函数的表示法(人教版)

合集下载

人教版高中数学必修1《函数的表示法》高一上册PPT课件(第1.2.2-1课时)

人教版高中数学必修1《函数的表示法》高一上册PPT课件(第1.2.2-1课时)

PART 03
合作探究·攻重难
TO WORK TOGETHER TO FIND OUT WHAT'S GOING ON
高中数学精品系列课件
[合作探究· 攻重难]
函 数表 示 法的 选 择
例1某商场新进了10台彩电,每台售价3000元,试求售出台数x与收款数y之间的函数关系,分别用列表法、图
象法、解析法表示出来. [解] ①列表法如下:
高中数学精品系列课件
[解] (1)不能用解析法表示,用图象法表示为宜. 在同一个坐标系内画出这四个函数的图象如下:
人教版高中数学必修一精品课件
高中数学精品系列课件
(2)王伟同学的数学成绩始终高于班级平均水平, 学习情况比较稳定而且成绩优秀, 张城同学的数学成绩 不稳定,总是在班级平均水平上下波动,而且波动幅度较大.赵磊同学的数学成绩低于班级平均水平, 但他的成绩曲线呈上升趋势,表明他的数学成绩在稳步提高.
优点
缺点
①简明、全面地概括了变量间的关系;②可以通过解析式求出任意
解析法
不够形象、直观
一个自变量所对应的函数值
列表法 不通过计算就可以直接看出与自变量的值相对应的函数值
一般只能表示部分自变量的函数值
直观、形象地表示出函数的变化情况,有利于通过图形研究函数的 只能近似地求出自变量所对应的函数值,有时误
人教版高中数学必修一精品课件
高中数学精品系列课件
图象的画法及应用
例2作 出 下 列 函 数 的 图 象 并 求 出 其 值 域 . 2
(1)y= - x, x∈ {0,1, - 2,3}; (2)y=, x∈ [2, + ∞ ); (3)y= x2+ 2x, x∈ [- 2,2). x
[解] (1)列表

人教版高数必修一第4讲:函数的表示方法(学生版)

人教版高数必修一第4讲:函数的表示方法(学生版)

函数的表示方法__________________________________________________________________________________ __________________________________________________________________________________1、 能根据不同需要选择恰当的方法(如图像法、列表法、解析法)表示函数;2、 了解简单的分段函数,并能简单应用;一、函数的常用表示方法简介: 1、解析法如果函数()()y f x x A =∈中,()f x 是用代数式(或解析式)来表达的,则这种表达函数的方法叫做解析法(公式法)。

例如,s =602t ,A =π2r ,2S rl π=,2(2)y x x =-≥等等都是用解析式表示函数关系的。

特别提醒:解析法的优点:(1)简明、全面地概括了变量间的关系;(2)可以通过解析式求出任意一个自变量的值所对应的函数值;(3)便于利用解析式研究函数的性质。

中学阶段研究的函数主要是用解析法表示的函数。

解析法的缺点:(1)并不是所有的函数都能用解析法表示;(2)不能直观地观察到函数的变化规律。

2、列表法:通过列出自变量与对应函数值的表格来表示函数关系的方法叫做列表法。

例如:初中学习过的平方表、平方根表、三角函数表。

我们生活中也经常遇到列表法,如银行里的利息表,列车时刻表,公共汽车上的票价表等等都是用列表法来表示函数关系的.特别提醒:列表法的优点:不需要计算就可以直接看出与自变量的值相对应的函数值。

这种表格常常应用到实际生产和生活中。

列表法的缺点:对于自变量的有些取值,从表格中得不到相应的函数值。

3、图象法:用函数图象表示两个变量之间的函数关系的方法,叫做图像法。

例如:气象台应用自动记录器描绘温度随时间变化的曲线,工厂的生产图象,股市走向图等都是用图象法表示函数关系的。

1【课件(人教版)】第1课时 函数的表示法

1【课件(人教版)】第1课时 函数的表示法

法二:(换元法) 令 x+1=t(t≥1),则 x=(t-1)2(t≥1), 所以 f(t)=(t-1)2+2 (t-1)2=t2-1(t≥1). 所以 f(x)=x2-1(x≥1). (3)f(x)+2f1x=x,令 x=1x, 得 f1x+2f(x)=1x.
于是得到关于 f(x)与 f1x的方程组
(3)消元法(或解方程组法):在已知式子中,含有关于两个不同变量的函数, 而这两个变量有着某种关系,这时就要依据两个变量的关系,建立一个新的 关于这两个变量的式子,由两个式子建立方程组,通过解方程组消去一个变 量,得到目标变量的解析式,这种方法叫做消元法(或解方程组法).
1.(2020·辽源检测)设函数 f11- +xx=x,则 f(x)的表达式为
解析:选 A.法一:令 2x+1=t,则 x=t-2 1.
所以 f(t)=6×t-2 1+5=3t+2,
所以 f(x)=3x+2.
法二:因为 f(2x+1)=3(2x+1)+2,
所以 f(x)=3x+2.
()
3.已知函数 f(x)=x-mx ,且此函数的图象过点(5,4),则实数 m 的值为 ________. 解析:因为函数 f(x)=x-mx 的图象过点(5,4), 所以 4=5-m5 ,解得 m=5. 答案:5
5.已知 f(x)是二次函数,且满足 f(0)=1,f(x+1)-f(x)=2x,求 f(x). 解:因为 f(x)是二次函数,设 f(x)=ax2+bx+c(a≠0), 由 f(0)=1,得 c=1. 由 f(x+1)-f(x)=2x, 得 a(x+1)2+b(x+1)+1-ax2-bx-1=2x.
4.下表表示函数 y=f(x),则 f(x)>x 的整数解的集合是________.

人教版高一年级数学必修课程《函数的表示法》(第一课时)优质教案

人教版高一年级数学必修课程《函数的表示法》(第一课时)优质教案

1.2.2函数的表示法(第一课时)学习目标:1.了解函数的一些基本表示法(列表法、图象法、解析法)2.会根据不同实际情境选择合适的方法表示函数,树立应用数形结合的思想. 学习重点:函数的三种表示方法学习难点:对函数解析法的理解学习过程:(一)导入新课我们前面已经学习了函数的定义,函数的定义域的求法,函数值的求法,两个函数是否相同的判定方法,那么函数的表示方法常用的有哪些呢?这节课我们就来研究这个问题(二)师生互动,新课讲解(1)解析法:用数学表达式表示两个变量之间的函数关系,这种表示方法叫做解析法,这个数学表达式叫做函数的解析式.(2)图象法:以自变量x的取值为横坐标,对应的函数值y为纵坐标,在平面直角坐标系中描出各个点,这些点构成了函数的图象,这种用图象表示两个变量之间函数关系的方法叫做图象法.(3)列表法:列一个两行多列的表格,第一行是自变量的取值,第二行是对应的函数值,这种用表格来表示两个变量之间的函数关系的方法叫做列表法.例1.某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个笔记本需要y元,试用三种表示法表示函数y=f(x).分析:学生思考函数的表示法的规定.注意本例的设问,此处“y=f(x)”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表.本题的定义域是有限集,且仅有5个元素.解:这个函数的定义域是数集{1,2,3,4,5},用解析法可将函数y=f(x)表示为y=5x,x∈{1,2,3,4,5}.用列表法可将函数y=f(x)表示为笔记本数x 1 2 3 4 5 钱数y 5 10 15 20 25用图象法可将函数y=f(x)表示为图1-2-2-1.图1-2-2-1点评:本题主要考查函数的三种表示法.解析法的特点是:简明、全面地概括了变量间的关系;可以通过解析式求出任意一个自变量的值所对应的函数值,便于用解析式来研究函数的性质,还有利于我们求函数的值域;图象法的特点是:直观形象地表示自变量的变化,相应的函数值变化的趋势,有利于我们通过图象来研究函数的某些性质,图象法在生产和生活中有许多应用,如企业生产图,股市走势图等;列表法的特点是:不需要计算就可以直接看出与自变量的值对应的函数值,列表法在实际生产和生活中也有广泛的应用,如银行利率表、列车时刻表等等.但是并不是所有的函数都能用解析法表示,只有函数值随自变量的变化发生有规律的变化时,这样的函数才可能有解析式,否则写不出解析式,也就不能用解析法表示.例如:张丹的年龄n(n∈N*)每取一个值,那么他的身高y(单位:cm)总有唯一确定的值与之对应,因此身高y是年龄n的函数y=f(n),但是这个函数的解析式不存在,函数y=f(n)不能用解析法来表示.注意:①函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等;②解析法:必须注明函数的定义域,否则使函数解析式有意义的自变量的取值范围是函数的定义域;③图象法:根据实际情境来决定是否连线;④列表法:选取的自变量要有代表性,应能反映定义域的特征.例 2.下表是某校高一(1)班三位同学在高一学年度几次数学测试的成绩及班级平均分表:第一次第二次第三次第四次第五次第六次王伟98 87 91 92 88 95张城90 76 88 75 86 80 赵磊68 65 73 72 75 82 班平均分88.2 78.3 85.4 80.3 75.7 82.6 请你对这三位同学在高一学年度的数学学习情况做一个分析.分析:学生思考做学情分析,具体要分析什么?怎么分析?借助什么工具?本题利用表格给出了四个函数,它们分别表示王伟、张城、赵磊的考试成绩及各次考试的班级平均分.由于表格区分三位同学的成绩高低不直观,故采用图象法来表示.做学情分析,具体要分析学习成绩是否稳定,成绩变化趋势.解:把“成绩”y看成“测试序号”x的函数,用图象法表示函数y=f(x),如图1-2-2-3所示.图1-2-2-3由图1-2-2-3可看到:王伟同学的数学成绩始终高于班级平均分,学习情况比较稳定而且成绩优秀; 张城同学的数学成绩不稳定,总是在班级平均分水平上下波动,而且波动幅度较大;赵磊同学的数学学习成绩呈上升趋势,表明他的数学成绩稳步提高.点评:本题主要考查根据实际情境需要选择恰当的函数表示法的能力,以及应用函数解决实际问题的能力.通过本题可见,图象法比列表法和解析法更能直观反映函数值的变化趋势.注意:本例为了研究学生的学习情况,将离散的点用虚线连接,这样便于研究成绩的变化特点.例3.将长为a 的铁丝折成矩形,求矩形面积y 关于一边长x 的函数关系式,并求定义域和值域,作出函数的图象.分析:解此题的关键是先把实际问题转化成数学问题,即把面积y 表示为x 的函数,用数学的方法解决,然后再回到实际中去. 解:设矩形一边长为x,则另一边长为21(a-2x),则面积y=21(a-2x)x=-x 2+21ax. 又⎩⎨⎧>>0,2x -a 0,x 得0<x<2a ,即定义域为(0,2a).由于y=-(x 4a -)2+161a 2≤161a 2, 如图1-2-2-4所示,结合函数的图象得值域为(0,161a 2].图1-2-2-4例4.已知2f(x)+f(-x)=3x+2,则f(x)=________.分析:由题意得⎩⎨⎧+=++=+2,-3x f(x)2f(-x)2,3x f(-x)2f(x)把f(x)和f(-x)看成未知数,解方程即得. (三)课堂练习1.向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系的图象如图1-2-2-5所示,那么水瓶的形状是( )图1-2-2-5 图1-2-2-6答案:B2.2007宁夏银川一模,理14已知f(x x +-11)=2211x x +-,则f(x)=________.分析:可设x x +-11=t,则有x=tt+-11, 所以f(t)=22)11(1)11(1t t t t +-++--=212t t +, 所以f(x)=212x x+.答案:212xx+ 3.已知函数f(x)=273++x x ,写出函数的定义域和值域.(换元法)注意:讨论函数的值域要先考虑函数的定义域,换元后马上写出新元的取值范围 (四)课堂小结:本节课学习了函数的三种表示方法,在具体的实际问题中能够选用恰当的表示法来表示函数. (五)作业:1.车管站在某个星期日保管的自行车和电动车共有3 500辆次,其中电动车保管费是每辆一次0.5元,自行车保管费是每次一辆0.3元.(1)若设自行车停放的辆次数为x,总的保管费收入为y 元,试写出y 关于x 的函数关系式;(2)若估计前来停放的3 500辆次自行车中,电动车的辆次不小于25%,但不大于40%,试求该保管站这个星期日收入保管费总数的范围.2.水池有2个进水口,1个出水口,每个水口进出水的速度如图1-2-2-9甲、乙所示.某天0点到6点,该水池的蓄水量如图1-2-2-9丙所示(至少打开一个水口).图1-2-2-9给出以下三个论断: ①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水;其中一定正确的论断是( )A.①B.①②C.①③D.①②③3.求值域y=x4+ x2-2(六)教学反思:。

高一数学优秀课件《函数的表示法》

高一数学优秀课件《函数的表示法》

掌握用三种方法表示函数
【例4】某种笔记本的单价是5元,买x x 1,2,3,4,5个
笔记本需要y元。试用函数的三种表示法表示函数
解:这个函数的定义域是数集{1,2,3,4,5}
用解析法可将函数y=f(x)表示为 y 5x, x 1,2,3,4,5
用列表法可将函数表示为
笔记本数x 1 2 3 4 5
可以看出: 王伟同学的数学成绩始终高于平均水平,学习情况稳定 且成绩优秀。 张城同学的数学成绩不大稳定,总在班级平均水平上下 波动,且波动幅度较大; 赵磊同学的数学成绩低于班级平均水平,但他成绩在稳步 提高.
例8. 依法纳税是每个公民应尽的义务,个人取得的所得应依照 《中华人
民共和国个人所得税法》向国家缴纳个人所得税 (简称个税).2019年1月
(3)恩格尔系数 (列表法)
我们在初中已经接触过函数的三种表示法:解析法、列表法和图象法. 解析法,就是用数学表达式表示两个变量之间的对应关系,如3.1.1的问题1、2. 列表法,就是列出表格来表示两个变量之间的对应关系,如3.1.1的问题4. 图象法,就是用图象表示两个变量之间的对应关系,如3.1.1的问题3. 这三种方法是常用的函数表示法.
72
75
82
班级平均分 88.2 78.3 85.4 80.3 75.7 82.6
请你对这三人的学习情况进行分析. 思考2: 上述4个函数能用解析法表示吗?表格能否直观地分 析出三位同学成绩高低? 你能用图象法表示吗?
班级 平均
王伟
赵磊 张城
解:为了直观地反映每位同学和班级平均成绩的变化情况, 我们用图象法将表格中的4个函数表示出来,如图。
0.35t 85920, 6600000 t 960000,

人教版必修一1.2.2函数的表示法课件

人教版必修一1.2.2函数的表示法课件
提示:不能.并不是所有的函数都有解析式.
[导入新知]
[化解疑难]
三种表示方法的优、缺点比较
优点
缺点
解 析 法
一是简明、全面地概括了变量 间的关系;二是可以通过解析 式求出任意一个自变量所对应 的函数值
不够形象、直观,而且并 不是所有的函数都可以用 解析式表示
列 表 法
不通过计算就可以直接看出与 自变量的值相对应的函数值
例:求下列函数的解析式: (1)已知f1+x x=1+x2x2+1x,求f(x); (2)已知f( x+1)=x+2 x,求f(x).
解:(1)法一:(换元法) 令t=1+x x=1x+1,得x=t-1 1,则t≠1. 把x=t-1 1代入f1+x x=1+x2x2+1x,得
f(t)=1+ 1t-112 2+
y 0 -1 0 3
8
画图象,图象是抛物线y=x2+2x在-2≤x≤2之间的部分.
由图可得函数的值域是[-1,8].
[类题通法] 1.作函数图象的三个步骤 (1)列表.先找出一些有代表性的自变量x的值,并计算出与 这些自变量相对应的函数值f(x),用表格的形式表示出来. (2)描点.把第(1)步表格中的点(x,f(x))一一在坐标平面上描 出来. (3)连线.用平滑的曲线把这些点按自变量由小到大的顺序连 接起来. [注意] 所选的点越多画出的图象越精确,同时所选的点应 该是关键处的点.
s_t函数图象与故事情节相吻合的是
()
解析:由于兔子中间睡了一觉,所以有一段路程不变,而乌龟的 路程始终在增加且比兔子早到终点,故选B. 答案:B
2.函数y=f(x)的图象如图,则f(x)的定义
域是
()
A.R
B.(-∞,1)∪(1,+∞)

人教版数学八年级下册19.1.2《函数的表示方法》(第2课时)教案

人教版数学八年级下册19.1.2《函数的表示方法》(第2课时)教案

人教版数学八年级下册19.1.2《函数的表示方法》(第2课时)教案一. 教材分析《函数的表示方法》是中学数学中重要的概念之一,对于八年级的学生来说,这是一个新的知识领域。

本节课的内容包括函数的定义、函数的表示方法以及函数的性质。

通过本节课的学习,学生可以掌握函数的基本概念,了解函数的表示方法,并能够运用函数的性质解决实际问题。

二. 学情分析八年级的学生已经具备了一定的数学基础,对于一些基本的数学概念和运算规则有了初步的了解。

但是,学生在学习新的知识时,往往还存在一定的困难,需要教师的耐心引导和讲解。

此外,学生对于实际问题的解决能力还有待提高,需要通过大量的练习来加强。

三. 教学目标1.了解函数的定义和表示方法。

2.掌握函数的性质,并能够运用函数的性质解决实际问题。

3.培养学生的逻辑思维能力和解决实际问题的能力。

四. 教学重难点1.函数的定义和表示方法。

2.函数的性质的理解和运用。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过提出问题,引导学生思考和探索,从而掌握函数的基本概念和性质。

同时,通过案例分析和小组合作,培养学生的实际问题解决能力。

六. 教学准备1.准备相关的教学案例和练习题。

2.准备教学PPT,包括函数的定义、表示方法和性质等内容。

七. 教学过程1.导入(5分钟)通过提出问题,引导学生思考函数的定义和表示方法。

例如,什么是函数?函数如何表示?2.呈现(15分钟)通过PPT展示函数的定义和表示方法。

详细解释函数的定义,以及如何用图像、表格和解析式来表示函数。

3.操练(15分钟)让学生通过练习题来巩固函数的定义和表示方法。

可以选择一些简单的练习题,让学生独立完成,然后进行讲解和解析。

4.巩固(10分钟)通过一些实际问题来巩固函数的性质。

例如,给定一个函数的图像,让学生判断函数的性质。

5.拓展(10分钟)让学生通过小组合作,解决一些复杂的实际问题。

例如,给定一个实际问题,让学生运用函数的性质来解决。

新人教版高中数学必修第一册函数的表示法ppt课件及课时作业

新人教版高中数学必修第一册函数的表示法ppt课件及课时作业

内容索引
一、函数的表示法 二、函数的图象 三、求简单函数的值域
随堂演练 课时对点练

函数的表示法
问题 结合初中所学以及上节课的几个问题,你能总结出几种函数的表 示方法? 提示 解析法:就是用数学表达式表示两个变量之间的对应关系;列表 法:就是列出表格来表示两个变量之间的对应关系;图象法:就是用图 象表示两个变量之间的对应关系.
C.{y|-1≤y≤3}
B.{0,1,2,3} D.{y|0≤y≤3}
由对应关系y=x2-2x得, 0→0,1→-1,2→0,3→3, 所以值域为{-1,0,3}.
1234
3.函数f(x)=x2+21x+2 (x∈R)的值域是
A.[0,1]
B.[0,1)
√C.(0,1]
D.(0,1)
因为x2+2x+2=(x+1)2+1≥1, 所以 0<x+112+1≤1, 所以函数的值域为(0,1].
10.某问答游戏的规则是:共5道选择题,基础分为50分,每答错一道题 扣10分,答对不扣分.试分别用列表法、图象法、解析法表示一个参与者 的得分y与答错题目道数x(x∈{0,1,2,3,4,5})之间的函数关系.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
(1)列表法,列出参赛者得分y与答错题目道数x(x∈{0,1,2,3,4,5})之间 的函数关系为
6.(多选)下列命题中是假命题的是
√A.函数 f(x)= x-2+ 1-x有意义 √B.函数y=2x(x∈N)的图象是一条直线
C.函数是其定义域到值域的对应关系 D.函数y=x2(x≥0)的图象是一条曲线
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

最新人教版高一数学必修1第一章《函数的表示法》教材梳理

最新人教版高一数学必修1第一章《函数的表示法》教材梳理

疱丁巧解牛知识·巧学·升华 一、函数的表示方法表示函数常用的三种方法是解析法、图象法、列表法 . 1.解析法(公式法)用数学表达式表示两个变量之间的对应关系,这个表达式叫做函数的解析表达式,这种表达函数的方法叫做解析法.如y=2x-1,y=x 2-2x-3,y=12-+x x 等. 解析法的优点在于:一是从“数”的方面简明、全面地概括了变量间的数量关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值.解析法是表示函数的一种最重要的方法.但并不是所有的函数都能用解析法去表示. 2.图象法通过函数图象表示两个变量之间的关系的方法.图象法的优点是能够直观形象地表示自变量的变化,相应的函数值的变化趋势也一目了然.可以通过图象来研究函数的某些性质,它从“形”的方面刻画了函数关系.函数的图象不一定是一条连续的曲线,也可以由一些孤立的点、线段等图形构成. 3.列表法通过列出自变量与对应函数值来表达函数关系的方法叫做列表法.例如,火车站的列车时刻表,银行发行的利率表,工厂中每月的产值及利润报表,甚至我们历次考试的成绩一览表等.又例如,新中国成立后共进行了五次人口普查,各次普查得到的人口数据如下表所示.这张表清楚地表达了年份与当年我国总人口(单位:亿)的函数值域为{5.9,6.9,10.1,11.0,12.1}.利用列表法表示的函数也可解决相应的数学问题.列表法也是表示函数的一种方法,它常适合于定义域是有限集的函数,列表时要注意自变量与函数值应对应,所列图表是否是函数的唯一依据仍然是函数的定义. 列表法是表示函数的一种方法,此法的优点是不需计算就可以直接看出与自变量的值相对应的函数值. 二、分段函数 函数⎩⎨⎧>-<<-11,44,110,622x x x 的表达式是分段表示的,即函数与自变量的关系不是只满足一个式子,而是在不同范围内有不同的对应关系,这样的函数关系是分段函数.分段函数是一个函数而不是几个函数.如教材中例5、例6所体现变量之间的函数关系都是分段函数. 分段函数的定义域应为各段上自变量取值的并集,这一点与函数y=x x ++-11的定义域的求法不相同,如函数y=⎪⎩⎪⎨⎧≥<<1,,10,1x x x x的定义域为{x|0<x <1}∪{x|x ≥1}={x|x >0}.作分段函数的图象时,特别注意接点处点的虚实,如函数y=⎪⎩⎪⎨⎧<-=>0,1,0,0,0,1x x x 的图象为(见右上图):分段函数的表示法是解析法的一种形式.函数y=⎩⎨⎧≥-<<-11,44,110,622x x x 不能写成y=22-6x ,0<x <11或y=-44,x ≥11.要点提示 注意此处空半格注意写分段函数定义域时,区间端点应不重不漏.理解分段函数是一种函数,而不是几个函数. 三、函数的图象对于函数y=f (x )(x ∈A ),定义域内每一个x 值都有唯一的y 值与它对应,把这两个对应的数构成的有序实数对(x ,y )作为点P 的坐标,记作P (x ,y ),则所有这些点的集合F 叫做函数y=f (x )的图象. 1.作函数图象的基本步骤 (1)先求函数定义域;(2)化简函数解析式;(3)列表;(4)描点;(5)连线.作图时,应注意抓住函数的特征,如抓住定义域的分界值,图象上的特征点(与x 轴、y 轴的交点等),图象随x 增大的趋势等来辅助作图. 2.带绝对值号的简单函数的图象作该类函数图象的基本方法是:先求函数的定义域,然后化简函数解析式,就是去绝对值号.(1)带一个绝对值号的函数,根据绝对值的意义去绝对值号,如 y=|x-1|=⎩⎨⎧<--≥-.1,1,1,1x x x x(2)带两个或两个以上绝对值号的问题,常用“零点分段法”去绝对值号,从而把函数写成分段函数的形式,然后作图. 如作函数y=|x-1|+|x+2|的简图.令x-1=0,得x=1;令x+2=0,得x=-2.∴-2和1把数轴分成三部分.当x ≤-2时,y=-2x-1;当-2<x <1时,y=3; 当x >1时,y=2x+1.所以,⎪⎩⎪⎨⎧>+<<--≤--1,12,12,3,2,12x x x x x 的图象如右图.要点提示 注意此处空半格(1)绝对值的意义:|a|=⎪⎩⎪⎨⎧<-=>.0,,0,0,0,a a a a a (2)所谓“零点”是指令每一个绝对值分别等于0,求得相应的x 值. (3)可借助函数的图象分析这个函数的性质,例如这个函数的最小值为3. 四、映射一般地,我们有:设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射.由映射的定义可知,上图中(1)(3)两个对应是集合A 到集合B 的映射;(2)不是集合A 到集合B 的映射,因为A 中元素a 在B 中有两个元素e 、g 与之对应,不符合定义中“唯一性”的要求;(4)也不是A 到B 的映射,因为集合A 中的元素b 在集合B 中没有元素与之对应.对于映射f :A →B 来说,与集合A 中的元素x 对应的集合B 中的元素y 叫做x 的象,x 叫做y 的原象.那么,怎样由对应法则找到它的象与原象呢?对于A 到B 的映射而言,集合A 中的每一个元素在集合B 中都有唯一元素与之对应,集合A 中不同的元素在集合B 中可以对应相同的元素,集合B 中的元素可以在A 中有一个或多个元素与之对应,也可无元素与之对应.要点提示 注意此处空半格(1)映射是特殊的对应,对应是两个集合元素之间的一种关系,对应关系可用图示的方法或文字描述等来表示. (2)常选择椭圆内加上元素直观体现f 下元素的对应关系.(3)集合A 到B 的映射,A 、B 必须是非空集合(可以是数集,也可以是其他集合). (4)对应关系有“方向性”,即强调从集合A 到集合B 的对应,它与从集合B 到集合A 的对应关系一般是不同的.(5)A 中元素的象是集合B 的子集. 问题·思路·探究问题 表示函数常用的解析法、列表法、图象法三种方法的优缺点是什么? 思路:考虑三种方法的含义,可通过举例比较.探究: (1)用解析式表示函数关系的优点是:函数关系清楚,容易从自变量的值求出其对应的函数值,便于用解析式来研究函数的性质.中学里研究的函数主要是用解析式表示的函数.缺点是:有些函数很难用解析式表示.(2)用列表法表示函数关系的优点是:不必通过计算就知道当自变量取某些值时函数的对应值.缺点是:函数解析式的体现有时不明显.(3)用图象法表示函数关系的优点是:能直观形象地表示出函数的变化情况.更能体现数形结合的思想.缺点是:变量的值依赖于图象的精度.不利于精确计算. 典题·热题·新题例1 将长为a 的铁丝折成矩形,求此矩形面积y 关于一边长x 的函数关系式,并求定义域和值域,作出函数的图象.思路解析:解此题的关键是先把实际问题转化成数学问题,即把面积y 表示为x 的函数,用数学的方法解决,再回到实际中去. 解:设矩形一边长为x ,则另一边长为21(a-2x ),面积为y=21(a-2x )·x=-x 2+21ax.又⎩⎨⎧>->,02,0x a x 得0<x <2a .由于y=-(x-4a )2+161a 2≤161a 2, 故函数的解析式为y=-x 2+21ax ,定义域为(0,2a ),值域为(0,161a 2).图象如右图所示.深化升华 注意此处空半格解析式是用自变量的多项式来表示因变量的,函数解析式由定义域和对应法则确定,因此,求解析式的关键是明确对应法则,选好自变量.解决此类问题的关键是首先建立目标函数,确定函数的定义域.若是实际问题,除了考虑函数解析式自身的限制条件外,还要考虑到它的实际意义.例 2 据报道,我国目前已成为世界上受荒漠化危害最严重的国家之一,左下图表示我国土地沙化总面积在上个世纪五六十年代、七八十年代、九十年代的变化情况,由图中的相关信息,可将上述有关年代中我国年平均土地沙化面积在右下图中示为_____________.思路解析:本题涉及的数学点只是平均数,事实上,图形上的数据是连续的,而连续的数据的平均数在中学里未学过,要求我们在新情景下获取相关图表中的信息和进行数形转换. 解:分别计算出1950年到1970年,1970年到1990年及1990年到2000年的平均值,只需对两个端点的数据进行计算即可.考虑单位后,则平均值分别为16,21.25,并在上图中表示.如右图:深化升华 注意此处空半格用图象法表示一个函数是数形结合的基础.判断一个图形是不是函数图象的依据仍旧是函数的定义.函数图象的形状与定义域、对应法则有关.定义域确定变量的分布范围,对应法则确定形状.如何从图象中提取有用的信息,把“形”转化成“数”是解决问题的关键. 例3 (经典回放)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额,此项税款按下表分段累加进行计算:某人一月份应交纳此税款26.78元,则他的当月工资、薪金所得介于( ) A.800—900元 B.900—1 200元 C.1 200—1 500元 D.1 500—2 800元思路解析:本题是一道适用列表法表示函数关系的题目,解决此题首先要理解题意,能计算出相应工资的税款的算法,列出分段函数,找到函数值26.78所在的某段函数,求出自变量.本题作为选择题,亦可采用估算法求解. 解法一:(估算法)依题意知,当工人工资为1 300元时,应交税金(1 300-800)×5%=25(元),而该工人实际交税金26.78元>25元,知其工资应超过1 300元.又26.78-25=1.78元,知该工资仅比1 300元多一点,但不会超过1 500元,从而可估算选C. 解法二:(列出分段函数)依题意知,应交税金y 与实际工资x 的函数关系式为y=⎪⎩⎪⎨⎧≤<⨯-+⨯≤<⨯-≤<28001300%,15)1300(%5500,1300800%,5)800(,8000,0x x x x x =⎪⎩⎪⎨⎧≤<-≤<-≤<28001300,1051.0,1300800,4005.0,8000,0x x x x x 即当y=26.78时,有26.78=0.1x-105.∴x=1 317.8元. 答案:C误区警示 注意此处空半格本题中实际问题的数学模型是分段函数,它的对应法则在不同的区间内可能不同,要注意找好不同区间内的解析式.从作出的图象看,它是一个阶梯函数.例4 已知 f (x )=⎪⎩⎪⎨⎧<=>,0,0,0,1,0,2x x x x (1)画出函数的图象;(2)根据已知条件分别求f(1)、f(-4)、f[f(-4)]和f[f[f(-4)]]的值.思路解析:题设中给出的函数是分段函数,注意在不同的区间应用不同的关系式.本题中的关系式都是常见的初等函数的关系式,因而可以利用常见函数的图象知识来作图. 解:(1)函数的图象如右图所示:(2)f(1)=12=1; f(-4)=0;f[f(-4)]=f(0)=1; f[f[f(-4)]]=f(1)=12=1.例5 作出下列各函数的图象: (1)y=1-x ,x ∈Z ;(2)y=2x 2-4x-3,0≤x <3; (3)y=|1-x|;(4)y=⎩⎨⎧<≤-+≤≤.01,1,10,2x x x x思路解析:(1)定义域为Z ,所以图象为离散的点.(2)定义域不是R ,因此图象不是完整的抛物线,而是从上面截取的一部分.(3)先根据绝对值的定义去掉绝对值号,写成y=⎩⎨⎧<-≥-.11,11x xx x (4)这个函数图象由两部分组成.当0≤x ≤1时,为抛物线y=x 2的一段;当-1≤x <0时,为直线y=x+1上的一段. 答案:深化升华 注意此处空半格作函数图象,首先要明确函数定义域,其次明确函数图象是点、线段或直线,体会定义域对图象的控制作用.处理好端点处或x=0时的情况.作图时,先不受定义域限制作出完整图象,然后再截取.例6 设f :A →B 是A 到B 的一个映射,其中A=B={(x ,y )|x ,y ∈R },f :(x ,y )→(x-y ,x+y ),求A 中元素(-1,2)的象和B 中元素(-1,2)的原象.思路解析:这是一个映射的问题,由已知(x ,y )的象为(x-y ,x+y ),即确定了对应法则. 解:先求A 中元素(-1,2)的象.令x=-1,y=2,由题意得x-y=-1-2=-3, x+y=-1+2=1,所以(-1,2)的象为(-3,1);再求B 中元素(-1,2)的原象.令⎩⎨⎧=+-=-,2,1y x y x 解得⎪⎪⎩⎪⎪⎨⎧==.23,21y x所以(-1,2)的原象是(21,23). 深化升华 注意此处空半格映射是一种特殊的对应,函数是一种特殊的映射. 例7 下列对应是A 到B 的映射的是( ) A.A=N *,B=N *,f :x →|x-3|B.A=N *,B={-1,1,-2},f :x →(-1)x xC.A=Z ,B=Q ,f :x →x3 D.A=N *,B=R ,f :x →x 的平方根思路解析:判定一个对应是否是映射,关键是看是否符合映射的定义,若要判定不是映射只要举一反例即可.对于A ,由于A 中元素3在法则f 作用下其与3的差的绝对值,在B 中找不到元素与之对应.对于B ,对任意的正整数x ,所得(-1)x 均为1或-1;都在集合B 中有唯一的1或-1与之对应,符合映射定义.对于C ,0在f 下无意义.对于D ,对正整数,在实数集R 中有两个平方根与之对应,不满足映射概念,所以该对应不是映射. 答案:B。

(新)人教版高中数学必修一1.2.2《函数的表示法》课件(共23张PPT)

(新)人教版高中数学必修一1.2.2《函数的表示法》课件(共23张PPT)

的一种“程序”或“方法”.因此要把“2x + 1”及“ x + 1”看成一个整体来求解.
1 1 (2)设f( +1)= 2-1,则f(x)=________. x x (3)若对任意x∈R,都有f(x)-2f(-x)=9x+2,则f(x)= ________.
[答案]
(1)D (2)x2-2x(x≠1)
6.(2012· 全国高考数学文科试题江西卷)设函数f(x)= x2+1 x≤1 2 ,则f(f(3))=( x>1 x 1 A.5 2 C. 3 B.3 13 D. 9 )
[答案] D
7.已知函数f(x)=
2 x -4,0≤x≤2, 2x,x>2,
,则f(2)=
2.作图时忘记去掉不在函数定义域内的点 [例5] 数的值域. [错解]
x,-1≤x≤1, 由题意,得y= -x,x<-1或x>1.
x|1-x2| 画出函数y= 2 的图象,并根据图象指出函 1-x
[例 5]
(1)已知 f(x)=x2,求 f(2x+1);
(2)已知 f( x+1)=x+2 x,求 f(x). 1 (3)设函数 f(x)满足 f(x)+2f(x )=x (x≠0),求 f(x). [分析] 我们前面指出,对应法则“f”实际上是对“x”计算
5.(山东冠县武的高2012~2013月考试题)已知函数f(x)
x+1x≥0 = fx+2x<0
则f(-3)的值为( B.-1 D.2
)
A.5 C.-7
[答案] D
如图,在边长为4的正方形ABCD的边上有一点P,沿折 线BCDA由点B(起点)向点A(终点)运动,设点P运动的路程为 x,△APB的面积为y. (1)求y关于x的函数关系式y=f(x); (2)画出y=f(x)的图象; (3)若△APB的面积不小于2,求x的取值范围.

人教版八年级下期(教案).1.2函数的表示方法

人教版八年级下期(教案).1.2函数的表示方法
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解函数表示方法的基本概念。列表法、解析式法和图象法是描述两个变量之间关系的三种常见方式。它们在数学建模和问题解决中起着关键作用。
2.案例分析:接下来,我们来看一个具体的案例。以一次函数为例,通过给定的两点坐标,推导出函数的解析式,并绘制出相应的图象,展示如何在实际问题中使用这些方法。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了函数的表示方法的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些方法的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

二、核心素养目标
本节课的核心素养目标致力于培养学生的以下能力:
1.数学抽象:通过分析具体问题,抽象出函数的概念,理解并运用不同表示方法表达函数关系,提高学生的数学抽象素养。
2.逻辑推理:培养学生运用逻辑思维,从列表、解析式到图象,探究并理解函数表示方法之间的内在联系,提升逻辑推理素养。
3.数学建模:学会运用所学知识,建立实际问题中的函数模型,通过图象、解析式等方法解决具体问题,增强数学建模素养。
在实践活动方面,我认为整体上是成功的。学生们通过分组讨论和实验操作,对函数表示方法有了更深的理解。但我也观察到,有些小组在实验操作时遇到了一些技术上的问题,比如如何准确地在坐标系上绘制点。这提醒我,在未来的课程中,可能需要提前给学生一些额外的指导,确保他们能够顺利进行实验。
最后,我意识到在总结回顾环节,我可能需要更多地关注学生的反馈。虽然我尽力提供了一些关键点,但我觉得可以更好地利用这个时间来让学生们自己总结他们学到了什么,这样不仅能加深他们的记忆,还能帮助我发现他们可能仍然存在的误解。

函数的表示法人教版高中必修第一册

函数的表示法人教版高中必修第一册
2a+2c=0, c=-1,
∴f(x)=Βιβλιοθήκη 2-2x-1.22课前预习
课堂互动
素养达成
规律方法 待定系数法求函数解析式 已知函数的类型,如是一次函数、二次函数等,即可设出f(x)的解析式,再根据 条件列方程(或方程组),通过解方程(组)求出待定系数,进而求出函数解析式.
23
课前预习
课堂互动
素养达成
角度3 根据函数图象求解析式 【例2-3】 根据函数f(x)的图象写出它的解析式.
15
课前预习
课堂互动
素养达成
【训练1】 将一条长为10 cm的铁丝剪成两段,并以每一段铁丝的长度为周长各 做一个正方形.试用多种方法表示两个正方形的面积之和S与其中一段铁丝长 x(x∈N*)的函数关系. 解 这个函数的定义域为{x|1≤x<10,x∈N*}. ①解析法:S=4x2+104-x2. 将上式整理得 S=18x2-54x+245,x∈{x|1≤x<10,x∈N*}.
6.若f(x+1)=3x+2,则f(x)=3x-1.( √ )
8
课前预习
课堂互动
素养达成
[微训练]
1.函数f(x)=3x-1,x∈[1,5]的图象是( )
A.直线
B.射线
C.线段
D.离散的点
解析 ∵f(x)=3x-1为一次函数,图象为一条直线,而x∈[1,5],则此时图
象为线段.故选C.
答案 C
9
素养达成
3.函数的图象一定是其定义域上的一条连续不断的曲线.( × ) 提示 反例:f(x)=1x的图象就不是连续的曲线.
4.分段函数是一个函数,且其图象一定是间断的.( × ) 提示 图象可间断,也可连续.
5.函数f(x)=x+1与g(x)=x+1(x∈N)的图象相同.( × ) 提示 两函数的定义域不同,则图象不同.

3.1.2函数的表示法课件(人教版)

3.1.2函数的表示法课件(人教版)
法请在图 2 中表示,本题中的单位长度请自己定义且标明)
试一试
(1) f x , g x 的图象如下图所示:
试一试
2
x

0
(2)当
时, x 1 x 1 ,则 m x f x x 1 ;
当 0 x 1 时, x 1 x 1 ,则 m x g x x 1 ;
由绝对值的概念,知 y
2 x, x 2,
所以,函数 = − 2 的图像如下
学以致用
请你画出函数 = 2 − 1 的图像
师生共研
例 6 给定函数 f x x 1 , g x x 1 , x R ,
2
(1)在同一直角坐标系中画出函数 f x , g x 的图象;
表示法
优点
1.简明全面概括了变量间的关系
解析法
图像法
1.不够形象、直观
2.通过解析式求出任意一个自变量的值所
对应的函数值
列表法
缺点
2.不是所有函数都有解析式
不需要计算,可以直接看出与自变量对应
只能表示自变量取较少
的函数值
的有限值时的对应关系
直观形象地表示函数的变化情况
近似得到自变量所对应的函数值
做一做


(2)x R ,用 M x 表示 f x ,g x 中的较大者,记为 M x max f x , g x .


例如,当 x 2 时, M 2 max f 2 , g 2 max 3,9 9 .
请分别用图象法和解析法表示函数 M x .
师生共研
由 x 1 x 1 ,得 x x 1 0 .

函数的表示法(第一课时)

函数的表示法(第一课时)

3.1.2函数的表示法(第一课时)(人教A版普通高中教科书数学必修第一册第三章)一、教学目标1.掌握函数的三种表示方法:列表法、图象法、解析法;2.了解分段函数,并能简单应用;3.会用描点法画出一些简单函数的图象,并应用函数的图象解决问题.二、教学重难点1.进一步理解函数概念,深化对具体函数模型的认识;2.渗透数形结合思想,培养学生发展逻辑推理,应用直观想象.三、教学过程1.对函数表示方法的认知1.1回望教材引例,了解函数常用表示方法【教材引例】再次阅读教材3.1.1(P60-61)四个引例问题1:这些实际的函数问题是如何表示的?【预设的答案】解析式,图象表示,表格表示.【设计意图】使学生了解针对不同的实际情境采用适当的函数表示法,便于直观或深入的研究,解决问题,学有用的数学.【活动预设】引导学生归纳概括出函数常见的三种表示法.问题2:(1)比较函数的三种表示法,它们各自的特点是什么? (2)所有函数都能用解析法表示吗?请举出实例加以说明.【设计意图】让学生体会总结三种表示法的各自优点与不足,为比较三种表示法提供机会;培养学生观察、总结、表达能力.【活动预设】(1)鼓励学生举生活中的函数例子,并阐述可以用哪种函数表示法,学生间可以讨论,教师可以引导.使学生灵活选用函数表示法来研究函数,进而使他们认识到三种表示法之间相辅相成,渗透数形结合思想.1.2归纳提炼,形成共识在学生举例、讨论的基础上,师生共同归纳概括:(1)“解析法”就是用数学表达式表示两个变量之间的对应关系.优点:一是简明、全面地概括了变量间的对应关系;二是可以通过解析式求出任意一个自变量所对应的函数值.缺点:有些实际问题中的函数关系很难用解析式表示或根本不存在解析式. 中学阶段研究的函数,主要是能够用解析法表示的函数. (2)“图象法”就是用“图形”表示两个变量之间的对应关系.优点:能直观形象的表示出随着自变量的变化,相应的函数值变化的趋势,有利于我们研究函数的某些性质,这是数形结合的好处.缺点:感性观察有时不够准确,画面局限性大.(3)“列表法”就是列出表格来表示两个变量之间的对应关系.优点:不需要计算就可以直接看出与自变量的值相对应的函数值 . 缺点:只能表示有限个元素时的函数关系且元素较多时也不方便. 【设计意图】使学生们在自己的理解基础上统一认识. 2.初步应用,理解概念例1某种笔记本的单价是0.5元,买{}()1,2,3,4,5x x ∈个笔记本需要y 元.试用函数的三种表示法表示函数()y f x =.【预设的答案】这个函数的定义域是{}1,2,3,4,5 解析式法:{}51,2,3,4,5y xx =∈列表法图象法【设计意图】(1)使学生体会到函数的三种表示法并不是相互独立的,它们可以相互转化,是有机的一个整体.进一步体会数形结合在理解、研究函数中的重要作用.(2)使学生感受到函数图象既可以象初中学习过的一、二次函数那样是连续的曲线 ,也可以是离散的点等.例2 画出函数y x =的图象 .【预设的答案】由绝对值的概念,我们有,0,0x x y x x x -<⎧==⎨≥⎩,所以函数y x =的图象如图所示问题3:利用函数的定义判断这是一个函数还是两个函数? 【设计意图】(1)深化函数定义的理解,使学生认识函数解析式的多样性,函数图象的多样性. (2)学生已经熟知,y x y x ==-所表达的数量间关系,使学生体会由数到形的过程. 教师讲授:(1)y x =是一个函数,对于定义域内的任意一个x ,都有唯一确定的函数值与之对应.(2)一些函数,在它的定义域中,对于自变量x 不同的取值范围,对应的关系式也不同,这样的函数我们通常称为分段函数.分段函数是一个函数,而不是几个函数,其定义域为各段自变量取值范围的并集,值域是各段值域的并集.分段函数的解析式是用左大括号将各段的表达式括起来,并分别注明各部分的自变量的取值情况.例3 给定函数()2()1,()1,f x x g x x x R =+=+∈. (1)在同一直角坐标系中画出函数(),()f x g x 的图象;(2)x R ∀∈,用()M x 表示(),()f x g x 中的较大者,记为()()(){}max ,M x f x g x =.例如,当2x =时, ()()(){}{}2max 2,2max 3,99M f g ===.请分别用图象法和解析法表示函数()M x .【预设的答案】(1)在同一直角坐标系中画出函数(),()f x g x 的图象(2)由图中函数取值的情况,结合函数()M x 的定义,可得函数()M x 的图象 由()211x x +=+,得()10x x +=,解得1x =-或0x =结合图象得出函数()M x 的解析式为()()()221,11,101,0x x M x x x x x ⎧+≤-⎪⎪=+-<≤⎨⎪+>⎪⎩【设计意图】(1)此例题是从形到数的过程,充分利用图象特征,可以简化代数运算,可以引导学生从纯代数运算,比较大小的角度去函数的解析式,通过对比进一步加强学生的数形结合观念与直观想象能力.(2)通过对()()(){}max ,M x f x g x =这种符号化表示的理解,提高学生的抽象思维能力. 3.归纳小结,突出重点(1)表示函数的方法有解析法、列表法和图象法三种,掌握分段函数的概念和解析式表达形式;(2)函数的图象通常是一段或几段光滑的曲线,但有时也可以由一些孤立的点或几段线段组成,必须根据定义域画图,利用描点法或图象变换法.(3)数形结合相辅相成,为我们研究函数的相关问题提供便利,直观快捷. 【设计意图】(1)梳理本节课的学习内容;(2)鼓励学生积极探索新知,为下节课函数表示法的实际应用提供必要性 . 四、课外作业1.画出函数2-=x y 的图象.(你想到了几种办法?都尝试一下吧!)2.给定函数,,)1()(,1)(2R x x x g x x f ∈-=+-= (1)画出函数)(),(x g x f 的图象;(2),R x ∈∀用()m x 表示)(),(x g x f 中的较小者,记为 {}()min (),().m x f x g x = 请分别用图象法和解析法表示函数()m x .3.已知函数()f x 的图象如图所示,其中点,A B 的坐标分别为()0,3,()3,0 则()()0f f =( )A .2B .4C .0D .34.某学生离家去学校,一开始跑步前进,跑累了再走余下的路程.下列图中纵轴表示离校的距离,横轴表示出发后的时间,则较符合该学生走法的是( )5.下表表示函数()y f x =,则()f x x >的整数解的集合是________.x05x << 510x ≤< 1015x ≤< 1520x ≤<()y f x = 4 6 8 10。

人教版八年级数学下册课件:函数的表示法

人教版八年级数学下册课件:函数的表示法

人教版八年级数学下册课件:19.1.2 第2课时 函数的表示法
3.“龟兔赛跑”这则寓言而乌龟一直坚持爬行 最终赢得比赛,如图所示的函数图象可以体现这一故事的是( B )
人教版八年级数学下册课件:19.1.2 第2课时 函数的表示法
人教版八年级数学下册课件:19.1.2 第2课时 函数的表示法
人教版八年级数学下册课件:19.1.2 第2课时 函数的表示法
5 y/m
4 3 2 1
O 1 2 3 4 5 6 7 8 x/h
解:可以看出,这6个点 在同一直线上 ,且每小时水位 上升0.3m . 由此猜想,在这个时间段中水位可能是以同一速度均匀上升的.
人教版八年级数学下册课件:19.1.2 第2课时 函数的表示法
4.如图,△ABC的边BC的长是8,BC边上的高AD′是4,点D 在BC边上运动,设BD的长为x,请写出△ACD的面积y与x之间 的函数关系式:___y_=__1_6_-__2.x (不必写自变量的取值范围)
人教版八年级数学下册课件:19.1.2 第2课时 函数的表示法
人教版八年级数学下册课件:19.1.2 第2课时 函数的表示法
人教版八年级数学下册课件:19.1.2 第2课时 函数的表示法
解:(1)声速 气温 气温 声速 气温
人教版八年级数学下册课件:19.1.2 第2课时 函数的表示法
人教版八年级数学下册课件:19.1.2 第2课时 函数的表示法
(3)据估计这种上涨规律还会持续2 h,预测再 过2 h水位高度将达到多少m. 如果水位的变化规律不变,按上述函数预测,再持 续2小时,水位的高度: 5.1m . 此时函数图象(线段AB)向 右 延伸到对应的位置, 这时水位高度约为 5.1 m.
人教版八年级数学下册课件:19.1.2 第2课时 函数的表示法

人教版高中数学必修第一册函数的表示方法教案(二)

人教版高中数学必修第一册函数的表示方法教案(二)

函数的表示方法(二)三维目标 一、知识与技能1.了解实际背景的图象与数学情境下的图象是相通的.2.了解图象可以是散点.3.图象是数形结合的基础.4.了解映射的概念及表示方法. 二、过程与方法1.自主学习,了解作图的基本要求.2.探究与活动,明白作图是由点到线,由局部到全体的运动变化过程.3.会判断一个对应是不是映射.4.重视基础知识的教学、基本技能的训练和能力的培养;启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造性地解决问题;通过教师指导发现知识结论,培养学生的抽象概括能力和逻辑思维能力.三、情感态度与价值观1.培养辩证地看待事物的观念和数形结合的思想.2.使学生认识到事物间是有联系的,对应、映射是一种联系方式.3.激发学生学习数学的兴趣和积极性,陶冶学生的情操,培养学生坚忍不拔的意志,实事求是的科学学习态度和勇于创新的精神.教学重点 函数的作图. 教学难点如何选点作图,映射的概念. 教具准备多媒体课件、投影仪、打印好的材料. 教学过程一、创设情景,引入新课师:日常生活中我们见过许多曲线图象.让我们一起来看一看〔多媒体投影〕: 〔图象1〕股市走势图. 〔图象2〕产生的震动波曲线. 〔图象3〕医用心电图的波线.师:初中我们已研究过直线、反比例及二次函数的图象,请大家作出y =2x -1,y =x1,y =x 2的图象.〔学生在下面自己作图,老师巡视〕我们可以发现这些线的图象都有一个共同的特点,就是由满足一定条件的点构成的,具体地说就是x 作为横坐标,y 作为纵坐标描成的点,所有的点即构成该曲线的图象.二、讲解新课一般而言,如何作出y =f 〔x 〕的图象呢?我们将自变量的一个值x 0作为横坐标就得到坐标平面上的一个点〔x 0,f 〔x 0〕〕,自变量取遍函数定义域A 的每个值时,就得到一系列这样的点,所有这些点组成的集合〔点集〕为{〔x ,y 〕|y =f 〔x 〕,x ∈A },这些点组成的曲线就是函数y =f 〔x 〕的图象.可从以下几个方面加深对函数图象的理解:画函数的图象,不仅要依据函数的解析式,而且还必须考虑它的定义域.两个用不同的解析式表示的函数,只有在对应关系相同、定义域相同的条件下,才能是相同的函数,才能有相同的图象.由函数的图象的定义知道,点的集合{〔x ,y 〕|y =f 〔x 〕,x ∈A }是函数的图象,因此从理论上讲,用列表描点法总能作出函数的图象,但是不了解函数本身的特点,就无法了解函数图象的特点,如二次函数的图象是抛物线,如果不知道抛物线的顶点坐标和存在着对称轴,盲目地列表描点是很难将图象的特征描绘出来的.函数的图象是函数的重要表示方法,它具有明显的直观性,以后可以看到,通过函数的图象能够掌握函数重要的性质.反之,掌握好函数的性质,将有助于正确地画出函数的图象.我们知道函数的图象是由点集构成的,如何作图即如何选点呢?我们看一看下面的一些例题. [例1] 试画出以下函数的图象:〔1〕f 〔x 〕=x +1〔x ∈{1,2,3,4,5}〕; 〔2〕f 〔x 〕=〔x -1〕2+1,x ∈[1,3〕. 解:〔1〕我们先列表再描点y3 4 56-1-2-3-4〔1〕y-3-4〔2〕f 〔x 〕=x +1的图象?生:仅需把图〔1〕的散点连结起来构成一条直线就是f 〔x 〕=x +1的图象,如图〔2〕.师:对,在初中我们就研究过一次函数的图象,它表示一条直线,所以今后我们作一次函数的图象仅需作出其两点,然后再连成一条直线即可.〔2〕师:这是一个什么曲线? 生:抛物线.师:是一条完整的抛物线吗? 生:好像不是. 师:为什么?生:因为x ∈[1,3〕,所以x 的取值受限制.师:对,这个函数的图象与抛物线f 〔x 〕=〔x -1〕2+1有联系,它是其中一段,为了能够作出其图象,我们先作出抛物线f 〔x 〕=〔x -1〕2+1的图象,大家自己动手作出该函数的图象,用虚线表示.〔一会儿后〕请生甲回答如何作出其图象的.〔同时投影其所得的图象〕生甲:先作出顶点〔1,1〕,再作出两点〔2,2〕、〔3,5〕,然后根据抛物线的对称轴是x =1,作出〔2,2〕、〔3,5〕关于xf 〔x 〕=〔x -1〕2+1的图象.〔如图〔3〕〕y-1-2-3-4〔3〕师:生甲同学通过选关键点顶点,再结合二次函数的对称性取另外两点作出其关于对称轴的对称点,这样得到5点,最后用圆滑的曲线由左向右顺次连结这些点.这个方法是通常作二次函数的方法.这种方法提醒我们对一些熟知的函数要作出其图象仅需要选一些特征点及辅助点,然后就可以得出其图象.这样要作出f 〔x 〕=〔x -1〕2+1,x ∈[1,3〕,仅需要在f 〔x 〕=〔x -1〕2+1的虚线图象上取x ∈[1,3〕的一段用实线描出,但端点〔3,5〕处用空心点表示.〔如图〔4〕〕y-1-2-3-4〔4〕[例2] 作出函数y =|x -2|〔x +1〕的图象. 分析:显然直接用函数的解析式列表描点有些困难,除去对其函数性质分析外,我们还应想到对解析式进行等价变形.解:〔1〕当x ≥2,即x -2≥0时,y =〔x -2〕〔x +1〕=x 2-x -2=〔x -21〕2-49. 当x <2,即x -2<0时,y =-〔x -2〕〔x +1〕=-x 2+x +2=-〔x -21〕2+49,所以y =⎪⎪⎩⎪⎪⎨⎧<+--≥--.2,49)21(,2,49)21(22x x x x这是分段函数,每段函数图象可根据二次函数图象作出.〔如图〔5〕〕〔5〕方法引导:作不熟悉的函数图象,可以变形成基本函数再作图,但要注意变形过程是否等价,要特别注意x、y的变化X围.因此必须熟记基本函数的图象.例如:一次函数、反比例函数、二次函数等基本函数的图象.函数是“两个数集间的一种确定的对应关系〞.当我们将数集扩展到任意的集合时,就可以得到映射的概念.例如,亚洲的国家构成集合A,亚洲各国的首都构成集合B,对应关系f:国家a对应于它的首都b.这样,对于集合A中的任意一个国家,按照对应关系f,在集合Bf:A→B称为映射.设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射.在我们的生活中,有很多映射的例子,例如,设集合A={x|x某场电影票上的},集合B={x|x是某电影院的座位号},对应关系f:电影票的对应于电影院的座位号,那么对应f:A→B是一个映射.[例3] 教科书P26例7.本例中的〔1〕〔2〕是以后经常用到的映射,教学时应引导学生认真理解.对于〔3〕,还可以把“内切圆〞换成“外接圆〞让学生思考.对于〔4〕,可以与本例后的“思考〞进行比较,让学生进一步体会映射是讲顺序的,即f:A→B与f:B→A是不同的,并且,它们中可以一个是映射而另一个不是映射,也可以两个都是映射或两个都不是映射.在此基础上归纳出映射概念值得注意的几点:〔1〕函数推广为映射,只是把函数中的两个数集推广为两个任意的集合;〔2〕对于映射f:A→B,我们通常把集合A中的元素叫原象,而把集合B中与A中的元素相对应的元素叫象.所以,集合A叫原象集,集合B叫象所在的集合〔集合B中可以有些元素不是象〕.〔3〕映射只要求“对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应〞,即对于A中的每一个原象在B中都有象,至于B中的元素在A中是否有原象,以及有原象时原象是否唯一等问题是不需要考虑的.〔4〕用映射刻画函数的定义可以这样表达:设A、B都是非空的数集,那么A到B的映射f:A→B就叫做A到B的函数,记作y=f〔x〕.其中x∈A,y∈B.原象集合A叫做函数y=f〔x〕的定义域,象集合C叫做函数y=f〔x〕的值域.很明显,C B.[例4] 集合A={1,2,3,k},B={4,7,a4,a2+3a},且a∈N,k∈N,x∈A,y∈B,映射f:A→B,使B中元素y=3x+1和A中元素xa及k的值.方法引导:集合A中元素1,2,3在对应法那么的作用下,分别得到象4,7,10,关键是集合B中谁和10对应.解:∵B中元素y=3x+1和A中元素x对应,∴A中元素1的象是4,2的象是7,3的象是10.对于集合B而言能与10对应的元素有两种情况:a4=10或a2+3a=10.∵a∈N,∴a2+3a-10=0得a=-5〔舍去〕或a=2.当a=2时,a4=16.由3k+1=16得k=5.∴a=2,k=5为所求.A 集合中只有两个的元素,此时应该考虑四种对应关系.然后用条件和集合的性质加以排除.此题将集合与映射两个概念同时考查,有一定的新意.三、课堂练习1.根据所给定义域,画出函数y =x 2-2x +2的图象. 〔1〕x ∈R ; 〔2〕x ∈〔-1,2]; 〔3〕x ∈〔-1,2〕且x ∈Z . 答案:〔1〕 〔2〕〔3〕A 到集合B 的映射,哪些不是,为什么? 〔1〕A =B =N *,对应关系f :x →y =|x -3|.〔2〕A =R ,B ={0,1},对应关系f :x →y =⎩⎨⎧,0,1.0,0<≥x x〔3〕A =B =R ,对应关系f :x →y =±x .〔4〕A =Z ,B =Q ,对应关系f :x →y =x1. 〔5〕A ={0,1,2,9},B ={0,1,4,9,64},对应关系f :a →b =〔a -1〕2. 答案:〔1〕对于A 中的3,在f 作用下得0,但0∉B ,即3在B 中没有象,所以不是映射. 〔2〕对于A 中任意一个非负数都有唯一象1,对于A 中任意一个负数都有唯一象0,所以是映射. 〔3〕集合A 中的负数在B 中没有元素与之对应,故不是映射. 〔4〕集合A 中的0在B 中没有元素和它对应,故不是映射.〔5〕在f 的作用下,A 中的0,1,2,9分别对应到B 中的1,0,1,64,所以是映射. 四、课堂小结1.本节学习的数学知识:函数的图象、函数图象的作法、作函数图象的要素、映射的概念. 2.本节学习的数学方法:定义法、数形结合与分类讨论的思想方法、归纳与发散的思想、思维的批判性. 五、布置作业1.画出以下函数的图象.〔1〕y =〔-1〕x ,x ∈{0,1,2,3}; 〔2〕y =x -|1-x |;〔3〕y =xx x -+||)21(0.A.y 轴所示的函数表达式为x =0B.y =x 〔x <0〕是定义域为空集的函数f 是从集合A 到集合B 的映射,那么A 中每一元素在B 中都有象 f 是从集合A 到集合B 的映射,那么B 为A 中元素的象的集合M ={x |0≤x ≤6},P ={y |0≤y ≤3},那么以下对应关系中,不能看作从M 到P 的映射的是 A.f :x →y =21x B.f :x →y =31x C.f :x →y =x D.f :x →y =61x 板书设计1.2.2 函数的表示法〔2〕作法 注意点 例1 例2映射的定义 对映射的几点说明 例3 例4 课堂练习 课堂小结。

八年级(人教版)函数知识点总结

八年级(人教版)函数知识点总结

八年级(人教版)函数知识点总结
1. 函数的定义和特点
- 函数是指两个变量之间的一种特殊关系。

通常用符号“y=f(x)”表示。

- 函数的特点包括单值性、对应性和确定性。

2. 函数的表示方法
- 表达法:y=f(x)
- 函数图像法:用图像表示函数的变化规律
- 函数表格法:通过表格列出函数的输入和输出值
3. 函数的分类
- 一次函数:y=ax+b,其中a和b为常数,a不等于0
- 二次函数:y=ax^2+bx+c,其中a、b和c为常数,a不等于0 - 反比例函数:y=k/x,其中k不等于0
- 正比例函数:y=kx,其中k不等于0
4. 函数的图像和性质
- 一次函数的图像为一条直线,斜率决定了函数的增减性。

- 二次函数的图像为一条抛物线,开口方向和开口大小由二次项的系数决定。

- 反比例函数的图像为一条曲线,通过原点,并且随着x的增大,y的值逐渐减小。

- 正比例函数的图像为一条经过原点且与x轴平行的直线。

5. 函数的应用
- 函数广泛应用于数学和实际生活中的问题求解。

- 函数可以描述物体的运动规律、变化趋势、关系等。

以上是八年级(人教版)函数知识点的简要总结,希望对您有所帮助。

函数的表示法课件-高一上学期数学人教A版(2019)必修第一册

函数的表示法课件-高一上学期数学人教A版(2019)必修第一册
(3)列表法:用列出的表格来表示两个变量之间的对应关系. 例如:问题4中的表格
例1. 某种笔记本的单价是5元,买 x(x {1,2,3,4,5}) 个笔记本需要 y 元. 试用函数的三种表示法表
示函数 y=f(x) . 解:这个函数的定义域是数集{1,2,3,4,5}.
用解析法可将函数 y=f(x) 表示为 y=5x,x {1,2,3,4,5}.
解:为了直观地反映每位同学和班级平均成绩的变化情况,我们用图 象法将表格中的4个函数表示出来,如图:
可以看出: 王伟同学的数学成绩始终高于平均水平, 学习情况稳定且成绩优秀。 张城同学的数学成绩不大稳定,总在班 级平均水平上下波动,且波动幅度较大。 赵磊同学的数学成绩低于班级平均水平, 但他成绩在稳步提高。
(1)画出函数 f (x), g(x) 的图象.
(2)x R,用m(x)表示f (x), g(x)中的较小者,记为m(x) min{ f (x), g(x)},
请分别用图象法和解析法表示函数 m(x).
解:(1)f (x) x 1 的图象如图(1);g(x) (x 1)2 的图象如图(2).
所以,在同一直角坐标系中函数f ( x), g( x) 的图象为:
(2)由图象可知,函数M(x)的解析式为:
(x 1)2, x 1,
M
(x)
x
1,1
x
0,
(x
1)2 ,
x
0.
另:f (x) g(x)
(x 1) (x 1)2= x(x 1)
-1 0
x
练6. 给定函数 f (x) x 1, g(x) (x 1)2 , x R,
(2)x R,用M (x)表示f (x), g(x)中的较大者,记为 M (x) max{ f (x), g(x)}.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的表示法(2课时)
一.教学目标
1.知识与技能
(1)明确函数的三种表示方法;
(2)会根据不同实际情境选择合适的方法表示函数;
(3)通过具体实例,了解简单的分段函数及应用.
2.过程与方法:
学习函数的表示形式,其目的不仅是研究函数的性质和应用的需要,而且是为加深理解函数概念的形成过程.
3.情态与价值
让学生感受到学习函数表示的必要性,渗透数形结合思想方法。

二.教学重点和难点
教学重点:函数的三种表示方法,分段函数的概念.
教学难点:根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.
三.学法
学法:学生通过观察、思考、比较和概括,从而更好地完成本节课的教学目标.
四.学习流程
(一)、知识连线
1、函数的三种表示法:__________ , __________ , __________ 。

2、什么是分段函数?分段函数表示的是_____个函数
3、设A 、B 是两个非空的_____,如果按照某种确定的_________,使对于集合A 中的___________,在集合B 中都有___________和它对应,那么就称对应f :A →B 为_____________的一个映射。

(观察:映射与函数的关系)
(二)、知识演练
4、阅读分析课文中例3、4、
5、
6、7
5、练习课本P23第1,2,4题
6、 已知f ( x )= 求f {f [ f (
3
1 ) ]}的值
7、已知f ( x +1)=2x 2-4x ,求f ( x )
8、设f (
11+x )=112-x
,则f ( x )= __________ , f ( -3 )= _______ x 1{
2X (0<x <1) (x ≥1)
9、若f ( x )= a x 3+cx x
b +,其中a 、b 、
c 都是常数,且f (1)=10,则f ( -1)= _______ 10、画出下列函数的图像:
(1)
(2)y=|x-2| (3)y=x
|x |+
x
11、设集合A={a ,b ,c },B={1,0},则从A 到B 的映射共有______个
12、在给定A →B 的映射f :(x ,y )→(x+y ,x-y )下,集合A 中的元素(2,1)对应着B 中的元素______
(三)、知识提升
13、函数y=f ( x )的图像与直线x=a 有( )个交点
A 、1
B 、0
C 、至多有1
D 、可能有2
14、设函数f ( x )的定义域为R ,且满足下列两个条件:
①存在x 1≠ x 2,使f ( x 1 )≠ f ( x 2 );
②对任意x ,y ∈R ,有f ( x+y )= f ( x ) f ( y ),
求f ( 0 )的值
(四)、归纳总结
1、通过本节你学习了哪些知识?
2、在解决分段函数时应注意什么问题?
(五)、作业布置
课本第24页习题1.2(A 组)第6、9题
x 1y={
x (0<x <1) (x ≥1)。

相关文档
最新文档