的指数为−2、0分别求得r 值,再由多项式乘多项式得答案. 【解答】(1 x −1)5的展开式的通项为T r+1=C5r∗(1x)5−r∗(−1)r=(−1)r∗C5r∗x r−5.取r−5=−2,得r=3,取r−5=0,得r=5.∴(x2+2)(1x−1)5展开式中的常数项是−C53−2C55=−12.7.【答案】B【考点】由三视图求体积【解析】由已知中的三视图可得该几何体是一个以直角梯形为底面的四棱锥,该几何体为x,根据体积公式建立关系,可得答案【解答】由已知中的三视图可得该几何体是一个以直角梯形为底面,梯形上下边长为1和2,高为2,如图:AD=1,BC=2,SB=x,AD // BC,SB⊥平面ABCD,AD⊥AB.∴底面的面积S=12×(1+2)×2=3.该几何体为x,几何体的体积V=13×x×3=1,可得x=3.8.【答案】A【考点】正弦函数的单调性【解析】化函数f(x)为正弦型函数,根据题意求出ω的值,写出f(x)的解析式,即可求出它的单调增区间.【解答】函数f(x)=√3sinωx+cosωx(ω>0)=2sin(ωx+π6);由f(x)的图象相邻两条对称轴之间的距离是π2,∴T=2×π2=π,∴ω=2πT=2;∴f(x)=2sin(2x+π6),令−π2+2kπ≤2x+π6≤π2+2kπ,k∈Z,解得−π3+kπ≤x≤π6+2kπ,k∈Z,∴函数f(x)的一个单调增区间为[−π3, π6 ].9.【答案】B【考点】程序框图【解析】程序的运行功能是求m=8521,n=6105的最大公约数,根据辗转相除法可得m的值.【解答】由程序框图知:程序的运行功能是求m=82511,n=6105的最大公约数,∵8251=6105+2146;6105=2×2146+1813;2146=1813+333;1813=5×333+148;333=2×148+37,148=4×37+0∴此时m=37.∴输出m的值是37,10.【答案】D【考点】球内接多面体【解析】设出球的半径,利用棱锥的侧面积公式,求解半径,然后求解四棱锥的外接半球的体积.【解答】连结AC,BD交点为0,设球的半径为r,由题意可知SO=AO=OC=OD=OB=r.则AB=√2r,四棱锥的侧面积为:4×√34×(√2r)2=4√3,解得r=√2,四棱锥的外接半球的体积为:V=12×4π3×(√2)3=4√23π,11.【答案】C【考点】直线与抛物线的位置关系【解析】联立{y2=2xy=−12x+b得:y2+4y−4b=0.由此利用根的判别式、弦长公式,即可求出b的值【解答】联立{y2=2xy=−12x+b得:y2+4y−4b=0.依题意应有Δ=16+16b>0,解得b>−1.设A(x1, y1),B(x2, y2),∴y1+y2=−4,y1y2=−4b,∴x1+x2=−2(y1+y2)+4b=8+4b,设圆心Q(x0, y0),则有x0=12(x1+x2)=4+2b,y0=12(y1+y2)=−2.∵以AB为直径的圆与x轴相切,得到圆半径为r=|y0|=2,又|AB|=√1+4⋅√(y1+y2)2−4y1y2=√5⋅√16+16b=4√5⋅√1+b,∵|AB|=2r,即4√5⋅√1+b=4,解得b=−45.故选C.12.【答案】A【考点】平面向量数量积的性质及其运算数量积表示两个向量的夹角【解析】建立坐标系,设AN=a,用a表示出CM→,CN→,得出CM→⋅CN→关于a的函数,从而得出范围.【解答】以CA,CB为坐标轴建立坐标系如图所示:∵AB=2BC=4,∴∠BAC=30∘,AC=2√3设AN=a,则N(2√3−√3a2, a2),M(2√3−√3(a+1)2, a+12),∴CM→⋅CN→=(2√3−√3a2)(2√3−√3(a+1)2)+a2⋅a+12=a2−5a+9.∵ M ,N 在AB 上,∴ 0≤a ≤3. ∴ 当a =0时,CM →⋅CN →取得最大值9, 当a =52时,CM →⋅CN →取得最小值114. 故选:A .二、填空题(每题5分,满分20分,将答案填在答题纸上) 【答案】 1【考点】 余弦定理 【解析】根据题意,设BC =t ,△ABC 中,由余弦定理可得cos∠ABC =4+t 2−74t=−12,变形可得:t 2+2t −3=0,解可得t 的值,即可得答案. 【解答】根据题意,设BC =t ,△ABC 中,AB =2,AC =√7,∠ABC =2π3,则有cos∠ABC =4+t 2−74t=−12,变形可得:t 2+2t −3=0, 解可得:t =−3或t =1, 又由t >0,则t =1, 即BC =1; 【答案】 32【考点】求线性目标函数的最值 简单线性规划 【解析】由约束条件作出可行域,再由yx+1的几何意义,即可行域内的动点与定点P(−1, 0)连线的斜率求得答案. 【解答】解:由约束条件{x −1≥0,x −y ≤0,x +y −4≤0,作出可行域如图,联立{x =1,x +y −4=0,解得A(1, 3), 由yx+1的几何意义,即可行域内的动点与定点P(−1, 0)连线的斜率可得, yx+1的最大值为k PA =3−01−(−1)=32. 故答案为:32.【答案】 C【考点】进行简单的合情推理 【解析】分析判断每一名话,能推理出正确结果. 【解答】由①得甲不在哈尔滨工作,乙不在长春工作;由②得在哈尔滨工作的教师不教C 学科,甲不教C ; 由③得在长春工作的教师教A 学科; 由④得乙不教B 学科和A 学科. 综上,乙教C 学科. 【答案】 ①③ 【考点】利用导数研究函数的极值 命题的真假判断与应用 【解析】求导数,利用零点存在定理,可判断①②;f(x 0)+x 0=x 0lnx 0+12x 02+x 0=x 0(lnx 0+12x 0+1)=−12x 0<0,可判断③④. 【解答】∵ 函数f(x)=xlnx +12x 2,(x >0)∴ f′(x)=lnx +1+x ,易得f′(x)=lnx +1+x 在(0, +∞)递增, ∴ f′(1e )=1e >0, ∵ x →0,f′(x)→−∞,∴ 0<x 0<1e ,即①正确,②不正确; ∵ lnx 0+1+x 0=0∴ f(x 0)+x 0=x 0lnx 0+12x 02+x 0=x 0(lnx 0+12x 0+1)=−12x 02<0,即③正确,④不正确.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 【答案】令n =1,得4a 1=a 12+2a 1−3,且a n >0,解得a 1=3.当n ≥2时,4S n −4S n−1=a n 2−a n−12+2a n −2a n−1,即4a n =a n 2−a n−12+2a n −2a n−1,整理得(a n +a n−1)(a n −a n−1−2)=0,∵ a n >0,∴ a n −a n−1=2, 所以数列{a n }是首项为3,公差为2的等差数列, 故a n =3+(n −1)×2=2n +1.由(1)知:b n =1a n2−1=14n 2+4n =14n(n+1)=14(1n −1n+1),∴ T n =b 1+b 2+...+b n =14(1−12+12−13+⋯+1n −1n+1)=14(1−1n+1)=n4n+4. 【考点】 数列递推式 数列的求和 【解析】(1)利用数列的递推关系式推出数列{a n }是首项为3,公差为2的等差数列,然后求解通项公式.(2)化简通项公式利用裂项相消法求解数列的和即可. 【解答】令n =1,得4a 1=a 12+2a 1−3,且a n >0,解得a 1=3.当n ≥2时,4S n −4S n−1=a n 2−a n−12+2a n −2a n−1,即4a n =a n 2−a n−12+2a n −2a n−1,整理得(a n +a n−1)(a n −a n−1−2)=0,∵ a n >0,∴ a n −a n−1=2, 所以数列{a n }是首项为3,公差为2的等差数列, 故a n =3+(n −1)×2=2n +1.由(1)知:b n =1a n2−1=14n 2+4n =14n(n+1)=14(1n −1n+1),∴ T n =b 1+b 2+...+b n =14(1−12+12−13+⋯+1n −1n+1)=14(1−1n+1)=n4n+4. 【答案】由已知X 的可能取值为100,200,300, P(X =100)=16+290=0.2,P(X =200)=3690=0.4, P(X =300)=11+2590=0.4,∴ X 的分布列为:由已知:①当订购200台时,E(Y)=[200×100−50×(200−100)]×0.2+200×200×0.8=35000(元)②当订购250台时,E(Y)=[200×100−50×(250−100)]×0.2+[200×200−50×(250−200)]×0.4+[200×250]×0.4=37500(元)综上所求,当订购250台时,Y的数学期望最大,11月每日应订购250台.【考点】离散型随机变量的期望与方差离散型随机变量及其分布列【解析】(1)由已知X的可能取值为100,200,300,分别求出相应的概率,由此能求出X的分布列.(2)当订购200台时,求出E(Y)=35000元;当订购250台时,求出E(Y)=37500元,由此求出11月每日应订购250台.【解答】由已知X的可能取值为100,200,300,P(X=100)=16+290=0.2,P(X=200)=3690=0.4,P(X=300)=11+2590=0.4,∴X的分布列为:①当订购200台时,E(Y)=[200×100−50×(200−100)]×0.2+200×200×0.8=35000(元)②当订购250台时,E(Y)=[200×100−50×(250−100)]×0.2+[200×200−50×(250−200)]×0.4+[200×250]×0.4=37500(元)综上所求,当订购250台时,Y的数学期望最大,11月每日应订购250台.【答案】方法一:取AD中点O,连接OE,交MN于点Q,连接FQ,则OP⊥AD.因为平面PAD⊥平面ABCD,所以OP⊥平面ABCD,∠PEO=π4,OP=OE.因为MN // BC,OE // AB,所以MN⊥OE,所以MN⊥PE.又EF=14PE=√24OE,EQ=12OE,所以EFEO =EOEP=√24,所以△EFQ∽△EOP,所以∠EFQ=∠EOP=π2,所以PE=FQ.且MN∩FQ=Q,所以PE ⊥平面MNF .方法二:取AD 中点O ,连接OE ,交MN 于点Q ,连接FQ ,则OP ⊥AD . 因为平面PAD ⊥平面ABCD , 所以OP ⊥平面AC , ∠PEO =π4,OP =OE .又因为MN // BC ,OE // AB ,所以MN ⊥OE ,所以MN ⊥PE .以O 点为原点,射线OA 、OE 、OP 方向为x 轴、y 轴、z 轴,建立空间直角坐标系O −xyz .设AB =m ,AD =n ,则P(0, 0, m),E(0, m, 0),M(n 2,m2, 0),F(0, 3m 4,m 4), 于是PE →=(0, m, −m),MF →=(−n 2,m 4,m4).所以PE →∗MF →=0,所以PE ⊥MF ,且MN ∩MF =M , 所以PE ⊥平面MNF取AD 中点O ,连接OE ,交MN 于点Q ,连接FQ ,则OP ⊥AD . 因为平面PAD ⊥平面AC ,所以OP ⊥平面AC ,∠PEO =π4,OP =OE .以O 点为原点,射线OA 、OE 、OP 方向为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系O −xyz .设AB =AD =m ,则P(0, 0, m),E(0, m, 0),B(m2,m,0),M(m 2,m2, 0),F(0, 3m 4,m 4), 于是PE →=(0, m, −m),BM →=(0, −m2, 0),BF →=(−m2,−m 4,m4).设平面BMF 的一个法向量为n →=(x, y, z),则{n →∗BM →=−m2y =0n →∗BF →=−m 2x −m 4y +m4z =0,令x =1,得n →=(1, 0, 2). 而平面NMF 的一个法向量为m →=PE →=(0, m, −m).所以cos <m →,n →>=m →∗n→|m →|∗|n →|=√5∗√2m=−√105. 由图形得二面角B −MF −N 的平面角是钝角,故二面角B −MF −N 的余弦值为−√105.【考点】直线与平面垂直二面角的平面角及求法【解析】(1)法一:取AD中点O,连接OE,交MN于点Q,连接FQ,则OP⊥ADOP⊥平面ABCD,推导出MN⊥OE,MN⊥PE.△EFQ∽△EOP,从而PE=FQ.由此能证明PE⊥平面MNF.方法二:取AD中点O,连接OE,交MN于点Q,连接FQ,则OP⊥AD.以O点为原点,射线OA、OE、OP方向为x轴、y轴、z轴,建立空间直角坐标系O−xyz.利用向量法能证明PE⊥平面MNF(2)取AD中点O,连接OE,交MN于点Q,连接FQ,则OP⊥AD.以O点为原点,射线OA、OE、OP方向为x轴、y轴、z轴的正方向,建立空间直角坐标系O−xyz.利用向量法能求出二面角B−MF−N的余弦值.【解答】方法一:取AD中点O,连接OE,交MN于点Q,连接FQ,则OP⊥AD.因为平面PAD⊥平面ABCD,所以OP⊥平面ABCD,∠PEO=π4,OP=OE.因为MN // BC,OE // AB,所以MN⊥OE,所以MN⊥PE.又EF=14PE=√24OE,EQ=12OE,所以EFEO =EOEP=√24,所以△EFQ∽△EOP,所以∠EFQ=∠EOP=π2,所以PE=FQ.且MN∩FQ=Q,所以PE⊥平面MNF.方法二:取AD中点O,连接OE,交MN于点Q,连接FQ,则OP⊥AD.因为平面PAD⊥平面ABCD,所以OP⊥平面AC,∠PEO=π4,OP=OE.又因为MN // BC,OE // AB,所以MN⊥OE,所以MN⊥PE.以O点为原点,射线OA、OE、OP方向为x轴、y轴、z轴,建立空间直角坐标系O−xyz.设AB=m,AD=n,则P(0, 0, m),E(0, m, 0),M(n2,m2, 0),F(0, 3m4,m4),于是PE →=(0, m, −m),MF →=(−n 2,m 4,m4).所以PE →∗MF →=0,所以PE ⊥MF ,且MN ∩MF =M , 所以PE ⊥平面MNF取AD 中点O ,连接OE ,交MN 于点Q ,连接FQ ,则OP ⊥AD . 因为平面PAD ⊥平面AC ,所以OP ⊥平面AC ,∠PEO =π4,OP =OE .以O 点为原点,射线OA 、OE 、OP 方向为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系O −xyz .设AB =AD =m ,则P(0, 0, m),E(0, m, 0),B(m2,m,0),M(m 2,m2, 0),F(0, 3m 4,m 4),于是PE →=(0, m, −m),BM →=(0, −m2, 0),BF →=(−m2,−m 4,m4).设平面BMF 的一个法向量为n →=(x, y, z),则{n →∗BM →=−m2y =0n →∗BF →=−m 2x −m 4y +m4z =0,令x =1,得n →=(1, 0, 2). 而平面NMF 的一个法向量为m →=PE →=(0, m, −m).所以cos <m →,n →>=m →∗n→|m →|∗|n →|=5∗2m=−√105. 由图形得二面角B −MF −N 的平面角是钝角,故二面角B −MF −N 的余弦值为−√105.【答案】∵ F(0, 1),∴ b =1,又F 1F →⋅F 1F 2→=6, ∴ 2c 2=6,c =√3.又a 2−b 2=c 2,∴ a =2, ∴ 椭圆C 的标准方程为x 24+y 2=1.设直线l 与抛物线相切于点P(x 0, y 0),则l:y −x 024=x 02(x −x 0),即y =x 02x −x 024,联立直线与椭圆{y =x02x −x 024x 24+y 2=1 ,消去y ,整理得(1+x 02)x 2−x 03x +14x 04−4=0.由△=16(x 02+1)−x 04>0,得0<x 02<8+4√5.设A(x 1, y 1),B(x 2, y 2),则:x 1+x 2=x 031+x 02,x 1x 2=x 04−164(1+x 02).则|AB|=√1+x 024|x 1−x 2|=√1+x 024√(x 1+x 2)2−4x 1x 2=√4+x 022⋅√16(x 02+1)−x 041+x 02原点O 到直线l 的距离d =22√x 0+4.故△OAB 面积S =12d ⋅|AB|=18x 02√16(x 02+1)−x 041+x 02=18√[16(x 02+1)−x 04]⋅x 041+x 02≤1+x 021+x 02=1,当且仅当16(1+x 02)−x 04=x 04,即x 02=4+2√6取等号,故△OAB 面积的最大值为1. 【考点】椭圆的标准方程 圆锥曲线的综合问题 椭圆的应用直线与椭圆的位置关系 【解析】(1)通过焦点坐标以及F 1F →⋅F 1F 2→=6转化求解椭圆方程.(2)设直线l 与抛物线相切于点P(x 0, y 0),求出切线方程,联立直线与椭圆{y =x02x −x 024x 24+y 2=1 ,消去y ,整理利用判别式,以及弦长公式,求解由原点O 到直线l 的距离,表示△OAB 面积,推出△OAB 面积的最大值为1. 【解答】∵ F(0, 1),∴ b =1,又F 1F →⋅F 1F 2→=6, ∴ 2c 2=6,c =√3.又a 2−b 2=c 2,∴ a =2, ∴ 椭圆C 的标准方程为x 24+y 2=1.设直线l 与抛物线相切于点P(x 0, y 0),则l:y −x 024=x 02(x −x 0),即y =x 02x −x 024,联立直线与椭圆{y =x02x −x 024x 24+y 2=1 ,消去y ,整理得(1+x 02)x 2−x 03x +14x 04−4=0. 由△=16(x 02+1)−x 04>0,得0<x 02<8+4√5.设A(x 1, y 1),B(x 2, y 2),则:x 1+x 2=x 031+x 02,x 1x 2=x 04−164(1+x 02).则|AB|=√1+x 024|x 1−x 2|=√1+x 024√(x 1+x 2)2−4x 1x 2=√4+x 022⋅√16(x 02+1)−x 041+x 02原点O 到直线l 的距离d =022√x 0+4. 故△OAB 面积S =12d ⋅|AB|=18x 02√16(x 02+1)−x 041+x 02=18√[16(x 02+1)−x 04]⋅x 041+x 02≤1+x 021+x 02=1,当且仅当16(1+x 02)−x 04=x 04,即x 02=4+2√6取等号,故△OAB 面积的最大值为1. 【答案】当b =0时:ℎ(x)=kx ,由f(x)≥ℎ(x)≥g(x)知:e x ≥kx ≥lnx , 依题意:e x x≥k ≥lnx x对x ∈(0, +∞)恒成立,设m(x)=e x x(x >0),∴ m /(x)=e x (x−1)x 2,当x ∈(0, 1)时m′(x)<0; 当x ∈(1, +∞)时m′(x)>0, ∴ [m(x)]min =m(1)=e , 设n(x)=lnx x(x >0),∴ n /(x)=1−lnx x 2,当x ∈(0, e)时n′(x)>0; 当x ∈(e, +∞)时n′(x)<0, ∴ [n(x)]max =n(e)=1e , 故:实数k 的取值范围是[1e ,e] 由已知:f′(x)=e x ,g ′(x)=1x①:由y −e x 1=e x 1(1−x 1)得:ℎ(x)=e x 1+(x 1−1)⋅e x 1 由y −lnx 2=1x 2(x −x 2)得:ℎ(x)=1x 2x +lnx 2−1故{e x 1=1x2e x 1(x 1−1)=1−lnx 2∵ x 1<0,∴ e x 1(x 1−1)<0, ∴ lnx 2>1,故:x 2>e ;②由①知:x 2=e −x 1,e x 1(x 1−1)=x 1+1且x 2>e >1由a(x 1−1)+xlnx −x ≥0得:a(x 1−1)≥x −xlnx ,(x ≥x 2) 设G(x)=x −xlnx(x ≥x 2)G′(x)=1−lnx −1=−lnx <0, ∴ G(x)在[x 2, +∞)为减函数,∴ [G(x)]max =G(x 2)=x 2−x 2lnx 2 由a(x 1−1)≥x 2−x 2lnx 2, 得:a(x 1−1)≥x 2(1−lnx 2), ∴ a(x 1−1)≥(x 1−1) 又x 1<0, ∴ a ≤1. 【考点】利用导数研究函数的最值 【解析】 (1)依题意:e x x≥k ≥lnx x对x ∈(0, +∞)恒成立,根据函数的单调性求出k 的范围即可;(2)①得到ℎ(x)=e x 1+(x 1−1)⋅e x 1,∴ e x 1(x 1−1)<0,从而证明结论;②得到a(x 1−1)≥x −xlnx ,(x ≥x 2),设G(x)=x −xlnx(x ≥x 2)G′(x)=1−lnx −1=−lnx <0,根据函数的单调性求出G(x)的最大值,从而求出a 的范围即可. 【解答】当b =0时:ℎ(x)=kx ,由f(x)≥ℎ(x)≥g(x)知:e x ≥kx ≥lnx , 依题意:e x x≥k ≥lnx x对x ∈(0, +∞)恒成立,设m(x)=e x x(x >0),∴ m /(x)=e x (x−1)x 2,当x ∈(0, 1)时m′(x)<0; 当x ∈(1, +∞)时m′(x)>0, ∴ [m(x)]min =m(1)=e , 设n(x)=lnx x(x >0),∴ n /(x)=1−lnx x 2,当x ∈(0, e)时n′(x)>0; 当x ∈(e, +∞)时n′(x)<0, ∴ [n(x)]max =n(e)=1e , 故:实数k 的取值范围是[1e ,e] 由已知:f′(x)=e x ,g ′(x)=1x①:由y −e x 1=e x 1(1−x 1)得:ℎ(x)=e x 1+(x 1−1)⋅e x 1 由y −lnx 2=1x 2(x −x 2)得:ℎ(x)=1x 2x +lnx 2−1故{e x 1=1x 2e x 1(x 1−1)=1−lnx 2∵ x 1<0,∴ e x 1(x 1−1)<0, ∴ lnx 2>1,故:x 2>e ;②由①知:x 2=e −x 1,e x 1(x 1−1)=x 1+1且x 2>e >1由a(x 1−1)+xlnx −x ≥0得:a(x 1−1)≥x −xlnx ,(x ≥x 2) 设G(x)=x −xlnx(x ≥x 2)G′(x)=1−lnx −1=−lnx <0, ∴ G(x)在[x 2, +∞)为减函数,∴ [G(x)]max =G(x 2)=x 2−x 2lnx 2 由a(x 1−1)≥x 2−x 2lnx 2, 得:a(x 1−1)≥x 2(1−lnx 2), ∴ a(x 1−1)≥(x 1−1) 又x 1<0, ∴ a ≤1.[选修4-4:坐标系与参数方程选讲] 【答案】解:(1)由ρ=4cosθ,得ρ2=4ρcosθ, ∴ x 2+y 2=4x ,故曲线C 1的直角坐标方程为x 2+y 2=4x , 即(x −2)2+y 2=4.由{x =3−12t,y =√32t, 消去参数t ,可得√3x +y −3√3=0. ∴ 曲线C 2:√3x +y −3√3=0;(2)将{x =3−12t,y =√32t,代入x 2+y 2=4x , 得t 2−t −3=0,∵ Δ=1+4×3=13>0,∴ 方程有两个不等实根t 1,t 2分别对应点P ,Q , ∴ |AP|⋅|AQ|=|t 1|⋅|t 2|=|t 1⋅t 2|=|−3|=3, 即|AP|⋅|AQ|=3. 【考点】参数方程与普通方程的互化 圆的极坐标方程 直线与圆的位置关系 【解析】(1)把ρ=4cosθ两边同时乘以ρ,结合x =ρcosθ,y =ρsinθ即可求得曲线C 1的直角坐标方程,在{x =3−12ty =√32t中,直接消去参数t 即可求得曲线C 2的普通方程; (2)把曲线C 2的参数方程代入x 2+y 2=4x ,化为关于t 的一元二次方程,利用根与系数的关系结合t 的几何意义求得|AP|⋅|AQ|的值. 【解答】解:(1)由ρ=4cosθ,得ρ2=4ρcosθ, ∴ x 2+y 2=4x ,故曲线C 1的直角坐标方程为x 2+y 2=4x , 即(x −2)2+y 2=4.由{x =3−12t,y =√32t,消去参数t ,可得√3x +y −3√3=0. ∴ 曲线C 2:√3x +y −3√3=0; (2)将{x =3−12t,y =√32t,代入x 2+y 2=4x , 得t 2−t −3=0,∵ Δ=1+4×3=13>0,∴ 方程有两个不等实根t 1,t 2分别对应点P ,Q , ∴ |AP|⋅|AQ|=|t 1|⋅|t 2|=|t 1⋅t 2|=|−3|=3, 即|AP|⋅|AQ|=3.[选修4-5:不等式选讲]【答案】当a =1时:不等式为:|2x −5|+|2x +1|>x −1, 等价于:解得:x <−12−12≤x ≤52x >52, 所以不等式的解集为:(−∞, +∞);设函数f(x)=|2x −5|+|2x +1|={−4x +4,x <−126,−12≤x ≤524x −4,x >52,试卷第21页,总21页设函数g(x)=ax −1过定点A(0, −1), 画出f(x),g(x)的图象,不等式|2x −5|+|2x +1|>ax −1.不等式的解集为R ,k AB =6+152=145,由数形结合得a 的范围是[−4,145).【考点】绝对值不等式的解法与证明 不等式恒成立的问题 【解析】(1)当a =1时,化简不等式,去掉绝对值符号,转化求解不等式的解集; (2)化简函数为分段函数,画出函数的图象,然后求解即可. 【解答】当a =1时:不等式为:|2x −5|+|2x +1|>x −1, 等价于:解得:x <−12−12≤x ≤52x >52, 所以不等式的解集为:(−∞, +∞);设函数f(x)=|2x −5|+|2x +1|={−4x +4,x <−126,−12≤x ≤524x −4,x >52,设函数g(x)=ax −1过定点A(0, −1), 画出f(x),g(x)的图象,不等式|2x −5|+|2x +1|>ax −1.不等式的解集为R ,k AB =6+152=145,由数形结合得a 的范围是[−4,145).。

吉林省长春市普通高中2018届高三数学一模考试卷文(含解析)

吉林省长春市普通高中2018届高三数学一模考试卷文(含解析)

普通高中2018届高三质量监测(一)数学试题卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合,,则()A. B. C. D.【答案】B【解析】集合,所以.故选B.点睛:1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.3.在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.2. 设为虚数单位,则()A. B. C. 2 D. -2【答案】D【解析】(−1+i)(1+i)=−2. 故选D.3. 已知圆x2+y2−4x+6y=0的圆心坐标为(a,b),则a2+b2=()A. 8B. 16C. 12D. 13【答案】D【解析】由圆的标准方程可知圆心为(2,−3),即a2+b2=13. 故选D.4. 等差数列{a n}中,已知a6+a11=0,且公差d>0,则其前n项和取最小值时的n的值为()A. 6B. 7C. 8D. 9【答案】C【解析】由题意知a6<0,a11>0,a1=−152d,有S n=d2[(n−8)2−64],所以当n=8时前n项和取最小值. 故选C.点睛:在解决等差、等比数列的运算问题时,有两个处理思路,一是利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法. 5. 已知某班级部分同学一次测验的成绩统计如图,则其中位数和众数分别为( )A. 92,94B. 92,86C. 99,86D. 95,91【答案】B【解析】由茎叶图可知,中位数为92,众数为86. 故选B.6. 顶点为坐标原点,始边在x轴的非负半轴上,终边在y轴上的角α的集合是()A. {α|α=2kπ+π2,k∈Z} B. {α|α=2kπ−π2,k∈Z}C. {α|α=kπ+π2,k∈Z} D. {α|α=kπ2,k∈Z}【答案】C【解析】终边落在y轴上的角的取值集合为{α|α=kπ+π2,k∈Z}.故选C.7. 右图是某学校某年级的三个班在一学期内的六次数学测试的平均成绩y关于测试序号x 的函数图像,为了容易看出一个班级的成绩变化,将离散的点用虚线连接,根据图像,给出下列结论:①一班成绩始终高于年级平均水平,整体成绩比较好;②二班成绩不够稳定,波动程度较大;③三班成绩虽然多数时间低于年级平均水平,但在稳步提升.其中正确结论的个数为()A. 0B. 1C. 2D. 3【答案】D【解析】通过函数图象,可以看出①②③均正确.故选D.8. 《九章算术》卷五商功中有如下问题:今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何.刍甍:底面为矩形的屋脊状的几何体(网格纸中粗线部分为其三视图,设网格纸上每个小正方形的边长为1丈),那么该刍甍的体积为()A. 4立方丈B. 5立方丈C. 6立方丈D. 12立方丈【答案】B【解析】由已知可将刍甍切割成一个三棱柱和一个四棱锥,三棱柱的体积为3,四棱锥的体积为2,则刍甍的体积为5.故选B.9. 已知矩形的顶点都在球心为,半径为的球面上,,且四棱锥的体积为,则等于()A. 4B.C.D.【答案】A【解析】由题意可知球心到平面ABCD的距离 2,矩形ABCD所在圆的半径为,从而球的半径 .故选A.10. 已知某算法的程序框图如图所示,则该算法的功能是()A. 求首项为1,公差为2的等差数列前2017项和B. 求首项为1,公差为2的等差数列前2018项和C. 求首项为1,公差为4的等差数列前1009项和D. 求首项为1,公差为4的等差数列前1010项和【答案】C【解析】由题意可知S=1+5+9+⋯+4033,为求首项为1,公差为4的等差数列的前1009项和.故选C.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.11. 已知O为坐标原点,设F1,F2分别是双曲线x2−y2=1的左、右焦点,点P为双曲线左支上任一点,自点F1作∠F1PF2的平分线的垂线,垂足为H,则|OH|=()A. 1B. 2C. 4D. 12【答案】A【解析】延长F1H交PF2于点Q,由角分线性质可知|PF1|=|PQ|,根据双曲线的定义,||PF1|−|PF2||=2,从而|QF2|=2,在ΔF1QF2中,OH为其中位线,故|OH|=1.故选A. 点睛:对于圆锥曲线问题,善用利用定义求解,注意数形结合,画出合理草图,巧妙转化.]时,f(x)=√x,则12. 已知定义在R上的奇函数f(x)满足f(x+π)=f(−x),当x∈[0,π2,3π]上所有零点之和为()函数g(x)=(x−π)f(x)−1在区间[−3π2A. πB. 2πC. 3πD. 4π【答案】D【解析】f(x+π)=f(−x)=−f(x)⇒T=2π,g(x)=(x−π)f(x)−1=0⇒f(x)=1x−π作图如下:,四个交点分别关于(π,0)对称,所以零点之和为2×2π=4π,选D.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知向量a⃑=(1,2),b⃑⃑=(−2,1),则a⃑与b⃑⃑的夹角为__________.【答案】π2.【解析】a⃑⋅b⃑⃑=0,所以a⃑,b⃑⃑夹角为π214. 函数f(x)=ln(x2−3x−4)的单调增区间是__________.【答案】(4,+∞)【解析】由题意可知x2−3x−4>0,有x<−1或x>4,从而该函数的单调递增区间为(4,+∞).15. 已知点P(x,y)位于y轴、y=x、y=2−x三条直线所围成的封闭区域内(包含边界),则2x+y的最大值为__________.【答案】3【解析】根据可行域,2x+y取最大值的最优解为(1,1),所以2x+y的最大值为3.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.16. 在△ABC 中,三个内角A,B,C 的对边分别为a,b,c ,若12bcosA =sinB ,且a =2√3,b +c =6,则△ABC 面积为__________. 【答案】2√3 【解析】由题意可知cosA 2=sinB b=sinA a,得tanA =√3,A =π3,由余弦定理12=b 2+c 2−bc ,得bc =8,从而△ABC 面积为2√3.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. 17. 已知数列{a n }的前n 项和为S n ,S 5=30,a 2+a 6=16. (Ⅰ)求等差数列{a n }的通项公式; (Ⅱ)求1S 1+1S 2+⋯+1S n.【答案】(1)a n =2n (2)nn+1【解析】试题分析:(1)根据等差数列前n 项和公式及通项公式,结合条件列出关于首项与公差的方程组,解方程组得a 1=d =2,再代入通项公式(2)先求S n ,再根据1S n=1n −1n+1,利用裂项相消法求和试题解析:(1) 由题可知{5a 3=302a 1+6d =16,从而有a 1=d =2,a n =2n .(2) 由(1)知S n =n(n +1),1S n=1n −1n+1,从而 1S 1+1S 2+⋯1S n=1−12+12−13+⋯+1n −1n+1=1−1n+1=nn+1. 点睛:裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如{can a n+1} (其中{a n }是各项均不为零的等差数列,c 为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类隔一项的裂项求和,如1(n+1)(n+3)或1n(n+2).18. 长春市的“名师云课”活动自开展以来获得广大家长和学子的高度赞誉,在我市推出的第二季名师云课中,数学学科共计推出36节云课,为了更好地将课程内容呈现给广大学子,现对某一时段云课的点击量进行统计:点击量[0,1000](1000,3000](3000,+∞)节数 6 18 12(Ⅰ)现从36节云课中采用分层抽样的方式选出6节,求选出的点击量超过3000的节数.(Ⅱ)为了更好地搭建云课平台,现将云课进行剪辑,若点击量在区间[0,1000]内,则需要花费40分钟进行剪辑,若点击量在区间(1000,3000]内,则需要花费20分钟进行剪辑,点击量超过3000,则不需要剪辑,现从(Ⅰ)中选出的6节课中任意取出2节课进行剪辑,求剪辑时间为40分钟的概率.【答案】(1)选出的6节课中有2节点击量超过3000.(2)13【解析】试题分析:(1)根据分层抽样,点击量超过3000得节数为1236×6=2(2)利用枚举法确定6节课中任意取出2节课所有可能为12种,其中剪辑时间为40分钟有5种,最后根据古典概型概率公式求概率试题解析:解:(1)根据分层抽样,选出的6节课中有2节点击量超过3000.(2)在(Ⅰ)中选出的6节课中,设点击量在区间[0,1000]内的一节课为A1,点击量在区间(1000,3000]内的三节课为B1,B2,B3,点击量超过3000的两节课为C1,C2.从中选出两节课的方式有A1B1,A1B2,A1B3,A1C1,A1C2,B1B2,B1B3,B1C1,B1C2,B2B3,B2C1,B2C2,B3C1,B3C2,C1C2,共15种,其中剪辑时间为40分钟的情况有A1C1,A1C2,B1B2,B1B3,B2B3,共5种,则剪辑时间为40分钟的概率为515=13.19. 如图,四棱锥P−ABCD中,底面ABCD为菱形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设PA=1,AD=√3,PC=PD,求三棱锥P−ACE的体积.【答案】(1)见解析(2)√38【解析】试题分析:(1)连接BD交AC于点O,则由三角形中位线性质得PB//OE,再根据线面平行判定定理得PB//平面ACE (2)利用等体积法将所求体积转化为14V P−ABCD ,再根据锥体体积公式求V P−ABCD =13S ▱ABCD ⋅PA ,代入即得试题解析:解:(1)连接BD 交AC 于点O ,连接OE . 在△PBD 中,PE =DEBO =DO}⇒PB//OEOE ⊂平面ACE PB ⊄平面ACE}⇒PB//平面ACE(2)V P−ACE =12V P−ACD =14V P−ABCD =14⋅13S ▱ABCD ⋅PA =14⋅13×(2×√34⋅√32)×1=√38.20. 已知椭圆C 的两个焦点为F 1(−1,0),F 2(1,0),且经过点E(√3,√32).(Ⅰ)求椭圆C 的方程;(Ⅱ)过F 1的直线与椭圆C 交于A,B 两点(点A 位于x 轴上方),若AF 1⃑⃑⃑⃑⃑⃑⃑⃑=2F 1B ⃑⃑⃑⃑⃑⃑⃑⃑,求直线的斜率k 的值. 【答案】(1)x 24+y 23=1 (2)√52【解析】试题分析:(1)由椭圆定义得2a =|EF 1|+|EF 2|=4,再根据勾股数求b =√3,(2)AF 1⃑⃑⃑⃑⃑⃑⃑⃑=2F 1B ⃑⃑⃑⃑⃑⃑⃑⃑得y 1=−2y 2,从而y 1y 2=2(y 1+y 2)2,再联立直线方程与椭圆方程,利用韦达定理得y 1y 2及y 1+y 2,代入可解得k =√52.试题解析:(1) 由椭圆定义2a =|EF 1|+|EF 2|=4,有a =2,c =1,b =√3, 从而x 24+y 23=1.(2) 设直线l:y =k(x +1),有{y =k(x +1)x 24+y 23=1 ,整理得(3k 2+4)y 2−6k y −9=0, 设A(x 1,y 1),B(x 2,y 2),有y 1=−2y 2,y 1y 2=2(y 1+y 2)2, 3+4k 2=8,k =±√52,由已知k =√52. 21. 已知函数f (x )=e x −a .(Ⅰ)若函数f (x )的图像与直线l:y =x −1相切,求a 的值; (Ⅱ)若f (x )−lnx >0恒成立,求整数a 的最大值. 【答案】(1)1(2)2【解析】试题分析:(1)由导数几何意义得,即得,再由,解得.(2)先分离:,再利用结论,,可得,所以,即得整数的最大值为2.试题解析:(1)由题意可知,f(x)和y =x −1相切,f ′(x)=1,则x =0,即f(0)=−1,解得a =2.(2)现证明e x ≥x +1,设F(x)=e x −x −1,令F ′(x)=e x −1=0,即x =0, 因此F(x)min =F(0)=0,即F(x)≥0恒成立,即e x ≥x +1,同理可证lnx ≤x −1. 由题意,当a ≤2时,e x −2≥x −1≥lnx , 即a =2时,f(x)−g(x)>0成立.当a =3时,存在x 使e x −3<lnx ,即e x −3≥lnx 不恒成立. 因此整数a 的最大值为2. 22. 选修4-4:坐标系与参数方程以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知点P 的直角坐标为(1,2),点M 的极坐标为(3,π2),若直线过点P ,且倾斜角为π6,圆C 以M 圆心,3为半径. (Ⅰ)求直线的参数方程和圆C 的极坐标方程; (Ⅱ)设直线与圆C 相交于A,B 两点,求|PA|⋅|PB|. 【答案】(1){x =1+√32ty =2+12t(2)7 【解析】试题分析:(1)根据直线参数方程形式直接写出直线的参数方程,根据直角三角形关系得ρ=6sinθ,即为圆C 的极坐标方程(2)利用ρsinθ=y,x 2+y 2=ρ2将圆C 的极坐标方程化为直接坐标方程,将直线参数方程代入,利用韦达定理及参数几何意义得|PA |⋅|PB |=|t 1t 2|=7试题解析:(Ⅰ)直线的参数方程为{x =1+√32t,y =2+12t, (t 为参数), 圆的极坐标方程为ρ=6sinθ . (Ⅱ)把{x =1+√32t,y =2+12t, 代入x 2+(y −3)2=9,得t 2+(√3−1)t −7=0, ∴t 1t 2=−7,设点A,B 对应的参数分别为t 1,t 2, 则|PA |=|t 1|,|PB |=|t 2|,|PA |⋅|PB |=7.23. 选修4-5:不等式选讲设不等式||x +1|−|x −1||<2的解集为A . (Ⅰ)求集合A ;(Ⅱ)若,求证:.【答案】(1)(2)见解析【解析】试题分析:(1)根据绝对值定义将不等式化为三个不等式组,分别求解,最后求并集(2)利用分析法证明,将所求不等式转化为,再根据,证明...............试题解析:(1)由已知,令由得.(2)要证,只需证,只需证,只需证只需证,由,则恒成立.点睛:(1)分析法是证明不等式的重要方法,当所证不等式不能使用比较法且与重要不等式、基本不等式没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.(2)利用综合法证明不等式,关键是利用好已知条件和已经证明过的重要不等式.。

2018届吉林省长春市普通高中高三质量监测(二)理科数学试题及答案 精品

2018届吉林省长春市普通高中高三质量监测(二)理科数学试题及答案 精品

长春市普通高中2018届高三质量监测(二)数 学(理 科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、已知集合{}0x x P =≥,1Q 02x xx ⎧+⎫=≥⎨⎬-⎩⎭,则()R Q P = ð( ) A .(),2-∞ B .(],1-∞- C .()1,0- D .[]0,22、复数12i i--的共轭复数对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3、已知随机变量ξ服从正态分布()21,σN ,若()20.15ξP >=,则()01ξP ≤≤=( )A .0.85B .0.70C .0.35D .0.15 4、已知:p 函数()f x x a =+在(),1-∞-上是单调函数,:q 函数()()log 1a g x x =+(0a >且1a ≠)在()1,-+∞上是增函数,则p ⌝成立是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5、若x ,y 满足约束条件5315153x y y x x y +≤⎧⎪≤+⎨⎪-≤⎩,则35x y +的取值范围是( )A .[]13,15-B .[]13,17-C .[]11,15-D .[]11,17-6、一个几何体的三视图如图所示,则该几何体的体积为( )A .163B .203C .152D .1327、已知平面向量a ,b 满足a = ,2b = ,3a b ⋅=-,则2a b += ( )A .1 B . C .4D .8、下面左图是某学习小组学生数学考试成绩的茎叶图,1号到16号同学的成绩依次为1A 、2A 、⋅⋅⋅⋅⋅⋅、16A ,右图是统计茎叶图中成绩在一定范围内的学生人数的算法流程图,那么该算法流程图输出的结果是( )A .6B .10C .91D .929、已知函数()1cos cos 22f x x x x =+,若将其图象向右平移ϕ(0ϕ>)个单位后所得的图象关于原点对称,则ϕ的最小值为( ) A .6π B .56π C .12πD .512π10、设m ,R n ∈,若直线()()1120m x n y +++-=与圆()()22111x y -+-=相切,则m n +的取值范围是( ) A .(),22⎡-∞-++∞⎣ B .(),⎡-∞-+∞⎣C .22⎡-+⎣ D .(][),22,-∞-+∞11、若()F ,0c 是双曲线22221x y a b-=(0a b >>)的右焦点,过F 作该双曲线一条渐近线的垂线与两条渐近线交于A ,B 两点,O 为坐标原点,∆OAB 的面积为2127a ,则该双曲线的离心率e =( )A .53B .43C .54D .8512、设数列{}n a 的前n 项和为n S ,且121a a ==,(){}2n n nS n a ++为等差数列,则n a =( ) A .12n n- B .1121n n -++ C .2121n n -- D .112n n ++二、填空题(本大题共4小题,每小题5分,共20分.)13、62x ⎛ ⎝的展开式中常数项为 .14、已知0a >且曲线y x a =与0y =所围成的封闭区域的面积为2a ,则a = .15、正四面体CD AB 的外接球半径为2,过棱AB 作该球的截面,则截面面积的最小值为 . 16、已知函数()f x 为偶函数且()()4f x f x =-,又()235,01222,12x x x x x f x x -⎧--+≤≤⎪=⎨⎪+<≤⎩,函数()12xg x a ⎛⎫=+ ⎪⎝⎭,若()()()F x f x g x =-恰好有4个零点,则a 的取值范围是 .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17、(本小题满分12分)在C ∆AB 中,tan 2A =,tan 3B =. ()1求角C 的值;()2设AB =C A . 18、(本小题满分12分)根据某电子商务平台的调查统计显示,参与调查的1000位上网购物者的年龄情况如下图显示.()1已知[)30,40、[)40,50、[)50,60三个年龄段的上网购物者人数成等差数列,求a,b的值;()2该电子商务平台将年龄在[)30,50之间的人群定义为高消费人群,其他的年龄段定义为潜在消费人群,为了鼓励潜在消费人群的消费,该平台决定发放代金券,高消费人群每人发放50元的代金券,潜在消费人群每人发放100元的代金券,现采用分层抽样的方式从参与调查的1000位上网购物者中抽取10人,并在这10人中随机抽取3人进行回访,求此三人获得代金券总和X的分布列与数学期望.19、(本小题满分12分)如图,在四棱锥CDP-AB中,PA⊥平面CDAB,D2PA=AB=A=,四边形CDAB满足DAB⊥A,C//DB A且C4B=,点M为CP中点,点E为C B边上的动点,且C λBE=E.()1求证:平面D A M⊥平面CPB;()2是否存在实数λ,使得二面角DP-E-B的余弦值为23?若存在,试求出实数λ的值;若不存在,说明理由.20、(本小题满分12分)在C ∆AB 中,顶点()1,0B -,()C 1,0,G 、I 分别是C ∆AB 的重心和内心,且G//C I B. ()1求顶点A 的轨迹M 的方程;()2过点C 的直线交曲线M 于P 、Q 两点,H 是直线4x =上一点,设直线C H 、PH 、Q H 的斜率分别为1k ,2k ,3k ,试比较12k 与23k k +的大小,并加以证明. 21、(本小题满分12分)设函数()()()1ln 1f x ax x bx =-+-,其中a 和b 是实数,曲线()y f x =恒与x 轴相切于坐标原点. ()1求常数b 的值;()2当01x ≤≤时,关于x 的不等式()0f x ≥恒成立,求实数a 的取值范围;()3求证:10000.41000.5100011001100001000e ⎛⎫⎛⎫<< ⎪⎪⎝⎭⎝⎭.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分. 22、(本小题满分10分)选修4-1:几何证明选讲 如图,过点P 作圆O 的割线PBA 与切线PE ,E 为切点,连接AE ,BE ,∠APE 的平分线与AE ,BE 分别交于点C ,D ,其中30∠AEB = .()1求证:D DD CE PB P ⋅=B PAP ;()2求C ∠P E 的大小. 23、(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系x y O 中,曲线1C的参数方程为21x y ⎧=⎪⎨=-+⎪⎩(t 为参数),以原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为ρ=.()1求曲线1C 的普通方程与曲线2C 的直角坐标方程;()2试判断曲线1C 与2C 是否存在两个交点,若存在,求出两交点间的距离;若不存在,说明理由.24、(本小题满分10分)选修4-5:不等式选讲 设函数()212f x x x a a =++-+,R x ∈. ()1当3a =时,求不等式()7f x >的解集;()2对任意R x ∈恒有()3f x ≥,求实数a 的取值范围.长春市普通高中2018届高三质量监测(二)数学(理科)参考答案及评分标准一、选择题(本大题包括12小题,每小题5分,共60分)1.D2.A3.C4.C5.D6.D7.B8.B9.C 10.A 11.C 12.A简答与提示:1. 【命题意图】本题主要考查集合交集与补集的运算,属于基础题.【试题解析】D 由题意可知{|1Q x x =-≤或2}x >,则{|12}Q x x =-<≤R ð,所以{|02}P Q x x =≤≤R ð. 故选D.2. 【命题意图】本题考查复数的除法运算,以及复平面上的点与复数的关系,属于基础题.【试题解析】A131255ii i-=--,所以其共轭复数为3155i +. 故选A.3. 【命题意图】本题考查正态分布的概念,属于基础题,要求学生对统计学原理有全面的认识.【试题解析】C (01)(12)0.5(2)0.35P P P ξξξ==->=≤≤≤≤. 故选C. 4. 【命题意图】本题借助不等式来考查命题逻辑,属于基础题. 【试题解析】C 由p 成立,则1a ≤,由q 成立,则1a >,所以p ⌝成立时1a >是q 的充要条件.故选C.5. 【命题意图】本题主要考查线性规划,是书中的原题改编,要求学生有一定的运算能力. 【试题解析】D 由题意可知,35x y +在(2,1)--处取得最小值,在35(,)22处取得最大值,即35[11,17]x y +∈-.故选D.6. 【命题意图】本题通过正方体的三视图来考查组合体体积的求法,对学生运算求解能力有一定要求.【试题解析】D 该几何体可视为正方体截去两个三棱锥,所以其体积为41138362--=. 故选D.7. 【命题意图】本题考查向量模的运算.【试题解析】B|2|+==a b . 故选B.8. 【命题意图】本题考查学生对茎叶图的认识,通过统计学知识考查程序流程图的认识,是一道综合题. 【试题解析】B 由算法流程图可知,其统计的是数学成绩大于等于90的人数,所以由茎叶图知:数学成绩大于等于90的人数为10,因此输出结果为10. 故选B.9. 【命题意图】本题主要考查三角函数的图像和性质,属于基础题.【试题解析】C 由题意()sin(2)6f x x π=+,将其图像向右平移ϕ(0)ϕ>个单位后解析式为()sin[2()]6f x x πϕ=-+,则26k πϕπ-=,即212k ππϕ=+()k ∈N ,所以ϕ的最小值为12π. 故选C.10. 【命题意图】本题借助基本不等式考查点到直线的距离,属于中档题.【试题解析】A由直线与圆相切可知||m n +=理得1mn m n =++,由2()2m n mn +≤可知211()4m n m n ++≤+,解得(,2[2)m n +∈-∞-++∞ . 故选A.11. 【命题意图】本题主要考查双曲线的几何性质,结合着较大的运算量,属于难题.【试题解析】C 由题可知,过I 、III 象限的渐近线的倾斜角为θ,则tan b aθ=,222tan 2ab a bθ=-,因此△OAB 的面积可以表示为3222112tan 227a b a a a a b θ⋅⋅==-,解得34b a=,则54e =. 故选C.12. 【命题意图】本题是最近热点的复杂数列问题,属于难题. 【试题解析】A 设(2)n n n b nS n a =++,有14b =,28b =,则4n b n =, 即(2)4n n n b nS n a n =++= 当2n ≥时,1122(1)(1)01n n n n S S a a n n ---++-+=-所以12(1)11n n n n a a n n -++=-,即121n n a a n n -⋅=-,所以{}n a n 是以12为公比,1为首项的等比数列,所以11()2n n a n -=,12n n n a -=. 故选A.二、填空题(本大题包括4小题,每小题5分,共20分)13.60 14.4915.83π 16.192,8⎛⎫⎪⎝⎭简答与提示: 13. 【命题意图】本题主要考查二项式定理的有关知识,属于基础题.【试题解析】由题意可知常数项为2246(2)(60C x =. 14. 【命题意图】本题考查定积分的几何意义及微积分基本定理,属于基础题.【试题解析】由题意32223aa x ==⎰,所以49a =.15. 【命题意图】球的内接几何体问题是高考热点问题,本题通过求球的截面面积,对考生的空间想象能力及运算求解能力进行考查,具有一定难度.【试题解析】由题意,面积最小的截面是以AB 为直径,可求得AB =,进而截面面积的最小值为283ππ=.16. 【命题意图】本题主要考查数形结合以及函数的零点与交点的相关问题,需要学生对图像进行理解,对学生的能力提出很高要求,属于难题.【试题解析】由题意可知()f x 是周期为4的偶函数,对称轴为直线2x =. 若()F x 恰有4个零点,有(1)(1)(3)(3)g f g f >⎧⎨<⎩,解得19(2,)8a ∈.17. (本小题满分12分)【命题意图】本小题主要考查两角和的正切公式,以及同角三角函数的应用,并借助正弦定理考查边角关系的运算,对考生的化归与转化能力有较高要求. 【试题解析】解:(1) +,tan tan()A B C C A B π+=∴=-+(3分)tan 2,tan 3,tan 1,4A B C C π==∴=∴=(6分)(2)因为tan 3B =sin 3sin 3cos cos B B B B⇒=⇒=,而22sincos 1B B +=,且B 为锐角,可求得sin B =.(9分)所以在△ABC 中,由正弦定理得,sin sin AB AC B C =⨯=.(12分)18. (本小题满分12分)【命题意图】本小题主要考查统计与概率的相关知识、离散型随机变量的分布列以及数学期望的求法. 本题主要考查数据处理能力.【试题解析】(1)由图可知0.035a =,0.025b =. (4分)(2) 利用分层抽样从样本中抽取10人,其中属于高消费人群的为6人,属于潜在消费人群的为4人. (6分)从中取出三人,并计算三人所获得代金券的总和X , 则X 的所有可能取值为:150,200,250,300.363101(150)6C P X C ===,21643101(200)2C C P X C ===, 12643103(250)10C C P X C ===, 343101(300)30C P X C ===,(10分) 且1131150200250300210621030EX =⨯+⨯+⨯+⨯=. (12分)19. (本小题满分12分)【命题意图】本小题主要考查立体几何的相关知识,具体涉及到线面以及面面的垂直关系、二面角的求法及空间向量在立体几何中的应用. 本小题对考生的空间想象能力与运算求解能力有较高要求.【试题解析】解:(1) 取PB 中点N ,连结MN 、AN ,M 是PC 中点,1//,22MN BC MN BC ∴==,又//BC AD ,//,MN AD MN AD ∴=,∴四边形ADMN 为平行四边形,AP AD AB AD ⊥⊥ ,AD ∴⊥平面PAB ,AD AN ∴⊥,AN MN ∴⊥AP AB = ,AN PB ∴⊥,AN ∴⊥平面PBC ,AN ⊂ 平面ADM ,∴平面ADM ⊥平面PBC . (6分)(2) 存在符合条件的λ.以A 为原点,AB 方向为x 轴,AD 方向为y 轴,AP 方向为z 轴,建立空间直角坐标系A xyz -,设(2,,0)E t ,(0,0,2)P ,(0,2,0)D ,(2,0,0)B从而(0,2,2)PD =- ,(2,2,0)DE t =-,则平面PDE 的法向量为1(2,2,2)n t =-,又平面DEB 即为xAy 平面,其法向量2(0,0,1)n =,则1212122cos ,3||||n n n n n n ⋅<>===⋅, 解得3t =或1t =,进而3λ=或13λ=.(12分) 20. (本小题满分12分) 【命题意图】本小题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法,椭圆方程的求法、直线与圆锥曲线的相关知识. 本小题对考生的化归与转化思想、运算求解能力都有很高要求. 【试题解析】解:(1) 已知11(||||||)||||22ABC A S AB AC BC r BC y ∆=++⋅=⋅,且||2BC =,||3A y r =,其中r 为内切圆半径,化简得:||||4AB AC +=,顶点A 的轨迹是以B C 、为焦点,长轴长为4的椭圆(去掉长轴端点),其中2,1,a c b ===进而其方程为22143x y +=(0)y ≠.(5分)(2) 1232k k k =+,以下进行证明:当直线PQ 斜率存在时,设直线:(1)PQ y k x =-且11(,)P x y ,22(,)Q x y ,(4,)H m联立22143(1)x y y k x ⎧+=⎪⎨⎪=-⎩可得2122834k x x k +=+,212241234k x x k -=+. (8分)由题意:13m k =,1214y m k x -=-,2324y m k x -=-.11212312()(4)()(4)(4)(4)y m x y m x k k x x --+--+=--21212121212882(5)()2424224()1636363m k kx x m k x x mk m mk x x x x k ++-+++====-+++当直线PQ 斜率不存在时,33(1,),(1,)22P Q -,231332222333m m m k k k -++=+== 综上可得1232k k k =+. (12分) 21. (本小题满分12分)【命题意图】本小题主要考查函数与导数的综合应用能力,具体涉及到用导数来描述原函数的单调性、极值以及函数零点的情况. 本小题对考生的逻辑推理能力与运算求解有较高要求. 【试题解析】解:(1) 对()f x 求导得:1()ln(1)1ax f x a x b x-'=-++-+,根据条件知(0)0f '=,所以101b b -=⇒=. (3分)(2) 由(1)得()(1)ln(1)f x ax x x =-+-,01x ≤≤1()ln(1)11axf x a x x-'=-++-+22(1)(1)21()1(1)(1)a a x ax ax a f x x x x -+--++''=-+=-+++. ① 当12a ≤-时,由于01x ≤≤,有221()()0(1)a a x a f x x ++''=-≥+,于是()f x '在[0,1]上单调递增,从而()(0)0f x f ''≥=,因此()f x 在[0,1]上单调递增,即()(0)0f x f ≥=而且仅有(0)0f =;②当0a ≥时,由于01x ≤≤,有221()0(1)ax a f x x ++''=-<+,于是()f x '在[0,1]上单调递减,从而()(0)0f x f ''≤=,因此()f x 在[0,1]上单调递减,即()(0)0f x f ≤=而且仅有(0)0f =;③当102a -<<时,令21min{1,}a m a+=-,当0x m ≤≤时,221()()0(1)a a x a f x x ++''=-≤+,于是()f x '在[0,]m 上单调递减,从而()(0)0f x f ''≤=,因此()f x 在[0,]m 上单调递减,即()(0)0f x f ≤=而且仅有(0)0f =.综上可知,所求实数a的取值范围是1(,]2-∞-.(8分)(3) 对要证明的不等式等价变形如下:2110000100010000.41000.55210001100111()()(1)(1)100001000100001000e e ++<<⇔+<<+ 所以可以考虑证明:对于任意的正整数n,不等式215211(1)(1)n n e n n+++<<+恒成立. 并且继续作如下等价变形 2152112111(1)(1)()ln(1)1()ln(1)52n n e n n n n n n +++<<+⇔++<<++211(1)ln(1)0()5111(1)ln(1)0()2p n n nq n n n ⎧++-<⎪⎪⇔⎨⎪++->⎪⎩对于()p 相当于(2)中21(,0)52a =-∈-,12m =情形,有()f x 在1[0,]2上单调递减,即()(0)0f x f ≤=而且仅有(0)0f =.取1x n=,当2n ≥时,211(1)ln(1)05nn n++-<成立;当1n =时,277(1)ln 21ln 210.710555+-=-<⨯-<.从而对于任意正整数n 都有211(1)ln(1)05n n n++-<成立.对于()q 相当于(2)中12a =-情形,对于任意x ∈[0,1],恒有()0f x ≥而且仅有(0)0f =. 取1x n=,得:对于任意正整数n 都有111(1)ln(1)02n n n++->成立. 因此对于任意正整数n ,不等式215211(1)(1)n n e n n+++<<+恒成立.这样依据不等式215211(1)(1)n n e n n+++<<+,再令10000n =利用左边,令1000n = 利用右边,即可得到10000.41000.5100011001()()100001000e <<成立.(12分) 22. (本小题满分10分)【命题意图】本小题主要考查平面几何的证明,具体涉及到弦切角定理以及三角形 相似等内容. 本小题重点考查考生对平面几何推理能力.【试题解析】解:(1) 由题意可知,EPC APC ∠=∠,PEB PAC ∠=∠, 则△PED ∽△PAC ,则PE PD PAPC=,又PE ED PBBD=,则ED PB PD BD PAPC⋅=. (5分)(2) 由EPC APC ∠=∠,PEB PAC ∠=∠,可得CDE ECD ∠=∠,在△ECD 中,30CED ∠= ,可知75PCE ∠= . (10分) 23. (本小题满分10分) 【命题意图】本小题主要考查极坐标系与参数方程的相关知识,具体涉及到极坐标方程与平面直角坐标方程的互化、利用直线的参数方程的几何意义求解直线与曲线交点的距离等内容. 本小题考查考生的方程思想与数形结合思想,对运算求解能力有一定要求.【试题解析】解:(1) 对于曲线1C 有1x y +=,对于曲线2C 有2214x y +=.(5分)(2) 显然曲线1C :1x y +=为直线,则其参数方程可写为21x y ⎧=⎪⎪⎨⎪=-⎪⎩(为参数)与曲线2C :2214x y +=联立,可知0∆>,所以1C 与2C 存在两个交点,由12t t +=,1285t t =,得21||d t t =-==. (10分)24. (本小题满分10分)【命题意图】本小题主要考查不等式的相关知识,具体涉及绝对值不等式及不等式证明等内容. 本小题重点考查考生的化归与转化思想.【试题解析】解:(1)当3a =时,()174,2135,22341,2x x f x x x x ⎧-≤⎪⎪⎪=<<⎨⎪⎪-≥⎪⎩所以()7f x >的解集为{}02x x x <>或 (5分) (2)()2122121f x x a x a x a x a a a =-+-+≥-+-+=-+由()3f x ≥恒成立,有13a a -+≥,解得2a ≥所以a 的取值范围是[)2,+∞ (10分)。

吉林省长春市普通高中2018届高三质量监测一理数试题 -

吉林省长春市普通高中2018届高三质量监测一理数试题 -

第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的. 1.复数22cossin 33z i ππ=+在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】B 【解析】试题分析:由题意可知,21cos 32π=-,23sin 32π=,则13z 22i =-+,对应的点在第二象限. 故选B. 考点:复数几何意义2.已知集合{|(2)(3)0}A x x x =+-<,则A N (N 为自然数集)为( )A .(,2)(3,)-∞-+∞B .(2,3)C .{0,1,2}D .{1,2}【答案】C 【解析】试题分析:由已知{}|23A x x =-<<,则{}0,1,2A N =,故选C.考点:集合运算.【易错点睛】(1)认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.(3)防范空集.在解决有关A ∩B =∅,A ⊆B 等集合问题时,往往忽略空集的情况,一定先考虑∅是否成立,以防漏解.3.ABC ∆是边长为1的等比三角形,已知向量,a b 满足2AB a =,2AC a b =+,则下列结论正确的是( )A .||2b =B .a b ⊥C .12a b ∙=D .1()4a b BC +⊥ 【答案】D 【解析】试题分析:由已知,ABC ∆的边长为1,21AB a ==,所以12a =,AC AB BC =+,则1BC b ==,因为2,3a b π<>=,故选D.考点:平面向量数量积运算.【方法点睛】平面向量数量积的类型及求法(1)求平面向量数量积有三种方法:一是夹角公式a ·b =|a ||b |cos θ;二是坐标公式a ·b =x 1x 2+y 1y 2;三是利用数量积的几何意义.(2)求较复杂的平面向量数量积的运算时,可先利用平面向量数量积的运算律或相关公式进行化简.4.我国南宋数学家秦九韶所著《数学九章》中有“米谷粒分”问题:粮仓开仓收粮,粮农送来米1512石,验得米内夹谷,抽样取米一把,数得216粒内夹谷27粒,则这批米内夹谷约( )A .164石B .178石C .189石D .196石 【答案】C 【解析】考点:抽样中的用样本去估计总体.5.命题:“00x ∃>,使002()1xx a ->”,这个命题的否定是( ) A .0x ∀>,使2()1xx a -> B .0x ∀>,使2()1xx a -≤C .0x ∀≤,使2()1x x a -≤D .0x ∀≤,使2()1x x a -> 【答案】B 【解析】试题分析:由已知,命题的否定为0x ∀>,2(1x x a ⋅-≤使),故选B. 考点:逻辑问题中的特称命题的否定【方法点睛】(1)对全称(存在性)命题进行否定的两步操作:①找到命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定;②对原命题的结论进行否定.(2)判定全称命题“∀x ∈M ,p(x)”是真命题,需要对集合M 中的每个元素x ,证明p(x)成立;要判定一个全称命题是假命题,只要举出集合M 中的一个特殊值x 0,使p(x 0)不成立即可.要判断存在性命题是真命题,只要在限定集合内至少能找到一个x =x 0,使p(x 0)成立即可,否则就是假命题. 6.按照如图的程序框图执行,若输出结果为31,则M 处条件可以是( ) A .32k > B .16k ≥ C .32k ≥ D .16k <【答案】C 【解析】考点:直到型循环结构程序框图运算.【名师点睛】算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.7.已知递减等差数列{}n a 中,31a =-,146,,a a a -成等比,若n S 为数列{}n a 的前n 项和,则7S 的值为( )A .-14B .-9C .-5D .-1 【答案】A 【解析】试题分析:由已知,3121a a d =+=-,2416()a a a =-即2111(3)(5)a d a a d +=--,且{}n a 为递减数列,则11,1d a =-=.有714S =-,故选A. 考点:等差数列和等比数列的基本量的求取8.某几何体的三视图如图,其正视图中的曲线部分为半圆,则该几何体的体积是( ) A .342π+B .63π+C .362π+D .3122π+【答案】C 【解析】考点:三视图【名师点睛】三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.9.已知原点到直线l 的距离为1,圆22(2)(5)4x y -+-=与直线l 相切,则满足条件的直线l 有多少条?A .1条B .2条C .3条D .4条 【答案】C 【解析】试题分析:由已知,直线l 满足到原点的距离为1,到点(25),的距离为2,满足条件的直线l 即为圆221x y +=和圆22(2)(5)4x y -+-=的公切线,因为这两个圆有两条外公切线和一条内公切线. 故选C. 考点:相离两圆的公切线10.“龟兔赛跑”是一则经典故事:兔子与乌龟在赛道上赛跑,跑了一段后,兔子领先太多就躺在道边睡着了,当他醒来后看到乌龟已经领先了,因此他用更快的速度去追,结果还是乌龟先到了终点,请根据故事选出符合的路程一时间图象( )【答案】D 【解析】试题分析:由故事内容不难看出,最终由乌龟先到达终点,故选D. 考点:函数图像11.双曲线2221y x b-=的左右焦点分别为12,F F ,P 为右支上一点,且1||8PF =,120PF PF ∙=,则双曲线的渐近线方程是( )A .22y x =±B .26y x =±C .5y x =±D .34y x =± 【答案】B 【解析】试题分析:由已知1a =,18PF =,则26PF =.又因为120PF PF ⋅=,则1210F F =,即5c =.则渐近线方程为26y x =±,故选B. 考点:双曲线的定义及渐近线12.已知实数,a b 满足ln(1)30b a b ++-=,实数,c d 满足250d c -+=,则22()()a c b d -+-的最小值为( )A .1B .2C .3D .4 【答案】A 【解析】试题分析:因为ln(1)+30b a b +-=,则=3ln(1)a b b -+,即3ln(1)y x x =-+因为250d c -+=,则25c d =+,即25y x =+. 要求取的表达式的本质就是曲线上的点到直线距离的最小值. 因为132311x y x x +'=-=++,则2y '=,有0x =,0y =,即过原点的切线方程为2y x =. 最短距离为225121d ==+. 故选A.考点:导数的几何意义二、填空题(每题4分,满分20分,将答案填在答题纸上)13.261()2x x -展开式中的常数项是 . 【答案】1516【解析】试题分析:常数项为422456115()()216T C x x =-=. 考点:二项展开式系数【方法点睛】求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第r +1项,再由特定项的特点求出r 值即可. (2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第r +1项,由特定项得出r 值,最后求出其参数.14.动点(,)P x y 满足20030x y y x y -≥⎧⎪≥⎨⎪+-≥⎩,则2z x y =+的最小值为 .【答案】3 【解析】试题分析:由已知可得,线性可行域如图所示,则线性目标函数在点3,0()取最小值3.考点:线性规划15.已知三棱锥S ABC -,满足,,SA SB SC 两两垂直,且2SA SB SC ===,Q 是三棱锥S ABC -外接球上一动点,则点Q 到平面ABC 的距离的最大值为 .【答案】433【解析】试题分析:由已知,可将三棱锥S ABC -放入正方体中,其长宽高分别为2,则到面ABC 距离最大的点应该在过球心且和面ABC 垂直的直径上,因为正方体的外接球直径和正方体的体对角线长相等,则223r =. 则到面ABC 距离的最大值为22432)(23)333r ==(.考点:三棱锥的外接球【思想点睛】空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P ,A ,B ,C 构成的三条线段PA ,PB ,PC 两两互相垂直,且PA =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,利用4R 2=a 2+b 2+c 2求解.16.如图,直角ABC ∆中,1,2AB BC ==,90ABC ∠=,作ABC ∆的内接正方形1BEFB ,再做1B FC ∆的内接正方形1112B E F B ,…,依次下去,所有正方形的面积依次构成数列{}n a ,其前n 项和为 .【答案】])94(1[54n n S -= 【解析】考点:归纳推理三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分12分)已知23()cos sin 3cos 2f x x x x =-+. (1)求()f x 的单调增区间;(2)在ABC ∆中,A 为锐角且3()2f A =,3AB AC AD +=u uu r u u u r u u u r ,3AB =,2AD =,求sin BAD ∠.【答案】(1)5[,]1212k k ππππ-+,k ∈Z .(2)3518- 【解析】试题分析:(1)由二倍角公式及配角公式将函数化为基本三角函数:133()sin 2(1cos2)222f x x x =-++sin(2)3x π=-,再根据正弦函数性质求函数单调区间(2)先根据3()2f A =得3sin(2)32A π-=,再根据A 范围得3A π=;由3AB AC A D+=u u u r u u u r u u u r 平方可得AC ,3AB AC AD +=u u u r u u u r u u u r可得BC 边上中线长AM=3,由余弦定理可得BC ,最后在三角形ABM 中根据余弦定理得cos BAD ∠,即得sin BAD ∠ 试题解析:(1) 由题可知133()sin 2(1cos2)222f x x x =-++sin(2)3x π=-, 令222232k x k πππππ--+≤≤,k ∈Z ,即函数()f x 的单调递增区间为5[,]1212k k ππππ-+,k ∈Z . (6分) (2) 由3()2f A =,所以3sin(2)32A π-=,解得3A π=或2A π=(舍)又因为3AB AC AD +=,则D 为ABC ∆的重心,以,AB AC 为邻边作平行四边形ABCD ,因为2AD =,所以6AE =,在ABE ∆中,3120AB ABE =∠=,,由正弦定理可得36sin 32AEB =∠,解得14AEB ∠=且15cos 4AEB ∠= 因此31511351sin sin()324248BAD AEB π-∠=-∠=⋅-⋅=. (12分) 考点:三角函数的化简以及恒等变换公式,正弦定理 【思路点睛】 三角函数式的化简要遵循“三看”原则18.(本小题满分12分)某人种植一种经济作物,根据以往的年产量数据,得到年产量频率分布直方图如图所示,以各区间中点值作为该区间的年产量,得到平均年产量为455kg ,已知当年产量低于350kg 时,单位售价为20元/kg ,若当年产量不低于350kg 而低于550时,单位售价为15元/kg ,当年产量不低于550kg 时,单位售价为10元/kg . (1)求图中,a b 的值;(2)试估计年销售额的期望是多少?【答案】(1)⎩⎨⎧==0035.0001.0b a (2)6525【解析】试题分析:(1)由频率分布直方图中小长方形面积等于对应概率,所有小长方形面积和为1得1)0040.0015.0(100=+++b a ,再根据组中值估计平均数得45515.06001005004.0400100300=⨯+⨯+⨯+⨯b a ,解方程组可得⎩⎨⎧==0035.0001.0b a (2)先确定随机变量:当年产量为kg 300时,其年销售额为6000元; 当年产量为kg 400时,其年销售额为6000元;当年产量为kg 500时,其年销售额为7500元;当年产量为kg 600时,其年销售额为6000元,再根据数学期望公式求数学期望由(1)结合直方图可知当年产量为kg 300时,其年销售额为6000元;当年产量为kg 400时,其年销售额为6000元; 当年产量为kg 500时,其年销售额为7500元; 当年产量为kg 600时,其年销售额为6000元; 则估计年销售额的期望为652515.0600035.075004.060001.06000=⨯+⨯+⨯+⨯(元).(12分)考点:频率分布直方图,数学期望【方法点睛】求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布X ~B(n ,p)),则此随机变量的期望可直接利用这种典型分布的期望公式(E(X)=np)求得.因此,应熟记常见的典型分布的期望公式,可加快解题速度. 19.(本小题满分12分)已知四棱锥P ABCD -中,底面为矩形,PA ⊥底面ABCD ,1PA BC ==,2AB =,M 为PC 上一点,且BP ⊥平面ADM . (1)求PM 的长度;(2)求MD 与平面ABP 所成角的余弦值.【答案】(1)56(2)35cos =θ【解析】试题解析:解:(1)如图所示建立空间直角坐标系,由已知)0,0,0(A ,)0,0,2(B ,)1,0,0(P ,)0,1,0(D ,)0,1,2(C . 令PC PM λ=,因为)1,1,2(-=PC ,所以),,2(λλλ-=PM , 则)1,,2(λλλ-M . 因为ADM BP 面⊥且)1,0,2(-=BP .所以⎪⎩⎪⎨⎧=⋅+-==⋅0150AD BP AM BP λ,则51=λ. 即PM 的长为56.(6分) (2)因为)54,51,52(M ,则)54,51,52(-=MD , 因为面ABP 的一个法向量)0,1,0(=n ,令MD 与面ABP 成角为θ,则322516251625454sin =++=θ,故35cos =θ.(12分)考点:利用空间向量求线段长度及线面角【思路点睛】利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”. 20.(本小题满分12分)以边长为4的等比三角形ABC 的顶点A 以及BC 边的中点D 为左、右焦点的椭圆过,B C 两点.(1)求该椭圆的标准方程;(2)过点D 且x 轴不垂直的直线l 交椭圆于,M N 两点,求证直线BM 与CN 的交点在一条直线上.【答案】(1)22196x y +=(2)33x =【解析】试题分析:(1)先建立直角坐标系,使椭圆方程为标准方程,则2426,2236a AB BD c AD b =+=+===⇒=(2)研究圆锥曲线的定值问题,一般方法为以算代证,即先求两直线交点坐标,再确定交点所在定直线:由对称性可知两直线交点必在垂直于x 轴的直线上,因此运算目标为求交点横坐标为定值,设MN 的方程为3x my =+,22(,)N x y ,则BM :1122(3)3y y x x --=-- ,CN :2222(3)3y y x x ++=--,消去y 得1212224(3)y y x my y +=-,再利用直线方程与椭圆方程联立方程组,结合韦达定理可得1224323m y y m -+=+,1221223y y m -=+,代入化简得33x = 试题解析:(1) 由题意可知两焦点为(3,0)-与(3,0),且26a =,因此椭圆的方程为22196x y +=. (4分)设11(,)M x y ,22(,)N x y 则BM :1122(3)3y y x x --=-- ①CN :2222(3)3y y x x ++=-- ②②-①得2121224(3)()33y y x x x +-=----1221212(2)(2)4(3)my y my y x m y y +--=-1212224(3)y y x my y +=-2283234(3)1223m m x m m -+=--+ 234(3)3x =- 则323x -=,即33x =.联立①和②消去y可得33x =.综上BM 与CN 的交点在直线33x =上. (12分) 考点:直线和椭圆的位置关系及定值【思路点睛】定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现. 21.(本小题满分12分)已知函数2()3f x x ax =+-,ln ()k xg x x=,当2a =时,()f x 与()g x 的图象在1x =处的切线相同. (1)求k 的值;(2)令()()()F x f x g x =-,若()F x 存在零点,求实数a 的取值范围. 【答案】(1)4(2)2a ≤ 【解析】试题分析:(1)根据导数几何意义得(1)(1)f g ''=,分别求导得()22f x x '=+,2(1ln )()k x g x x-'=,即得(1)4g k '==(2)研究函数零点问题,一般利用变量分离法转化为对应函数值域问题:即求函数324ln 3x x xa x -+=的值域,先求函数导数342348ln 348ln 31x x x x x xa x x x ----'=--=,再研究导函数零点,设3()48ln 3x x x x ϕ=---,则28()330x x xϕ'=---<,而(1)0ϕ=,所以324ln 3x x xa x-+=在(1,)+∞上为减函数,在(0,1)上为增函数,max (1)2a a ==. 试题解析:(1) 当2a =时,2()23f x x x =+-()22f x x '=+,则(1)4f '=,又(1)0f =,所以()f x 在1x =处的切线方程为44y x =-,又因为()f x 和()g x 的图像在1x =处的切线相同,2(1ln )()k x g x x -'= 所以(1)4g k '==. (4分)342348ln 348ln 3()1x x x x x xh x x x x----'=--= 令3()48ln 3x x x x ϕ=--- 则28()330x x xϕ'=---<恒成立,而(1)0ϕ=, 所以当1x >时,()0x ϕ<,当(0,1)x ∈时,()0x ϕ>. 所以当1x >时,()0h x '<,当(0,1)x ∈时,()0h x '>.故()h x 在(1,)+∞上为减函数,在(0,1)上为增函数,即max (1)2h h ==. 当x →+∞时,()h x →-∞,当0x +→时,()h x →-∞. 根据函数的大致图像可知2a ≤. (12分) 考点:导数几何意义,利用导数求函数值域请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)选修4-1:几何证明选讲如图,F 为圆O 上一点,点A 在直线BD 的延长线上,过点B 作圆O 的切线交AE 的延长线于点C ,CE CB =.(1)证明:2AE AD AB =∙;(2)若4,6AE CB ==,求圆O 的半径.【答案】(1)详见解析(2)3 【解析】试题分析:(1)证明线段成比例,一般利用三角形相似:由弦切角定理得ABE AED ∠=∠,再由BAE ∠=BAE ∠,可得AEB ADE ∆∆∽,可得AB AD AE ⋅=2 ,(2)先由AB AD AE ⋅=2得1642=⋅=AB AD ,再由直角三角形得222AB BC AC +=,解得AB=8,即得362===r BD AD试题解析:(1) 由已知连接DE ,因为ABE AED ∠=∠且BAE ∠公用,所以AEB ADE ∆∆∽即AB AD AE ⋅=2 (5分) 因为AB AD AE ⋅=2,所以16)(42=+=BD AD AD因为CE BC =,所以222AB BC AC +=,即222)(6)64(DB AD ++=+2)(36100DB AD ++=,则8=+BD AD ,故6,2==BD AD ,所以半径是3.(10分) 考点:三角形相似23.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立坐标系,曲线1C 的参数方程为2cos sin x y θθ=+⎧⎨=⎩(θ为参数).(1)求曲线1C 的直角坐标方程;(2)曲线2C 的极坐标方程为()6R πθρ=∈,求1C 与2C 的公共点的极坐标.【答案】(1)xy 33=(2))6,3(π 【解析】试题分析:(1)利用同角三角函数关系22sin cos 1θθ+=消参数得22(2)1x y -+=(2)利用222,cos x y x ρρθ=+=先将1C 的直角坐标方程化为极坐标方程24cos 30ρρθ-+=,再将6πθ=代入求得223cos 303ρρθρ-+=⇒=,所以1C 与2C 的公共点的极坐标为)6,3(π试题解析:(1) 曲线1C 的普通方程为22(2)1x y -+=(5分) (2)由已知2:()6C R πθρ=∈,即x y 33=,因为⎪⎩⎪⎨⎧=+-=1)2(3322y x x y ,有034342=+-x x ,则23,23==y x , 故交点的极坐标为)6,3(π(10分)考点:参数方程化为普通方程,直角坐标方程与极坐标方程互化 24.(本小题满分10分)选修4-5:不等式选讲 已知函数()|1|2|1|f x x x =--+的最大值为k . (1)求k 的值;(2)若,,a b c R ∈,2222a cb k ++=,求()b ac +的最大值. 【答案】(1)2(2)2 【解析】试题分析:(1)先根据绝对值定义将函数化为分段函数3,(1)()31,(11)3,(1)x x f x x x x x --≥⎧⎪=---<<⎨⎪+≤-⎩,再分别求各段最大值,比较三个最大值的最大得k 的值;(2)先化简条件22222=++b c a ,再利用基本不等式化简)(22)2(2222222c a b ca b b c a b c a +=+≥++≥=++,最后确定等号能取到(2)由已知22222=++b c a ,有4)()(2222=+++c b b a ,因为ab b a 222≥+(当b a =取等号),bc c b 222≥+(当c b =取等号), 所以)(24)()(2222bc ab c b b a +≥=+++,即2≤+bc ab ,故[]2)(max =+c a b (10分) 考点:绝对值定义,利用基本不等式求最值。

2018届吉林省长春市普通高中高三一模考试数学试题卷

2018届吉林省长春市普通高中高三一模考试数学试题卷

2018届吉林省长春市普通高中高三一模考试题数学试题卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设为虚数单位,则(?1+2i)(2?i)=()A. 5iB. ?5iC. 5D. -5【答案】A【解析】由题意可得:(?1+2i)(2?i)=?2+4i+i?2i2=5i.本题选择A选项.2. 集合{a,b,c}的子集的个数为()A. 4B. 7C. 8D. 16【答案】C【解析】集合{a,b,c}含有3个元素,则其子集的个数为23=8.本题选择C选项.3. 若图是某学校某年级的三个班在一学期内的六次数学测试的平均成绩y关于测试序号x的函数图像,为了容易看出一个班级的成绩变化,将离散的点用虚线连接,根据图像,给出下列结论:①一班成绩始终高于年级平均水平,整体成绩比较好;②二班成绩不够稳定,波动程度较大;③三班成绩虽然多数时间低于年级平均水平,但在稳步提升.其中正确结论的个数为()A. 0B. 1C. 2D. 3【答案】D【解析】通过函数图象,可以看出①②③均正确.故选D.4. 等差数列{a n}中,已知|a6|=|a11|,且公差d>0,则其前n项和取最小值时的n的值为()A. 6B. 7C. 8D. 9【答案】C【解析】因为等差数列中,,所以,有,所以当时前项和取最小值.故选C......................5. 已知某班级部分同学一次测验的成绩统计如图,则其中位数和众数分别为()A. 95,94B. 92,86C. 99,86D. 95,91【答案】B【解析】由茎叶图可知,中位数为92,众数为86. 故选B.6. 若角α的顶点为坐标原点,始边在x轴的非负半轴上,终边在直线y=?√3x上,则角α的取值集合是()A. {α|α=2kπ?π3,k∈Z} B. {α|α=2kπ+2π3,k∈Z}C. {α|α=kπ?2π3,k∈Z} D. {α|α=kπ?π3,k∈Z}【答案】D【解析】因为直线y=?√3x的倾斜角是2π3,所以终边落在直线y=?√3x上的角的取值集合为{α|α=kπ?π3,k∈Z}或者{α|α=kπ+2π3,k∈Z}.故选D.7. 已知x>0,y>0,且4x+y=xy,则x+y的最小值为()A. 8B. 9C. 12D. 16【答案】B【解析】由题意可得:4y +1x=1,则:x+y=(x+y)(4y +1x)=5+4xy+yx≥5+2√4xy×yx=9,当且仅当x=3,y=6时等号成立,综上可得:则x+y的最小值为9.本题选择B选项.点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.8. 《九章算术》卷五商功中有如下问题:今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何.刍甍:底面为矩形的屋脊状的几何体(网格纸中粗线部分为其三视图,设网格纸上每个小正方形的边长为1丈),那么该刍甍的体积为()A. 4立方丈B. 5立方丈C. 6立方丈D. 12立方丈【答案】B【解析】由已知可将刍甍切割成一个三棱柱和一个四棱锥,三棱柱的体积为3,四棱锥的体积为2,则刍甍的体积为5.故选B.9. 已知矩形ABCD的顶点都在球心为O,半径为R的球面上,AB=6,BC=2√3,且四棱锥O?ABCD的体积为8√3,则R等于()A. 4B. 2√3C. 4√7D. √139【答案】A【解析】由题意可知球心到平面ABCD的距离 2,矩形ABCD所在圆的半径为2√3,从而球的半径R=4.故选A.10. 已知某算法的程序框图如图所示,则该算法的功能是()A. 求首项为1,公差为2的等差数列前2017项和B. 求首项为1,公差为2的等差数列前2018项和C. 求首项为1,公差为4的等差数列前1009项和D. 求首项为1,公差为4的等差数列前1010项和【答案】C【解析】由题意可知S=1+5+9+?+4033,为求首项为1,公差为4的等差数列的前1009项和.故选C.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.11. 已知O为坐标原点,设F1,F2分别是双曲线x2?y2=1的左、右焦点,点P为双曲线上任一点,过点F1作∠F1PF2的平分线的垂线,垂足为H,则|OH|=()A. 1B. 2C. 4D. 12【答案】A【解析】延长交于点,由角分线性质可知根据双曲线的定义,,从而,在中,为其中位线,故.故选A.点睛:对于圆锥曲线问题,善用利用定义求解,注意数形结合,画出合理草图,巧妙转化.12. 已知定义在R上的奇函数f(x)满足f(x+π)=f(?x),当x∈[0,π2]时,f(x)=√x,则函数g(x)=(x?π)f(x)?1在区间[?3π2,3π]上所有零点之和为()A. πB. 2πC. 3πD. 4π【答案】D【解析】f(x+π)=f(−x)=?f(x)?T=2π,g(x)=(x−π)f(x)−1=0?f(x)=1x?π作图如下:,四个交点分别关于(π,0)对称,所以零点之和为2×2π=4π,选D.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知角α,β满足?π2<α?β<π2,0<α+β<π,则3α?β的取值范围是__________.【答案】(?π,2π)【解析】结合题意可知:3α?β=2(α?β)+(α+β),且:2(α?β)∈(?π,π),(α+β)∈(0,π),利用不等式的性质可知:3α−β的取值范围是(−π,2π).点睛:利用不等式性质求某些代数式的取值范围时,多次运用不等式的性质时有可能扩大变量的取值范围.解决此类问题一般是利用整体思想,通过“一次性”不等关系的运算求得待求整体的范围,是避免错误的有效途径.14. 已知平面内三个不共线向量a ⃑,b ⃑⃑,c ⃑两两夹角相等,且|a ⃑|=|b ⃑⃑|=1,|c ⃑|=3,则|a ⃑+b ⃑⃑+c ⃑|=__________. 【答案】2【解析】因为平面内三个不共线向量a ⃑,b ⃑⃑,c ⃑两两夹角相等,所以由题意可知,a ⃑,b ⃑⃑,c ⃑的夹角为120°,又知|a ⃑|=|b ⃑⃑|=1,|c ⃑|=3,所以a ⃑.b ⃑⃑=?12 ,a ⃑?c ⃑=b ⃑⃑?c ⃑=?32,|a ⃑+b ⃑⃑+c ⃑|= √1+1+9+2×(?12)+2×(?32)+2×(?32)=2 故答案为2.15. 在ΔABC 中,三个内角A,B,C 的对边分别为a,b,c ,若(12b?sinC)cosA =sinAcosC ,且a =2√3,ΔABC 面积的最大值为__________. 【答案】3√3【解析】由(12b −sinC)cosA =sinAcosC 可得12bcosA =sin (A +C )=sinB ,cosA2=sinB b=sinA a,得 tanA =√3,A =π3,由余弦定理12=b 2+c 2?bc ≥2bc?bc =bc , ΔABC 面积的最大值为12×12×√32=3√3,当且仅当b =c 时取到最大值,故答案为3√3.【方法点睛】本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 除了直接利用两定理求边和角以外,恒等变形过程中,一般来说 ,当条件中同时出现ab 及b 2 、a 2 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答. 16. 已知圆锥的侧面展开图是半径为3的扇形,则圆锥体积的最大值为__________. 【答案】2√3π【解析】设圆锥的底面半径为R ,由题意可得其体积为:V =13Sℎ=13×πR 2×√9?R 2=2π×√R 2×R 2×(9?R 2)=23π×3√3=2√3π.当且仅当R =√6时等号成立.综上可得圆锥体积的最大值为2√3π.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17. 已知数列{a n}的前n项和S n=2n+1+n?2.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log2(a n?1),求证:1b1b2+1b2b3+1b3b4+?+1b n b n+1<1.【答案】(Ⅰ)a n=2n+1;(Ⅱ)证明见解析.【解析】试题分析:(Ⅰ)利用已知条件,推出新数列是等比数列,然后求数列{a n}的通项公式;(Ⅱ)化简b n=log2(a n?1)=log22n=n,则1b n b n+1=1n−1n+1,利用裂项相消法和,再根据放缩法即可证明结果.试题解析:(Ⅰ)由{S n=2n+1+n−2S n−1=2n+(n−1)−2(n≥2),则a n=2n+1(n≥2). 当n=1时,a1=S1=3,综上a n=2n+1.(Ⅱ)由b n=log2(a n−1)=log22n=n.1 b1b2+1b2b3+1b3b4+...+1b n b n+1=11×2+12×3+13×4+...+1n(n+1)=(1−12)+(12−13)+(13−14)+...+(1n−1n+1)=1−1n+1<1. 得证.18. 长春市的“名师云课”活动自开展以来获得广大家长和学生的高度赞誉,在我市推出的第二季名师云课中,数学学科共计推出36节云课,为了更好地将课程内容呈现给学生,现对某一时段云课的点击量进行统计:(Ⅰ)现从36节云课中采用分层抽样的方式选出6节,求选出的点击量超过3000的节数.(Ⅱ)为了更好地搭建云课平台,现将云课进行剪辑,若点击量在区间[0,1000]内,则需要花费40分钟进行剪辑,若点击量在区间(1000,3000]内,则需要花费20分钟进行剪辑,点击量超过3000,则不需要剪辑,现从(Ⅰ)中选出的6节课中随机取出2节课进行剪辑,求剪辑时间X的分布列与数学期望.【答案】(Ⅰ)2;(Ⅱ)1003.【解析】试题分析:(Ⅰ)因为 36节云课中采用分层抽样的方式选出6节,所以12节应选出12×636=2节;(Ⅱ)X的所有可能取值为0,1,2,3,根据古典概型概率公式分别求出各随机变量的概率,从而可得分布列,由期望公式可得结果..试题解析:(Ⅰ)根据分层抽样,选出的6节课中有2节点击量超过3000. (Ⅱ)X的可能取值为0,20,40,60P(X=0)=1C62=115P(X=20)=C31C21C62=615=25P(X=40)=C21+C32C62=515=13P(X=60)=C31C62=315=15则X的分布列为0 20 40 60即EX=1003.19. 如图,四棱锥P?ABCD中,底面ABCD为菱形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设PA=1,∠ABC=60°,三棱锥E?ACD的体积为√38,求二面角D?AE?C的余弦值.【答案】(Ⅰ)证明见解析;(Ⅱ)√1313.【解析】试题分析:(Ⅰ) )连接BD交AC于点O,连接OE,根据中位线定理可得PB//OE,由线面平行的判定定理即可证明PB//平面AEC;(Ⅱ)以点A为原点,以AM方向为x轴,以AD方向为y轴,以AP方向为z轴,建立空间直角坐标系,分别求出平面CAE与平面DAE的一个法向量,根据空间向量夹角余弦公式,可得结果.试题解析:(Ⅰ)连接BD交AC于点O,连接OE在△PBD中,PE =DEBO =DO }?PB//OE OE?平面ACE PB?平面ACE}?PB//平面ACE(Ⅱ)V P−ABCD =2V P−ACD =4V E−ACD =√32,设菱形ABCD 的边长为aV P−ABCD =13S ?ABCD ?PA =13×(2×√34a 2)×1=√32,则a =√3.取BC 中点M ,连接AM .以点A 为原点,以AM 方向为x 轴,以AD 方向为y 轴,以AP 方向为z 轴, 建立如图所示坐标系.D(0,√3,0),A(0,0,0),E(0,√32,12),C(32,√32,0) AE⃑⃑⃑⃑⃑⃑=(0,√32,12),AC ⃑⃑⃑⃑⃑⃑=(32,√32,0), n 1⃑⃑⃑⃑⃑=(1,−√3,3),n 2⃑⃑⃑⃑⃑=(1,0,0) cosθ=|n1⃑⃑⃑⃑⃑⃑?n 2⃑⃑⃑⃑⃑⃑||n 1⃑⃑⃑⃑⃑⃑|?|n 2⃑⃑⃑⃑⃑⃑|=√1+3+9=√1313, 即二面角D −AE −C 的余弦值为√1313.【方法点晴】本题主要考查线面平行的判定定理以及利用空间向量求二面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离. 20. 已知椭圆C 的两个焦点为F 1(?1,0),F 2(1,0),且经过点E(√3,√32).(Ⅰ)求椭圆C 的方程;(Ⅱ)过F 1的直线与椭圆C 交于A,B 两点(点A 位于x 轴上方),若AF 1⃑⃑⃑⃑⃑⃑⃑⃑=λF 1B ⃑⃑⃑⃑⃑⃑⃑⃑,且2≤λ<3,求直线的斜率k 的取值范围. 【答案】(Ⅰ)x 24+y 23=1;(Ⅱ)0<k ≤√52. 【解析】试题分析:(1)由题意可得a =2,c =1,b =√3,则椭圆方程为x 24+y 23=1. (2)联立直线与椭圆的方程,结合韦达定理得到关于实数k 的不等式,求解不等式可得直线的斜率k 的取值范围是k=√52. 试题解析:(1)由椭圆定义2a =|EF 1|+|EF 2|=4,有a =2,c =1,b =√3,从而x 24+y 23=1.(2)设直线l:y =k (x +1)(k >0),有{y =k (x +1)x 24+y 23=1 ,整理得(3k 2+4)y 2−6k y −9=0, 设A (x 1,y 1),B (x 2,y 2),有y 1=−λy 2,y 1y 2=−λ(1−λ)2(y 1+y 2)2,(1−λ)2λ=43+4k 2,λ+1λ−2=43+4k 2, 由于2≤λ<3,所以12≤λ+1λ−2<43,12≤43+4k 2<43,解得0<k ≤√52. 3+4k 2=8,k =±√52,由已知k =√52.21. 已知函数f (x )=e x ,g (x )=ln (x +a )+b .(Ⅰ)若函数f (x )与g (x )的图像在点(0,1)处有相同的切线,求a,b 的值; (Ⅱ)当b =0时,f (x )?g (x )>0恒成立,求整数a 的最大值;(Ⅲ)证明:ln2+(ln3?ln2)2+(ln4?ln3)3 +?+[ln(n +1)?lnn]n <ee?1. 【答案】(Ⅰ)1,1;(Ⅱ)2;(Ⅲ)证明见解析.【解析】试题分析:(Ⅰ)求出f′(x )与g′(x ),由f(1)=g(1)且f ′(1)=g ′(1)解方程组可求a,b 的值;(Ⅱ)f (x )−g (x )>0恒成立等价于e x ≥ln(x +a)恒成立,先证明当a ≤2时恒成立,再证明a ≥3时不恒成立,进而可得结果;(Ⅲ))由e x >ln(x +2),令x =−n+1n,即e−n+1n>ln(−n+1n+2),即e −n+1>ln n (−n+1n+2),令n =1,2,3,4... ,各式相加即可得结果.试题解析:(Ⅰ)由题意可知,f(x)和g(x)在(0,1)处有相同的切线, 即在(0,1)处f(1)=g(1)且f ′(1)=g ′(1), 解得a =1,b =1.(Ⅱ)现证明e x ≥x +1,设F(x)=e x −x −1, 令F ′(x)=e x −1=0,即x =0,因此F(x)min =F(0)=0,即F(x)≥0恒成立, 即e x ≥x +1, 同理可证lnx ≤x −1.由题意,当a ≤2时,e x ≥x +1且ln(x +2)≤x +1,即e x ≥x +1≥ln(x +2), 即a =2时,f(x)−g(x)>0成立.当a ≥3时,e 0<lna ,即e x ≥ln(x +a)不恒成立. 因此整数a 的最大值为2. (Ⅲ)由e x >ln(x +2),令x =−n+1n,即e−n+1n>ln(−n+1n+2),即e −n+1>ln n (−n+1n+2)由此可知,当n =1时,e 0>ln2, 当n =2时,e −1>(ln3−ln2)2, 当n =3时,e −2>(ln4−ln3)3, ……当n =n 时,e −n+1>[ln(n +1)−lnn]n .综上:e 0+e −1+e −2+...+e −n+1>ln2+(ln3−ln2)2+(ln4−ln3)3+...+[ln(n +1)−lnn]n11−1e>e 0+e −1+e −2+...+e −n+1>ln2+(ln3−ln2)2+(ln4−ln3)3+...+[ln (n +1)−lnn ]n .即ln2+(ln3−ln2)2+(ln4−ln3)3+...+[ln(n +1)−lnn]n <ee−1.(二)选考题:请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知点P 的直角坐标为(1,2),点M 的极坐标为(3,π2),若直线过点P ,且倾斜角为π6,圆C 以M 圆心,3为半径. (Ⅰ)求直线的参数方程和圆C 的极坐标方程; (Ⅱ)设直线与圆C 相交于A,B 两点,求|PA|?|PB|. 【答案】(Ⅰ){x =1+√32ty =2+12t(t 为参数),ρ=6sinθ;(Ⅱ)7. 【解析】试题分析:(1)根据直线参数方程形式直接写出直线的参数方程,根据直角三角形关系得ρ=6sinθ,即为圆C 的极坐标方程(2)利用ρsinθ=y,x 2+y 2=ρ2将圆C 的极坐标方程化为直接坐标方程,将直线参数方程代入,利用韦达定理及参数几何意义得|PA |?|PB |=|t 1t 2|=7 试题解析:(Ⅰ)直线的参数方程为{x =1+√32t,y =2+12t, (t 为参数), 圆的极坐标方程为ρ=6sinθ .(Ⅱ)把{x =1+√32t,y =2+12t,代入x 2+(y −3)2=9,得t 2+(√3−1)t −7=0, ∴t 1t 2=−7,设点A,B 对应的参数分别为t 1,t 2,则|PA |=|t 1|,|PB |=|t 2|,|PA |?|PB |=7. 23. 选修4-5:不等式选讲设不等式||x +1|?|x?1||<2的解集为A .(Ⅰ)求集合A ;(Ⅱ)若a,b,c ∈A ,求证:|1?abcab?c |>1.【答案】(Ⅰ){x|?1<x <1};(Ⅱ)证明见解析.【解析】试题分析:(1)根据绝对值定义将不等式化为三个不等式组,分别求解,最后求并集(2)利用分析法证明,将所求不等式转化为(1−a 2b 2)(1−c 2)>0,再根据a,b,c ∈A ,证明(1−a 2b 2)(1−c 2)>0试题解析:(1)由已知,令f(x)=|x +1|−|x −1|={2(x ≥1)2x(−1<x <1)−2(x ≤−1)由|f(x)|<2得A ={x|−1<x <1}.(2)要证|1−abcab−c |>1,只需证|1−abc|>|ab −c|,只需证1+a 2b 2c 2>a 2b 2+c 2,只需证1−a 2b 2>c 2(1−a 2b 2)只需证(1−a 2b 2)(1−c 2)>0,由a,b,c ∈A ,则(1−a 2b 2)(1−c 2)>0恒成立.点睛:(1)分析法是证明不等式的重要方法,当所证不等式不能使用比较法且与重要不等式、基本不等式没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.(2)利用综合法证明不等式,关键是利用好已知条件和已经证明过的重要不等式.。

【高三数学试题精选】2018高三数学一模(理)试题(吉林省实验中学有答案)

【高三数学试题精选】2018高三数学一模(理)试题(吉林省实验中学有答案)

2018高三数学一模(理)试题(吉林省实验中学有答案)
5 c 吉林省实验中学4坐标系与参数方程
在极坐标系中,设圆=4 cs 与直线=4 ( ∈R)交于两点.(Ⅰ)求以为直径的圆的极坐标方程;
(Ⅱ)在圆任取一点,在圆上任取一点,求的最大值.
(23)(本小题满分10分)选修4-5不等式选讲
设函数.
(Ⅰ)求不等式的解集;
(Ⅱ)若关于的不等式在上无解,求实数的取值范围.
吉林省实验中学2018届高三年级第一次模拟(第五次月考)考试
数学试题(理科)答案
一.
二.13 13 14 15 16
三.17 【解】
(Ⅰ)由正弦定理得




∴ 即
∴ 成等差数列。

(Ⅱ)∵ ∴

由(Ⅰ)得

18 (Ⅰ)∵平面平面,
平面平面,∴ 平面,。

届吉林省长春市普通高中高三一模考试数学试题卷理科解析版

届吉林省长春市普通高中高三一模考试数学试题卷理科解析版

2018届吉林省长春市普通高中高三一模考试题数学试题卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设为虚数单位,则(?1+2i)(2?i)=()A. 5iB. ?5iC. 5D. -5【答案】A【解析】由题意可得:(?1+2i)(2?i)=?2+4i+i?2i2=5i.本题选择A选项.2. 集合{a,b,c}的子集的个数为()A. 4B. 7C. 8D. 16【答案】C【解析】集合{a,b,c}含有3个元素,则其子集的个数为23=8.本题选择C选项.3. 若图是某学校某年级的三个班在一学期内的六次数学测试的平均成绩y关于测试序号x的函数图像,为了容易看出一个班级的成绩变化,将离散的点用虚线连接,根据图像,给出下列结论:①一班成绩始终高于年级平均水平,整体成绩比较好;②二班成绩不够稳定,波动程度较大;③三班成绩虽然多数时间低于年级平均水平,但在稳步提升.其中正确结论的个数为()A. 0B. 1C. 2D. 3【答案】D【解析】通过函数图象,可以看出①②③均正确.故选D.4. 等差数列{a n}中,已知|a6|=|a11|,且公差d>0,则其前n项和取最小值时的n的值为()A. 6B. 7C. 8D. 9【答案】C【解析】因为等差数列中,,所以,有,所以当时前项和取最小值.故选C......................5. 已知某班级部分同学一次测验的成绩统计如图,则其中位数和众数分别为()A. 95,94B. 92,86C. 99,86D. 95,91【答案】B【解析】由茎叶图可知,中位数为92,众数为86. 故选B.6. 若角α的顶点为坐标原点,始边在x轴的非负半轴上,终边在直线y=?√3x上,则角α的取值集合是()A. {α|α=2kπ?π3,k∈Z} B. {α|α=2kπ+2π3,k∈Z}C. {α|α=kπ?2π3,k∈Z} D. {α|α=kπ?π3,k∈Z}【答案】D【解析】因为直线y=?√3x的倾斜角是2π3,所以终边落在直线y=?√3x上的角的取值集合为{α|α=kπ?π3,k∈Z}或者{α|α=kπ+2π3,k∈Z}.故选D.7. 已知x>0,y>0,且4x+y=xy,则x+y的最小值为()A. 8B. 9C. 12D. 16【答案】B【解析】由题意可得:4y +1x=1,则:x+y=(x+y)(4y +1x)=5+4xy+yx≥5+2√4xy×yx=9,当且仅当x=3,y=6时等号成立,综上可得:则x+y的最小值为9.本题选择B选项.点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.8. 《九章算术》卷五商功中有如下问题:今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何.刍甍:底面为矩形的屋脊状的几何体(网格纸中粗线部分为其三视图,设网格纸上每个小正方形的边长为1丈),那么该刍甍的体积为()A. 4立方丈B. 5立方丈C. 6立方丈D. 12立方丈【答案】B【解析】由已知可将刍甍切割成一个三棱柱和一个四棱锥,三棱柱的体积为3,四棱锥的体积为2,则刍甍的体积为5.故选B.9. 已知矩形ABCD的顶点都在球心为O,半径为R的球面上,AB=6,BC=2√3,且四棱锥O?ABCD的体积为8√3,则R等于()A. 4B. 2√3C. 4√7D. √139【答案】A【解析】由题意可知球心到平面ABCD的距离 2,矩形ABCD所在圆的半径为2√3,从而球的半径R=4.故选A.10. 已知某算法的程序框图如图所示,则该算法的功能是()A. 求首项为1,公差为2的等差数列前2017项和B. 求首项为1,公差为2的等差数列前2018项和C. 求首项为1,公差为4的等差数列前1009项和D. 求首项为1,公差为4的等差数列前1010项和【答案】C【解析】由题意可知S=1+5+9+?+4033,为求首项为1,公差为4的等差数列的前1009项和.故选C.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.11. 已知O为坐标原点,设F1,F2分别是双曲线x2?y2=1的左、右焦点,点P为双曲线上任一点,过点F1作∠F1PF2的平分线的垂线,垂足为H,则|OH|=()A. 1B. 2C. 4D. 12【答案】A【解析】延长交于点,由角分线性质可知根据双曲线的定义,,从而,在中,为其中位线,故.故选A.点睛:对于圆锥曲线问题,善用利用定义求解,注意数形结合,画出合理草图,巧妙转化.]时,f(x)=√x,则函数g(x)=(x?π)f(x)?1 12. 已知定义在R上的奇函数f(x)满足f(x+π)=f(?x),当x∈[0,π2,3π]上所有零点之和为()在区间[?3π2A. πB. 2πC. 3πD. 4π【答案】D【解析】f(x+π)=f(−x)=?f(x)?T=2π,g(x)=(x−π)f(x)−1=0?f(x)=1x?π作图如下:,四个交点分别关于(π,0)对称,所以零点之和为2×2π=4π,选D.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知角α,β满足?π2<α?β<π2,0<α+β<π,则3α?β的取值范围是__________.【答案】(?π,2π)【解析】结合题意可知:3α?β=2(α?β)+(α+β),且:2(α?β)∈(?π,π),(α+β)∈(0,π),利用不等式的性质可知:3α−β的取值范围是(−π,2π).点睛:利用不等式性质求某些代数式的取值范围时,多次运用不等式的性质时有可能扩大变量的取值范围.解决此类问题一般是利用整体思想,通过“一次性”不等关系的运算求得待求整体的范围,是避免错误的有效途径.14. 已知平面内三个不共线向量a⃑,b⃑⃑,c⃑两两夹角相等,且|a⃑|=|b⃑⃑|=1,|c⃑|=3,则|a⃑+b⃑⃑+c⃑|=__________.【答案】2【解析】因为平面内三个不共线向量a⃑,b⃑⃑,c⃑两两夹角相等,所以由题意可知,a⃑,b⃑⃑,c⃑的夹角为120°,又知|a⃑|=|b⃑⃑|=1,|c⃑|=3,所以a⃑.b⃑⃑=?12,a⃑?c⃑=b⃑⃑?c⃑=?32,|a⃑+b⃑⃑+c⃑|=√1+1+9+2×(?12)+2×(?32)+2×(?32)=2故答案为2.15. 在ΔABC中,三个内角A,B,C的对边分别为a,b,c,若(12b?sinC)cosA=sinAcosC,且a=2√3,ΔABC面积的最大值为__________.【答案】3√3【解析】由(12b−sinC)cosA=sinAcosC可得12bcosA=sin(A+C)=sinB,cosA2=sinBb=sinAa,得tanA=√3,A=π3,由余弦定理12=b2+c2?bc≥2bc?bc=bc,ΔABC面积的最大值为12×12×√32=3√3,当且仅当b=c时取到最大值,故答案为3√3.【方法点睛】本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 除了直接利用两定理求边和角以外,恒等变形过程中,一般来说,当条件中同时出现ab及b2、a2时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.16. 已知圆锥的侧面展开图是半径为3的扇形,则圆锥体积的最大值为__________.【答案】2√3π【解析】设圆锥的底面半径为R,由题意可得其体积为:V=13Sℎ=13×πR2×√9?R2=23π×√R22×R22×(9?R2) =23π×3√3=2√3π.当且仅当R=√6时等号成立.综上可得圆锥体积的最大值为2√3π.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17. 已知数列{a n}的前n项和S n=2n+1+n?2.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log2(a n?1),求证:1b1b2+1b2b3+1b3b4+?+1b n b n+1<1.【答案】(Ⅰ)a n=2n+1;(Ⅱ)证明见解析.【解析】试题分析:(Ⅰ)利用已知条件,推出新数列是等比数列,然后求数列{a n}的通项公式;(Ⅱ)化简b n=log2(a n?1)=log22n=n,则1b n b n+1=1n−1n+1,利用裂项相消法和,再根据放缩法即可证明结果.试题解析:(Ⅰ)由{S n=2n+1+n−2S n−1=2n+(n−1)−2(n≥2),则a n=2n+1(n≥2). 当n=1时,a1=S1=3,综上a n=2n+1.(Ⅱ)由b n=log2(a n−1)=log22n=n.1 b1b2+1b2b3+1b3b4+...+1b n b n+1=11×2+12×3+13×4+...+1n(n+1)=(1−12)+(12−13)+(13−14)+...+(1n−1n+1)=1−1n+1<1. 得证.18. 长春市的“名师云课”活动自开展以来获得广大家长和学生的高度赞誉,在我市推出的第二季名师云课中,数学学科共计推出36节云课,为了更好地将课程内容呈现给学生,现对某一时段云课的点击量进行统计:(Ⅰ)现从36节云课中采用分层抽样的方式选出6节,求选出的点击量超过3000的节数.(Ⅱ)为了更好地搭建云课平台,现将云课进行剪辑,若点击量在区间[0,1000]内,则需要花费40分钟进行剪辑,若点击量在区间(1000,3000]内,则需要花费20分钟进行剪辑,点击量超过3000,则不需要剪辑,现从(Ⅰ)中选出的6节课中随机取出2节课进行剪辑,求剪辑时间X的分布列与数学期望.【答案】(Ⅰ)2;(Ⅱ)1003.【解析】试题分析:(Ⅰ)因为 36节云课中采用分层抽样的方式选出6节,所以12节应选出12×636=2节;(Ⅱ)X的所有可能取值为0,1,2,3,根据古典概型概率公式分别求出各随机变量的概率,从而可得分布列,由期望公式可得结果..试题解析:(Ⅰ)根据分层抽样,选出的6节课中有2节点击量超过3000.(Ⅱ)X的可能取值为0,20,40,60P(X=0)=1C62=115P(X=20)=C31C21C62=615=25P(X=40)=C21+C32C62=515=13P(X=60)=C31C62=315=15则X的分布列为即EX=1003.19. 如图,四棱锥P?ABCD中,底面ABCD为菱形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设PA =1,∠ABC =60°,三棱锥E?ACD 的体积为√38,求二面角D?AE?C 的余弦值.【答案】(Ⅰ)证明见解析;(Ⅱ)√1313.【解析】试题分析:(Ⅰ) )连接BD 交AC 于点O ,连接OE ,根据中位线定理可得PB//OE ,由线面平行的判定定理即可证明PB//平面AEC ;(Ⅱ)以点A 为原点,以AM 方向为x 轴,以AD 方向为y 轴,以AP 方向为z 轴,建立空间直角坐标系,分别求出平面CAE 与平面DAE 的一个法向量,根据空间向量夹角余弦公式,可得结果. 试题解析:(Ⅰ)连接BD 交AC 于点O ,连接OE 在△PBD 中,PE =DEBO =DO }?PB//OE OE?平面ACE PB?平面ACE}?PB//平面ACE(Ⅱ)V P−ABCD =2V P−ACD =4V E−ACD =√32,设菱形ABCD 的边长为aV P−ABCD =13S ?ABCD ?PA =13×(2×√34a 2)×1=√32,则a =√3.取BC 中点M ,连接AM .以点A 为原点,以AM 方向为x 轴,以AD 方向为y 轴,以AP 方向为z 轴, 建立如图所示坐标系.D(0,√3,0),A(0,0,0),E(0,√32,12),C(32,√32,0)AE⃑⃑⃑⃑⃑⃑=(0,√32,12),AC ⃑⃑⃑⃑⃑⃑=(32,√32,0), n 1⃑⃑⃑⃑⃑=(1,−√3,3),n 2⃑⃑⃑⃑⃑=(1,0,0) cosθ=|n 1⃑⃑⃑⃑⃑⃑?n 2⃑⃑⃑⃑⃑⃑||n 1⃑⃑⃑⃑⃑⃑|?|n 2⃑⃑⃑⃑⃑⃑|=√1+3+9=√1313,即二面角D −AE −C 的余弦值为√1313.【方法点晴】本题主要考查线面平行的判定定理以及利用空间向量求二面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离. 20. 已知椭圆C 的两个焦点为F 1(?1,0),F 2(1,0),且经过点E(√3,√32).(Ⅰ)求椭圆C 的方程;(Ⅱ)过F 1的直线与椭圆C 交于A,B 两点(点A 位于x 轴上方),若AF 1⃑⃑⃑⃑⃑⃑⃑⃑=λF 1B ⃑⃑⃑⃑⃑⃑⃑⃑,且2≤λ<3,求直线的斜率k 的取值范围.【答案】(Ⅰ)x 24+y23=1;(Ⅱ)0<k≤√52.【解析】试题分析:(1)由题意可得a=2,c=1,b=√3,则椭圆方程为x24+y23=1.(2)联立直线与椭圆的方程,结合韦达定理得到关于实数k的不等式,求解不等式可得直线的斜率k的取值范围是k=√52.试题解析:(1)由椭圆定义2a=|EF1|+|EF2|=4,有a=2,c=1,b=√3,从而x24+y23=1.(2)设直线l:y=k(x+1)(k>0),有{y=k(x+1)x24+y23=1,整理得(3k2+4)y2−6ky−9=0,设A(x1,y1),B(x2,y2),有y1=−λy2,y1y2=−λ(1−λ)2(y1+y2)2,(1−λ)2λ=43+4k2,λ+1λ−2=43+4k2,由于2≤λ<3,所以12≤λ+1λ−2<43,12≤43+4k2<43,解得0<k≤√52.3+4k2=8,k=±√52,由已知k=√52.21. 已知函数f(x)=e x,g(x)=ln(x+a)+b.(Ⅰ)若函数f(x)与g(x)的图像在点(0,1)处有相同的切线,求a,b的值;(Ⅱ)当b=0时,f(x)?g(x)>0恒成立,求整数a的最大值;(Ⅲ)证明:ln2+(ln3?ln2)2+(ln4?ln3)3+?+[ln(n+1)?lnn]n<ee?1.【答案】(Ⅰ)1,1;(Ⅱ)2;(Ⅲ)证明见解析.【解析】试题分析:(Ⅰ)求出f′(x)与g′(x),由f(1)=g(1)且f′(1)=g′(1)解方程组可求a,b的值;(Ⅱ)f(x)−g(x)>0恒成立等价于e x≥ln(x+a)恒成立,先证明当a≤2时恒成立,再证明a≥3时不恒成立,进而可得结果;(Ⅲ))由e x>ln(x+2),令x=−n+1n,即e −n+1n>ln(−n+1n+2),即e−n+1>ln n(−n+1n+2),令n=1,2,3,4...,各式相加即可得结果.试题解析:(Ⅰ)由题意可知,f(x)和g(x)在(0,1)处有相同的切线,即在(0,1)处f(1)=g(1)且f′(1)=g′(1),解得a=1,b=1.(Ⅱ)现证明e x≥x+1,设F(x)=e x−x−1,令F′(x)=e x−1=0,即x=0,因此F(x)min=F(0)=0,即F(x)≥0恒成立,即e x≥x+1,同理可证lnx≤x−1.由题意,当a≤2时,e x≥x+1且ln(x+2)≤x+1,即e x≥x+1≥ln(x+2),即a=2时,f(x)−g(x)>0成立.当a≥3时,e0<lna,即e x≥ln(x+a)不恒成立.因此整数a的最大值为2.(Ⅲ)由e x>ln(x+2),令x=−n+1n,即e −n+1n>ln(−n+1n+2),即e−n+1>ln n(−n+1n+2)由此可知,当n=1时,e0>ln2,当n=2时,e−1>(ln3−ln2)2,当n=3时,e−2>(ln4−ln3)3,……当n=n时,e−n+1>[ln(n+1)−lnn]n.综上:e0+e−1+e−2+...+e−n+1>ln2+(ln3−ln2)2+(ln4−ln3)3+...+[ln(n+1)−lnn]n11−1e>e0+e−1+e−2+...+e−n+1>ln2+(ln3−ln2)2+(ln4−ln3)3+...+[ln(n+1)−lnn]n.即ln2+(ln3−ln2)2+(ln4−ln3)3+...+[ln(n+1)−lnn]n<ee−1.(二)选考题:请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知点P的直角坐标为(1,2),点M的极坐标为(3,π2),若直线过点P,且倾斜角为π6,圆C以M圆心,3为半径.(Ⅰ)求直线的参数方程和圆C的极坐标方程;(Ⅱ)设直线与圆C相交于A,B两点,求|PA|?|PB|.【答案】(Ⅰ){x=1+√32ty=2+12t(t为参数),ρ=6sinθ;(Ⅱ)7.【解析】试题分析:(1)根据直线参数方程形式直接写出直线的参数方程,根据直角三角形关系得ρ=6sinθ,即为圆C的极坐标方程(2)利用ρsinθ=y,x2+y2=ρ2将圆C的极坐标方程化为直接坐标方程,将直线参数方程代入,利用韦达定理及参数几何意义得|PA|?|PB|=|t1t2|=7试题解析:(Ⅰ)直线的参数方程为{x=1+√32t,y=2+12t,(t为参数),圆的极坐标方程为ρ=6sinθ.(Ⅱ)把{x=1+√32t,y=2+12t,代入x2+(y−3)2=9,得t2+(√3−1)t−7=0,∴t1t2=−7,设点A,B对应的参数分别为t1,t2,则|PA|=|t 1|,|PB|=|t2|,|PA|?|PB|=7.23. 选修4-5:不等式选讲设不等式||x+1|?|x?1||<2的解集为A.(Ⅰ)求集合A;(Ⅱ)若a,b,c∈A,求证:|1?abcab?c|>1.【答案】(Ⅰ){x|?1<x<1};(Ⅱ)证明见解析.【解析】试题分析:(1)根据绝对值定义将不等式化为三个不等式组,分别求解,最后求并集(2)利用分析法证明,将所求不等式转化为(1−a2b2)(1−c2)>0,再根据a,b,c∈A,证明(1−a2b2)(1−c2)>0试题解析:(1)由已知,令f(x)=|x+1|−|x−1|={2(x≥1)2x(−1<x<1)−2(x≤−1)由|f(x)|<2得A={x|−1<x<1}.(2)要证|1−abcab−c|>1,只需证|1−abc|>|ab−c|,只需证1+a2b2c2>a2b2+c2,只需证1−a2b2>c2(1−a2b2)只需证(1−a2b2)(1−c2)>0,由a,b,c∈A,则(1−a2b2)(1−c2)>0恒成立.点睛:(1)分析法是证明不等式的重要方法,当所证不等式不能使用比较法且与重要不等式、基本不等式没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.(2)利用综合法证明不等式,关键是利用好已知条件和已经证明过的重要不等式.。

2018年最新 吉林省长春三中2018学年高三第一次模拟考

2018年最新 吉林省长春三中2018学年高三第一次模拟考

吉林省长春三中2018-2018学年度高三第一次模拟考试数学(文科)试题 2018.18本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟。

注意事项:1.答题前,考生务必将姓名和准考证号填写在每一页答题纸上的指定位置; 2.将每科答案按照要求填写在答题卡指定位置,填写在试题卷上无效;第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共计60分)1.设集合)(},2,1,2{},2,1{},2,1,0,1,2{B C A B A I I 则--==--== ( )A .{1}B .{1,2}C .{2}D .{0,1,2}2.下列大小关系正确的是( ) A .3.0log 34.044.03<< B .4.04333.0log 4.0<<C .4.03434.03.0log <<D .34.044.033.0log <<3.若q p x q x p ⌝⌝>>+是则,2:,2|1:|成立的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.函数)1lg(22133)(x x x x f -++=的定义域是( )A .),31(+∞-B .)1,31(-C .)31,31(-D .)31,(--∞5.函数)1(11)(>+-=x x x x f 的反函数为 ( )A .),0(,11+∞∈-+=x x xy B .),1(,11+∞∈-+=x x xyC .)1,0(,11∈-+=x xxyD .)1,0(,11∈-+=x x x y 6.已知a =(1,2),b =(3,-1)且a + b 与a -λb 互相垂直,则实数的λ值为 ( )A .116-B .611-C .116 D .611 7.过点)2,3(-的直线l 经过圆0222=-+y y x 的圆心,则直线l 的倾斜角大小为( )A .150°B .120°C .30°D .60°8.在△ABC 中,已知C b a cos 2=,那么这个三角形一定是( ) A .等边三角形B .直角三角形C .等腰三角形D .等腰直角三角形9.如果函数11log )(,)10(+=≠>=-x x f a a a y a x 那么函数是增函数且的图象大致是( )10.如果椭圆的左焦点在左准线的距离等于长半轴的长,则其离心率为 ( )A .215- B .215+ C .21 D .54 11.有两排座位,前排6个座位,后排7个座位,现安排2人就座,规定这2人不左右相邻,那么不同的坐法种数是( )A .92B .118C .132D .13412.定义在R 上的偶函数|4|2)(,]5,3[),2()()(--=∈+=x x f x x f x f x f 时当满足,则( ) A .)6(cos)6(sinππf f <B .)1(cos )1(sin f f >C .)32(sin )32(cos ππf f <D .)2(sin )2(cos f f >第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共计20分)13.已知S n 是数列{a n }的前n 项和,且S n = 3n -1,则a n = . 14.不等式x x >-|23|的解集是 .15.在9)21(xx -的展开式中,x 3的系数是 (用数字作答). 16.下列函数①x x f 1)(=;②x x f 2sin )(=;③||2)(x x f -=;④xx f cot 1)(=中,满足“存在与x 无关的正常数M ,使得M x f ≤)(对定义域内的一切实数x 都成立”的有 (把满足条件的函数序号都填上). 三、解答题(本大题共6小题,共计70分) 17.(本小题满分10分)已知集合B B A mx x x B x x x A ==+-==+-= 且},02|{},023|{22,求实数m 的取值范围.18.(本小题满分12分)设不等式M x M x x ∈≤++求当的解集为,09)(log 9)(log 221221时函数)8)(log 2(log )(22xx x f =的最大值和最小值.19.(本小题满分12分)甲乙两个盒子中装有大小相同的小球,甲盒中有2个黑球和2个红球,乙盒中有2个黑球和3个红球,从甲乙两盒中各任取一球交换. (1)求交换后甲盒中恰有2个黑球的概率; (2)求交换后甲盒中的黑球数没有减少的概率.20.(本小题满分12分)如图,在直三棱柱ABC —A 1B 1C 1中,∠ACB =90°,CB =1, 6,31==AA CA ,M 为侧棱CC 1上一点,AM ⊥BA 1.(1)求证:AM ⊥平面A 1BC ; (2)求二面角B – AM – C 的大小; (3)求点C 到平面ABM 的距离.21.(本小题满分12分)已知函数)0()(3≠++=a d cx ax x f 是R 上的奇函数,当)(1x f x 时=取得极值-2. (1)求f (x )的单调区间和极大值;(2)证明对任意4|)()(|),1,1(,2121<--∈x f x f x x 不等式恒成立.22.(本小题满分12分)设xxx f y x B y x A -+=1log 21)(),(),,(22211是函数图像上任意二点,且)(21OB OA OM +=,已知点M 的纵坐标为.21(1)求证:M 点的坐标为定值;(2)定义n n i n n i S n n if S n n f n f n f n i f 求且若,2,)(,)1()2()1()(1111≥=-+++=∑∑-=-= ;(3)若⎪⎪⎩⎪⎪⎨⎧≥++==+)2()1)(1(1)1(321n S S n a n n n ,是否存在实数λ,对于任意n ∈N *,都有∑=++<ni n iS a11)1(λ恒成立,若存在求出λ,不存在说明理由.参考答案一、选择题(本大题共12小题,每小题5分,共计60分)1.D 2.C 3.A 4.B 5.C 6.C 7.B 8.C 9.D 10.A 11.D 12.D 二、填空题(本大题共4小题,每小题5分,共计20分) 13.132-⋅n 14.),1()21,(+∞⋃-∞ 15.221-16.②③ 三、解答题(本大题共6小题,共计70分) 17.(本小题满分10分)解:化简条件得A B B B A A ⊆⇔== },2,1{…………2分根据集合中元素个数集合B 分类讨论,}2,1{},2{}1{,===B B B 或ϕ 当08,2<-=∆=m B 时ϕ 2222<<-∴m…………4分当无解或时或m m m B ⎩⎨⎧=+-=+-=∆=,02240210,}2{}1{…………6分当⎩⎨⎧=⨯=+=22121,}2,1{mB 时…………2分3=∴m…………8分 综上所述,22223<<-=m m 或 (10)分18.(本小题满分12分)解:09)(log 9)(log 221221≤++x x.23l o g 3.0)3)(l o g 3l o g 2(212121-≤≤-∴≤++∴x x x…………2分即232121321)21(log log )21(log --≤≤x…………4分822,)21()21(323≤≤∴≤≤∴--x x即]}8,22[|{∈=x x M…………8分又.1)2(log 3log 4log )3)(log 1(log )(2222222--=+-=--=x x x x x x f3l o g 23,8222≤≤∴≤≤x x (10)分0,8,3l o g ;14,2l o g m a x 2m i n 2===-===∴y x x y x x 时即当时即当…………12分19.(本小题满分12分)解:(1)取出的两个球都是黑球,则甲盒恰好有两个黑球的事件记为A 1,51)(151412121=⋅⋅=C C C C A P …………2分取出的两个球都是红球,则甲盒恰好有两个黑球的事件记为A 2,103)(151413122=⋅⋅=C C C C A P …………4分所以21)()(21=+=A P A P P …………6分(2)107=P…………12分20.(本小题满分12分)证明:(I )在直三棱柱ABC-A 1B 1C 1中,易知面ACC 1A 1⊥面ABC , ∵∠ACB = 90°,∴BC ⊥面ACC 1A 1,…………2分∵AM ⊂面ACC 1A 1 ∴BC ⊥AM∵AM ⊥BA 1,且BC ∩BA 1=B ∴AM ⊥平面A 1BC…………4分 (II )设AM 与A 1C 的交点为O ,连结BO ,由(I )可知AM ⊥OB ,且AM ⊥OC ,所以∠BOC 为二面角B – AM – C 的平在角…………5分在Rt △ACM 和Rt △A 1AC 中,∠OAC +∠ACO=90°, ∴∠AA 1C =∠MAC∴Rt △ACM ∽Rt △A 1AC ∴AC 2 = MC ·AA 126=∴MC…………7分1tan ,12121223,==∆∴=∴⋅=⋅=∆∴COBCBOC BCO Rt CO CO AM MC AC AM ACM Rt 中在中在45=∠∴BOC ,故所求二面角的大小为45°…………9分(III )设点C 到平面ABM 的距离为h ,易知BO=2,可得2322232121=⋅⋅=⋅⋅=∆BO AM S ABM …………10分222323263131=⋅=⋅=∴⋅⋅=⋅∴=∆∆∆∆--ABM ABC ABC ABM ABCM ABM C S S MC h S MC hS V V ∴点C 到平面ABM 的距离为22…………12分解法二:(I )同解法一(II )如图以C 为原点,CA ,CB ,CC 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则),0,0(),0,1,0(),6,0,3(),0,0,3(11z M B A A 设==.11=⋅∴⊥BA AM BA AM即)26,0,0(,26,60311M z z 所以故=++- …………6分设向量AMB z y x ⊥⊥=,,),,(则的法向量为平面,则1,03026300=⎪⎩⎪⎨⎧=+-=+-⎪⎩⎪⎨⎧=⋅=⋅x y x z x AB m 令即的平面AMB 的一个法向量为 CB m 显然向量),3,2,1(=是平面AMC 的一个法向量…………8分22,c o s =>=<CB m 易知,与所夹的角等于二面角B – AM – C 的大小,故所求二面角的大小为45°…………9分(III )向量m CB 上的投影的长在法向量 …………10分2263||==m…………12分∴点C 到平面ABM 的距离为22…………12分21.(本小题满分12分)(1)解:由奇函数定义,应有.),()(R x x f x f ∈-=-.0)1()1(),1)(1(333)(,3)(.3,1032,0)1(,)(2)1(.3)(,)(,.0,232333='=-'-+=-='-=-==⎩⎨⎧=+-=+='-=+='+==∴---=+--f f x x x x f x x x f c a c a c a f x f f c ax x f cx ax x f d d cx ax d cx ax 因此解得故必有的极值为由条件因此即当 .)1,()(,0)(,)1,(上是增函数在单调区间故时--∞>'--∞∈x f x f x 当 .)1,1()(,0)(,)1,1(上是减函数在单调区间故时-<'-∈x f x f x 当 .),1()(,0)(,),1(上是增函数在单调区间故时+∞>'+∞∈x f x f x 所以, .2)1(,1)(=--=f x x f 极大值为处取得极大值在 (II )解:由(I )知,])1,1[(3)(3-∈-=x x x x f 是减函数,且.4)2(2|)()(|),1,1(,,.2)1(]1,1[)(,2)1(]1,1[)(2121=--=-<--∈-==-=-=-m M x f x f x x f m x f f M x f 恒有对任意所以上的最小值在上的最大值在22.(本小题满分12分) (1)证明:21)]1(log )1(log 1[21)(2122211221=-+-+=+=x x x x y y y (2)由(1)知1)()(,12121=+=+x f x f x x 则),2(21)1()3()2()1()1()3()2()1(*N n n n S n f n n f n n f n n f S n n f n f n f n f S n n n ∈≥-=++-+-+-=-++++=相加得(3)当94),1(,231,32,11211>+<=+====++λλ得由时n n n n S T S S a T n21,444)2(4)1(,22)2134(432)2111(4,221>∴++=+>+<+=+-+=+-+=≥+λλλnn n n S T n n n T n n a n n n n n 得由时当吉林省长春三中2018-2018学年度高三第一次模拟考试数学(理科)试题 2018.18本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟。

长春市普通高中 2018 届高三质量监测(一)数学理科答案

长春市普通高中 2018 届高三质量监测(一)数学理科答案

ΔABC 面积的最大值为 3 3 ,当且仅当 b = c 时取到最大值. 16. 【命题意图】本题考查圆锥的体积最值问题.
【试题解析】设圆锥的底面圆半径为 r (0 < r < 3) ,有圆锥的高为 9 − r ,从而圆
2
锥的体积为 V =
9.
1 2 1 π r 9 − r 2 = π 9r 4 − r 6 ,令 t = r 2 (0 < t < 9) ,有 3 3
18.
(12 分)
3 ,设菱形 ABCD 的边长为 a 2 1 1 3 2 3 ,则 a = 3 . VP− ABCD = S. ABCD ⋅ PA = × (2 × a ) ×1 = 3 3 4 2 取 BC 中点 M ,连接 AM . 以点 A 为原点,以 AM 方向为 x 轴,以 AD 方向为 y 轴,以 AP 方向为 z 轴,
1 15
2 5
1 3
1 5
【试题解析】(1) 由椭圆定义 2a =| EF1 | + | EF2 |= 4 ,有 a = 2, c = 1, b = 从而
3,
x2 y2 + = 1. 4 3
(4 分)
(12 分)
19. (本小题满分 12 分) 【命题意图】 本小题以四棱锥为载体, 考查立体几何的基础知识. 本题考查学生的空 间想象能力、推理论证能力和运算求解能力. 【试题解析】解: (1)连接 BD 交 AC 于点 O ,连接 OE 在 △PBD 中,
12. 【命题意图】本题是考查函数的奇偶性、周期性和对称性及零点的相关知识. 【试题解析】D 由题意知 f ( x) 为奇函数,周期为 2π ,其图象关于 (π , 0) 对称,
g ( x) 的零点可视为 y = f ( x), y =

长春市普通高中2018届高三质量检测

长春市普通高中2018届高三质量检测

长春市普通高中2018届高三质量检测(二)数学试卷(理科)一选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求. 1.i 为虚数单位,则234i i i i +++=A. 0B. iC. 2iD.1-2.已知集合{}{}21|412,|28x A x x x x B x -=-+>+=<,则()R A C B = A.{}|4x x ≥B.{}|4x x >C.{}|2x x ≥-D.{}|24x x x <-≥或3.已知函数()2x 2,1=2-1,x -1x x f x ⎧-<-⎪⎨≥⎪⎩,则函数()f x 的值域为A. [)1,-+∞B. ()1,-+∞C. 1,2⎡⎫-+∞⎪⎢⎣⎭D.R4. 下面四个残差图中可以反映出回归模型拟合精度较好的为A. 图1B. 图2C. 图3D. 图35.公元263年左右,我国古代数学家刘徽用圆内接正多边形的面积去逼近圆的面积求圆周率π,刘徽称这个方法为“割圆术”,并且把“割圆术”的特点概括为“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.右图是根据刘徽的“割圆术”思想设计的一个程序框图.运行该程序,则输出的n 的值为:(参1.732,sin150.2588,sin7.50.1305=≈≈ )A. 48B. 36C. 30D. 246.将函数()cos2sin 2f x x x =-的图象向左平移8π个单位后得到函数()F x 的图象,则下列说法中正确的是A. ()F x 是奇函数,最小值为-2B. ()F x 是偶函数,最小值为-2C. ()F x 是奇函数,最小值为D.()F x 是偶函数,最小值为 7.某几何体的三视图如图所示,则该几何体的表面积为A. 6+B. 4+C. 4+D.4+8.二项式1022x ⎛⎫- ⎪ ⎪⎝⎭A. 152B. 152- C. 15 D. -159.据统计,某城市的火车站春运期间日接送旅客人数X (单位:万)服从正态分布()26,0.8X N ,则日接送人数在6万到 6.8万之间的概率为(()()()0.6826,20.9544,30.9974P X P X P X μσμσμσ-<=-<=-<=) A. 0.6826 B. 0.9544 C. 0.9974 D.0.3413 10.球面上有A,B,C 三点,球心O 到平面ABC 的距离是球半径的13,且AB AC BC=⊥,则球O 的表面积是 A. 81π B. 9π C.814π D.94π11.已知12,F F 是双曲线()2222:10,0x y C a b a b-=>>的两个焦点,P 是双曲线C 上的一点,若126PF PF a +=,且12PF F ∆的最小内角的大小为30 ,则双曲线C 的渐近线方程为A.0y ±= B. 0x = C. 20x y ±= D.20x y ±=12.已知函数()22ln x e f x k x x x ⎛⎫=-+ ⎪⎝⎭,若2x =是函数()f x 的唯一极值点,则实数k 的取值范围为A. (],e -∞B. []0,eC. (),e -∞D.[)0,e二、填空题:本大题共4小题,每小题5分,共20分.13.11e x dx x ⎛⎫+= ⎪⎝⎭⎰ .14. 将1,2,3,4…正整数按如图所示的方式排成三角形数组,则第10行左数第10个数为 .15. 某班主任准备请2016年毕业生作报告,要从甲、乙等8人中选4人发言,要求甲、乙两人至少一人参加,若甲、乙同时参加,则他们发言中间恰好间隔一人,那么不同的发言顺序共有(种).(用数字作答) 16.已知四棱锥P ABCD -的底面为矩形,平面PBC ⊥平面ABCD ,PE BC ⊥于点E ,1,3,2EC AB BC PE ====,则四棱锥P A B C D -的外接球半径为 .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(本题满分12分)已知数列{}n a 满足()113,31.2n n a a a n N *+==-∈(1)若数列{}n b 满足12n n b a =-,求证:{}n b 是等比数列;(2)若数列{}n c 满足312log ,n n n n c a T c c c ==+++ ,求证:()1.2n n n T ->18.(本题满分12分) 为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效的改良玉米品种,为农民提供技术支.现对已选出的一组玉米的茎高进行统计,获得茎叶图如右图(单位:厘米),设茎高大于或等于180厘米的玉米为高茎玉米,否则为矮茎玉米.(1)完成22⨯列联表,并判断是否可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关? (2)①按照分层抽样的方式,在上述样本中,从易倒伏和抗倒伏两组中抽取9株玉米,设取出的易倒伏矮茎玉米株数为X ,求X 的分布列(概率用组合数算式表示);②若将频率视为概率,从抗倒伏的玉米试验田中再随机抽取出50株,求取出的高茎玉米株数的数学期望和方差.19.(本题满分12分)已知三棱锥A BCD -中,ABC ∆是等腰直角三角形,且,2,AC BC BC AD ⊥=⊥平面, 1.BCD AD =(1)求证:平面ABC ⊥平面ACD ;(2)若E 为AB 的中点,求二面角A CE D --的余弦值.20.(本题满分12分)已知抛物线()2:20C y px p =>与直线40x +=相切.(1)求该抛物线的方程; (2)在x 轴的正半轴上,是否存在某个确定的点M,过该点的动直线l 与抛物线C 交于A,B 两点,使得2211AMBM+为定值.如果存在,求出点M 的坐标;如果不存在,请说明理由.21.(本题满分12分)已知函数()()211ln ,.2f x x a x a x a R =+--∈(1)若()f x 存在极值点1,求a 的值;(2)若()f x 存在两个不同的零点12,x x ,求证:12 2.x x +>请考生在第22、23两题中任选一题作答,如果多做,则按照所做的第一题计分. 22.(本题满分10分)选修4-4:极坐标与参数方程在平面直角坐标系xoy 中,以O 为极点,x 轴的正半轴为极轴,建立极坐标系.曲线1C 的极坐标方程为()223sin 12ρθ+=,曲线2C 的参数方程为1cos sin x t y t αα=+⎧⎨=⎩(t 为参数),0,.2πα⎛⎫∈ ⎪⎝⎭ (1)求曲线1C 的直角坐标方程,并判断该曲线是什么曲线;(2)设曲线2C 与曲线1C 的交点为A,B ,()1,0P ,当72PA PB +=时,求cos α的值.23.(本题满分10分)选修4-5:不等式选讲(1)如果关于x 的不等式15x x m ++-≤的解集不是空集,求实数m 的取值范围;(2)若,a b 均为正数,求证:a b b a a b a b ≥.长春市普通高中2018届高三质量监测(二)数学(理科)试题参考答案及评分标准一、选择题(本大题共12小题,每小题5分,共60分) 1. A2. B3. B4. A5. D6. C7. D8. B9. D10. B11. A12. A简答与提示:1. 【命题意图】本题考查复数的基本概念及运算.【试题解析】A 由可知,原式. 故选A.2. 【命题意图】本题考查集合交、补运算.【试题解析】B 由,, 故 . 故选B.3. 【命题意图】本题考查分段函数的图像与性质.【试题解析】B 根据分段函数的的图像可知,该函数的值域为.故选B.4. 【命题意图】本题考查统计学中残差图的概念.【试题解析】A 根据残差图显示的分布情况即可看出图1显示的残差分布集中,拟合度较好,故选A.5. 【命题意图】本题依据中华传统文化算法割圆术考查程序框图.【试题解析】D 运行算法可获得结果24,故选D.6. 【命题意图】本题主要考查三角变换公式与三角函数的图像与性质.【试题解析】C 由,则. 故选C.7. 【命题意图】本题考查三视图.【试题解析】D 由图形补全法,将图形补全为长方体,进而获得该几何体21i =-110i i =--+={|24}A x x x =<->或{|4}B x x =<(){|4}A B x x =>R ð()f x (1,)-+∞()cos 2sin 2)4f x x x x π=-=+())))2842F x x x x πππ=++=+=的直观图,再求得该几何体的表面积为:故选D.8. 【命题意图】本题考查二项式相关问题.【试题解析】B故选B. 9. 【命题意图】本题主要考查正态分布的相关知识.【试题解析】D . 故选D. 10. 【命题意图】本题主要考查球内的几何体的相关性质.【试题解析】B 由题可知为△的直径,令球的半径为,则,可得,则球的表面积为. 故选B.11. 【命题意图】本题考查双曲线的定义.【试题解析】A 不妨设,则,则,,且,即为最小边,即,则△为直角三角形,且,即渐近线方程为,故选A. 12. 【命题意图】本题是考查函数与导数的应用问题.【试题解析】A 已知,则, 当时,恒成立,因此. 故选A.二、填空题(本大题共4小题,每小题5分,共20分)13. 212+e14. 91 15. 1080 16. 21111224442222S =⨯⨯⨯⨯+⨯⨯⨯=+102()2x-773102(()2C x -=0.6826(6 6.8)0.34132P x <==≤AB ABC R 222()3RR =+32R =249S R ππ==12||||PF PF >1212||||2||||6PF PF aPF PF a -=⎧⎨+=⎩1||4PF a =2||2PF a =12||2F F c =2||PF 1230PFF ∠=12PF F 2c =y =22()(ln )x e f x k x x x=-+32()()x x f x e kx x -'=-0x >0x e kx -≥k e ≤简答与提示:1. 【命题意图】本题考查定积分的求解.【试题解析】22211111()(ln )12222++=+=+-=⎰eex e e x dx x x .2. 【命题意图】本题考查考生有关数列归纳的相关能力.【试题解析】由三角形数组可推断出,第n 行共有21n -项,且最后一项为2n ,所以第10行共19项,最后一项为100,左数第10个数是91. 3. 【命题意图】本题考查排列组合综合问题.【试题解析】若甲乙同时参加,有2226222120=C A A 种,若甲乙有一人参与,有134264960=C C A 种,从而总共的发言顺序有1080种.4. 【命题意图】本题考查四棱锥的外接球问题.【试题解析】如图,由已知,设三角形PBC 外接圆圆心为1O ,由正弦定理可求出三角形PBC,F 为BC 边中点,进而求出112=O F ,设四棱锥的外接球球心为O ,外接球半径的平方为221()42+=BD O F ,所以四棱锥外接球半径为2.三、解答题17. (本小题满分12分)【命题意图】本题考查等比数列及利用不等式性质证明与数列前n 项和有关的不等式.【试题解析】(1) 由题可知*1113()()22N +-=-∈n n a a n ,从而有13+=n n b b ,11112=-=b a ,所以{}n b 是以1为首项,3为公比的等比数列.(6分)(2) 由(1)知13-=n n b ,从而1132-=+n n a ,11331log (3)log 312--=+>=-n n n c n ,有12(1)01212-=+++>+++-= n n n n T c c c n , 所以(1)2->n n n T . (12分)18. (本小题满分12分)【命题意图】本小题主要考查学生对概率统计知识的理解,以及统计案例的相关知识,同时考查学生的数据处理能力.【试题解析】解:(1) 根据统计数据做出22⨯列联表如下:经计算7.287 6.635k ≈>,因此可以在犯错误概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关.(4分)(2) (i) 按照分层抽样的方式抽到的易倒伏玉米共4株,则X 的可能取值为0,1,2,3,4.416420(0)C P X C ==,13416420(1)C C P X C ⋅==,22416420(2)C C P X C ⋅==, 31416420(3)C C P X C ==,44420(4)C P X C ==即X 的分布列为:(ii) 在抗倒伏的玉米样本中,高茎玉米有10株,占5,即每次取出高茎玉米的概率均为25,设取出高茎玉米的株数为ξ,则2(50,)5B ξ ,即250205E np ξ==⨯=,23(1)501255D np p ξ=-=⨯⨯=. (12分)19. (本小题满分12分)【命题意图】本题以三棱锥为载体,考查平面与平面垂直,求二面角问题等.本题考查学生的空间想象能力、推理论证能力和运算求解能力.【试题解析】(1)证明:因为AD ⊥平面,BCD ⊂BC 平面BCD ,所以⊥AD BC ,又因为,⊥= AC BC AC AD A ,所以⊥BC 平面,ACD ⊂BC 平面ABC ,所以平面ABC ⊥平面ACD .(6分)(2)由已知可得CD 如图所示建立空间直角坐标系,由已知(0,0,0)C ,(0,2,0)B,A,D,1)2E .有1)2= CE,=CA,= CD ,设平面ACE 的法向量(,,)= n x y z ,有00,1002⎧+=⎧⋅=⎪⎨⋅=++=⎪⎩ z n CA n CE x y z ,令1=x ,得(1,0,= n , 设平面CED 的法向量(,,)= m x y z,有00,1002⎧=⎧⋅=⎪⎨⋅=++=⎪⎩ m CD m CE x y z ,令1=y ,得(0,1,2)m =- ,二面角--A CE D的余弦值||cos 5||||n m n m θ⋅===⋅.(12分)20. (本小题满分12分)【命题意图】本小题考查直线与抛物线的位置关系及标准方程,考查学生的逻辑思维能力和运算求解能力.【试题解析】(1)联立方程有,2402⎧+=⎪⎨=⎪⎩x y px,有280-+=y p ,由于直线与抛物线相切,得28320,4∆=-==p p p ,所以28=y x .x(4分)(2) 假设存在满足条件的点(,0)(0)>M m m ,直线:=+l x ty m ,有28=+⎧⎨=⎩x ty my x ,2880--=y ty m ,设112(,),(,)A x y B x y ,有12128,8+==-y y t y y m,22222111||()(1)AM x m y t y =-+=+,22222222||()(1)BM x m y t y =-+=+,222122222222222212121111114()()||||(1)(1)(1)(1)4y y t mAM BM t y t y t y y t m+++=+==++++,当4=m 时,2211||||AM BM +为定值,所以(4,0)M . (12分)21. (本小题满分12分)【命题意图】本小题主要考查函数与导数的知识,具体涉及到导数的运算,用导数来研究函数的单调性等,考查学生解决问题的综合能力.【试题解析】(1) ()1'=+--af x x a x,因为()f x 存在极值点为1,所以(1)0'=f ,即220,1-==a a ,经检验符合题意,所以1=a .(4分)(2) ()1(1)(1)(0)'=+--=+->a af x x a x x x x①当0≤a 时,()0'>f x 恒成立,所以()f x 在(0,)+∞上为增函数,不符合题意;②当0>a 时,由()0'=f x 得=x a , 当>x a 时,()0'>f x ,所以()f x 为增函数, 当0<<x a 时,()0'<f x ,所()f x 为减函数, 所以当=x a 时,()f x 取得极小值()f a又因为()f x 存在两个不同零点12,x x ,所以()0<f a ,即21(1)l n 02+--<a a a a a 整理得1ln 12>-a a ,作()=y f x 关于直线=x a 的对称曲线()(2)=-g x f a x , 令2()()()(2)()22ln-=-=--=--a xh x g x f x f a x f x a x a x222222()220(2)()a a h x a x x x a a '=-+=-+≥---+ 所以()h x 在(0,2)a 上单调递增, 不妨设12<<x a x ,则2()()0h x h a >=, 即2221()(2)()()=->=g x f a x f x f x ,又因为212(0,),(0,),-∈∈a x a x a 且()f x 在(0,)a 上为减函数,故212-<a x x ,即122+>x x a ,又1ln 12>-a a ,易知1>a 成立,故122+>x x .(12分)22. (本小题满分10分)【命题意图】本小题主要考查极坐标系与参数方程的相关知识,具体涉及到极坐标方程与平面直角坐标方程的互化、把曲线的参数方程和曲线的极坐标方程联立求交点等内容. 本小题考查考生的方程思想与数形结合思想,对运算求解能力有一定要求.【试题解析】 (1) 由22(3sin )12ρθ+=得22143+=x y ,该曲线为椭圆. (5分)(2)将1cos sin x t y t αα=+⎧⎨=⎩代入22143+=x y 得22(4cos )6cos 90t t αα-+-=,由直线参数方程的几何意义,设12||||,||||==PA t PB t ,1226cos ,4cos t t αα-+=-12294cos t t α-=-,所以122127||||||4cos 2PA PB t t α+=-==-,从而24cos 7α=,由于(0,)2πα∈,所以cos 7α=. (10分)23. (本小题满分10分)【命题意图】本小题主要考查不等式的相关知识,具体涉及到绝对值不等式解法及不等式证明等内容. 本小题重点考查考生的化归与转化思想.【试题解析】 (1) 令24,1|1||5|6,1524,5-+≤-⎧⎪=++-=-<<⎨⎪-≥⎩x x y x x x x x ,可知|1||5|6++-≥x x ,故要使不等式|1||5|++-≤x x m 的解集不是空集,有6≥m . (5分)(2)由,a b 均为正数,则要证≥a b b a a b a b ,只需证1--≥a b b a a b ,整理得()1-≥a b ab,由于当≥a b 时,0-≥a b ,可得()1-≥a b a b ,当<a b 时,0-<a b ,可得()1->a b ab,可知,a b 均为正数时()1-≥a b ab,当且仅当=a b 时等号成立,从而≥a b b a a b a b 成立.(10分)。

吉林省长春市普通高中2018届高三质量检测(三)数学(理)试卷

吉林省长春市普通高中2018届高三质量检测(三)数学(理)试卷

长春市普通高中2018届高三质量监测(三)数学(理科)试题参考答案及评分标准一、选择题(本大题共12小题,每小题5分,共60分) 1. C 2. A 3. C 4. D 5.C6. D7. A 8. B 9. B 10. D 11. B 12. B简答与提示:1. 【命题意图】本题考查集合的运算.【试题解析】C {|11},{|03},(1,3)A x x B x x AB =-<<=<<=-.故选C.2.【命题意图】本题考查复数.【试题解析】A ,||1z i z ==.故选A.3. 【命题意图】本题考查中华传统文化中的数学问题. 【试题解析】C 由算筹含义. 故选C.4. 【命题意图】本题主要考查函数的图象及性质. 【试题解析】D 由函数是偶函数,排除A ,C ,当(0,)2x π∈,tan 0x >.故选D.5.【命题意图】本题考查三角函数的相关知识.【试题解析】C 由题意知,,12a k k ππ=-+∈Z .故选C.6. 【命题意图】本题主要考查算法的相关知识. 【试题解析】D 根据程序框图.故选 D7. 【命题意图】本题考查计数原理的应用.【试题解析】A 由题意知23223224A A A =.故选A.8. 【命题意图】本题主要考查三视图问题.【试题解析】B 由题意可知该几何体为正三棱柱去掉一个小三棱锥,123V =⋅=故选B.9.【命题意图】本题主要考查解三角形的相关知识.【试题解析】B由题意知60B =︒,由余弦定理,224ac a c =+-,故22424ac a c ac =+-≥-,有4ac ≤,故1sin 2ABC S ac B ∆=≤故选B. 10.【命题意图】本题主要考查球的相关问题.【试题解析】D 故其5π.故选D. 11.【命题意图】本题考查双曲线的相关知识.【试题解析】B 由双曲线可知122213,4PF F S m m ∆=-==,从而e =.故选B.12.【命题意图】本题是考查导数在研究函数单调性上的应用.【试题解析】B 令()()2=+F x f x x ,有()()20''=+>F x f x ,所以()F x 在定义域内单调递增,由1)1(=f ,得(1)(1)23=+=F f ,因为2(log |31|)3|31|-<--x x f 等价于22(log |31|)2log |31|3-+-<x x f ,令2log |31|=-x t ,有()23+<f t t ,则有1<t ,即2log |31|1-<x ,从而0|31|2x<-<,解得1,<x 且0≠x . 故选B.二、填空题(本大题共4小题,每小题5分,共20分)13. 914. 1.715. (,1][4,)-∞-+∞ 16. 48-简答与提示:13. 【命题意图】本题考查线性规划问题.【试题解析】由可行域可确定目标函数在(1,4)处取最大值9. 14.【命题意图】本题考查回归方程的相关知识.【试题解析】将 3.2x =代入回归方程为ˆ1yx =+可得 4.2y =,则4 6.7m =, 解得 1.675m =,即精确到0.1后m 的值约1.7.15. 【命题意图】本题考查分段函数的相关知识.【试题解析】当10,()2,12x x x ≤≥≤-,当20,log 2,4x x x >≥≥,故(,1][4,)-∞-+∞.16.【命题意图】本题考查平面向量的相关知识.【试题解析】由题意可知其最小值为48-三、解答题17. (本小题满分12分)【命题意图】本题考查数列的基本方法及数列求和. 【试题解析】解:(1)2n S n n =-,∴令1n =,10a =()121n n n a S S n -=-=-,()2n ≥ ∴()21n a n =- 又数列{}n b 为等比,222b a ==,458b a ==∴2424b q b ==,又各项均为正∴2q =,∴12n n b -= (2)由(1)得:()12nn c n =-⋅ ∴()()()23021231212n n T n =+-⋅+-⋅++-⋅()23122212n n =⋅+⋅++-⋅()()341212222212n n n T n n +=⋅+⋅++-⋅+-⋅()2341222212n n n T n +-=++++--⋅()()2112121212n n n -+-=--⋅-()112124n n n ++=--⋅-∴()1224n n T n +=-⋅+18. (本小题满分12分)【命题意图】本小题主要考查学生对频率分布直方图的理解以及分布列的相关知识. 【试题解析】解:(1)由()100.0100.0150.0300.0101a ⨯++++=,得0.035a =, (2)第1,2,3组的人数分别为20人,30人,70人,从第1,2,3组中用分层抽样的方法抽取12人,则第1,2,3组抽取的人数分别为2人,3人,7人.设从12人中随机抽取3人,第1组已被抽到1人为事件A ,第3组抽到2人为事件B ,则()()1227312122121021031221|.()50C C P AB C P B A C C C C P A C ===+ (3)从所有参与调查的人中任意选出1人,关注“生态文明”的概率为4,5P =X 的可能取值为0,1,2,3. ()033410(1)5125P X C ∴==-=,()112344121()(1)55125P X C ==-=()221344482()(1)55125P X C ==-=,()3334643()5125P X C ===4~(3,)5X B ,()4123.55E X np ==⨯=19.(本小题满分12分)【命题意图】本小题以四棱锥为载体,考查立体几何的基础知识. 本题考查学生的空间想象能力、推理论证能力和运算求解能力.【试题解析】答案:(1)取PC 中点M ,连接MF DM ,F M , 分别是PB PC ,中点, CB MF CB MF 21,//=∴, E 为DA 中点,ABCD 为矩形,CB DE CB DE 21,//=∴,DE MF DE MF =∴,//,∴四边形DEFM 为平行四边形⊄∴EF DM EF ,//平面PDC ,⊂DM 平面PDC ,//EF ∴平面RDC(2)⊥PA 平面ABC ,且四边形ABCD 是正方形,AP AB AD ,,∴两两垂直,以A 为原点,AP ,AB ,AD 所在直线为z y x ,,轴,建立空间直角坐标系xyz A - 则(),0,0,1P ()(),1,1,0,1,0,0CD 111(0,0,),(,,0)222E F设平面EFC 法向量为1(,,)n x y z =,111(,,)222EF =-,11(,,1)22FC =-则⎪⎩⎪⎨⎧=⋅=⋅0011n n EF , 即⎪⎩⎪⎨⎧=++-=-+021210z y x z y x ,取()2,1,31-=n 则设平面PDC 法向量为2(,,)n x y z =,(1,0,1)PD =-,(1,1,1)PC =-则⎪⎩⎪⎨⎧=⋅=⋅022n n PD , 即⎩⎨⎧=++-=+-00z y x z x , 取()1,0,12=n121212cos ,||||n n n n n n ⋅<>===⋅∴平面EFC 与平面PDC 所成锐二面角的余弦值为1475. 20. (本小题满分12分)【命题意图】本小题考查椭圆的标准方程及直线与椭圆的位置关系,考查学生的逻 辑思维能力和运算求解能力.【试题解析】解:(1)设动圆C 的半径为r ,由题意知12||3,||1CC r CC r =-=+ 从而有12||||4CC CC +=,故轨迹E 为以12,C C 为焦点,长轴长为4的椭圆,并去 除点(2,0)-,从而轨迹E 的方程为221(2)43x y x +=≠-.(2)设l 的方程为1x my =+,联立221431x y x my ⎧+=⎪⎨⎪=+⎩, 消去x 得22(34)690m y mx ++-=,设点1122(,),(,)A x y B x y ,有12122269,,3434m y y y y m m --+==++则2212(1)||34m AB m +==+, 点(2,0)P -到直线l(2,0)Q 到直线l从而四边形APBQ的面积22112(1)234m S m +=⨯=+令1t t =≥,有224241313t S t t t==++,函数13y t t =+在[1,)+∞上单调递增, 有134t t +≥,故2242461313t S t t t==≤++,即四边形APBQ 面积的最大值为6.21.(本小题满分12分)【命题意图】本小题主要考查函数与导数的相关知识,以导数为工具研究函数的方法,考查学生解决问题的综合能力. 【试题解析】解:(1)()f x 的定义域为x R ∈且单调递增,∴在x R ∈上,()240x af x x e'=-+≥恒成立,即:(42)x a x e ≥- ∴设()(42)xh x x e =- x R ∈ ,∴()(22)xh x x e '=-,∴当(,1)x ∈-∞时()0h x '>,∴()h x 在(,1)x ∈-∞上为增函数, ∴当[1,)x ∈+∞时()0h x '≤,∴()h x 在[1,)x ∈+∞上为减函数, ∴max ()(1)2h x h e ==max [(42)]x a x e ≥-,∴2a e ≥,即[2,)a e ∈+∞ .(2)()()()245x x g x e f x x x e a ==-+-()()()122g x g x g m += [)1,m ∈+∞,∴()()()12222112245452452x x m x x e a x x e a m m e a -+-+-+-=-+-∴()()()1222211224545245x x m x x e x x e m m e -++-+=-+∴设()()245xx x x e ϕ=-+ x R ∈,则()()()122x x m ϕϕϕ+=,∴()()210xx x e ϕ'=-≥ ∴()x ϕ在x R ∈上递增且()10ϕ'=令()1,x m ∈-∞,()2,x m ∈+∞∴设()()()F x m x m x ϕϕ=++-,()0,x ∈+∞∴()()()2211m x m x F x m x e m x e +-'=+----0x > ∴0m x m x e e +->>,()()()22112220m x m x m x +----=-≥∴()0F x '≥,()F x 在()0,x ∈+∞上递增, ∴()()()02F x F m ϕ>=, ∴()()()2m x m x m ϕϕϕ++->,()0,x ∈+∞,令1x m x =-∴()()()112m m x m m x m ϕϕϕ+-+-+>即:()()()1122m x x m ϕϕϕ-+>又12()()2()x x m ϕϕϕ+=,∴()()()()12222m x m x m ϕϕϕϕ-+->即:()()122m x x ϕϕ->1x m <,2x m >∴12m x m ->,()x ϕ在x R ∈上递增∴122m x x ->,即:122x x m +<,得证.22. (本小题满分10分) 【命题意图】本小题主要考查极坐标系与参数方程的相关知识,本小题考查考生的方程思想与数形结合思想,对运算求解能力有一定要求. 【试题解析】 (1)联立⎩⎨⎧==θρθρcos 43cos ,23cos ±=θ,20πθ<≤ ,6πθ=,32=ρ交点坐标)6π.(2)设()θρ,P ,()00,θρQ 且.cos 400θρ=0[0,)2πθ∈,由已知,32QP OQ =得⎪⎩⎪⎨⎧==θθρρ0052θρcos 452=∴,点P 的极坐标方程为10cos ,[0,)2πρθθ=∈.23.(本小题满分10分)【命题意图】本小题主要考查不等式的相关知识,具体涉及到绝对值不等式解法等内容. 本小题重点考查化归与转化思想.、总体概述:工程概况、施工组织总体设想、方案的.- 11 - 【试题解析】(1)当2m =-时,()41(0)32232=1(0)2345()2x x f x x x x x x ⎧+≥⎪⎪⎪=++--⎨⎪⎪--≤-⎪⎩<< 当4130x x +≤⎧⎨≥⎩解得12x ≤≤0;当30132x -≤<<,恒成立. 当45332x x --≤⎧⎪⎨≤-⎪⎩解得322x -≤≤-,此不等式的解集为1[2]2-,. ()43+(0)3223=3(0)2343()2x m x f x x x m m x x m x ⎧+≥⎪⎪⎪=++++-⎨⎪⎪--+≤-⎪⎩(2)<<当(,0)x ∈-∞时,()33(0)2223=343()2m x f x x x m x m x ⎧+-⎪⎪=+++⎨⎪--+≤-⎪⎩<< 当302x -<<时,()=3+f x m ,当()3=432x f x x m ≤---+,单调递减,∴f (x )的最小值为3+m ,设()()20g x x x x =+<当20,x x x ->-+≥-,当且仅当2=x x --时,取等号2x x∴+≤即x g(x)取得最大值.要使()2f x x x≥+恒成立,只需3m +≥-m ≥-.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018届吉林省长春市普通高中高三一模考试题数学试题卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设为虚数单位,则()A. B. C. 5 D. -5【答案】A【解析】由题意可得:.本题选择A选项.2. 集合的子集的个数为()A. 4B. 7C. 8D. 16【答案】C【解析】集合含有3个元素,则其子集的个数为.本题选择C选项.3. 若图是某学校某年级的三个班在一学期内的六次数学测试的平均成绩关于测试序号的函数图像,为了容易看出一个班级的成绩变化,将离散的点用虚线连接,根据图像,给出下列结论:①一班成绩始终高于年级平均水平,整体成绩比较好;②二班成绩不够稳定,波动程度较大;③三班成绩虽然多数时间低于年级平均水平,但在稳步提升.其中正确结论的个数为()A. 0B. 1C. 2D. 3【答案】D【解析】通过函数图象,可以看出①②③均正确.故选D.4. 等差数列中,已知,且公差,则其前项和取最小值时的的值为()A. 6B. 7C. 8D. 9【答案】C【解析】因为等差数列中,,所以,有,所以当时前项和取最小值.故选C......................5. 已知某班级部分同学一次测验的成绩统计如图,则其中位数和众数分别为()A. 95,94B. 92,86C. 99,86D. 95,91【答案】B【解析】由茎叶图可知,中位数为92,众数为86. 故选B.6. 若角的顶点为坐标原点,始边在轴的非负半轴上,终边在直线上,则角的取值集合是()A. B.C. D.【答案】D【解析】因为直线的倾斜角是,所以终边落在直线上的角的取值集合为或者.故选D.7. 已知,且,则的最小值为()A. 8B. 9C. 12D. 16【答案】B【解析】由题意可得:,则:,当且仅当时等号成立,综上可得:则的最小值为9.本题选择B选项.点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.8. 《九章算术》卷五商功中有如下问题:今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何.刍甍:底面为矩形的屋脊状的几何体(网格纸中粗线部分为其三视图,设网格纸上每个小正方形的边长为1丈),那么该刍甍的体积为()A. 4立方丈B. 5立方丈C. 6立方丈D. 12立方丈【答案】B【解析】由已知可将刍甍切割成一个三棱柱和一个四棱锥,三棱柱的体积为3,四棱锥的体积为2,则刍甍的体积为5.故选B.9. 已知矩形的顶点都在球心为,半径为的球面上,,且四棱锥的体积为,则等于()A. 4B.C.D.【答案】A【解析】由题意可知球心到平面ABCD的距离 2,矩形ABCD所在圆的半径为,从而球的半径.故选A.10. 已知某算法的程序框图如图所示,则该算法的功能是()A. 求首项为1,公差为2的等差数列前2017项和B. 求首项为1,公差为2的等差数列前2018项和C. 求首项为1,公差为4的等差数列前1009项和D. 求首项为1,公差为4的等差数列前1010项和【答案】C【解析】由题意可知,为求首项为1,公差为4的等差数列的前1009项和.故选C.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.11. 已知为坐标原点,设分别是双曲线的左、右焦点,点为双曲线上任一点,过点作的平分线的垂线,垂足为,则()A. 1B. 2C. 4D.【答案】A【解析】延长交于点,由角分线性质可知根据双曲线的定义,,从而,在中,为其中位线,故.故选A.点睛:对于圆锥曲线问题,善用利用定义求解,注意数形结合,画出合理草图,巧妙转化.12. 已知定义在上的奇函数满足,当时,,则函数在区间上所有零点之和为()A. B. C. D.【答案】D【解析】,作图如下:,四个交点分别关于对称,所以零点之和为,选D.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知角满足,,则的取值范围是__________.【答案】【解析】结合题意可知:,且:,利用不等式的性质可知:的取值范围是.点睛:利用不等式性质求某些代数式的取值范围时,多次运用不等式的性质时有可能扩大变量的取值范围.解决此类问题一般是利用整体思想,通过“一次性”不等关系的运算求得待求整体的范围,是避免错误的有效途径.14. 已知平面内三个不共线向量两两夹角相等,且,,则__________.【答案】【解析】因为平面内三个不共线向量两两夹角相等,所以由题意可知,的夹角为,又知,,所以,,故答案为.15. 在中,三个内角的对边分别为,若,且,面积的最大值为__________.【答案】【解析】由可得,,得,由余弦定理,面积的最大值为,当且仅当时取到最大值,故答案为.【方法点睛】本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 除了直接利用两定理求边和角以外,恒等变形过程中,一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.16. 已知圆锥的侧面展开图是半径为3的扇形,则圆锥体积的最大值为__________.【答案】【解析】设圆锥的底面半径为R,由题意可得其体积为:当且仅当时等号成立.综上可得圆锥体积的最大值为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17. 已知数列的前项和.(Ⅰ)求数列的通项公式;(Ⅱ)设,求证:.【答案】(Ⅰ);(Ⅱ)证明见解析.【解析】试题分析:(Ⅰ)利用已知条件,推出新数列是等比数列,然后求数列的通项公式;(Ⅱ)化简,则,利用裂项相消法和,再根据放缩法即可证明结果.试题解析:(Ⅰ)由,则.当时,,综上.(Ⅱ)由.. 得证.18. 长春市的“名师云课”活动自开展以来获得广大家长和学生的高度赞誉,在我市推出的第二季名师云课中,数学学科共计推出36节云课,为了更好地将课程内容呈现给学生,现对某一时段云课的点击量进行统计:点击量节数 6 18 12(Ⅰ)现从36节云课中采用分层抽样的方式选出6节,求选出的点击量超过3000的节数.(Ⅱ)为了更好地搭建云课平台,现将云课进行剪辑,若点击量在区间内,则需要花费40分钟进行剪辑,若点击量在区间内,则需要花费20分钟进行剪辑,点击量超过3000,则不需要剪辑,现从(Ⅰ)中选出的6节课中随机取出2节课进行剪辑,求剪辑时间的分布列与数学期望.【答案】(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)因为 36节云课中采用分层抽样的方式选出6节,所以节应选出节;(Ⅱ)的所有可能取值为,根据古典概型概率公式分别求出各随机变量的概率,从而可得分布列,由期望公式可得结果..试题解析:(Ⅰ)根据分层抽样,选出的6节课中有2节点击量超过3000.(Ⅱ)的可能取值为0,20,40,60则的分布列为0 20 40 60即.19. 如图,四棱锥中,底面为菱形,平面,为的中点.(Ⅰ)证明:平面;(Ⅱ)设,三棱锥的体积为,求二面角的余弦值.【答案】(Ⅰ)证明见解析;(Ⅱ).【解析】试题分析:(Ⅰ) )连接交于点,连接,根据中位线定理可得,由线面平行的判定定理即可证明平面;(Ⅱ)以点为原点,以方向为轴,以方向为轴,以方向为轴,建立空间直角坐标系,分别求出平面与平面的一个法向量,根据空间向量夹角余弦公式,可得结果.试题解析:(Ⅰ)连接交于点,连接在中,(Ⅱ),设菱形的边长为,则.取中点,连接.以点为原点,以方向为轴,以方向为轴,以方向为轴,建立如图所示坐标系.,,,,,,,即二面角的余弦值为.【方法点晴】本题主要考查线面平行的判定定理以及利用空间向量求二面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.20. 已知椭圆的两个焦点为,且经过点.(Ⅰ)求椭圆的方程;(Ⅱ)过的直线与椭圆交于两点(点位于轴上方),若,且,求直线的斜率的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】试题分析:(1)由题意可得,,,则椭圆方程为.(2)联立直线与椭圆的方程,结合韦达定理得到关于实数k的不等式,求解不等式可得直线的斜率的取值范围是k=.试题解析:(1)由椭圆定义,有,,,从而.(2)设直线,有,整理得,设,,有,,,,由于,所以,,解得.,,由已知.21. 已知函数,.(Ⅰ)若函数与的图像在点处有相同的切线,求的值;(Ⅱ)当时,恒成立,求整数的最大值;(Ⅲ)证明:.【答案】(Ⅰ);(Ⅱ);(Ⅲ)证明见解析.【解析】试题分析:(Ⅰ)求出与,由且解方程组可求的值;(Ⅱ)恒成立等价于恒成立,先证明当时恒成立,再证明时不恒成立,进而可得结果;(Ⅲ))由,令,即,即,令,各式相加即可得结果. 试题解析:(Ⅰ)由题意可知,和在处有相同的切线,即在处且,解得.(Ⅱ)现证明,设,令,即,因此,即恒成立,即,同理可证.由题意,当时,且,即,即时,成立.当时,,即不恒成立.因此整数的最大值为2.(Ⅲ)由,令,即,即由此可知,当时,,当时,,当时,,……当时,.综上:.即.(二)选考题:请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程以直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,已知点的直角坐标为,点的极坐标为,若直线过点,且倾斜角为,圆以圆心,3为半径.(Ⅰ)求直线的参数方程和圆的极坐标方程;(Ⅱ)设直线与圆相交于两点,求.【答案】(Ⅰ)为参数),;(Ⅱ).【解析】试题分析:(1)根据直线参数方程形式直接写出直线的参数方程,根据直角三角形关系得,即为圆的极坐标方程(2)利用将圆的极坐标方程化为直接坐标方程,将直线参数方程代入,利用韦达定理及参数几何意义得|=7试题解析:(Ⅰ)直线的参数方程为(t为参数),圆的极坐标方程为.(Ⅱ)把代入,得,,设点对应的参数分别为,则,23. 选修4-5:不等式选讲设不等式的解集为.(Ⅰ)求集合;(Ⅱ)若,求证:.【答案】(Ⅰ);(Ⅱ)证明见解析.【解析】试题分析:(1)根据绝对值定义将不等式化为三个不等式组,分别求解,最后求并集(2)利用分析法证明,将所求不等式转化为,再根据,证明试题解析:(1)由已知,令由得.(2)要证,只需证,只需证,只需证只需证,由,则恒成立.点睛:(1)分析法是证明不等式的重要方法,当所证不等式不能使用比较法且与重要不等式、基本不等式没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.(2)利用综合法证明不等式,关键是利用好已知条件和已经证明过的重要不等式.。

相关文档
最新文档