小学六年级数学比例讲义全
六年级下册数学比例知识点
六年级下册数学比例知识点
在六年级下册的数学课程中,比例是一个重要的知识点。
以下是一些关于比例的重要
知识和技能:
1. 比例的概念:比例是指两个或多个相同种类的量之间的关系,在比例中我们将这些
量用分数表示。
2. 比例的性质:比例的两个分数称为一个比例,比例中各个分数的相等关系称为比例
的性质。
例如:如果a:b = c:d,则称a、b、c、d构成一个比例。
3. 比例的基础运算:比例可以进行加、减、乘、除等运算。
例如:如果a:b = c:d,则有a+c:b+d = a-b:b-d = a/b:c/d。
4. 比例的化简和维持:在比例中,我们可以约分或扩大分数的值,得到一个全等的比例。
例如:将2:3化简为2/3:1,将2:3扩大为4:6。
5. 比例的图形应用:比例可以用来解决与图形形状和尺寸相关的问题。
例如:通过比
例可以计算矩形的边长、面积等。
6. 比例和百分数的关系:百分数是一种特殊的比例,其中分子是一个非负整数。
例如:25%表示为25/100或1/4。
7. 比例的应用:比例在日常生活中有很多应用,例如计算折扣、利率、比赛成绩等。
以上是六年级下册数学课程中关于比例的一些重要知识点。
学生可以通过练习题和实
际应用问题来巩固和应用这些知识。
六年级数学下册比例讲义
六年级数学下册比例讲义知识点1.正比例和反比例的意义【知识点归纳】1.正比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系.如果用字母x和y表示这两种相关联的量,用k表示它们的比值(一定),正比例关系可以用式子表示为:=k(一定).2.反比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系.如果用字母x和y表示这两种相关联的量,用k表示它们的乘积(一定),反比例的关系可以表示为:xy=k(一定).【命题方向】常考题型:例1:y﹣x=0,y与x()A、成正比例B、成反比例C、不成比例D、无法确定例2:长方形的面积一定,长和宽()A、成正比例B、成反比例C、不成比例知识点2.辨识成正比例的量与成反比例的量【知识点归纳】1.成正比例的量:(1)“变化方向”相同,一种量扩大或缩小,另一种量也扩大或缩小.(2)相对应的两个数的比值(商)一定.(3)关系式:=k(一定).2.成反比例的量:(1)“变化方向”相反,一种量扩大或缩小,另一种量反而缩小或扩大.(2)相对应的两个数的乘积一定.(3)关系式:xy=k(一定).3.判断方法:关键是看着两种相关量中相对应的两个数是商一定还是积一定,如果商一定,就成正比例;如果积一定,就成反比例.【命题方向】常考题型:例:下列x和y成反比例关系的是()A、y=3+xB、x+y=C、x=yD、y=典型例题例1.长方形的面积一定,长和宽()A.成正比例B.成反比例C.不成比例例2.下列式子中(a、b都不为0),a和b成反比例的是()A.9×a=2×b B.a×﹣4÷b=0C.a=D.a×7=例3.下列关系式中x、y 都不为0,则x与y不是成反比例关系的是()A.x=B.y=3÷x C.x=×πD.x=例4.成反比例的两个量在变化时的规律是它们的()不变.A.积B.商C.和例6.如图的图象表示一辆汽车在高速公路上行驶的路程与耗油量的关系.①这辆汽车行驶的路程和耗油量成比例.②根据图象判断,行驶150千米需耗油升.(1)若长方形的宽是8厘米,长是厘米;若长是8厘米,宽是厘米.(2)这些长方形的宽与长成比例.如果用y表示长,x表示宽,则y=.(3)这样的长方形中,当周长是70厘米时,它的长和宽各是多少?(列式解答)例8.一种服装布料每米售价为60元,购买2米、3米、…各需要多少元?(3)购买布匹的长度和需要的钱数有什么关系?(4)根据图象判断,购买2.5米布匹需要多少钱?例9.右面的图象表示小军骑车的路程和时间的关系.)小军骑车行驶的路程和时间成比例,这是因为:.千米大约需要分钟.甲地到乙地K1214:2622:268时640千米(1)将表格补充完整,根据表中的数据,在图中描点再顺次连接.(2)量没变,数量和总价之间成比例.(3)从图中可以看出,如果买9本笔记本,需要元钱?达标检测1.如果x=y,那么与y成()比例.A.正B.反C.不成D.无法确定2.买同样的书,花钱的总价与()成正比例.A.书的本数B.书的页数C.书的单价D.不能确定3.下面关系式,()中X与Y不成正比例.A.X×=3B.5X=6Y C.4÷X=Y D.X=Y4.如果a:b=7:8,那么a和b()A.成正比例B.成反比例C.不成比例5.下面构成正比例的是()A.总页数一定,每天看的页数与天数B.长方形周长一定,长和宽C.x=y,x与y6.被除数一定,除数和商成比例.7.速度一定,时间和路程成正比例.(判断对错)8.如果A÷B=C,当A一定时,B 和C成比例.当B一定时,A和C成比例.9.按要求回答问题.a、b是相关联的两个量,并且a=,请补充下表,并且判断a与b成什么比例关系.成比例关系.10.根据下面的3张表,按要求回答问题.表1中的两种量,表2中的两种量,表3中的两种量.A.成正比例B.成反比例C.不成正比例,也不成反比例(2)根据成正比例的量的数据,在下图中描出所对应的点,再连起来.根据图象判断,装订6本练习本要用张纸,175张纸能装订本.课后作业【巩固练习】1.下列两种量的关系成正比例关系的是()A.圆的半径和圆的面积B.写字总数一定,写一个字所用时问和写字总时间C.写字总数一定,每分钟写字个数和写字总时间D.两个互相咬合的齿轮,齿轮的齿数和转数2.成正比例的两种量中,一种量扩大,另一种量()A.随着扩大B.随着缩小C.不变从表中我发现了,车费和人数比例关系.4.如果下表中的X与Y成正比例,那么表中的括号应填,如果X与Y成反比例,表中的括号应5.已知6x=4y,x和y成比例,已知=,x和y成比例.6.如果a=(c≠0),那么一定时,和成反比例;一定时,和c成正比例.表中每天看的页数和所用天数的规律是;每题要看的页数和看的天数成比,如果每天看30页,则要天;如果用了15天,则每天看页.8.一辆汽车2时行驶160千米,照这样的速度,行驶80千米、240千米、320千米…所需的时间分别填入(1)所描的点连线,你发现:(2)这些数量中不变.(3)路程和时间成比例.(4)估计4.5时行驶千米.因为一定,随着变化而变化.增加,随着增加;减少,随着减少,并且和的一定,与成比例.(2)把上表中的数据在下面的方格纸上表示出来.(3)连接各点,你发现什么?(4)表中的数量和时间有什么关系?(5)估计一下,2.5小时大约做多少个零件?5.5小时呢?。
六年级数学下册比例讲义
六年级数学下册比例讲义知识点一(比例的意义)1、比的意义两个数相除又叫做两个数的______。
“:”是_______,读作_____。
比号前面的数叫做比的________,比号后面的数叫做比的________。
2、比值比的前项除以后项所得的商,叫做________。
比值通常用分数表示,也可以用小数表示,有时也可能是整数。
【说明】(1)比值是一个数,可以用分数、小数或整数表示.(2)求两个同类量的比值时,如果单位不同,必须把这两个量化成_____________.3、比与除法、分数之间的联系(1)比的前项相当于分数的________和除式中的__________;(2)比的后项相当于分数的________和除式中的__________;(3)比值相当于分数的____________和除式中的__________.【说明】比——前项:后项=比值;分数——;除式——被除数÷除数=商.注意:比与除法、分数之间有着密切的联系。
但不是说它们之间是等同的。
它们之间的区别是:比是两个量之间的关系,除法是一种运算,而分数是一个数。
在理解意义的时候要注意区分。
比的后项不能是零。
4.最简整数比比中的各数除了1之外,没有其他的公因数,这样的比称之为____________。
求比值和化简比的核心区别在于结果的表达形式不同,求比值的结果一定要是一个____,化简比的结果一定要是一个_____。
5、比的基本性质比的前项和后项同时乘上或者除以相同的数(0除外),比值____,这叫做比的基本性质。
比的基本性质相当于除法中的商不变性质和分数中的基本性质。
因此应用比的基本性质可以将比进行化简。
比的前项和后项为互质数时,这个比就是__________。
6、三项连比的性质三项连比的性质:几个数(三个或三个以上)相连而作比,叫做几个数的连比。
如a :b =m:n ,b:c=n:k,a:c=m:k 可见,连比是把几个比连写而得到的。
人教版六年级数学下册讲义-正比例和反比例(含答案)
正比例和反比例的课堂讲义教材导入:1.两种相关联的量:一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
总价和数量是成正比例的量,总价与数量成正比例关系。
2.两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
高度和底面积是成反比例的量,高度与底面积成反比例关系。
(一)正比例的意义例1 一列火车行驶的时间和所行的路程如下表:填空:1、表中有和两种量,当时间是1小时,路程是当时间是2小时,路程是,这说明时间这种量变化了,路程这种量也。
2、观察表格:我们从左往右观察,时间扩大2倍,对应的路程也倍,时间扩大3倍,对应的路程也倍……从右往左观察,时间缩小8倍,对应的路程也;时间缩小7倍,对应的路程也……通过观察,我们发现路程是随着的变化而变化的。
时间扩大路程也扩大,时间缩小路程也。
它们扩大、缩小的规律是。
3、比值60,实际上是火车的:将这些式子所表示的意义写成一个关系式:路程=速度(—定)。
时间4、小结:通过刚才的观察和分析.我们知道路程和时间是两种 的量。
(两种相关联的量。
)路程和时间这两种量的变化规律是 。
(路程和时间的比的比值(速度)总是一定的。
)【规律方法】理解成正比例的意义。
判断两种量是不是成正比例,分三步:一看它们是不是相关联的两种量;二是看一种量变化,另一种量是不是也随着变化;满足了前面两个条件,再看它们的比值是否一定。
不要省去任何一步。
如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用这样的式子来表示:xy= K (一定)。
【变式训练1】【难度分级】 A1、下面各题中哪两种量成正比例?为什么? ①笔记本单价一定,数量和总价。
②汽车行驶速度一定,行驶的路程和时间。
③工作效率一定,工作时间和工作总量。
六年级下册数学讲义-第四单元——比例:比例的应用人教版(含答案)
比例的应用【知识梳理】1.比例尺。
(1)意义:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。
图上距离:实际距离=比例尺或实际距离图上距离=比例尺 (2)分类:①按表现形式分,可以分为数值比例尺和线段比例尺;② 按将实际距离缩小还是放大分,可以分为缩小比例尺和放大比例尺。
(3)已知图上距离和实际距离,求比例尺的方法。
先把图上距离和实际距离统一单位,再用图上距离比实际距离,然后把它化简成前项是1或后项是1的比,得出比例尺。
(4)已知比例尺和图上距离,求实际距离的方法。
可以根据“实际距离图上距离=比例尺”用解比例的方法求出实际距离,也可以利用“实际距离=图上距离÷比例尺”直接列式计算。
(5)已知比例尺和实际距离,求图上距离的方法。
可以根据“实际距离图上距离=比例尺”用解比例的方法求出图上距离,也可以利用“图上距离=实际距离×比例尺”直接列式计算。
(6)应用比例尺画图。
①确定比例尺;②根据比例尺求出图上距离;③画图;④ 标出所画图的名称和比例尺。
要点提示:①比例尺是一个比,表示两个同类量间的倍比关系,不能带单位名称。
②图上距离一般用厘米作单位,实际距离一般用米或千米作单位,计算比例尺时一定要先统一单位。
③为了计算方便,一般把比例尺写成前项或后项是1的形式。
2.图形的放大与缩小。
(1)特点:形状相同,大小不同。
(2)将图形放大或缩小的方法。
一看,看原图形各边占几格;二算,按已知比计算出放大图或缩小图的各边占几格;三画,按计算出的边长画出原图形的放大图或缩小图。
要点提示:把图形每条边按相同倍数放大(或缩小)后,形状不变,相对应的角的度数也不变。
3.用比例解决问题。
根据问题中的不变量找出两种相关联的量,并判断这两种相关联的量成什么比例关系,再根据正、反比例关系列出相应的比例并求解。
要点提示:用正、反比例解决问题的关键是确定成什么比例关系。
【诊断自测】1.填空。
(1)在比例尺是1:2000000的地图上,量得两地距离是38厘米,这两地的实际距离是( )千米。
第四单元比例(易错梳理)-六年级下册数学单元复习讲义人教版
比例知识盘点知识点1:比例的意义和基本性质1、比例的意义:表示两个比相等的式子叫做比例。
2、比例的基本性质①组成比例的四个数,叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。
②比例的基本性质:在比例里,两个外项的积等于两个内项的积。
可以用字母表示比例的基本性质,如果a:b =c:d ,那么ad =bc 。
3、解比例:求比例中的未知项,叫做解比例。
解比例的方法:利用比例的基本性质将比例转化为外项之积与内项之积相等的 等式,再通过解方程求出未知项的值。
知识点2:正比例和反比例1、正比例:两种相关联的量的比值一定。
正比例关系式:yx =k 正比例的图像:一条射线2、反比例:两种相关联的量的乘积一定。
反比例关系式:xy =k 反比例图像:一条光滑的曲线 知识点3:比例尺1、意义:一幅图的图上距离和实际距离的比。
2、分类:线段比例尺和数值比例尺;缩小比例尺和放大比例尺3、计算:比例尺=图上距离:实际距离 知识点4:图形的放大和缩小 形状相同,大小不同 知识点5:用比例解决问题 造出情境中不变的量是关键。
易错集合易错点1:比例的基本性质典例 比例24:6=12:3,第一项24减去6,第二项的6怎样变化,才能使比例仍然成立?解析 根据比例的性质,24-6=18,外项的积变为18×3=54,内项12不变,根据比例的基本性质,两个外项的积等于两个内项的积,求解。
解答 24-6=18 18×3=54 54÷12=4.5 6-4.5=1.5 答:第二项6应减去1.5,才能使比例仍然成立。
✨针对练习1比例24:6=12:3,第三项12乘2,第四项的3怎样变化,才能使比例仍然成立?易错点2:利用图像解决正比例问题 典例 下图是老虎和猎豹比赛跑步的情况。
猎豹的奔跑路程和时间是否成正比例关系?老虎呢?解析 判断老虎、猎豹奔跑的路程和奔跑时间是否成正比例关系,根据正比例的意义要看它们的比值是否一定。
六年级上册数学讲义-比的应用-人教版(含答案)
第九讲比的应用一、知识梳理比的应用:按比例分配:二、方法归纳(1)按比例按分配的应用题:总量÷总分数=每一份的数(2)对于已知“一个长方体的棱长总和是120厘米,长、宽、高的比是6:5:4,”因为长方体的棱长和是由 4 条长、4 条宽、4 条高组成的,我们可以先算出一条长、一条宽、一条高的长度和。
又因为长、宽、高的比是 6:5:4,将长、宽、高的和 30 厘米按比例分配,知道了长、宽、高,我们就不难求出长方体的体积了三、课堂精讲(一)比的应用:按比例分配的应用题1.我们在教学中学过平均分,平均分的结果有什么特点?(每份都相等)在日常生活中,为了分配的合理,往往需要把一个数量分成不等的几部分,即把一个数量按照一定的比来进行分配。
这种方法通常叫按比例分配。
2.一瓶500ml 的稀释液,其中浓缩液和水的体积分别是100ml 和400ml,_ ?(补充问题并解答)例1 (1)某班有男生25 人,女生20 人。
①男生人数与女生人数的比是( )。
②男生人数占全班人数的,男生人数与全班人数的比是( )。
③女生人数占全班人数的,女生人数与全班人数的比是( )。
(2)4∶5的前项扩大4 倍,要使比值不变,后项应增加( )。
(3)圆周长与它的面积的比是( )∶();a与它的倒数的比是( )∶()。
例 2 一瓶 500ml 的稀释液,其中浓缩液和水的体积的比是 1:4,其中浓缩液和水的体积的分别是多少?分析:“浓缩液和水的体积1:4”,就是说在500ml的稀释液,浓缩液占份,水的体积占份,一共是份,浓缩液占稀释液的(填分数)水的体积占稀释液的(填分数)【规律方法】理解按比例分配的应用题。
【搭配课堂训练题】【难度分级】 B1. 公园里有月季花和菊花共 400 盆,月季花和菊花的盆数比是5∶3,公园里月季花和菊花各有多少盆?(二)比的应用的变形例3 学校把栽280 棵树的任务,按照六年级三个班的人数分配给各班。
人教版六年级数学下册 比例 讲义
比例知识点一、比例的概念和性质两个数( ),叫做两个的比,符号是“:”,所得的商叫做( )。
两个比( )的式子叫做比例。
组成比例的四个数,叫做比例的( )。
两端的项叫做比例的( ),中间的项叫做比例的( )。
例如:例1、在比例1:2=3:6中,外项是( )和( ),内项是( )和( )例2、在比例1.2:2.1=4:7中,( )和( )是外项,( )和( )是内项,将这个比例改写成分数形式是=()()()()比例的基本性质:在比例中,( ) 例3、在比例1:2=3:6中,有( )×( )= ( )×( ) 例4、在等式53=159中,有( )×( )= ( )×( )比例还有另外一个性质:在比例中,两个外项交换位置或者两个内项交换位置,比例( )。
例5、已知比例3:5=6:10,运用以上性质,写出另外3个比例:( )、( )、( ) 例6、已知等式23=812,运用以上性质,写出另外3个等式:( )( )=( )( ),( )( )=( )( ),( )( )=( )( )例3、在下面的括号里填上适当的数; (1)4:( )=0.5:0.7 (2)87:25=( ):( ) (3)2.1:3.5=( ):2.5 (4) ( ):2.4=1:0.2例4、在一个比例中,两个内项互为倒数,一个外项是25,另一个外项是( )例5、写出比值是0.2的两个比:( )和( )。
组成比例是( ):( )=( ):( ) 例6、大小齿轮齿数的比是5:3,小齿轮有15个齿,大齿轮有( )个齿 例7、用36的因数组成一个比例是1:( )=( ):( )例8、18的约数有( ),选出其中四个数组成一个比例是( ) 例9、如果7a=4b ,那么a:b=( ): ( ) 例10、x ×13=y ×15时,x :y =( )A 、13 :15B 、5:3C 、3:5例11、能与32:43组成比例的是( ) A 、2:3 B 、4:29 C 、1816:21 D 、21:31例12、解比例。
六年级数学下册知识讲义-4 比例尺的意义-人教版
小学数学比例尺的意义知识梳理仔细观察下列图形,说出下面比例尺表示的意义。
比例尺1:4 的意义是图上1厘米表示实际的4厘米,图上距离是实际距离的,实际距离是图上距离的4倍。
比例尺的意义是图上1厘米的距离相当于实际距离的5米。
1. 比例尺的意义在绘制地图和平面图时,需要把实际距离按一定的比缩小(或放大),再画在图纸上。
这时,就要确定图上距离和相对应的实际距离的比。
一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。
2. 比例尺的关系式图上距离︰实际距离=比例尺或=比例尺。
例如一幅图的比例尺是1:6000000,它的意义是图上1厘米表示实际6000000厘米;图上距离是实际距离的;实际距离是图上距离的6000000倍。
3. 比例尺的书写格式比例尺是图上距离与实际距离的最简整数比,可以写成带比号的形式,也可以写成分数形式。
即比例尺1:6000000也可以写成。
为了方便,把比例尺写成前项或后项是1的形式,这是比例尺的书写特征。
注意:比例尺是一个比,它表示图上距离和实际距离的倍比关系,因此不能带计量单位。
比例尺的分类:1. 根据表现形式的不同,比例尺可以分为数值比例尺和线段比例尺用数字形式表示的比例尺是数值比例尺。
如一幅地图的比例尺是1︰50000,就是数值比例尺。
在图上附有一条注有数量关系的线段,用来表示和地面上相对应的实际距离,这样的比例尺叫做线段比例尺。
如一幅地图的中的比例尺,就是线段比例尺。
它表示图上1厘米的距离相当于实际距离25千米。
该比例尺可以改写成数值比例尺,图上距离︰实际距离=1厘米︰25千米=1厘米︰2500000厘米=1︰2500000。
2. 根据图上距离是将实际距离缩小还是放大,比例尺可以分为缩小比例尺和放大比例尺(1)缩小比例尺:在绘图时,有时需要把实际距离按一定的比缩小后再在纸上画出来,用这种方法得到的比例尺就是缩小比例尺。
缩小比例尺写成带比号的形式时,前项一般化简为1;若写成分数的形式,分子一般化简为1。
六年级数学下册 第二单元《比例》期末备考讲义单元闯关(思维导图+知识点精讲+优选题训练)(北师大)
期末备考—2020年北师大版六年级下册数学优选题单元复习讲义第二单元《比例》1、表示两个比相等的式子叫做比例。
如:3:4=9:12 。
2、比例有四个项,分别是两个内项和两个外项。
在3:4=9:12中,其中3与12叫做比例的外项,4与9叫做比例的内项。
比例的四个数均不能为0。
3、比例的基本性质:在一个比例中,两个外项的积等于两个内项的积。
4、比例尺:图上距离与实际距离的比,叫做这幅图的比例尺。
图上距离÷实际距=离比例尺图上距离=实际距离×比例尺实际距离=图上距离÷比例尺5、比例尺的分类:比例尺根据实际距离是缩小还是扩大,分为缩小比例尺(比例尺<1)和放大比例尺(比例尺>1)。
根据表现形式的不同,比例尺还可分为线段比例尺和数值比例尺。
6、图形的放缩:一幅图放大或缩小,只有按照相同的比来画,画的图才像。
1.(2019春•方城县期中)把一个正方形的各边按1:3缩小后,现在的图形和原来图形的面积比是() A.1:3B.3:1C.1:92.(2019•郑州)在比例尺是1:4000000的地图上,量得A、B两港距离为9厘米,一般货轮于上午6时以每小时24千米的速度从A开向B港,到达B港的时间是()A.17点B.19点C.21点D.23点3.(2019•长沙)将一个长是5厘米、宽是3厘米的长方形按4:1放大,得到的图形面积是()平方厘米.A.15 B.240 C.60 D.644.(2019春•四川月考)一个直角三角形的两条直角边分别是3厘米和2厘米,按1:4的比例放大后,面积是()平方厘米.A.6 B.24 C.48 D.965.(2019春•武汉月考)在比例尺是1:30000000的地图上,量得甲地到乙地的距离是5.6厘米.一辆汽车按3:2的比分两天行完全程,两天行的路程差是()千米.A.672 B.336 C.1008 D.16806.(2016•大渡口区)小娟和小洁分别将育英小学的操场平面图画下来(如图).如果小娟是按1:a的比例尺来画的,那么小洁是按()的比例尺画的.A.11:2a B.1:2a C.1:a D.11:4a7.一根长50cm的线刚好围成一个长方形,长和宽的比是3:2,这个长方形的长和宽各是多少?() A.长3cm、宽2cm B.长15cm、宽10cmC.长30cm、宽20cm8.在一张比例尺是1:5000000的地图上,量得金华到杭州的距离为4厘米,则金华到杭州的实际距离是( )A.2000米B.200千米C.2000千米D.20000米9.(2019秋•雅安期末)测绘小队测得一条山路的长是2.5km,按1:50000的比例尺画在图纸上,应画厘米.10.(2018秋•定州市期末)用24和36的公因数组成一个比例是.11.(2018秋•新华区期末)在一个比例中,两个内项的积是7.2,其中一个外项是0.9,另一个外项是.12.(2018秋•石家庄期末)某学校平面图的比例尺是,改为数值比例尺是.在图中量得校园的长为3厘米,那么它的实际长度为米.13.(2019春•法库县期末)笑笑在一幅比例尺为1:6000000的地图上,量得沈阳到上海的高速铁路长40cm,沈阳到上海的高速铁路长km;笑笑想乘坐高速列车从沈阳去上海,火车平均每小时行驶240km,到达上海需要时.14.(2019春•泰兴市校级期中)在一幅比列尺是1:2000000的地图上量的AB两地长6厘米,AB两地的实际距离是千米,把AB两地画在第二幅地图上,长12厘米,第二幅地图的比例尺是,BC两地长240千米,画在第二幅地图上长厘米.15.(2018•阆中市)一个数能与3,4,5组成比例,这个数最大是.16.(2015春•紫云县校级期中)一间会议室用边长4分米的方砖铺地要540块,改用边长6分米的方砖铺地要多少块?17.(2019秋•雅安期末)把圆的直径放大到原来的3倍,这个圆的面积就放大到原来的9倍.(判断对错)18.(2019秋•雅安期末)将一个5毫米长的零件画在图上长为5厘米,这幅图的比例尺是1:10..(判断对错)19.(2018秋•新华区期末)将图形缩小后得到的图形与原图形相比,大小不同,形状相同.(判断对错)20.(2019•天津模拟)比例尺1:10000,表示图上距离和实际距离的比,也可以表示为实际距离是图上距离的10000倍,或者图上距离是实际距离的110000.(判断对错)21.(2019春•宁津县期中)一种精密零件,长2毫米,画在一幅图上长10厘米,这幅图的比例尺是1:50.(判断对错)22.应用比例的基本性质,判断下面哪一组中的两个比可以组成比例?(写出判断过程)7:14和6:1211 : 34和11:683.5:7和1:140.4:1.6和3:12.23.把下面的等式改写成比例.(1)1148714⨯=⨯(2)30.520.75⨯=⨯24.小明的身高是1.4米,他的影子长是2.8米.如果同一时间,同一地点测得一棵树的影子长是7米,这棵树有多高?25.(2019•厦门)学校要把一批树苗栽到科普基地,如果每行栽10棵,正好是18行,如果每行栽12棵,可以栽多少行?(用比例解)26.(2019春•官渡区期末)在比例尺是1:5000000的地图上,量的南京到北京的距离是18厘米,有一架飞机从北京飞往南京,每小时飞500千米,问飞到南京要几小时?27.(2018秋•和平区期末)学校把栽70棵树的任务按照六年级三个班的人数分配给各班,一班有46人.二班有44人.三班有50人.三个班各应栽多少棵树?28.(2018春•盐城期中)在比例尺是1:6000000的地图上,量得甲、乙两地相距5厘米.一辆货车和一辆客车从两地同时相对开出,2小时相遇.客车每小时行80千米,货车每小时行多少千米?29.(2019春•黄冈期中)在一幅比例尺是15000000的地图上,量得A、B两个城市之间的公路长是4.8cm,在另一幅比例尺是14000000的地图上,这条公路长多少厘米?30.(2019•衡水模拟)如图所示,小宇家距医院1000m.(1)求出小宇家到学校的实际距离;(2)在小宇家的东南方向1500m处要建少年宫,请你在图上画出少年宫的位置.31.(2019•集美区模拟)请你选择一个问题填在横线上,并用比例知识解答出来.黎明5分钟可以走325米,照这样计算,()?①18分钟可以走多少米?②从家到学校相距1300米,他要走多少分钟?32.(2019•平舆县)在比例尺1:6000000的地图上,量得甲乙两地距离是6cm,甲乙两地实际距离是多少千米?33.(2019春•法库县校级月考)学校图书馆的科技书与故事书各有360本,还要添置多少本故事书,才能使科技书和故事书的本数比达到2:3?(用比例解答)。
六年级下册数学第四单元《比例》讲义
六年级下册数学第四单元《比例》讲义1.比例的意义和基本性质比例的意义1. 如5:6=65,15:18=65,所以5:6=15:18。
像“5:6=15:18”,表示两个比相等的式子叫做比例。
2. 判断两个比能否组成比例的方法:看两个比的比值是否相等,如果比值相等,那么就能组成比例;否则不能组成比例。
二、比例的各部分名称1. 组成比例的四个数,叫做比例的项。
两端的两项叫做比例的外项,中间的两项叫做比例的内项。
例如:3.6 : 3 =4.8 : 4内项外项三、比例的基本性质1. 在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。
2. 如果a c bd =(a 、b 、c 、d 均不为0),那么ad=bc 。
【趁热打铁】1. 能与15 :9组成比例的比是( )。
A. 13 :15B. 3:5C. 5:3D. 15 :115 2. 能与:组成比例的是( )。
A. 2:3B.94:2 C. 161:182 D. 11:233. 在比例1.2:2.1 = 4:7中, 和 是外项, 和 是内项,将这个比例改写成分数形式是=.4. 在一个比例里,两个外项互为倒数,其中一个内项是3.5,另一个内项是( )。
5. 如果a :b=5:9 ,那么a :5=( ):( )。
6. A 的32相当于B 的43,A :B=( ):( )7. 如果2a=6b ,则()()a b=,a :8=( ):( )。
8. 如果6x=7y ,写成比例是( )A. 6:7=y:xB. x:y=6:7C. 6:x=7:yD. 6:y=7:x9. 用3、7、9、21这四个数组成的比例式,下面的哪个式子是正确的( )。
A. 21:3=7:9B. 3:7=9:21C. 9:3=7:21D. 3×21=7×91. 根据比例的基本性质,求比例中的某一项(1)()6.5:=5:9 (2)()43:3:52=(3)()6.5:5:9= (4)()245:7.5:3=2. 运用例举法把乘法等式改写成比例(1)3×80=4×60 (2)2120.5163??3. 判断四个数能否组成比例(1)判断3,6,9,18这四个数能否组成比例(2)小强3分钟走了180米,小刚1小时走了3.6千米。
六年级数学下册比例讲义
六年级数学下册比例讲义知识点一、比和比例(一)比和比例的意义和基本性质例题1:应用比例的意义判断6.4 : 4和9.6 : 6能否组成比例?因为:6.4 : 4 = 6.4 ÷4 = 1.6 9.6 : 6 = 9.6 ÷ 6 = 1.6所以:6.4 : 4 = 9.6 : 6例题2:运用比例的基本性质判断3.6 :1.8和0.5 :0.25能否组成比例?因为 3.6 × 0.25 = 0.9 1.8 × 0.5 = 0.9所以 3.6 :1.8 = 0.5 :0.25例题3:从12的因数中任意选出4个数,再组成8个比例式。
因为:12 = 1 × 12 = 2 × 6 = 3 × 4所以从12的因数中任意选出两组4个数并运用比例的基本性质可以组成8个不同的比例。
2 × 6 = 3 ×4(2)︰(3)= (4)︰(6)(3)︰(2)= (6)︰(4)(2)︰(3)= (4)︰(6)(3)︰(2)= (6)︰(4)(6)︰(4)= (3)︰(2)(4)︰(6)= (2)︰(3)(6)︰(4)= (3)︰(2)(4)︰(6)= (2)︰(3)(二)比、除法和分数的关系联 系 区别 比6:3=2 前项 比号 后项 比值 比的基本性质 一种关系 除法6÷3=2 被除数 除号 除数 商 商不变的性质 一种运算 分数6/3=2分子分数线分母分数值分数的基本性质一个数(三)求比值和化简比举例 一般方法结果求比值4:2/5=4÷2/5根据比值的意义,用前项除以后项 是一个商,可以是整数、小数或分数化简比4:2/5=20:2=10:1根据比的基本性质,把比的前项和后项同时乘上或除以相同的数(0除外)是一个最简整数比。
(前项和后项互质)解比例3 : 8 = ⅹ : 40 8x=3×40 8x=120 X=15 根据比例的基本性质,如果已知比例中的任意三项,就可以求出这个比例中的另一个未知项。
六年级下册数学比例的认识ppt课件
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
4.下面各表中相对应的两个量的比能否组成比例? 把能组成的比例写出来。
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
分数线 (-)
分母
分数值
比和分数又有 什么关系呢?
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
请同学们联系比的知识,再想一想,怎样的两 张图片像?怎么样的两张图片不像?
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
3:2=15:10 2:3=10:15 10:2=15:3 2:10=3:15
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
15∶10和60∶40能组成比例吗?
你是怎样判断的?
因为: 15 ∶ 10 = 3
⑵写出两个正方形面积与面积的比,这个比与边 长之间的比能组成比例吗?
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
比和比例有什么区别?
人教版六年级上册数学比的应用解决问题分类超完整
六年级上册数学比的应用【专项题型】讲义一、知两个数的和与比,求这两个数【典例1】、红花和黄共共70朵,红花与黄花的比是2:5,求红花与黄花各是多少朵?【举一反三】、某校参加电脑兴趣小组的有42人,其中男、女生人数的比是 4 ∶3,男生有多少人?【巩固练习】1.一个三角形的三个内角的比是2:3:4,这三个内角的度数分别是多少?2.两地相距480千米,甲、乙两辆汽车同时从两地相向开出,4小时后相遇,已知甲、乙两车速度的比是5∶3。
甲、乙两车每小时各行多少千米?3.一桶重200克的盐水,盐和水的质量比是1:24,要使盐和水的质量比是1:29,要加多少克水?4.六年级一班有60人,二班有80人,从一班调多少人到二班,两班人数比才能为2:3?5天,乙队再加入一起修。
完成工程后,两队共得工资3000元。
按工作量分配甲队应得多少元?二、知两个数的差与比,求这两个数【典例2】红花比黄花多20朵,红花与黄花的比是7:3,求红花与黄花各是多少朵?【举一反三】一批作业本按2:3分给甲乙两班,结果甲班比乙班少分60本,这批作业本共多少本?【巩固练习】1.某果园桃树和李树的棵数比是3∶8,桃树比李树少90棵,该果园共有桃树和李树多少棵?2.把一条路按2∶3∶4分给甲、乙、丙三个修路队去修,已知甲队比乙队少修16千米,这条路全长是多少千米?3.制作一种零件,甲要5分钟,乙要10分钟,丙要8分钟,现三人共做这种零件若干个,甲比丙多做24个,这批零件共多少个?4.妈妈买回来一些苹果和香蕉,苹果和香蕉重量的比是5:2,已知苹果比香蕉多0.9千克,两种水果各有多少千克?三、知一个数与比,求另一个数。
【典例3】红花有28朵,红花与黄花的比是4:7,求黄花有多少朵?【举一反三】餐馆给餐具消毒,要用120毫升消毒液配成消毒水,如果按照消毒液与水的比为3∶140来配制。
应加入水多少毫升?【巩固练习】1.商店运来一批冰箱,卖出18台,卖出的台数与剩下台数比是3:2,商店共运来多少台冰箱?2.工地将黄沙、石子和水泥的质量按照4∶6∶1的比配置一种混凝土。
六年级数学下册比例课件
题目4
04
一辆汽车从甲地开往乙地,每小时行驶54千米 ,5小时到达.返回时因是上坡路,每小时比
原来慢了(1/6).返回时用了多少小时?
答案及解析
答案解析1
根据比例尺=图上距离÷实际 距离,计算出地图上1厘米表 示的实际距离,然后根据实际 距离×比例尺计算出地图上的
距离。
答案解析2
设水塔的高度为h米。根据相 似三角形的性质,小华的身高 与他的影子的长度之比等于水 塔的高度与它的影子的长度之 比,即1:2=h:48。解这个 方程可以得到水塔的高度h。
02
比例的运算
比例的乘法运算
总结词
理解比例的乘法运算规则
详细描述
比例的乘法运算是指将两个比例相乘,例如,如果 a:b = c:d,那么 a:b:c:d = ac:bc:ad:bd。通过理解这个规则,学生可以解决一些与比例相关的实际问题, 例如计算按比例缩放后的长度、面积等。
比例的除法运算
总结词
比例在实际生活中的应用
比例在工程设计中的应用
在工程设计中,常常需要用到比 例来计算各个部分的尺寸和比例
关系。
比例在金融中的应用
在金融领域中,比例常被用于计 算投资回报率、利率等经济指标
。
比例在医学中的应用
在医学领域中,比例常被用于计 算药物的比例和配制药物。
比例在生物学中的应用
在生物学领域中,比例常被用于 描述生物体的结构和功能关系。
05
综合练习与答案解析
综合练习题
题目1
01
在一幅地图上,用3厘米的线段表示实际距离 的600千米,一条长480千米的高速公路,在
这幅地图上是多少厘米?
题目3
03
甲、乙两数的比是3:4,甲数是60,乙数是多 少?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3讲比例
【课首小测】
一、判断题
1. 圆柱体的侧面展开可以得到一个长方形, 这个长方形的长等于圆柱底面的直径, 宽等于圆柱的高 ( )
2. 底面半径为2米的圆柱体, 它的底面周长和底面积相等.()
3. 等底等高的圆柱体比圆锥体的体积大16立方分米, 这个圆锥的体积是8立方分
米. ( )
二、填空题
1. 我们把圆的周长与直径的比值叫做( ), 用字母( )表示.
2. 用一张长4.5分米, 宽2分米的长方形纸, 围成一个圆柱形纸筒, 它的侧面积是( ).
3. 圆柱体积是与它等底等高圆锥体积的( )倍.
4. 一个圆柱体, 它的底面半径是2厘米, 高是5厘米,它的体积是( ).
三、应用题
1. 一个圆柱体底面半径是2分米, 圆柱侧面积是6
2.8平方分米, 这个圆柱体的体积是多少立方分米?
2. 有一个圆柱形储粮桶, 容积是
3.14立方米, 桶深2米, 把这个桶装满稻谷后再在上面把稻谷堆成一个高0.3米的圆锥.这个储粮桶装的稻谷体积是多少立方米? (保留两位小数)
3. 用一张长2.5米, 宽1.5米的铁皮做一个圆柱形烟筒, 这个烟筒的侧面积是多少? (接口处忽略不计)
【互动导学】
【知识梳理】
1、比例和比例的性质
2、比例尺
3、正比例关系与反比例关系
4、正反比例关系的判断
【导学】一 比例和比例的性质 【知识点】
1. 比例的意义 表示两个比相等的式子叫做比例。
如:
a :
b =
c :
d 内 项 外 项 只要两个比的比值相等,就能组成比例。
比与比例的区别
2、比例尺
图上距离与实际距离的比,叫这幅图的比例尺。
实际距离
图上距离
比例尺=
3、解比例的方法:
根据比例的基本性质解比例,先把比例转化成外项乘积和内项乘积相等的形式(即方程),再通过解方程来求出未知项的值。
(注:在转化过程中比例的内项、外项要严格区分)
【例题】1: 已知c b d a ⨯=⨯,根据比例的基本性质,可以写出几个不同的比例式?
【例题】2: 解比例: x :9
7120131=:
【我爱展示】
1.下面两个比不能组成比例的是( )
A .10:12和35:42
B .20:10和60:20
C .4:3 和 60:45
D .35:7 和15:3 2.下面四组数中,可以组成比例的是( ) A .2、5、3、4 B .2、4、6、8 C .2、9、3、6 D .3、2、1、7 3.如果6x=5y ,那么( )
A .x 与y 的比是5:6
B .x 与y 的比是6:5
C .y 与x 的比是6:5
D .无法却定
4、判断10:12和1:
5
6
能否组成比例。
5、小明买4本同样的练习本用了4.8元,3.6元可以买多少本这样的练习本?
【导学】二 正比例关系与反比例关系 【知识点】
1、正比例关系与反比例关系的异同点:
2、正反比例关系的判断:
判断正比例与反比例的关系时应注意的问题 1. 先判断两个量是不是相关联的量
2. 再判断两种量中相对应的两个数积一定还是商一定,如果积一定,这两种量就成反比例
关系;如果商一定,这两种量就成正比例关系
【例题】 判断下列说法是否正确:
(1)一条路的长度一定,已经修好的部分和剩下的部分成反比例关系 ( ) (2)表示x 和y 成正比例的关系式是xy=k (一定) ( ) (3)圆周率和圆的周长成正比例关系 ( )
【我爱展示】
1.下面各题中成正比例的是( )
A .笔记本单价一定,数量和总价
B 汽车行驶路程一定,行驶的速度和时间
C 工作总量一定,工作时间和工作效率
D 一袋大米的质量一定,吃了的和剩下的 2.如果
y
4
x 5.4 ,那么x 和y ( ) A 成正比例 B 成反比例
C 不成比例
D 无法判断 3.下列关系中,成反比例的是( ) A 分数值一定,它的分子和分母的关系 B 六(1)班的出勤与缺勤人数
C 报纸的单价一定,订阅份数与总价的关系
D 在一定的距离内,车轮周长和它转动的圈数的关系
4.成反比例的两个量中,一种量扩大,另一种量( ) A 随着扩大 B 反而缩小 C 没有变化 D 无法确定
5.饼干的总块数一定,每人分得的块数与人数成 .
6.甲数是乙数的80%,甲数和乙数成 比例.
7.a 与b 成反比例,b 与c 成正比例,那么a 与c 成 比例.
的比,求这个数与5
2
2311【能力展示】
【知识技巧回顾】
1、复述比例的相关概念及知识点.
2、解比例的方法技巧.
【强化拓展训练】
1.能与3
254:
组成比例的比是( ) A .6:5 B .8:15
C .15:8
D .5:6
2.甲乙两数的比是5:3,乙数是60,甲数是 .
3.按糖和水的比为1:19配制一种糖水,这种糖水的含糖率是 %,现有糖50克,可配制这种糖水 克.
4.下列哪组中的四个数可以组成比例?把能组成的比例写出来。
(1)4、5、12和15 (2)4
161
3121和、、
5.依照下面的条件列出比例,并且解比例
(1)1.2与一个数的比等于
(2)x 与5.4的比值等于2.5除以0.6的商,求x
(3)甲数的5
3等于乙数的3
2,求甲与乙的比。
(甲、乙均不等于0)
(4)乙的3
2等于甲的8
3,求乙是甲的百分之几?
6.(1)把一根长为18米的钢管按7:2截成两段,这两段的长分别是多少?(列比例解答)
(2)明明家搬新家了,搬到了文苑小区5号楼,这座楼实际高度是28m,它的高度与模型高度的比是400:1,模型的高度是多少?
(3)哥哥买来84个红气球,其中红气球与黄气球的个数比是7:5,黄气球有多少个?
7.大班有30人,小班有20人,把一些橘子分给大班和小班,怎么分合理?
8.陈红和赵青到文具店去买笔记本,陈红拿出6元,赵青拿出4元,一共买了5本同样的笔记本,他们能平均分吗?他们应该怎样分这些笔记本才合理呢?
9.学校计划把100本图书按照3:2借给一班和二班的学生,两个班各借得多少本书?
10.用一根长96厘米的铁丝做一个长方体框架。
长、宽、高的比是5:4:3,如果把长方体外面贴上纸板,求长方体的体积。
【课后作业】
一、填空题
1. 在一个比例里,两个外项的积是最小的质数,一个内项是0.5,另一个内项是( )。
2. 甲数×
4
3
=乙数×60%,甲:乙=( : )。
3. 0.75:3
2化成最简整数比是( )。
4. 一幅地图的线段比例尺是 ,它表示实际距离是图上距
离的( )倍。
5. 在
1000
1的图纸上,一个正方形的面积为16平方厘米,它的实际面积是( )m 2
6. 甲数的5
3是甲乙两数和的41
,甲乙两数的比是( )。
7. 一车水果重1.8吨,按2:3:5的比例分配给甲、乙、丙三个水果店,乙水果店分得这
批水果的( )。
二、选择题
1 一块长方形的周长是28米,它的长和宽的比是4:3,这块地的面积是( )平方米。
A 192
B 48
C 28 2 一幅图纸的比例尺是20:1,表示图上距离是实际的( )。
A
20
1
B 20
C 20倍 3 一个圆柱和一个圆锥体积相等,已知圆锥体和圆柱的高的比是9:1,圆柱体底面积和圆锥体底面积的比是( )。
A 9:1
B 3:1
C 6:1 4 成反比例的量是( )。
A A 和
B 互为倒数 B 圆柱的高一定,体积和底面积
C 被减数一定,减数与差
D 除数一定,商和被除数 5 如果
χ6
=γ
5那么χ和γ( )。
A 成正比例 B 成反比例 C 不成比例
6 一幅地图的比例尺是1:100000。
下面说法不正确的是( )。
A 图上1厘米的距离相当于地面实际距离的100000米
B 把实际距离缩小100000倍后,再画在图纸上。
C 图上距离相当于实际的
100000
1。
三、解决问题
1. 我国“神舟五号”载人飞船着陆在内蒙古的四子王旗。
在一幅比例尺是1∶15000000的地图上,量得四子王旗与北京的距离是3厘米,这两地之间的实际距离大约是多少千米?
0 80 40120 160千米
2. 同学们做操,每行站15人,正好站12行。
如果每行站9人,可以站多少行?
3. 甲乙两地间的距离是490千米,一辆汽车5小时行驶了350千米。
照这样计算,行完全
程需要几小时?
4. 给一间房子铺地,如果用边长6分米的方砖,需要80块。
如果改用边长8分米的方砖,
需要多少块?
【跟踪指导】
1、检查学生对所学知识点是否已掌握。
2、对学生做错题目耐心指导,详细讲解。