2021年成都市七年级上期培优专题-绝对值

合集下载

初中七年级数学培优绝对值含答案

初中七年级数学培优绝对值含答案

初中七年级数学培优绝对值含答案绝对值是初中代数中的一个基本概念;在求代数式的值、化简代数式、证明恒等式与不等式;以及求解方程与不等式时;经常会遇到含有绝对值符号的问题;同学们要学会根据绝对值的定义来解决这些问题.下面我们先复习一下有关绝对值的基本知识;然后进行例题分析.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零.即绝对值的几何意义可以借助于数轴来认识;它与距离的概念密切相关.在数轴上表示一个数的点离开原点的距离叫这个数的绝对值.结合相反数的概念可知;除零外;绝对值相等的数有两个;它们恰好互为相反数.反之;相反数的绝对值相等也成立.由此还可得到一个常用的结论:任何一个实数的绝对值是非负数.例1 a;b为实数;下列各式对吗?若不对;应附加什么条件?(1)|a+b|=|a|+|b|;(2)|ab|=|a||b|;(3)|a-b|=|b-a|;(4)若|a|=b;则a=b;(5)若|a|<|b|;则a<b;(6)若a>b;则|a|>|b|.解(1)不对.当a;b同号或其中一个为0时成立.(2)对.(3)对.(4)不对.当a≥0时成立.(5)不对.当b>0时成立.(6)不对.当a+b>0时成立.例2设有理数a;b;c在数轴上的对应点如图1-1所示;化简|b-a|+|a+c|+|c-b|.解由图1-1可知;a>0;b<0;c<0;且有|c|>|a|>|b|>0.根据有理数加减运算的符号法则;有b-a<0;a+c<0;c-b<0.再根据绝对值的概念;得|b-a|=a-b;|a+c|=-(a+c);|c-b|=b-c.于是有原式=(a-b)-(a+c)+(b-c)=a-b-a-c+b-c=-2c.例3已知x<-3;化简:|3+|2-|1+x|||.分析这是一个含有多层绝对值符号的问题;可从里往外一层一层地去绝对值符号.解原式=|3+|2+(1+x)||(因为1+x<0)=|3+|3+x||=|3-(3+x)|(因为3+x<0)=|-x|=-x.解因为abc≠0;所以a≠0;b≠0;c≠0.(1)当a;b;c均大于零时;原式=3;(2)当a;b;c均小于零时;原式=-3;(3)当a;b;c中有两个大于零;一个小于零时;原式=1;(4)当a;b;c中有两个小于零;一个大于零时;原式=-1.说明本例的解法是采取把a;b;c中大于零与小于零的个数分情况加以解决的;这种解法叫作分类讨论法;它在解决绝对值问题时很常用.例5若|x|=3;|y|=2;且|x-y|=y-x;求x+y的值.解因为|x-y|≥0;所以y-x≥0;y≥x.由|x|=3;|y|=2可知;x<0;即x=-3.(1)当y=2时;x+y=-1;(2)当y=-2时;x+y=-5.所以x+y的值为-1或-5.例6若a;b;c为整数;且|a-b|19+|c-a|99=1;试计算|c-a|+|a-b|+|b-c|的值.解a;b;c均为整数;则a-b;c-a也应为整数;且|a-b|19;|c-a|99为两个非负整数;和为1;所以只能是|a-b|19=0且|c-a|99=1;①或|a-b|19=1且|c-a|99=0.②由①有a=b且c=a±1;于是|b-c|=|c-a|=1;由②有c=a且a=b±1;于是|b-c|=|a-b|=1.无论①或②都有|b-c|=1且|a-b|+|c-a|=1;所以|c-a|+|a-b|+|b-c|=2.解依相反数的意义有|x-y+3|=-|x+y-1999|.因为任何一个实数的绝对值是非负数;所以必有|x-y+3|=0且|x+y-1999|=0.即由①有x-y=-3;由②有x+y=1999.②-①得2y=2002;y=1001;所以例8 化简:|3x+1|+|2x-1|.分析本题是两个绝对值和的问题.解题的关键是如何同时去掉两个绝对值符号.若分别去掉每个绝对值符号;则是很容易的事.例如;化简|3x+1|;只要考虑3x+1的正负;即可去掉绝对值符号.这里我们为三个部分(如图1-2所示);即这样我们就可以分类讨论化简了.原式=-(3x+1)-(2x-1)=5x;原式=(3x+1)-(2x-1)=x+2;原式=(3x+1)+(2x-1)=5x.即有这种竞赛讲义一整套小学初中的含答案最新的需要的可以联系我46~8453~607微信13699~77~1074说明解这类题目;可先求出使各个绝对值等于零的变数字母的值;即先求出各个分界点;然后在数轴上标出这些分界点;这样就将数轴分成几个部分;根据变数字母的这些取值范围分类讨论化简;这种方法又称为“零点分段法”.例9已知y=|2x+6|+|x-1|-4|x+1|;求y的最大值.分析首先使用“零点分段法”将y化简;然后在各个取值范围内求出y的最大值;再加以比较;从中选出最大者.解有三个分界点:-3;1;-1.(1)当x≤-3时;y=-(2x+6)-(x-1)+4(x+1)=x-1;由于x≤-3;所以y=x-1≤-4;y的最大值是-4.(2)当-3≤x≤-1时;y=(2x+6)-(x-1)+4(x+1)=5x+11;由于-3≤x≤-1;所以-4≤5x+11≤6;y的最大值是6.(3)当-1≤x≤1时;y=(2x+6)-(x-1)-4(x+1)=-3x+3;由于-1≤x≤1;所以0≤-3x+3≤6;y的最大值是6.(4)当x≥1时;y=(2x+6)+(x-1)-4(x+1)=-x+1;由于x≥1;所以1-x≤0;y的最大值是0.综上可知;当x=-1时;y取得最大值为6.例10设a<b<c<d;求|x-a|+|x-b|+|x-c|+|x-d|的最小值.分析本题也可用“零点分段法”讨论计算;但比较麻烦.若能利用|x-a|;|x-b|;|x-c|;|x-d|的几何意义来解题;将显得更加简捷便利.解设a;b;c;d;x在数轴上的对应点分别为A;B;C;D;X;则|x-a|表示线段AX之长;同理;|x-b|;|x-c|;|x-d|分别表示线段BX;CX;DX之长.现要求|x-a|;|x-b|;|x-c|;|x-d|之和的值最小;就是要在数轴上找一点X;使该点到A;B;C;D四点距离之和最小.因为a<b<c<d;所以A;B;C;D的排列应如图1-3所示:所以当X在B;C之间时;距离和最小;这个最小值为AD+BC;即(d-a)+(c-b).例11若2x+|4-5x|+|1-3x|+4的值恒为常数;求x该满足的条件及此常数的值.分析与解要使原式对任何数x恒为常数;则去掉绝对值符号;化简合并时;必须使含x的项相加为零;即x的系数之和为零.故本题只有2x-5x+3x=0一种情况.因此必须有|4-5x|=4-5x且|1-3x|=3x-1.故x应满足的条件是此时原式=2x+(4-5x)-(1-3x)+4=7.练习二1.x是什么实数时;下列等式成立:(1)|(x-2)+(x-4)|=|x-2|+|x-4|;(2)|(7x+6)(3x-5)|=(7x+6)(3x-5).2.化简下列各式:(2)|x+5|+|x-7|+|x+10|.3.若a+b<0;化简|a+b-1|-|3-a-b|.4.已知y=|x+3|+|x-2|-|3x-9|;求y的最大值.5.设T=|x-p|+|x-15|+|x-p-15|;其中0<p<15;对于满足p≤x≤15的x来说;T的最小值是多少?6.已知a<b;求|x-a|+|x-b|的最小值.7.不相等的有理数a;b;c在数轴上的对应点分别为A;B;C;如果|a-b|+|b-c|=|a-c|;那么B点应为( ).(1)在A;C点的右边;(2)在A;C点的左边;(3)在A;C点之间;(4)以上三种情况都有可能.。

数轴与绝对值综合问题大题专练

数轴与绝对值综合问题大题专练

【讲练课堂】2022-2023学年七年级数学上册尖子生同步培优题典【人教版】专题1.14数轴与绝对值综合问题大题专练(重难点培优)一、解答题1.(2021·四川成都·七年级期中)a ,b ,c 在数轴上的位置如图所示:(1)求|a |a +|b |b +|c |c =_______(2)a 、b 、c 在数轴上的位置如图所示,则:化简:|a +c |―|a ―b |+|c ―a |;(3)求|x ―a |―|x ―b |的最大值,并求出此时x 的范围.2.(2021·河南周口·七年级期中)(1)画出数轴,在数轴上标出表示﹣2的点A ,设点B 在数轴上,且到点A 的距离为3,请标出点B 的位置,并写出点B 表示的数.(2)已知|a |=2,b 2=1,求a +b 的值.3.(2020·贵州·安顺市西秀区宁谷中学七年级期中)有理数a 、b 、c 在数轴上的位置如图所示,且表示数a 的点、数b 的点到原点的距离相等.(1)用“>”“=”“<”填空;b 0,a +b 0,a -c 0.b -c 0.(2)化简:|a +b |+|c -a |-|b |.4.(2021·山西阳泉·七年级期中)请完成以下问题(1)有理数a ,b ,c 所对应的点在数轴上的位置如图所示,试比较a ,﹣a ,b ,﹣b ,c ,﹣c ,0的大小,并用“<”连接.(2)有理数a 、b 、m 、n 、x 满足下列条件:a 与b 互为倒数,m 与n 互为相反数,x 的绝对值为最小的正整数,求2021(m +n )+2020x 3﹣2019ab 的值.5.(2020·山西晋城·七年级期中)综合与实践:一名外卖员骑电动车从饭店出发送外卖,向西走了2千米到达小琪家,然后又向东走了4千米到达小莉家,继续向东走了3.5千米到达小刚家,最后回到饭店.以饭店为原点,以向东的方向为正方向,用一个单位长度表示1千米,点O,A,B,C 分别表示饭店,小莉家,小刚家和小琪家.(1)请你在数轴上表示出点O,A,B,C的位置;(2)小刚家距小琪家多远?(3)小莉步行到小刚家,每小时走5千米;小琪骑自行车到小刚家,每小时骑15千米.若两个人同时分别从自己家出发,问两个人能否同时到达小刚家?若不能,谁先到达?6.(2022·福建·晋江市第一中学七年级期中)对于有理数a,b,n,d,若|a―n|+|b―n|=d,则称a和b 关于n的“相对关系值”为d,例如:|2―1|+|3―1|=3,则2和3关于1的“相对关系值”为3.(1)―3和5关于1的“相对关系值”为__________.(2)若a和2关于3的“相对关系值”为10,求a的值.7.(2021·江苏·常州实验初中七年级期中)已知:数轴上的点A、B分别表示﹣1和3.5.(1)在数轴上画出A、B两点;(2)若点C与点A距离4个单位长度,则点C表示的数是___.(3)若折叠纸面,使数轴上﹣1表示的点与3表示的点重合,则10表示的点与数___表示的点重合.8.(2022·河北保定·七年级期中)如图,已知实数a(a>0)表示在数轴上对应的位置为点P,现对点P进行如下操作:先把点P沿数轴以每秒1个单位的速度向左移动t秒,再把所得到的点沿数轴以每秒2个单位的速度向右移动a秒,得到点P′,我们把这样的操作称为点P的“回移”,点P′为点P的“回移点”.(1)用含有字母a,t的式子写出“回移点”P′表示的数__________;(填空)(2)当t=2时,①若a=4,求点P的回移点P′表示的实数;②若回移点P′与点P恰好重合,求a的值;(3)当t=3时,若回移点P′与点P相距7个单位长度,求a的值.9.(2022·北京朝阳·七年级期中)如图,在数轴上点A、C、B表示的数分别是-2、1、12.动点P从点A出发,沿数轴以每秒3个单位长度的速度向终点B匀速运动;同时,点Q从点B出发,沿数轴以每秒2个单位长度的速度向终点A匀速运动,设点Q的运动时间为t秒.(1)AB的长为_______;(2)当点P与点Q相遇时,求t的值.(3)当点P与点Q之间的距离为9个单位长度时,求t的值.(4)若PC+QB=8,直接写出t点P表示的数.10.(2022·河北秦皇岛·七年级期中)如图,已知数轴上的点A、B对应的数分别是-5和1.(1)若P到点A、B的距离相等,求点P对应的数;(2)动点P从点A出发,以2个长度单位/秒的速度向右运动,设运动时间为t秒,问:是否存在某个时刻t,恰好使得P到点A的距离是点P到点B的距离的2倍?若存在,请求出t的值;若不存在,请说明理由;(3)若动点P从点A出发向点B运动,同时,动点Q从点B出发向点A运动,经过2秒相遇;若动点P从点A出发向点B运动,同时,动点Q从点B出发与点P同向运动,经过6秒相遇,试求P点与Q点的运动速度(长度单位/秒)11.(2021·湖北武汉·七年级期中)如图,以O为原点的数轴上有A,B两点,它们对应的数分别为a,b,且(a﹣10)2+(2b+8)2=0.(1)直接写出结果:a= ,b= .(2)设点P,Q分别从点A,B同时出发,在数轴上相向运动,且在原点O处相遇.设它们运动的时间为t秒,点P运动的速度为每秒2.5个单位长度.①用含t的式子表示:t秒后,点P,Q在数轴上所对应的数(直接写出结果),点P对应的数是 ,点Q对应的数是 .②当P,Q两点间的距离恰好等于A,B两点间距离的一半时,求t的值.12.(2021·浙江温州·七年级期中)如图,在数轴上,点A表示﹣4,点B表示﹣1,点C表示8,P是数轴上的一个点.(1)求点A与点C的距离.(2)若PB表示点P与点B之间的距离,PC表示点P与点C之间的距离,当点P满足PB=2PC时,请求出在数轴上点P表示的数.(3)动点P从点B开始第一次向左移动1个单位长度,第二次向右移动2个单位长度,第三次向左移动3个单位长度,第四次向右移动4个单位长度,依此类推…在这个移动过程中,当点P满足PC=2PA时,则点P移动次.13.(2021·江苏徐州·七年级期中)阅读理解:如图,对于数轴上的A,B,C三点,给出如下定义:若其中一个点与其他两个点的距离恰好满足3倍的数量关系,则称该点是其他两个点的“倍分点”.例如:数轴上点A、B、C表示的数分别是1、4,5,此时点B是点A,C的“倍分点”.知识运用:(1)当点A表示数―2,点B表示数2时,下列个数:―5,0,1,4中,是A,B两点的“倍分点”表示的数是2____________;(2)当点A表示数―1,点B表示数3时,点P是数轴上的一个动点.①若点P在点A、点B之间,且点P是点A,B的“倍分点“,则点P表示的数是____________;②若点P在点A的左侧,且点P是点A,B的“倍分点“,则点”表示的数是____________;③若点P在点B的右侧,当点A、点B、点P中,有一个点恰好是另外两点的“倍分点”时,请你直接写出点P表示的数是____________.14.(2020·广东广州·七年级期中)数轴上点A、B、C分别表示数a、b、c,且b是最小正整数,|a+b|+(c―5)2 =0.(1)填空:a=______,b=______,c=______;(2)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B、C分别以每秒m(m<5)个单位长度和5个单位长度的速度向右运动,假设经过t秒,点B与点C之间的距离表示为BC,点A与点B之间的距离表示为A B.若BC―AB的值保持不变,求m的值.15.(2021·广东·佛山市南海区石门实验学校七年级期中)如图,已知点A,B,C是数轴上三点,O为原点,点C对应的数为3,BC=2,AB=6.(1)点A,B对应的数分别为:__________、__________。

七年级培优——绝对值

七年级培优——绝对值

七年级培优——绝对值绝对值是七年级数学中的一个非常重要的基本概念,但涉及到的数学思想非常重要,所涉及的方法也会对整个初中数学的学习有很大的帮助,本节课我们将从几种方法对绝对值的综合题进行讲解。

一、利用绝对值的定义求绝对值的值。

绝对值的定义如下:⎪⎩⎪⎨⎧<-=>=.0,0,00,||时当时,当时,当a a a a a a例题1:已知1||≤x ,1||≤y ,求|52||1|--++x y y 的最小值。

方法点拨:要化简|52||1|--++x y y ,必须要搞清楚1+y 和52--x y 的正负情况,当不能判断的时候就需要通过分类来进行化简.解:因为1||≤x ,1||≤y 可得11≤≤-x ,11≤≤-y ,所以210≤+≤y ,从而得1|1|+=+y y因为11≤≤-y ,所以222≤≤-y ,因为11≤≤-x ,所以11≤-≤-x所以323≤-≤-x y所以2528-≤--≤-x y ,即052<--x y ,从而有52)52|52|++-=---=--x y x y x y ( 所以6521|52||1|+-=++-+=--++y x x y y x y y所以当x 取最小值,y 取最大值时,6+-y x 的值最小即当1-=x ,1=y 时,|52||1|--++x y y 的最小值为4611=+--.练习1:若3||=x ,2||=y ,且x y y x -=-||,求y x +的值.练习2:已知0<a ,0>b ,求|5||1|---+-b a a b 的值.练习3:已知a 、b 、c 是非零有理数,且0=++c b a ,求abcabc c c b b a a ||||||||+++的值.练习4:已知1||≤x ,1||≤y ,求|42||1|||--++++x y y y x 的最大值和最小值.练习5:已知152||=++y x x ,3| |=-+y y x ,求x ,y 的值.二、利用数轴解绝对值的值由绝对值的几何意义可知,||a 表示的几何意义为实数a 到原点的距离,||b a -表示的几何意思为实数a 到实数b 在数轴上的距离。

人教版 七年级数学上册 一元一次方程培优专题-绝对值方程(解析版)

人教版 七年级数学上册  一元一次方程培优专题-绝对值方程(解析版)

2 - 1 =22 2 2 进而 ⎪⎨,解得 ⎪⎨ ⎩ ⎩一元一次方程培优专题——绝对值方程例题1. 解方程: 2 x + 3 = 5【解析】根据绝对值的意义,原方程可化为 2x + 3 = 5 或者 2x + 3 = -5 ,解得 x = 1 或 x = -4【答案】 x = 1 或 x = -4例题2. 解方程 x + 1 - 1 2 - x + 13【解析】原方程整理得: x + 1 = 13 ,即 x + 1 = 13 或者 x + 1 = - 13 ,所以原方程的解为 x = 8 或 x = - 1855 5 5 5【答案】 x = 8 或 x = - 1855例题3. 已知:当 m > n 时,代数式(m 2- n 2+ 3) 和 m 2+ n 2- 5 的值互为相反数,求关于x 的方程m 1 - x = n的解.【解析】因为代数式 (m 2 - n 2 + 3) 和 m 2 + n 2 - 5 的值互为相反数,所以 (m 2 - n 2 + 3) + m 2 + n 2 - 5 = 0 , 所以 (m 2 - n 2 + 3) = 0 , m 2 + n 2 - 5 = 0 ,⎧m 2 - n 2 = -3 ⎪m 2 + n 2 = 5⎧m 2 = 1 ⎪n 2 = 4,所以 m = ±1, n = ±2 ,因为 m > n ,当 m = 1时, n = -2 ;当 m = -1 时, n = -2 ;当 m = 1,n = -2 时,方程为 1 - x = -2 ,该方程无解;当 m = -1, n = -2 时,方程为 - 1 - x = -2 ,解得 x = -1 或 x = 3 .【答案】 x = -1 或 x = 3例题4.解方程4x+3=2x+9【解析】解法一:令4x+3=0得x=-3,将数分成两段进行讨论:4①当x≤-3时,原方程可化简为:-4x-3=2x+9,x=-2在x≤-3的范围内,是方程的解.44②当x>-3时,原方程可化简为:4x+3=2x+9,x=3在x>-3的范围内,是方程的解.44综上所述x=-2和x=3是方程的解.解法二:依据绝对值的非负性可知2x+9≥0,即x≥-9.原绝对值方程可以转化为①4x+3=2x+9,2解得x=3,经检验符合题意.②4x+3=-(2x+9),解得x=-2,经检验符合题意.综合①②可知x=-2和x=3是方程的解.【答案】x=-2或x=3例题5.解方程4x+3=2x+9【答案】x=3或x=-2例题6.a为有理数,a=2a-3,求a的值.【解析】解法一:要想求出a的值,我们必须先化简a=2a-3.采用零点分段讨论的方法.令a=0,2a-3=0得a=3.2①当a≥3时,由原式可得a=2a-3,求得a=3,在a≥3的范围内;22②当0≤a<3时,由原式可得a=3-2a,求得a=1,在0≤a<3的范围内;22③当a<0,由原式可得-a=-2a+3,求得a=3,不在a<0的范围内.综上可得a的值为3或1.x 解法二:依题意, a 的绝对值和 2a - 3 的绝对值相等,可以得出两者相等或互为相反数,即a = 2a - 3或a = -(2a - 3) 解得 a = 3 或 a = 1.【答案】 a = 3 或 a = 1例题7. 解方程 2 x - 1 = 3x + 1【解析】根据两数的绝对值相等,可以判断这两个数相等或者互为相反数,所以由原方程可以得到2x - 1 = 3x + 1 或 2x - 1 = -3x - 1 ,解得 x = -2, = 0 .【答案】 x = -2 或 x = 0例题8. 解方程 x - 1 + x - 3 = 4【解析】令 x - 1 = 0 , x - 3 = 0 得 x = 1 , x = 3 ,它们可以将数轴分成 3 段:①当 x < 1 时,原方程可化简为: -( x - 1) - ( x - 3) = 4 , x = 0 在 x < 1 的范围内是原方程的解;②当 1 ≤ x < 3 时,原方程可化简为: x - 1 - ( x - 3) = 4 ,此方程无解;③当 x ≥ 3 时,原方程可化简为: x - 1 + x - 3 = 4 , x = 4 在 x ≥ 3 的范围内是原方程的解;综上所述,原方程的解为: x = 0 或 x = 4 .【答案】 x = 0 或 x = 4例题9. 解方程 x - 1 + x - 5 = 4【解析】由绝对值的几何意义可知 1 ≤ x ≤ 5 .【答案】 1 ≤ x ≤ 5例题10. 解方程: 2 x + 1 - 2 - x = 3【解析】零点为: x = - 1 , x = 2 ,它们可将数轴分成三段:22 ①当 x < - 1 时,原方程变形为:-(2 x + 1) - (2 - x) =3 ,x = -6 在 x < - 1 的范围内,是方程的解;22②当 - 1 ≤ x < 2 时,原方程变形为: (2 x + 1) - (2 - x) = 3 , x = 4 在 - 1 ≤ x < 2 的范围内,是方程23 2的解;③当 x > 2 时,原方程变形为:(2 x - 1) - ( x - 2) = 3 ,x = 0 不在 x > 2 的范围内,不是方程的解.综上所述原方程的解为: x = -6 或 x = 4 .3【答案】 x = -6 或 x = 43例题11. 解方程:方程 x + 3 + 3 - x = 9 x + 52【解析】对 x 的值分 4 段讨论:①若 x < -3 ,则原方程化为 - x - 3 + 3 - x = - 9 x + 5 ,解得 x = 2 ,与 x < -3 矛盾;2②若 -3 ≤ x < 0 ,则原方程化为 x + 3 + 3 - x = - 9 x + 5 ,解得 x = - 2 ;29③若 0 ≤ x < 3 ,则原方程化为 x + 3 + 3 - x = 9 x + 5 ,解得 x = 2 ;29④若 x ≥ 3 ,则原方程化为 x + 3 + x - 3 = 9 x + 5 ,解得 x = -2 ,与 x ≥ 3 矛盾.2综上所述方程的解为 x = ± 2 .9【答案】 ± 29例题12. 解绝对值方程: x - 3x - 5- 1 = 62【解析】 x - 3x - 5 - 1 = 6 或 -6 ,即 3x - 5 = x - 7 或 3x - 5 = x + 522 2①当 x - 7 ≥ 0 时(即 x ≥ 7 ), 3x - 5 > 0 , 3x - 5 = x - 7 化为 3x - 5 = x - 7 ,解得 x = -9 ;22②当 x + 5≥ 0 时( x ≥ -5 ),若还有 3x - 5 > 0 (即 x ≥ 5 ), 3x - 5 = x + 5 ,解得 x = 15 ;23 2③当 x + 5≥ 0 时( x ≥ -5 ),若还有 3x - 5 < 0 (即 x < 5 ), 3x - 5 = - x - 5 ,解得 x = -1 .23 2再来检验这三个解 x = -9 (舍去)、 x = 15 、 x = -1 .【答案】 x = 15 或 x = -13x + 1 = 0,x = - ; x - 3x + 1 = 0 , x = - , - ,这 3 个零点将数轴分成 4 段,我们分段讨论 8例题13. 解方程: 3x - 5 + 4 = 8【解析】3x - 5 + 4 = 8 或 - (舍),即 3x - 5 = 4 ,所以 3x - 5 = 4 或 -4 ,即 3x = 9 或 3x = 1 ,故 x = 3 或 x = 1 .3【答案】 x = 3 或 x = 13例题14. 求方程 x - 3x + 1 = 4 的解.【解析】解法一:1 1 1 32 4研究可以得到结果为: x = 3 或 x = - 5 ,但其实这么做是没必要的.我们来看看解法二.24解法二:①当 x ≤ - 1 时,方程可化为: 4x + 1 = -4 , x = - 5 ,在 x ≤ - 1 范围内,是方程的解;34 3②当 x > - 1 时,方程可化为 -2 x - 1 = 4 :当 -2x - 1 = 4 时,得 x = - 5 , - 5 < - 1 , x = - 5 不是32 23 2解,舍去;当 -2x - 1 = -4 时,得 x = 3 ,∵ 3 > - 1 ,∴ x = 3 是方程的一个解.22 3 2综上可得,原方程的解为 x = 3 或 x = - 5 .24【答案】 x = 3 或 x = - 524例题15. 当 0 ≤ x ≤1 时,求方程 x - 1 - 1 - 1 = 0 的解【解析】根据 x 所在的范围,可得 x ≥ 0 , x - 1≤ 0 ,因此 x = x ,x - 1 = 1 - x ,按从内到外的顺序逐个去除方程中的绝对值符号,原方程可顺次化为: 1 - x - 1 - 1 = 0 ,即 1 - x = 0 ,所以 x = 1 .【答案】1。

初一七年级绝对值练习(含例题基础培优)

初一七年级绝对值练习(含例题基础培优)

初⼀七年级绝对值练习(含例题基础培优)初⼀七年级绝对值练习(含例题、基础、培优)例题部分⼀、根据题设条件例1 设化简的结果是()。

(A)(B)(C)(D)思路分析由可知可化去第⼀层绝对值符号,第⼆次绝对值符号待合并整理后再⽤同样⽅法化去.解∴应选(B).归纳点评只要知道绝对值将合内的代数式是正是负或是零,就能根据绝对值意义顺利去掉绝对值符号,这是解答这类问题的常规思路.⼆、借助数轴例2 实数a、b、c在数轴上的位置如图所⽰,则代数式的值等于().(A)(B)(C)(D)思路分析由数轴上容易看出,这就为去掉绝对值符号扫清了障碍.解原式∴应选(C).归纳点评这类题型是把已知条件标在数轴上,借助数轴提供的信息让⼈去观察,⼀定弄清:1.零点的左边都是负数,右边都是正数.2.右边点表⽰的数总⼤于左边点表⽰的数.3.离原点远的点的绝对值较⼤,牢记这⼏个要点就能从容⾃如地解决问题了.三、采⽤零点分段讨论法例3 化简思路分析本类型的题既没有条件限制,⼜没有数轴信息,要对各种情况分类讨论,可采⽤零点分段讨论法,本例的难点在于的正负不能确定,由于x是不断变化的,所以它们为正、为负、为零都有可能,应当对各种情况—⼀讨论.解令得零点:;令得零点:,把数轴上的数分为三个部分(如图)①当时,∴原式∴原式③当时,,∴原式∴归纳点评虽然的正负不能确定,但在某个具体的区段内都是确定的,这正是零点分段讨论法的优点,采⽤此法的⼀般步骤是:1.求零点:分别令各绝对值符号内的代数式为零,求出零点(不⼀定是两个).2.分段:根据第⼀步求出的零点,将数轴上的点划分为若⼲个区段,使在各区段内每个绝对值符号内的部分的正负能够确定.3.在各区段内分别考察问题.4.将各区段内的情形综合起来,得到问题的答案.误区点拨千万不要想当然地把等都当成正数或⽆根据地增加⼀些附加条件,以免得出错误的结果.练习:请⽤⽂本例1介绍的⽅法解答l、2题1.已知a、b、c、d满⾜且,那么2.若,则有()。

部编数学七年级上册专题1.5绝对值2023年7上册同步培优(解析版)【人教版】含答案

部编数学七年级上册专题1.5绝对值2023年7上册同步培优(解析版)【人教版】含答案

【讲练课堂】2022-2023学年七年级数学上册尖子生同步培优题典【人教版】专题1.5绝对值【名师点睛】1.概念:数轴上某个数与原点的距离叫做这个数的绝对值.①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.2.如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.3.绝对值的非负性:任意一个数的绝对值都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0.根据上述的性质可列出方程求出未知数的值.【典例剖析】【例1】化简下列各数:(1)﹣(﹣5)(2)﹣(+7)(3)﹣[﹣(+23)](4)﹣[﹣(﹣a)](5)|﹣(+7)|(6)﹣|﹣8|(7)|﹣|+4 7 ||(8)﹣|﹣a|(a<0)【分析】(1)根据相反数定义求出即可;(2)根据相反数定义求出即可;(3)根据相反数定义求出即可;(4)根据相反数定义求出即可;(5)根据绝对值定义求出即可;(6)根据绝对值定义求出即可;(7)根据绝对值定义求出即可;(8)根据绝对值定义求出即可.【解析】(1)﹣(﹣5)=5;(2)﹣(+7)=﹣7;(3)﹣[﹣(+23)]=23;(4)﹣[﹣(﹣a)]=﹣a;(5)|﹣(+7)|=7;(6)﹣|﹣8|=﹣8;(7)|﹣|+47||=47;(8)﹣|﹣a|(a<0)=﹣(﹣a)=a.【点评】本题考查了绝对值,相反数的应用,注意:一个负数的绝对值等于它的相反数,一个正数的绝对值等于它本身,0的绝对值是0.【变式】化简:(1)﹣(﹣3);(2)﹣|﹣3.2|;(3)+(﹣0.5);(4)﹣|+13 |.【分析】(1)根据相反数的定义解决此题.(2)根据绝对值以及相反数的定义解决此题.(3)根据去括号法则解决此题.(4)根据绝对值以及相反数的定义解决此题.【解析】(1)﹣(﹣3)=3.(2)﹣|﹣3.2|=﹣3.2.(3)+(﹣0.5)=﹣0.5.(4)―|+13|=―13.【点评】本题主要考查绝对值以及相反数的定义,熟练掌握相反数的定义是解决本题的关键.【例2】已知a为整数(1)|a|能取最 小 (填“大”或“小”)值是 0 .此时a= 0 .(2)|a|+2能取最 小 (填“大”或“小”)值是 2 .此时a= 0 .(3)2﹣|a﹣1|能取最 大 (填“大”或“小”)值是 2 .此时a= 1 .(4)|a﹣1|+|a+2|能取最 小 (填“大”或“小”)值是 3 .此时a= ﹣2≤a≤1 .【分析】(1)由绝对值的性质即可得出答案;(2)由绝对值的性质即可得出答案;(3)由绝对值的性质即可得出答案;(4)由绝对值的性质即可得出答案.【解析】(1)|a|能取最小值是0.此时a=0.故答案为:小,0,0;(2)|a|+2能取最小值是2.此时a=0.故答案为:小,2,0;(3)2﹣|a﹣1|能取最大值是2.此时a=1.故答案为:大,2,1;(4)|a﹣1|+|a+2|能取最小值是3.此时﹣2≤a≤1;故答案为:小,3,﹣2≤a≤1.【点评】本题考查了绝对值的非负性质;熟练掌握绝对值的非负性质是解题的关键.【变式】.(1)如果|x|=2,则x= ±2 ;(2)如果x=﹣x,则x= 0 ;(3)如果|x|=x,求x的取值范围;(4)如果|x|=﹣x,求x的取值范围.【分析】(1)利用绝对值的定求解即可,(2)利用相反数的定义求解,(3)利用绝对值的性质求解即可,(4)利用绝对值的性质求解即可.【解析】(1)如果|x|=2,则x=±2;故答案为:±2.(2)如果x=﹣x,则x=0;故答案为:0.(3)如果|x|=x,则x≥0;(4)如果|x|=﹣x,则x≤0.【点评】本题主要考查了绝对值,解题的关键是熟记绝对值的定义.【满分训练】一.选择题(共10小题)1.(2022•通辽)﹣3的绝对值是( )A.―13B.3C.13D.﹣3【分析】应用绝对值的计算方法进行计算即可得出答案.【解析】|﹣3|=3.故选:B.【点评】本题主要考查了绝对值,熟练掌握绝对值的计算方法进行求解是解决本题的关键.2.(2022•聊城)实数a的绝对值是54,a的值是( )A.54B.―54C.±45D.±54【分析】根据绝对值的意义直接进行解析【解析】∵|a|=5 4,∴a=±5 4.故选:D.【点评】本题考查了绝对值的意义,即在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值.3.(2022•百色)﹣2023的绝对值等于( )A.﹣2023B.2023C.±2023D.2022【分析】利用绝对值的意义求解.【解析】因为负数的绝对值等于它的相反数;所以,﹣2023的绝对值等于2023.故选:B.【点评】本题考查绝对值的含义.即:正数的绝对值是它本身,负数的绝对值是它的相反数.4.(2022•绥化)化简|―12|,下列结果中,正确的是( )A.12B.―12C.2D.﹣2【分析】利用绝对值的意义解析即可.【解析】|―12|的绝对值是12,故选:A.【点评】本题主要考查了绝对值的意义,正确利用绝对值的意义是解题的关键.5.(2022•南充)下列计算结果为5的是( )A.﹣(+5)B.+(﹣5)C.﹣(﹣5)D.﹣|﹣5|【分析】根据相反数判断A,B,C选项;根据绝对值判断D选项.【解析】A选项,原式=﹣5,故该选项不符合题意;B选项,原式=﹣5,故该选项不符合题意;C选项,原式=5,故该选项符合题意;D选项,原式=﹣5,故该选项不符合题意;故选:C.【点评】本题考查了相反数,绝对值,掌握只有符号不同的两个数互为相反数是解题的关键.6.(2021秋•河东区期末)若ab≠0,那么|a|a+|b|b的取值不可能是( )A.﹣2B.0C.1D.2【分析】由ab≠0,可得:①a>0,b>0,②a<0,b<0,③a>0,b<0,④a<0,b >0;分别计算即可.【解析】∵ab≠0,∴有四种情况:①a>0,b>0,②a<0,b<0,③a>0,b<0,④a<0,b>0;①当a>0,b>0时,|| a +||b=1+1=2;②当a<0,b<0时,|| a +||b=―1﹣1=﹣2;③当a>0,b<0时,|| a +||b=1﹣1=0;④当a<0,b>0时,|| a +||b=―1+1=0;综上所述,||a+||b的值为:±2或0.故选:C.【点评】本题考查绝对值的定义,运用分类讨论思想和熟练掌握并正确运用绝对值的定义是正确解题的关键.7.(2021秋•泗洪县期末)在数轴上有A、B两点,点A在原点左侧,点B在原点右侧,点A对应整数a,点B对应整数b,若|a﹣b|=2022,当a取最大值时,b值是( )A.2023B.2021C.1011D.1【分析】先根据A、B的位置关系,判断出a、b的大小关系,化简|a﹣b;再根据a取最大值,求出a的值;最后求出b的值.【解析】∵点A在点B左侧,∴a﹣b<0,∴|a﹣b|=b﹣a=2022;a为负整数,取最大值时为﹣1,此时b﹣(﹣1)=2022,则b=2021;故选:B.【点评】考查绝对值的化简和数轴.解题的关键在于能够结合数轴判断a、b的大小关系,进而化简|a﹣b|.注意:最大的负整数是﹣1.8.(2021秋•霍邱县期中)若|a|=﹣a,则在下列选项中a不可能是( )A.﹣2B.―12C.0D.5【分析】根据||=―a,结合绝对值性质可知:a≤0,不可能是正数.【解析】∵||=―a,∴实数a是非正数,即a≤0,∴选项中的数a不可能是正数,故选:D.【点评】本题考查了绝对值定义和性质,熟练掌握并正确运用绝对值性质是解题关键.9.(2020秋•九龙坡区校级期末)已知﹣1≤x≤2,则化简代数式3|x﹣2|﹣|x+1|的结果是( )A.﹣4x+5B.4x+5C.4x﹣5D.﹣4x﹣5【分析】由于﹣1≤x≤2,根据不等式性质可得:x﹣2≤0,x+1≥0,再依据绝对值性质化简即可.【解析】∵﹣1≤x≤2,∴x﹣2≤0,x+1≥0,∴3|x﹣2|﹣|x+1|=3(2﹣x)﹣(x+1)=﹣4x+5;故选:A.【点评】本题考查了不等式性质,绝对值定义和性质,整数加减运算等,熟练掌握并运用绝对值性质化简是解题关键.10.(2020秋•长垣市月考)若x为整数,且满足|x﹣2|+|x+4|=6,则满足条件的x的值有( )A.4个B.5个C.6个D.7个【分析】依据|x﹣2|+|x+4|=6,分类讨论即可得到所有整数x即可.【解析】①当x<﹣4时,|x﹣2|+|x+4|>6(不合题意);②当﹣4≤x≤2时,|x﹣2|+|x+4|=6,符合题意的所有整数x的值为﹣4,﹣3,﹣2,﹣1,0,1,2,③当x>2时,|x﹣2|+|x+4|>6(不合题意);综上所述,满足|x﹣2|+|x+4|=6的所有整数x的个数是7.故选:D.【点评】此题考查绝对值的意义,熟练掌握绝对值的意义是解题的关键.二.填空题(共8小题)11.(2022•常德)|﹣6|= 6 .【分析】根据绝对值的化简,由﹣6<0,可得|﹣6|=﹣(﹣6)=6,即得答案.【解析】﹣6<0,则|﹣6|=﹣(﹣6)=6,故答案为6.【点评】本题考查绝对值的化简求值,即|a|=a(a≥0)―a(a<0).12.(2022•泰州)若x=﹣3,则|x|的值为 3 .【分析】利用绝对值的代数意义计算即可求出值.【解析】∵x=﹣3,∴|x|=|﹣3|=3.故答案为:3.【点评】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.13.(2020秋•达孜区期末)绝对值不大于4的整数有 9 个.【分析】根据绝对值的性质解析即可.【解析】根据绝对值的概念可知,绝对值不大于4的整数有4,3,2,1,0,﹣1,﹣2,﹣3,﹣4,一共9个.【点评】解析此题的关键是熟知绝对值的性质,即一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.互为相反数的两个数的绝对值相等.14.(2020秋•吴江区期中)若|x|=﹣(﹣8),则x= ±8 .【分析】根据绝对值的性质解析可得.【解析】∵|x|=﹣(﹣8),∴x=±8.故答案为:±8.【点评】本题主要考查绝对值,掌握绝对值的性质是解题的关键.15.(2020秋•兴化市月考)当a= ﹣2 时,式子10﹣|a+2|取得最大值.【分析】根据任何数的偶次方是非负数,即可求解.【解析】∵|a+2|≥0,且当a+2=0,即a=﹣2时,|a+2|=0,∴当a=﹣2时,代数式10﹣|a+2|取得最大值是10.故答案是:﹣2.【点评】此题主要考查了非负数的性质,解题的关键是明确初中阶段有三种类型的非负数:绝对值、偶次方、二次根式(算术平方根).16.(2022春•东台市期中)|x﹣2|+9有最小值为 9 .【分析】根据绝对值的非负性即可得出答案.【解析】∵|x﹣2|≥0,∴|x﹣2|+9≥9,∴|x﹣2|+9有最小值为9.故答案为:9.【点评】本题考查了绝对值的非负性,掌握|a|≥0是解题的关键.17.(2021秋•玄武区校级月考)如果|a+2|+|b﹣1|=0,那么(a+b)2021的值是 ﹣1 .【分析】根据绝对值的非负数的性质分别求出a、b,代入计算即可.【解析】∵|a+2|+|b﹣1|=0,∴a+2=0,b﹣1=0,解得a=﹣2,b=1,∴(a+b)2021=(﹣1)2021=﹣1.故答案为:﹣1.【点评】本题考查了非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.18.(2021秋•虎林市期末)|a+3|+|b﹣2|=0,则a+b= ﹣1 .【分析】根据绝对值非负数的性质列式求解即可得到a、b的值,然后再代入代数式进行计算即可求解.【解析】根据题意得,a+3=0,b﹣2=0,解得a=﹣3,b=2,∴a+b=﹣3+2=﹣1.故答案为:﹣1.【点评】本题考查了绝对值非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.三.解析题(共4小题)19.在有理数3,﹣1.5,﹣312,0,2.5,﹣4,﹣(+3.5),|―12|中,求出其中分数的相反数和绝对值.【分析】据只有符号不同的两个数互为相反数,可得一个数的相反数;根据绝对值实数轴上的点到原点的距离,可得一个数的绝对值;【解析】﹣1.5的相反数1.5,绝对值是1.5;﹣312的相反数是312,绝对值是312;2.5的相反数是﹣2.5,绝对值是2.5;﹣(+3.5)=﹣3.5相反数是3.5,绝对值是3.5;|―12|=12相反数是―12,绝对值是12.【点评】本题考查了绝对值,利用了绝对值得性质:正数的绝对等于它本身,负数的绝对值等于它的相反数.20.求下列各数的绝对值:(1)﹣38;(2)0.15;(3)a(a<0);(4)3b(b>0);(5)a﹣2(a<2);(6)a﹣b.【分析】根据绝对值的含义和求法,求出每个数的绝对值各是多少即可.【解析】(1)|﹣38|=38;(2)|+0.15|=0.15;(3)∵a<0,∴|a|=﹣a;(4)∵b>0,∴3b>0,∴|3b|=3b;(5)∵a<2,∴a﹣2<0,∴|a﹣2|=﹣(a﹣2)=2﹣a;(6)a﹣b≥0时,|a﹣b|=a﹣b;a﹣b<0时,|a﹣b|=b﹣a.【点评】此题主要考查了绝对值的含义和应用,要熟练掌握,解析此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.21.(2020秋•江阴市校级月考)阅读下面的例题:我们知道|x|=2,则x=±2请你那么运用“类比”的数学思想尝试着解决下面两个问题.(1)|x+3|=2,则x= ﹣5或﹣1 ;(2)5﹣|x﹣4|=2,则x= 1或7 .【分析】(1)根据绝对值解析即可;(2)根据绝对值的非负性解析即可.【解析】(1)因为)|x+3|=2,则x=﹣5或﹣1;(2)因为5﹣|x﹣4|=2,可得:|x﹣4|=3,解得:x=1或7;故答案为:(1)﹣5或﹣1(2)1或7【点评】此题考查绝对值,关键是根据绝对值的非负性和概念解析.22.(2019秋•睢宁县期中)【观察与归纳】(1)观察下列各式的大小关系:|﹣2|+|3|>|﹣2+3||﹣8|+|3|>|﹣8+3||﹣2|+|﹣3|=|﹣2﹣3||0|+|﹣6|=|0﹣6|归纳:|a|+|b| ≥ |a+b|(用“>”或“<”或“=”或“≥”或“≤”填空)【理解与应用】(2)根据上题中得出的结论,若|m|+|n|=9,|m+n|=1,求m的值.【分析】(1)根据提供的关系式得到规律即可;(2)根据(1)中的结论分当m为正数,n为负数时和当m为负数,n为正数时两种情况分类讨论即可确定答案.【解析】(1)根据题意得:|a|+|b|≥|a+b|,故答案为:≥;(2)由上题结论可知,因为|m|+|n|=9,|m+n|=1,|m|+|n|≠|m+n|,所以m、n异号.当m为正数,n为负数时,m﹣n=9,则n=m﹣9,|m+m﹣9|=1,m=5或4;当m为负数,n为正数时,﹣m+n=9,则n=m+9,|m+m+9|=1,m=﹣4或﹣5;综上所述,m为±4或±5.【点评】本题考查了绝对值的知识,解题的关键是能够根据题意分类讨论解决问题,难度不大.。

专题01 绝对值考法全攻略(原卷版)2021-2022学年七年级数学上册(北师大版,成都专用)

专题01 绝对值考法全攻略(原卷版)2021-2022学年七年级数学上册(北师大版,成都专用)

专题01 绝对值考法全攻略【知识点梳理】1.绝对值的定义一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a |2.绝对值的意义①代数意义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0;②几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小。

3.绝对值的化简:类型一、多个绝对值的化简例.已知12x -≤≤,则化简代数式|3|2|1|x x --+的结果是( )A .13x -B .13x +C .13x --D .13x -+【变式训练1】若12x <<,则化简12x x ---的结果为() A .1-B .21x +C .23x -D .32x -【变式训练2】当x<1时,化简13x x ---的结果是( ) A .-2B .4C .2x -2D .2x -4【变式训练3】当1<x <3时,化简|x -3|+|x -1|的结果是?类型二、含字母的绝对值的化简 (0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩例.化简11a a -+-=( )A .22a -B .0C .22a -或0D .22a -【变式训练】若3a >,则|2|5a -+=________.类型三、求绝对值中字母的取值范围例.若()m n m n +=-+,则( )A .0m n +=B .0m n +>C .0m n +<D .0m n +≤【变式训练1】若|2|2a a -=-,则a 的范围( )A .2a ≤B .2a >C .2a <D .2a ≥【变式训练2】若22a a +=-,则a 的取值范围是___________.【变式训练3】若||=x x ,则x 的取值范围是( )A .0x >B .0xC .0xD .0x <类型四、利用数轴化简绝对值例.已知实数a ,b ,c 在数箱正的位置如图所示,则代数式a a b c a b c -++-++=( )A .2-c aB .22a b -C .a -D .a【变式训练1】数a ,b ,c 在数轴上的位置如图所示:(1)用“>”或“<”填空:a 0,b 0,c 0,a +c 0,b ﹣c 0,b +c 0.(2)化简:|a +c |+|b ﹣c |﹣|c +b |.【变式训练2】已知,,,a b c 为ABC 的三边,化简2a b c b c a a b c -----++-.【变式训练3】有理数a ,b ,c 在数轴上的位置如图所示.(1)-a b _____0,a c +______0,b c -______0.(用“<”或“>”或“=”号填空)(2)化简:|||2||||2|a b b a c c +--+---类型五、双重绝对值的化简例.已知3x <-,化简:|3|2|1|||x +-+【变式训练】如果20a b +=,则||12||aa b b -+-的值是__________.类型六、绝对值的非负性例.已知有理数a 、b 满足2|3|(1)0a b -++=,则a b +=________.【变式训练1】若2(1)|3|0a b ++-=,则()b ab =________.【变式训练2】若a ,b ,c 均为整数,且20212020||||1a b c a -+-=,则||||||a c c b b a -+-+-的值为( )A .2B .3C .2020D .2021【变式训练3】如果2150x y x y -+++-=,则x 、y 的值分别是( )A .10x y =-⎧⎨=⎩B .14x y =⎧⎨=⎩C .32x y =⎧⎨=⎩D .23x y =⎧⎨=⎩类型七、利用绝对值的性质求值例.若|x |=6,|y |=7,且xy >0,那么x ﹣y 的值是( )A .13或﹣13B .﹣13或1C .﹣1或1D .﹣1或﹣13【变式训练1】已知7x =,5y =,且0x y +>,那么x y -的值是( )A .2或12B .2或12-C .2-或12D .2-或1-【变式训练2】已知|x |=1,|y |=3,若||x y x y +=+,则x -y =____【变式训练3】已知3a =,2=b ,且a b b a -=-,则a -b=________.类型八、绝对值的几何意义应用例1.在学习有理数时时我们清楚,3(1)--表示3与-1的差的绝对值,实际上也可以理解为3与-1两数在数轴上所对应的两点之间的距离;同理|x 一5|也可以理解为x 与5两数在数轴上所对应的两点之间的距离,试探索并完成以下题目.(1)分别计算8(3)--,35--的值.(2)如图,x 是1到2之间的数(包括1,2),求123x x x -+-+-的最大值.例2.已知点M ,N 在数轴上分别表示m ,n ,动点P 表示的数为x .(1)填写表格:(2)由表可知,点M ,N 之间的距离可以表示为m n -,则2x -可以看成是表示为x 的数到2的距离,若数轴上表示数x 的点位于2与6-之间(包含2和6-),那么 ①()26x x -+--=_______.②126x x x -++++的最小值=_______.(3)12399100x x x x x -+++-++-++的最小值=________.【变式训练1】32x x -++的最小值是______;326x x -++=,则x=_________【变式训练2】当x=_____时,|x -1|+|x+2017|+|x -2019|有最小值为___________.【变式训练3】若015p <<,则代数式()1515x p x x p -+-+-+在15p x ≤≤的最小值是( ) A .30 B .0 C .15 D .一个与p 有关的整式。

专题03 绝对值的化简(专项培优训练)(学生版)

专题03 绝对值的化简(专项培优训练)(学生版)

专题03 绝对值的化简(专项培优训练)试卷满分:100分考试时间:120分钟试卷难度:0.48一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2023•涪城区模拟)若|a+2|=﹣a﹣2,则|a﹣1|﹣|2﹣a|=()A.3 B.﹣3 C.1 D.﹣12.(2分)(2022秋•惠山区校级期末)已知a、b、c的大致位置如图所示:化简|a+b|的结果是()A.﹣a﹣b B.a+b C.﹣a+b D.a﹣b3.(2分)(2023•邯郸三模)表示a是非负数的是()A.a>0 B.|a|≥0 C.a<0 D.a≥04.(2分)(2021秋•郸城县期末)式子|x﹣1|﹣3取最小值时,x等于()A.1 B.2 C.3 D.45.(2分)(2022秋•西安期中)下列结论成立的是()A.若|a|=a,则a>0 B.若|a|=|b|,则a=b或a=﹣bC.若|a|>a,则a≤0 D.若|a|>|b|,则a>b.6.(2分)(2022秋•九龙坡区校级期中)下列说法正确的有()①已知a,b,c是非零的有理数,且=﹣1时,则的值为1或﹣3;②已知a,b,c是有理数,且a+b+c=0,abc<0时,则的值为﹣1或3;③已知x≤4时,那么|x+3|﹣|x﹣4|的最大值为7,最小值为﹣7;④若|a|=|b|且|a﹣b|=,则式子的值为;⑤如果定义,当ab<0,a+b<0,|a|>|b|时,{a,b}的值为b﹣a.A.2个B.3个C.4个D.5个7.(2分)(2021秋•凉州区校级月考)若|m﹣3|+|n+2|=0,则m+2n的值为()A.﹣4 B.﹣1 C.0 D.48.(2分)(2020秋•龙马潭区期末)已知a是有理数,则下列结论正确的是()A.a≥0 B.|a|>0 C.﹣a<0 D.|a|≥09.(2分)(2021秋•汤阴县期中)已知a,b,c为非零的实数,则的可能值的个数为()A.4 B.5 C.6 D.710.(2分)(2021秋•荔城区期末)若a<0,则2a+5|a|等于()A.3a B.﹣3a C.7a D.﹣7a二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2023春•浦东新区期末)若|a﹣1|=1﹣a,则a的取值范围是.12.(2分)(2022秋•坪山区校级期末)已知a、b、c的位置如图所示,化简|a+b|﹣|c﹣a|+|b+c|=.13.(2分)(2022秋•泉州期末)单项式a是一个正数,且,那么的值为.(2分)(2022秋•余杭区校级期中)已知实数a,b,c,且a<b<0<c,则化简|a﹣b|﹣|c﹣a|=.14.15.(2分)(2022秋•东港区校级月考)已知|x﹣1|=3,|y|=2.则x﹣y的最大值是.16.(2分)(2021秋•东莞市期中)若|6﹣x|与|y+9|互为相反数,则x=,y=,(x+y)÷(x﹣y)=.17.(2分)(2022秋•鼓楼区校级月考)已知a,b为有理数,且|a+1|+|2013﹣b|=0,则a b=.18.(2分)(2020秋•晋江市校级期末)已知x为有理数,则|1﹣x|+|1﹣2x|+|1﹣3x|+……+|1﹣10x|的最小值为.(2022秋•海珠区校级期末)若a+b+c<0,abc>0,则的值为.(2分)19.20.(2分)(2020秋•饶平县校级期中)当式子|x+1|+|x﹣2|取最小值时,相应的x的取值范围是,最小值是.三.解答题(共8小题,满分60分)21.(6分)(2022秋•子洲县校级月考)请根据图示的对话解答下列问题.(1)分别求出a和b的值.(2)已知|m﹣a|+|b+n|=0,求m﹣n的值.22.(8分)(2021秋•石峰区校级期中)阅读下列材料:|x|=,即当x<0时,1.当x>0时,用这个结论可以解决下面问题:(1)已知a>0,b<0时,求的值;(2)已知a,b,c是有理数,a+b+c=0,abc<0,求的值.23.(6分)(2022秋•祁阳县校级期中)若|a|=7,|b|=3,(1)若ab>0,求a+b的值.(2)若|a+b|=a+b,求a﹣b的值.24.(6分)(2022秋•越秀区校级期中)(1)化简:2|x﹣2|﹣|x+4|;(2)若2a+|4﹣5a|+|1﹣3a|的值是一个定值,求a的取值范围,并且求出定值.25.(6分)(2018秋•鲤城区期末)有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|﹣|a﹣b|+|2a|.26.(10分)(2021秋•南昌县期中)分类讨论是一种重要的数学方法,如在化简|a|时,可以这样分类:当a>0时,|a|=a;当a=0时,|a|=0;当a<0时,|a|=﹣a.用这种方法解决下列问题:(1)当a=5时,求的值.(2)当a=﹣2时,求的值.(3)若有理数a不等于零,求的值.(4)若有理数a、b均不等于零,试求的值.27.(8分)(2016秋•景德镇期末)已知a+b+c=0,其中a>0,c<0且|a|<|c|,请根据绝对值的意义化简:(1)=,=;(2)请分析b的正负性,并求出++的值.28.(10分)(2020秋•城关区校级期中)阅读下列材料并解决有关问题:我们知道|x|=,现在我们可以用这个结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x﹣2|时,可令x+1=0和x ﹣2=0,分别求得x=﹣1,x=2(称﹣1,2分别叫做|x+1|与|x﹣2|的零点值.)在有理数范围内,零点值x=﹣1和x=2可将全体有理数分成不重复且不遗漏的如下3种情况:(1)当x<﹣1时,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;(2)当﹣1≤x≤2时,原式=x+1﹣(x﹣2)=3;(3)当x>2时,原式=x+1+x﹣2=2x﹣1.综上所述,原式=.通过以上阅读,请你解决以下问题:(1)分别求出|x+2|和|x﹣4|的零点值;(2)化简代数式|x+2|+|x﹣4|;(3)求方程:|x+2|+|x﹣4|=6的整数解;(4)|x+2|+|x﹣4|是否有最小值?如果有,请直接写出最小值;如果没有,请说明理由.。

最新成都七年级数学上期中专题培优练习:绝对值、相反数、整式的加减(B卷)含答案

最新成都七年级数学上期中专题培优练习:绝对值、相反数、整式的加减(B卷)含答案

七年级数学上期中专题培优练习:绝对值、相反数、整式的加减第Ⅰ卷(选择题)一.填空题(共22小题)1.已知a、b为有理数,且a>0,b<0,a+b<0,将四个数a、b、﹣a、﹣b按由小到大的顺序排列是.2.若|x|=5,|y|=3,且|x﹣y|=﹣x+y,则x+y= .3.已知当x=﹣3时,代数式ax3+bx+1的值为8,那么当x=3时,代数式ax3+bx+1的值为.4.已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a ﹣b|= .5.小明有5张写着以下数字的卡片,请你按要求抽出卡片,完成下列各问题:(1)从中取出2张卡片,使这2张卡片上数字乘积最大,最大值是;(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,最小值是;(3)从中取出除0以外的4张卡片,用学过的运算方法,使结果为24,写出运算式子(一种即可).6.若单项式﹣x2﹣2m y6与x6y3n的和仍是单项式,则m n= .7.若关于x、y的多项式x2y﹣7mxy+y3+6xy化简后不含二次项,则m= .8.已知5a+3b=﹣4,则代数式2a+2b﹣(4﹣4b﹣8a)+2的值为.9.已知|a|=3,|b|=2,且|a﹣b|=b﹣a,则a+b= .10.我们将1×2×3×…×n记作n!(读作n的阶乘),如2!=1×2,3!=1×2×3,4!=1×2×3×4,若设S=1×1!+2×2!+3×3!+…+2016×2016!,则S除以2017的余数是.11.若3x|n|﹣(n﹣4)x﹣3是关于x的四次三项式,则n的值为.12.已知a、b互为相反数,且|a﹣b|=,则= .13.已知3a3﹣a=1,则代数式9a4+12a3﹣3a2﹣7a+2013的值为.14.已知多项式4a3﹣2a+5的值是7,则多项式2(﹣a)3﹣(﹣a)+1的值是.15.如图所示,有理数a,b,c在数轴上对应的点分别是A,B,C.其中O为数轴的原点,则代数式化简= .16.我们把一些有理数按照一定的顺序排成一列,将第1个数记作a1,第2个数记作a2,…,第n个数记作a n,这样得到a1,a2,…,a n,如果这n个数满足:从第2个数开始,每个数都等于1与它前面的那个数的差的倒数,且a1=﹣,那么a2016= .17.|x+1|+|x﹣2|+|x﹣2012|的最小值为.18.若“!”是一种数学运算符号,并且:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则= .19.已知当x=2时,代数式ax3+bx﹣2=5,则当x=﹣2时,ax3+bx﹣2= .20.已知:abc≠0,则= .21.m为时,代数式的值是非负整数.22.若关于x的代数式(m﹣2)x4﹣nx3+15x2﹣4+9x3是一个三次多项式,则m= ,n .第Ⅱ卷(非选择题)二.解答题(共18小题)23.由7个相同棱长为1的小立方块搭成的几何体如图所示,(1)请画出它的三视图.(2)在一次数学活动课上,甲同学用小立方体搭成现在的几何体,然后请乙同学用其他同样的小正方体在旁边再搭一个几何体,使得乙同学所搭几何体恰好可以和甲同学所搭几何体拼成一个无缝隙的大长方体(不改变甲同学所搭几何体的形状),那么乙同学至少还需要多少个小立方体,乙同学所搭几何体的表面积是多少?24.已知:关于x、y的多项式x2+ax﹣y+b与多项式bx2﹣3x+6y﹣3的和的值与字母x的取值无关,求代数式3(a2﹣2ab+b2)﹣[4a2﹣2(a2+ab﹣b2)]的值.25.数轴上A 点对应的数为﹣5,B 点在A 点右边,电子蚂蚁甲、乙在B分别以2个单位/秒、1个单位/秒的速度向左运动,电子蚂蚁丙在A 以3个单位/秒的速度向右运动.(1)若电子蚂蚁丙经过5秒运动到C 点,求C 点表示的数;(2)若它们同时出发,若丙在遇到甲后1秒遇到乙,求B 点表示的数;(3)在(2)的条件下,设它们同时出发的时间为t 秒,是否存在t 的值,使丙到乙的距离是丙到甲的距离的2倍?若存在,求出t 值;若不存在,说明理由.26.已知数a,b,c,在数轴上的位置如图所示,化简|a+b|﹣|a﹣b|+2|a+c|.27.已知A=2x2+xy+3y﹣1,B=x2﹣xy.(1)若﹣2a2b y+1与3a x b4的和仍是单项式,求A﹣2B的值;(2)若A﹣2B的值与y的取值无关,求x的值;28.在数轴上,点M,N表示的数分别是x1,x2,我们把x1,x2之差的绝对值叫做点M,N之间的距离,即MN=|x1﹣x2|,已知数轴上三点A,O,B表示的数分别为﹣3,0,1.点P为数轴上任意一点,其表示的数为x;(1)如果点P到点A,点B的距离相等,那么x= ;(2)若|x+3|+|x﹣1|=6,则x= ;(3)若|x+3|﹣|x﹣1|=4,求x的取值范围?(4)若点P以每秒3个单位长度的速度从点O沿着数轴的负方向运动时,点E 以每秒1个单位长度的速度从点A沿着数轴的负方向运动、点F以每秒4个单位长度的速度从点B沿着数轴的负方向运动,且三个点同时出发,求运动多少秒时,点P到点E,点F的距离相等.29.请观察下列算式,找出规律并填空.如图所示数表,从1开始的连续自然数组成,观察规律并完成下列各题:(1)请问第六排从左到右的第二个数是;(2)设第n排右边最后一个数字为y,请用含n的代数式表示y.30.把正整数1,2,3,4,…,2014排列成如图所示的一个表(1)用一正方形在表中随意框住16个数,把其中没有被阴影覆盖的最小的数记为x,另外没有被覆盖的数用含x的式子表示出来,从小到大依次是、、.(2)没有被阴影覆盖的这四个数之和能等于96吗?若能,请求出x的值;若不能,请说明理由.(3)那这四个数之和又能否等于3282呢?如果能,请求出x的值;如果不能,请说明理由.31.已知(x﹣2)2+|y+1|=0,a、b互为相反数,c、d互为倒数,p是数轴上到原点的距离为2的数,求代数式y x﹣3a+2cd+p﹣3b的值.32.如图,数轴上的三个点A、B、C分别表示有理数a、b、c,化简2|a﹣b|﹣|b+c|+|c﹣a|﹣|b﹣c|.33.已知﹣2x2y m﹣1与x n+3y3是同类项,先化简,再求下列代数式的值:﹣2(mn ﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn].34.已知A=3a2﹣3b2+c2,B=a2﹣b2+c2,C=5a2﹣2b2﹣3c2,求2A﹣(3B﹣C)35.已知m、x、y满足(1)(x﹣5)2+5|m|=0;(2)﹣a2b y+1与3a2b3是同类项,求代数式;0.375x2y+5m2x﹣{﹣x2y+[﹣xy2+(﹣x2y﹣3.475xy2)]﹣6.275xy2}的值.36.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示﹣3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.如果表示数a和﹣2的两点之间的距离是3,那么a= ;(2)若数轴上表示数a的点位于﹣4与2之间,求|a+4|+|a﹣2|的值;(3)当a取何值时,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值是多少?请说明理由.37.已知代数式A=2x2+3xy+2y﹣1,B=x2﹣xy+x﹣(1)当x=y=﹣2时,求A﹣2B的值;(2)若A﹣2B的值与x的取值无关,求y的值.38.先阅读下面的材料,再解答后面的各题:现代社会对保密要求越来越高,密码正在成:为人们生活的一部分.有一种密码的明文(真实文)按计算机键盘字母排列分解,其中Q、W、E、…、N、M这26个字母依次对应1,2,3…25,26这26个自然数(见下表):给出一个变换公式:将明文转换成密文,如:4⇒,即R变为L.11⇒,即A变为S.将密文转换成明文,如:21⇒3×(21﹣17)﹣2=10,即X变为P13⇒3×(13﹣8)﹣1=14,即D变为F.(1)按上述方法将明文NET译为密文;(2)若按上述方法将明文译成的密文为DWN,请找出它的明文.39.如图所示,求阴影部分的面积.40.(1)已知a﹣b=5,ab=﹣1,求代数式(2a+3b﹣2ab)﹣(a+4b+ab)﹣(3ab+2b ﹣2a)的值.(2)已知代数式﹣2x2﹣mxy+3y2﹣2xy﹣不含有xy项,求代数式2m﹣{﹣1+[3(m+2)+6m]﹣5}的值.参考答案与试题解析一.填空题(共22小题)1.已知a、b为有理数,且a>0,b<0,a+b<0,将四个数a、b、﹣a、﹣b按由小到大的顺序排列是b<﹣a<a<﹣b .【解答】解:∵a>0,b<0,a+b<0,∴﹣b>a>0,b<﹣a<0∴b<﹣a<a<﹣b.故答案为:b<﹣a<a<﹣b.2.若|x|=5,|y|=3,且|x﹣y|=﹣x+y,则x+y= ﹣8或﹣2 .【解答】解:∵|x|=5,|y|=3,∴x=±5,y=±3,∵|x﹣y|=﹣(x﹣y),∴x﹣y≤0,∴x=﹣5,y=±3,当x=﹣5、y=﹣3时,x+y=﹣5﹣3=﹣8;当x=﹣5、y=3时,x+y=﹣5+3=﹣2;故答案为:﹣8或﹣23.已知当x=﹣3时,代数式ax3+bx+1的值为8,那么当x=3时,代数式ax3+bx+1的值为﹣6 .【解答】解:∵当x=﹣3时,代数式ax3+bx+1的值为8,∴﹣27a﹣3b+1=8,∴27a+3b=﹣7,∴当x=3时,ax3+bx+1=27a+3b+1=﹣7+1=﹣6.故答案为:﹣6.4.已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a ﹣b|= ﹣2a+c﹣1 .【解答】解:∵a、c在原点的左侧,a<﹣1,∴a<0,c<0,∴2a<0,a+c<0,∵0<b<1,∴1﹣b>0,∵a<﹣1,∴﹣a﹣b>0∴原式=﹣2a+(a+c)﹣(1﹣b)+(﹣a﹣b)=﹣2a+a+c﹣1+b﹣a﹣b=﹣2a+c﹣1.故答案为:﹣2a+c﹣1.5.小明有5张写着以下数字的卡片,请你按要求抽出卡片,完成下列各问题:(1)从中取出2张卡片,使这2张卡片上数字乘积最大,最大值是25 ;(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,最小值是﹣5 ;(3)从中取出除0以外的4张卡片,用学过的运算方法,使结果为24,写出运算式子(一种即可)(﹣5)×(﹣5)﹣15.【解答】解:(1)(﹣5)×(﹣5)=25;(2)(﹣5)÷1=﹣5;(3)(﹣5)×(﹣5)﹣15=25﹣1=24.故答案为:(1)25;(2)﹣5;(3)(﹣5)×(﹣5)﹣156.若单项式﹣x2﹣2m y6与x6y3n的和仍是单项式,则m n= 4 .【解答】解:∵﹣x2﹣2m y6与x6y3n的和仍是单项式,∴﹣x2﹣2m y6与x6y3n是同类项.∴2﹣2m=6,6=3n.解得:m=﹣2,n=2.∴m n=(﹣2)2=4.故答案为:4.7.若关于x、y的多项式x2y﹣7mxy+y3+6xy化简后不含二次项,则m= .【解答】解:x2y﹣7mxy+y3+6xy=x2y+(﹣7m+6)xy+y3,因为化简后不含二次项,所以﹣7m+6=0,解得m=.故答案为:.8.已知5a+3b=﹣4,则代数式2a+2b﹣(4﹣4b﹣8a)+2的值为﹣10 .【解答】解:原式=2a+2b﹣4+4b+8a+2=10a+6b﹣2=2(5a+3b)﹣2=﹣10,故答案为:﹣10.9.已知|a|=3,|b|=2,且|a﹣b|=b﹣a,则a+b= ﹣1或﹣5 .【解答】解:∵|a﹣b|=b﹣a,∴知b>a,∵|a|=3,|b|=2,∴a=﹣3,b=2或﹣2,当a=﹣3,b=2时,a+b=﹣1,当a=﹣3,b=﹣2时,a+b=﹣5,∴a+b=﹣1或﹣5,故答案为﹣1或﹣5.10.我们将1×2×3×…×n记作n!(读作n的阶乘),如2!=1×2,3!=1×2×3,4!=1×2×3×4,若设S=1×1!+2×2!+3×3!+…+2016×2016!,则S除以2017的余数是2016 .【解答】解:∵(n+1)!=1×2×3×…×n×(n+1)=(n+1)×n!=n×n!+n!,∴S+1!+2!+3!+…+2016!=1×1!+2×2!+3×3!+…+2016×2016!+1!+2!+3!+…+2016!,即S+1!+2!+3!+…+2016!=2!+3!+…+2017!,则S=2017!﹣1,∵2017!能被2017整除,∴S与1的和能被2017整除,∴S除以2017的余数是:2017﹣1=2016.故答案为:2016.11.若3x|n|﹣(n﹣4)x﹣3是关于x的四次三项式,则n的值为﹣4 .【解答】解:∵3x|n|﹣(n﹣4)x﹣3是关于x的四次三项式,∴|n|=4且n≠4,∴n=﹣4,故答案为﹣4.12.已知a、b互为相反数,且|a﹣b|=,则= .【解答】解:∵a、b互为相反数,∴a+b=0,且b=﹣a,∵|a﹣b|=,∴|a﹣(﹣a)|=,∴2|a|=,解得a=或a=﹣,此时b=﹣或b=.(1)a=,b=﹣时,===(2)a=﹣,b=时,===综上,可得=.故答案为:.13.已知3a3﹣a=1,则代数式9a4+12a3﹣3a2﹣7a+2013的值为2017 .【解答】解:∵3a3﹣a=1,∴9a4+12a3﹣3a2﹣7a+2013=3a(3a3﹣a)+12a3﹣7a+2013=12a3﹣4a+2013=4(3a3﹣a)+2013=4+2013=2017,故答案为:2017.14.已知多项式4a3﹣2a+5的值是7,则多项式2(﹣a)3﹣(﹣a)+1的值是0 .【解答】解:∵4a3﹣2a+5=7,即2a3﹣a=1,∴原式=﹣(2a3﹣a)+1=﹣1+1=0,故答案为:015.如图所示,有理数a,b,c在数轴上对应的点分别是A,B,C.其中O为数轴的原点,则代数式化简= ﹣1 .【解答】解:由数轴可知,c<b<0<a,且|b|<|a|,∴b+a>0,bc>0,c﹣a<0,∴=1﹣1﹣1=﹣1.故答案为:﹣1.16.我们把一些有理数按照一定的顺序排成一列,将第1个数记作a1,第2个数记作a2,…,第n个数记作a n,这样得到a1,a2,…,a n,如果这n个数满足:从第2个数开始,每个数都等于1与它前面的那个数的差的倒数,且a1=﹣,那么a2016= 3 .【解答】解:根据题意,得a2==,a3==3,a4==﹣,a5==,a6==3,发现:三个数一循环.所以,2016÷3=672,则a2016正好是672轮的第三个,∴a2016=3,故答案为:3.17.|x+1|+|x﹣2|+|x﹣2012|的最小值为2013 .【解答】解:当x≤﹣1时,|x+1|+|x﹣2|+|x﹣2012|=﹣x﹣1﹣x+2﹣x+2012=﹣3x+2013,则﹣3x+2013≥2016;当﹣1<x≤2时,|x+1|+|x﹣2|+|x﹣2012|=x+1﹣x+2﹣x+2012=﹣x+2015,则2013≤﹣x+2015<2014;当2<x≤2012时,|x+1|+|x﹣2|+|x﹣2012|=x+1+x﹣2﹣x+2013=x+2012,则2014<x+2012≤4024;当x>2012时,|x+1|+|x﹣2|+|x﹣2012|=x+1+x﹣2+x﹣2012=3x﹣2013,则3x ﹣2013>4023.综上所述|x+1|+|x﹣2|+|x﹣2012|的最小值为2013.故答案为:2013.18.若“!”是一种数学运算符号,并且:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则= 9900 .【解答】解:∵100!=100×99×98×97×...×1,98!=98×97× (1)∴==100×99=9900.19.已知当x=2时,代数式ax3+bx﹣2=5,则当x=﹣2时,ax3+bx﹣2= ﹣9 .【解答】解:当x=2时,多项式ax3+bx﹣2=5,∴8a+2b﹣2=5,即8a+2b=7,当x=﹣2时,ax3+bx﹣2=﹣8a﹣2b﹣2=﹣(8a+2b)﹣2=﹣7﹣2=﹣9.故答案为:﹣9.20.已知:abc≠0,则= ﹣或0或.【解答】解:当a、b、c均为正数时,原式=+++=,当a、b、c中有一个负数时,原式=0;当a、b、c中有两个负数时,原式=0,当a、b、c均为负数时,原式=﹣.故答案为:﹣或0或.21.m为3、4、6 时,代数式的值是非负整数.【解答】解:由于同号得正,当m﹣2>0,即m>2时,代数式的值是正数因为4除以1、2、4的结果为整数,所以m﹣2可等于1、2、4,所以m可取3,4,6.即当m=3、4、6时,代数式的值是非负整数.故答案为:3、4、6.22.若关于x的代数式(m﹣2)x4﹣nx3+15x2﹣4+9x3是一个三次多项式,则m= 2 ,n ≠9 .【解答】解:∵关于x的代数式(m﹣2)x4﹣nx3+15x2﹣4+9x3是一个三次多项式,∴m﹣2=0,﹣n+9≠0,解得m=2,n≠9.故答案为:2,≠9.二.解答题(共18小题)23.由7个相同棱长为1的小立方块搭成的几何体如图所示,(1)请画出它的三视图.(2)在一次数学活动课上,甲同学用小立方体搭成现在的几何体,然后请乙同学用其他同样的小正方体在旁边再搭一个几何体,使得乙同学所搭几何体恰好可以和甲同学所搭几何体拼成一个无缝隙的大长方体(不改变甲同学所搭几何体的形状),那么乙同学至少还需要多少个小立方体,乙同学所搭几何体的表面积是多少?【解答】解:(1)如图所示:(2)搭建的长方体长、宽、高分别为3、2、2(每层要6个小立方体)第一层还需要1个,第二层还需要4个,则乙同学还需要4+1=5,其表面积等于22.24.已知:关于x、y的多项式x2+ax﹣y+b与多项式bx2﹣3x+6y﹣3的和的值与字母x的取值无关,求代数式3(a2﹣2ab+b2)﹣[4a2﹣2(a2+ab﹣b2)]的值.【解答】解:由题意可知:x2+ax﹣y+b+bx2﹣3x+6y﹣3=(b+1)x2+(a﹣3)x+5y+b ﹣3该多项式的值与x无关,所以b+1=0,a﹣3=0所以b=﹣1,a=3原式=3a2﹣6ab+3b2﹣(3a2﹣2ab+3b2)=3a2﹣6ab+3b2﹣3a2+2ab﹣3b2=﹣4ab=1225.数轴上A 点对应的数为﹣5,B 点在A 点右边,电子蚂蚁甲、乙在B分别以2个单位/秒、1个单位/秒的速度向左运动,电子蚂蚁丙在A 以3个单位/秒的速度向右运动.(1)若电子蚂蚁丙经过5秒运动到C 点,求C 点表示的数;(2)若它们同时出发,若丙在遇到甲后1秒遇到乙,求B 点表示的数;(3)在(2)的条件下,设它们同时出发的时间为t 秒,是否存在t 的值,使丙到乙的距离是丙到甲的距离的2倍?若存在,求出t 值;若不存在,说明理由.【解答】解:(1)由题知:C:﹣5+3×5=10 即C点表示的数为10;(2)设B表示的数为x,则B到A的距离为|x+5|,点B在点A的右边,故|x+5|=x+5,由题得:﹣=1,即x=15;(3)①在电子蚂蚁丙与甲相遇前,2(20﹣3t﹣2t)=20﹣3t﹣t,此时t=(s);②在电子蚂蚁丙与甲相遇后,2×5(t﹣4)=20﹣3t﹣t,此时t=(s);综上所述,当t=s或t=s时,使丙到乙的距离是丙到甲的距离的2倍.26.已知数a,b,c,在数轴上的位置如图所示,化简|a+b|﹣|a﹣b|+2|a+c|.【解答】解:由数轴知c<0<a<b,且|a|<|c|,则a+b>0,a﹣b<0,a+c<0,所以原式=a+b+a﹣b﹣2(a+c)=a+b+a﹣b﹣2a﹣2c=﹣2c.27.已知A=2x2+xy+3y﹣1,B=x2﹣xy.(1)若﹣2a2b y+1与3a x b4的和仍是单项式,求A﹣2B的值;(2)若A﹣2B的值与y的取值无关,求x的值;【解答】解:(1)∵﹣2a2b y+1与3a x b4的和仍是单项式,∴﹣2a2b y+1与3a x b4是同类项,则x=2,y+1=4,即y=3,∴A﹣2B=2x2+xy+3y﹣1﹣2(x2﹣xy)=2x2+xy+3y﹣1﹣2x2+2xy=3xy+3y﹣1=3×2×3+3×3﹣1=26;(2)由(1)知A﹣2B=3xy+3y﹣1=3(x+1)y﹣1,∵A﹣2B的值与y的取值无关,∴x+1=0,则x=﹣1.28.在数轴上,点M,N表示的数分别是x1,x2,我们把x1,x2之差的绝对值叫做点M,N之间的距离,即MN=|x1﹣x2|,已知数轴上三点A,O,B表示的数分别为﹣3,0,1.点P为数轴上任意一点,其表示的数为x;(1)如果点P到点A,点B的距离相等,那么x= ﹣1 ;(2)若|x+3|+|x﹣1|=6,则x= ﹣4或2 ;(3)若|x+3|﹣|x﹣1|=4,求x的取值范围?(4)若点P以每秒3个单位长度的速度从点O沿着数轴的负方向运动时,点E 以每秒1个单位长度的速度从点A沿着数轴的负方向运动、点F以每秒4个单位长度的速度从点B沿着数轴的负方向运动,且三个点同时出发,求运动多少秒时,点P到点E,点F的距离相等.【解答】解:(1)∵点P到点A,点B的距离相等,∴|x﹣(﹣3)|=|x﹣1|,解得:x=﹣1.故答案为:﹣1.(2)当x<﹣3时,有﹣x﹣3﹣x+1=6,解得:x=﹣4;当﹣3≤x≤1时,有x+3﹣x+1=4≠6,舍去;当x>1时,有x+3+x﹣1=6,解得:x=2.故答案为:﹣4或2.(3)当x<﹣3时,|x+3|﹣|x﹣1|=﹣x﹣3+x﹣1=﹣4,舍去;当﹣3≤x≤1时,|x+3|﹣|x﹣1|=x+3+x﹣1=2x+2=4,解得:x=1;当x>1时,|x+3|﹣|x﹣1|=x+3﹣x+1=4.综上所述:当x≥1时,|x+3|﹣|x﹣1|=4.(4)设运动t秒时,点P到点E,点F的距离相等,根据题意得:|﹣3t﹣(﹣t﹣3)|=|﹣3t﹣(﹣4t+1)|,解得:t1=,t2=2.答:运动或2秒时,点P到点E,点F的距离相等.29.请观察下列算式,找出规律并填空.如图所示数表,从1开始的连续自然数组成,观察规律并完成下列各题:(1)请问第六排从左到右的第二个数是17 ;(2)设第n排右边最后一个数字为y,请用含n的代数式表示y.【解答】解:(1)第五排的第一个数字为×5×(5+1)=15,所以第六排从左到右的第二个数是17;(2)设第n排右边最后一个数字为y,偶数行y=n(n+1),奇数行y=n(n﹣1)+1.30.把正整数1,2,3,4,…,2014排列成如图所示的一个表(1)用一正方形在表中随意框住16个数,把其中没有被阴影覆盖的最小的数记为x,另外没有被覆盖的数用含x的式子表示出来,从小到大依次是x+3 、x+24 、x+27 .(2)没有被阴影覆盖的这四个数之和能等于96吗?若能,请求出x的值;若不能,请说明理由.(3)那这四个数之和又能否等于3282呢?如果能,请求出x的值;如果不能,请说明理由.【解答】解:(1)观察数列可知:每行有8个数,同行相邻两列数差为1,同列相邻两行的差为8.∵最小的数记为x,∴另外三个数分别为:x+3,x+24,x+27.故答案为:x+3;x+24;x+27.(2)没有被阴影覆盖的这四个数之和不能等于96,理由如下:四个数之和为x+x+3+x+24+x+27=4x+54,∴4x+54=96,解得:x=10.5,∵x为正整数,∴没有被阴影覆盖的这四个数之和不能等于96.(3)根据题意得:4x+54=3282,解得:x=807.答:这四个数之和能等于3282,此时x的值为807.31.已知(x﹣2)2+|y+1|=0,a、b互为相反数,c、d互为倒数,p是数轴上到原点的距离为2的数,求代数式y x﹣3a+2cd+p﹣3b的值.【解答】解:∵(x﹣2)2+|y+1|=0,a、b互为相反数,c、d互为倒数,p是数轴上到原点的距离为2的数,∴x=2,y=﹣1,a+b=0,cd=1,p=2或﹣2,当p=2时,原式=1+2+2=5;当p=﹣2时,原式=1+2﹣2=1.32.如图,数轴上的三个点A、B、C分别表示有理数a、b、c,化简2|a﹣b|﹣|b+c|+|c﹣a|﹣|b﹣c|.【解答】解:由数轴得:a<b<0<c,且|b|<|c|<|a|,∴a﹣b<0,b+c>0,c﹣a>0,b﹣c<0,则原式=﹣2a+2b﹣b﹣c+c﹣a+b﹣c=﹣3a+2b﹣c.33.已知﹣2x2y m﹣1与x n+3y3是同类项,先化简,再求下列代数式的值:﹣2(mn ﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn].【解答】解:∵﹣2x2y m﹣1与x n+3y3是同类项,∴n+3=2,m﹣1=3,解得:m=4,n=﹣1,则原式=﹣2mn+6m2﹣m2+5mn﹣5m2﹣2mn=mn=﹣4.34.已知A=3a2﹣3b2+c2,B=a2﹣b2+c2,C=5a2﹣2b2﹣3c2,求2A﹣(3B﹣C)【解答】解:∵A=3a2﹣3b2+c2,B=a2﹣b2+c2,C=5a2﹣2b2﹣3c2,∴2A﹣(3B﹣C)=2A﹣3B+C=2(3a2﹣3b2+c2)﹣3(a2﹣b2+c2)+(5a2﹣2b2﹣3c2)=6a2﹣6b2+2c2﹣3a2+3b2﹣3c2+5a2﹣2b2﹣3c2=8a2﹣5b2﹣4c2.35.已知m、x、y满足(1)(x﹣5)2+5|m|=0;(2)﹣a2b y+1与3a2b3是同类项,求代数式;0.375x2y+5m2x﹣{﹣x2y+[﹣xy2+(﹣x2y﹣3.475xy2)]﹣6.275xy2}的值.【解答】解:∵(1)(x﹣5)2+5|m|=0;(2)﹣a2b y+1与3a2b3是同类项,∴x=5,m=0,y+1=3,即y=2,则原式=0.375x2y+x2y+xy2+x2y+3.475xy2+6.275xy2=x2y+10xy2=50+200=250.36.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是 3 ;表示﹣3和2两点之间的距离是 5 ;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.如果表示数a和﹣2的两点之间的距离是3,那么a= 1或﹣5 ;(2)若数轴上表示数a的点位于﹣4与2之间,求|a+4|+|a﹣2|的值;(3)当a取何值时,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值是多少?请说明理由.【解答】解:(1)3,5,1或﹣5;(2)因为|a+4|+|a﹣2|表示数轴上数a和﹣4,2之间距离的和.又因为数a位于﹣4与2之间,所以|a+4|+|a﹣2|=6;(3)根据|a+5|+|a﹣1|+|a﹣4|表示一点到﹣5,1,4三点的距离的和.所以当a=1时,式子的值最小,此时|a+5|+|a﹣1|+|a﹣4|的最小值是9.37.已知代数式A=2x2+3xy+2y﹣1,B=x2﹣xy+x﹣(1)当x=y=﹣2时,求A﹣2B的值;(2)若A﹣2B的值与x的取值无关,求y的值.【解答】解:(1)A﹣2B=2x2+3xy+2y﹣1﹣2()=2x2+3xy+2y﹣1﹣2x2+2xy﹣2x+1=5xy+2y﹣2x,当x=y=﹣2时,A﹣2B=5xy+2y﹣2x=5×(﹣2)×(﹣2)+2×(﹣2)﹣2×(﹣2)=20;(2)由(1)可知A﹣2B=5xy+2y﹣2x=(5y﹣2)x+2y,若A﹣2B的值与x的取值无关,则5y﹣2=0,解得.38.先阅读下面的材料,再解答后面的各题:现代社会对保密要求越来越高,密码正在成:为人们生活的一部分.有一种密码的明文(真实文)按计算机键盘字母排列分解,其中Q、W、E、…、N、M这26个字母依次对应1,2,3…25,26这26个自然数(见下表):给出一个变换公式:将明文转换成密文,如:4⇒,即R变为L.11⇒,即A变为S.将密文转换成明文,如:21⇒3×(21﹣17)﹣2=10,即X变为P13⇒3×(13﹣8)﹣1=14,即D变为F.(1)按上述方法将明文NET译为密文;(2)若按上述方法将明文译成的密文为DWN,请找出它的明文.【解答】解:(1)将明文NET转换成密文:N→25→+17=26→ME→3→=1→QT→5→+8=10→P即NET密文为MQP;(2)D→13→3×(13﹣8)﹣1=14→FW→2→3×2=6→YN→25→3×(25﹣17)﹣2=22→C即密文DWN的明文为FYC.39.如图所示,求阴影部分的面积.【解答】解:依题意得:S阴影=4a2﹣πa2﹣(4a2﹣π×4a2)=πa2,答:阴影部分的面积是πa2.40.(1)已知a﹣b=5,ab=﹣1,求代数式(2a+3b﹣2ab)﹣(a+4b+ab)﹣(3ab+2b ﹣2a)的值.(2)已知代数式﹣2x2﹣mxy+3y2﹣2xy﹣不含有xy项,求代数式2m﹣{﹣1+[3(m+2)+6m]﹣5}的值.【解答】解:(1)原式=2a+3b﹣2ab﹣a﹣4b﹣ab﹣3ab﹣2b+2a=3(a﹣b)﹣6ab,当a﹣b=5,ab=﹣1时,原式=15+6=21;(2)代数式﹣2x2﹣mxy+3y2﹣2xy﹣=﹣2x2﹣(m+2)xy+3y2﹣不含有xy项,得到m+2=0,即m=﹣2,则原式=2m+1﹣3m﹣6﹣6m+5=﹣7m=14.。

七年级培优竞赛讲义——第9讲:绝对值与一元一次方程

七年级培优竞赛讲义——第9讲:绝对值与一元一次方程

第九讲绝对值与一元一次方程绝对值是初中数学最活跃的概念之一,能与数学中许多知识关联而生成新的问题,我们把绝对值符号中含有未知数的方程叫含绝对值符号的方程,简称绝对值方程.解绝对值方程的基本方法有:一是设法去掉绝对值符号.将绝对值方程转化为常见的方程求解;一是数形结合,借助于图形的直观性求解.前者是通法,后者是技巧.解绝对值方程时,常常要用到绝对值的几何意义,去绝对值的符号法则,非负数的性质、绝对值常用的基本性质等与绝对值相关的知识、技能与方法.【例题讲解】例1.方程5665-=+x x 的解是(重庆市竞赛题)思路点拨没法去掉绝对值符号,将原方程化为一般的一元一次方程来求解.例2.适合81272=-++a a 的整数a 的值的个数有().(希望杯邀请赛试题)A .5B .4C .3D .2思路点拨用分类讨论法解过程繁琐,仔细观察数据特征,借助数轴也许能找到简捷的解题途径.注:形如d cx b ax +=+的绝对值方程可变形为)(d cx b ax +±=+且0≥+d cx ,才是原方程的根,否则必须舍去,故解绝对值时应检验.例3.解方程:413=+-x x ;(天津市竞赛题)思路点拨从内向外,根据绝对值定义性质简化方程.例4.解下列方程:(1)113+=--+x x x (北京市“迎春杯”竞赛题)(2)451=-+-x x .(“祖冲之杯”邀请赛试题)思路点拨解含多个绝对值符号的方程最常用也是最一般的方法是将数轴分段进行讨论,采用前面介绍的“零点分段法”分类讨论;有些特殊的绝对值方程可利用绝对值的几何意义迅速求解.例5.已知关于x 的方程a x x =-+-32,研究a 存在的条件,对这个方程的解进行讨论.思路点拨方程解的情况取决于a 的情况,a 与方程中常数2、3有依存关系,这种关系决定了方程解的情况,因此,探求这种关系是解本例的关键.运用分类讨它法或借助数轴是探求这种关系的重要方法与工具,读者可从两个思路去解.※巩固训练※1.方程1)1(3+=-xx 的解是;方程1213+=-x x 的解是.2.已知199519953990=+x ,那么x =.3.已知,2+=x x ,那么19x 99+3x+27的值为.4.关于x 的方程x a x a -+=1的解是x=0,则a 的值;关于x 的方程x a x a -+=1的解是x=1,则有理数a 的取值范围是.5.使方程0223=++x 成立的未知数x 的值是().A .一2B .0C .32D .不存在6.方程055=-+-x x 的解的个数为().(“祖冲之杯”邀请赛试题)A .不确定B .无数个C .2个D .3个7.已知关于x 的方程mx+2=2(m-x)的解满足0121=--x ,则m 的值是()(山东省竞赛题)A .5210或B .5210-或C .5210或-D .5210--或8.若20002020002000⨯=+x ,则x 等于().(重庆市竞赛题)A .20或一21B .一20或21C .—19或21D .19或一219.解下列方程:(1)8453=+-x ;(2)43234+=--x x ;(3)312=+-x x ;(4)1212++-+-x x x .10.讨论方程k x =-+23的解的情况.11.方程212=--x 的解是.12.若有理数x 满足方程x x +=-11,则化简1-x 的结果是.13.若0,0<>b a ,则使b a b x a x -=-+-成立的x 取值范围是.14.若100<<x ,则满足条件a x =-3的整数a 的值共有个,它们的和是.15.若m 是方程x x +=-20002000的解,则2001-m 等于().A .m 一2001B .一m 一2001C .m+2001D .一m+200116.若关于x 的方程032=+-m x 无解,043=+-n x 只有一个解,054==-k x 有两个解,则m 、n 、k 的大小关系是().A .m>n>k B .n>k>mC .k>m>nD .m>k>n 17.适合关系式62343=++-x x 的整数x 的值有()个.A .0B .1C .2D .大于2的自然数18.方程1735=--+x x 的解有().A .1个B .2个C .3个D .无数个19.设a 、b 为有理数,且0>a ,方程3=--b a x 有三个不相等的解,求b 的值.(“华杯赛”邀请赛试题)20.当a 满足什么条件时,关于x 的方程a x x =---52有一解?有无数多个解?无解?21.已知y y x x +---=-++15912,求x+y 的最大值与最小值.(江苏省竞赛题)22.(1)数轴上两点表示的有理数是a 、b ,求这两点之间的距离;(2)是否存在有理数x ,使x x x =-++31?(3)是否存在整数x ,使144334=++++-+-x x x x ?如果存在,求出所有的整数x ;如果不存在,说明理由.第九讲绝对值与一元一次方程参考答案。

专题三:绝对值(基础专题);人教版七年级上学期培优专题讲练(含答案)

专题三:绝对值(基础专题);人教版七年级上学期培优专题讲练(含答案)

专题三:绝对值(基础专题)一.选择题1.若a=﹣5,|a|=|b|,则b的值等于()2.下列判断正确的是()A.若|a|=|b|,则a=b B.若|a|=|b|,则a=﹣bC.若a=b,则|a|=|b|D.若a=﹣b,则|a|=﹣|b|3.有下列结论:①|a|一定是正数;②只有两个数相等时,它们的绝对值才相等;③绝对值最小的数是0;④在数轴上表示﹣a的点一定在原点的左边;⑤有理数分为正有理数和负有理数;其中正确的结论的个数为()A.1个B.2个C.3个D.4个4.如图,四个有理数在数轴上的对应点分别为点M,P,N,Q,若点P,Q表示的有理数互为相反数,则图中表示绝对值最大的有理数的点是()A.点M B.点P C.点N D.点Q二.填空题5.若a>0,b<0,化简a+3b﹣|a|+|2b|得.6.绝对值不大于3的整数是______________.绝对值小于2015的所有整数之积为_____.7.数轴上到原点的距离小于3的整数的个数为x,不大于3的正整数的个数为y,绝对值等于3的整数的个数为z,则x+y+z=_____.三.解答题8.已知|x﹣4|+|y+2|=0,求x与y的值.9.已知|x﹣4|+|5﹣y|=0,求12(x+y)的值.10.若|a|=4,|b|=2,且a,b异号,求a与b的值.11.有理数a,b,c在数轴上的对应点如图所示.(1)在横线上填入“>”或“<”:a______0;b______0;c______0;|c|______|a|.(2)试在数轴上找出表示﹣a,﹣b,﹣c的点;(3)试用“<”将a,﹣a,b,﹣b,c,﹣c,0连接起来.12.已知数a ,b 表示的点在数轴上的位置如图所示.(1)在数轴上表示出a ,b 的相反数的位置,并将这四个数从小到大排列;(2)若数b 与其相反数相距16个单位长度,则b 表示的数是多少?(3)在(2)的条件下,若数a 与数b 的相反数表示的点相距4个单位长度,则a 表示的数是多少?【参考答案】1。

《1.2.4绝对值》培优专项练习 (原卷+解析) 2021-2022学年人教版数学七年级上册

《1.2.4绝对值》培优专项练习 (原卷+解析)  2021-2022学年人教版数学七年级上册

2021年人教版七年级数学上册《1.2.4绝对值》培优专项练习一.选择题(共12小题)1.若a+3=0,则a的绝对值是()A.3B.C.﹣D.﹣32.若|a|=|b|,则a,b的关系是()A.a=b B.a=﹣bC.a=0且b=0D.a+b=0或a﹣b=03.如果一个数的绝对值不大于2,则这个数一定不是()A.0B.﹣1C.﹣2D.﹣34.若x为整数,且满足|x﹣2|+|x+4|=6,则满足条件的x的值有()A.4个B.5个C.6个D.7个5.已知|x﹣2|+|x+y﹣5|+|y﹣1|=y﹣1.则x+y的值为()A.2B.3C.4D.56.已知|a|=5,则a等于()A.+5B.﹣5C.0D.+5或﹣57.若m为有理数,则m+|m|的结果必为()A.正数B.负数C.非正数D.非负数8.把有理数a代入|a+4|﹣10得到a1,称为第一次操作,再将a1作为a的值代入得到a2,称为第二次操作,…,若a=23,经过第2020次操作后得到的是()A.﹣7B.﹣1C.5D.119.已知a是一个正整数,记G(x)=a﹣x+|x﹣a|.若G(1)+G(2)+G(3)+…+G(2019)+G(2020)=90,则a的值为()A.11B.10C.9D.810.已知有理数a,b,c满足a<0<b<c,则代数式的最小值为()A.c B.C.D.11.若a=﹣2018,则式子|a2+2017a+1|+|a2+2019a﹣1|的值为()A.4034B.4036C.4037D.403812.若|abc|=abc,则=()A.1B.﹣1C.1或7D.﹣1或7二.填空题(共6小题)13.如果|x﹣3|=5,那么x=.14.化简|π﹣4|+|3﹣π|=.15.若abcd>0,则的值为.16.已知式子|x+1|+|x﹣2|+|y+3|+|y﹣4|=10,则x+y的最小值是.17.如果一个物体某个量的实际值为a,测量值为b,我们把|a﹣b|称为绝对误差,把称为相对误差.例如,某个零件的实际长度为10cm,测量得9.8cm,那么测量的绝对误差为0.2cm,相对误差为0.02.若某个零件测量所产生的绝对误差为0.3,相对误差为0.02,则该零件的测量值b是.18.若有理数x、y、z均不为0,设代数式的最大值为a,最小值为b,则a+b=.三.解答题(共9小题)19.已知A=,B=.(1)当m>0时,比较A﹣B与0的大小,并说明理由;(2)设y=+B,①当y=3时,求m的值;②若m为整数,求正整数y的值.20.a、b、c在数轴上的位置如图,则:(1)用“>、<、=”填空:a0,b0,c0.(2)用“>、<、=”填空:﹣a0,a﹣b0,c﹣a0.(3)化简:|﹣a|﹣|a﹣b|+|c﹣a|.21.解答下列问题:(1)已知x是5的相反数,y比x小﹣7,求x与﹣y的差;(2)求的绝对值的相反数与的相反数的差.22.已知有理数a、b、c在数轴上的位置,(1)a+b0;a+c0;b﹣c0;(用“>,<,=”填空)(2)试化简|a+b|﹣|a+c|+|b﹣c|.23.已知y=|2x+6|+|x﹣1|+4|x+1|,求y的最小值.24.在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答问题.【提出问题】三个有理数a,b,c满足abc>0,求++的值.【解决问题】解:由题意,得a,b,c三个有理数都为正数或其中一个为正数,另两个为负数.①a,b,c都是正数,即a>0,b>0,c>0时,则++=++=1+1+1=3;②当a,b,c中有一个为正数,另两个为负数时,不妨设a>0,b<0,c<0,则++=++=1+(﹣1)+(﹣1)=﹣1.综上所述,++值为3或﹣1.【探究拓展】请根据上面的解题思路解答下面的问题:(1)已知a,b是不为0的有理数,当|ab|=﹣ab时,则+的值是;(2)已知a,b,c是有理数,当abc<0时,求++的值;(3)已知a,b,c是有理数,a+b+c=0,abc<0,求++的值.25.有理数:,﹣1,5,0,3.5,﹣2.(1)将上面各数在下图的数轴上表示出来,并把这些数用“<”连接.(2)请将以上各数填到相应的横线上;正有理数:;负有理数:.26.有理数a,b,c在数轴上的位置如图所示,且表示数a的点、数b的点与原点的距离相等.(1)用“>”“<”或“=”填空:b0,a+b0,a﹣c0,b﹣c0;(2)|b﹣1|+|a﹣1|=;(3)化简|a+b|+|a﹣c|﹣|b|+|b﹣c|.27.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示﹣3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(2)如果|x+1|=3,那么x=;(3)若|a﹣3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B 两点间的最大距离是,最小距离是.(4)若数轴上表示数a的点位于﹣4与2之间,则|a+4|+|a﹣2|=.2021年人教版七年级数学上册《1.2.4绝对值》培优专项练习参考答案与试题解析一.选择题(共12小题)1.若a+3=0,则a的绝对值是()A.3B.C.﹣D.﹣3【分析】先求出a的值再计算a的绝对值.【解答】解:由a+3=0得a=﹣3,∴|﹣3|=3.故选:A.【点评】本题考查有理数计算,解题关键是熟练掌握绝对值化简方法.2.若|a|=|b|,则a,b的关系是()A.a=b B.a=﹣bC.a=0且b=0D.a+b=0或a﹣b=0【分析】根据绝对值性质选择.【解答】解:根据绝对值性质可知,若|a|=|b|,则a与b相等或相反,即a+b=0或a﹣b =0.故选:D.【点评】一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.3.如果一个数的绝对值不大于2,则这个数一定不是()A.0B.﹣1C.﹣2D.﹣3【分析】逐项分析,即可得到结论.【解答】解:A、|0|=0,这项不符合题意;B、|﹣1|=1,这项不符合题意;C、|﹣2|=2,这项不符合题意;D、|﹣3|=3大于2,这项符合题意.故选:D.【点评】本题考查了绝对值的意义,掌握性质是解题的关键.4.若x为整数,且满足|x﹣2|+|x+4|=6,则满足条件的x的值有()A.4个B.5个C.6个D.7个【分析】依据|x﹣2|+|x+4|=6,分类讨论即可得到所有整数x即可.【解答】解:①当x<﹣4时,|x﹣2|+|x+4|>6(不合题意);②当﹣4≤x≤2时,|x﹣2|+|x+4|=6,符合题意的所有整数x的值为﹣4,﹣3,﹣2,﹣1,0,1,2,③当x>2时,|x﹣2|+|x+4|>6(不合题意);综上所述,满足|x﹣2|+|x+4|=6的所有整数x的个数是7.故选:D.【点评】此题考查绝对值的意义,熟练掌握绝对值的意义是解题的关键.5.已知|x﹣2|+|x+y﹣5|+|y﹣1|=y﹣1.则x+y的值为()A.2B.3C.4D.5【分析】因为绝对值是一个非负数,所以y﹣1>0根据非负数的性质列式求出x+y的值即可.【解答】解:|x﹣2|+|x+y﹣5|+|y﹣1|=y﹣1,|x﹣2|+|x+y﹣5|=0,由题意得,x﹣2=0,x+y﹣5=0,解得x=2,x+y=5.故选:D.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.6.已知|a|=5,则a等于()A.+5B.﹣5C.0D.+5或﹣5【分析】根据绝对值的性质解答.【解答】解:∵一个数的绝对值是5,∴这个数是5或﹣5.故选:D.【点评】本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.7.若m为有理数,则m+|m|的结果必为()A.正数B.负数C.非正数D.非负数【分析】分三种情况:m=0,m>0,m<0进行分析即可.【解答】解:当m=0时,|m|+m=0,当m>0时,|m|+m>0,当m<0时,|m|+m=0,则|m|+m≥0,故选:D.【点评】此题主要考查了绝对值,关键是掌握绝对值的性质:①当a是正有理数时,a 的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.8.把有理数a代入|a+4|﹣10得到a1,称为第一次操作,再将a1作为a的值代入得到a2,称为第二次操作,…,若a=23,经过第2020次操作后得到的是()A.﹣7B.﹣1C.5D.11【分析】先确定第1次操作,a1=|23+4|﹣10=17;第2次操作,a2=|17+4|﹣10=11;第3次操作,a3=|11+4|﹣10=5;第4次操作,a4=|5+4|﹣10=﹣1;第5次操作,a5=|﹣1+4|﹣10=﹣7;第6次操作,a6=|﹣7+4|﹣10=﹣7;…,后面的计算结果没有变化,据此解答即可.【解答】解:第1次操作,a1=|23+4|﹣10=17;第2次操作,a2=|17+4|﹣10=11;第3次操作,a3=|11+4|﹣10=5;第4次操作,a4=|5+4|﹣10=﹣1;第5次操作,a5=|﹣1+4|﹣10=﹣7;第6次操作,a6=|﹣7+4|﹣10=﹣7;第7次操作,a7=|﹣7+4|﹣10=﹣7;…第2020次操作,a2020=|﹣7+4|﹣10=﹣7.故选:A.【点评】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.9.已知a是一个正整数,记G(x)=a﹣x+|x﹣a|.若G(1)+G(2)+G(3)+…+G(2019)+G(2020)=90,则a的值为()A.11B.10C.9D.8【分析】根据绝对值的意义,当x≥a时,|x﹣a|=x﹣a,则G(x)=0;当x<a时,|x ﹣a|=﹣x+a,则G(x)=a﹣x﹣x+a=2a﹣2x,设第n个数时,即x=n,G(x)开始为0,即x=a=n,所以G(1)+G(2)+G(3)+G(4)+…+G(2020)=2n﹣2+2n﹣4+2n ﹣6+…+2n﹣2n+0+0+…+0=n2﹣n,然后解方程n2﹣n=90即可.【解答】解:当x≥a时,则|x﹣a|=x﹣a,∴G(x)=a﹣x+x﹣a=0;当x<a时,则|x﹣a|=﹣(x﹣a)=﹣x+a,∴G(x)=a﹣x﹣x+a=2a﹣2x,∵G(1)+G(2)+G(3)+G(4)+…+G(2020)=90,∴设第n个数时,即x=n,G(x)开始为0,即x=a=n,∴G(n)=2n﹣2n=0,∴G(1)+G(2)+G(3)+G(4)+…+G(2020)=2n﹣2+2n﹣4+2n﹣6+…+2n﹣2n+0+0+…+0=2n×n﹣2(1+2+3+…+n)=2n2﹣2×=n2﹣n,即n2﹣n=90,解得n1=10,n2=﹣9(舍去).故选:B.【点评】本题考查了绝对值:当a>0,|a|=a;当a=0,|a|=0;当a<0,|a|=﹣a.也考查了数字变化规律型问题的解决方法.10.已知有理数a,b,c满足a<0<b<c,则代数式的最小值为()A.c B.C.D.【分析】利用a、b、c的大小关系得到<<,由于=|x﹣|+|x﹣|+|x﹣|,根据绝对值的定义,代数式的值可表示为在数轴上,数x对应的点到三个数、、对应的点的距离之和,然后利用当x=时,数x对应的点到三个数、、对应的点的距离之和最小,从而得到代数的最小值.【解答】解:∵a<0<b<c,∴<<,∵=|x﹣|+|x﹣|+|x﹣|,∴表示为在数轴上,数x对应的点到三个数、、对应的点的距离之和,如图,当x=时,数x对应的点到三个数、、对应的点的距离之和最小,最小值为﹣=c,即代数式的最小值为c.故选:A.【点评】本题考查了绝对值:数轴上某个数与原点的距离叫做这个数的绝对值.也考查了数轴上两点间的距离.11.若a=﹣2018,则式子|a2+2017a+1|+|a2+2019a﹣1|的值为()A.4034B.4036C.4037D.4038【分析】依据a=﹣2018,代入代数式|a2+2017a+1|+|a2+2019a﹣1|,利用绝对值的性质即可得出结果.【解答】解:∵a=﹣2018,∴|a2+2017a+1|+|a2+2019a﹣1|=|20182﹣2017×2018+1|+|20182﹣2019×2018﹣1|=|2018×(2018﹣2017)+1|+|2018×(2018﹣2019)﹣1|=|2018+1|+|﹣2018﹣1|=2019+2019=4038,故选:D.【点评】本题主要考查了绝对值的性质,如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.12.若|abc|=abc,则=()A.1B.﹣1C.1或7D.﹣1或7【分析】根据|abc|=abc,分两种情况①a、b、c均为正数,②a、b、c中一正两负,进行解答即可.【解答】解:因为a、b、c均不为0,由|abc|=abc可得,①a、b、c均为正数,则=7;②a、b、c中一正两负,则=﹣1,=﹣1,=1,所以=﹣1﹣1+1=﹣1,故选:D.【点评】本题考查绝对值的意义,理解绝对值的意义是正确解答的前提.二.填空题(共6小题)13.如果|x﹣3|=5,那么x=8或﹣2.【分析】根据绝对值的性质可得求出x﹣3=±5,从而求出x的值.【解答】解:∵|x﹣3|=5,∴x﹣3=±5,解得x=8或﹣2.故答案为:8或﹣2.【点评】本题考查了绝对值的性质,绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.解题的关键是牢记性质.14.化简|π﹣4|+|3﹣π|=1.【分析】因为π≈3.414,所以π﹣4<0,3﹣π<0,然后根据绝对值定义即可化简|π﹣4|+|3﹣π|.【解答】解:∵π≈3.414,∴π﹣4<0,3﹣π<0,∴|π﹣4|+|3﹣π|=4﹣π+π﹣3=1.故答案为1.【点评】本题主要考查了实数的绝对值的化简,解题关键是掌握绝对值的规律,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,比较简单.15.若abcd>0,则的值为5或﹣3或1.【分析】有三种可能:①a、b、c、d都是正数,此时=1+1+1+1+1=5;②a、b、c、d都是负数,此时=1﹣1﹣1﹣1﹣1﹣1+1=﹣3;③a、b、c、d中有两个正数,有两个负数此时,=1,由此即可解决.【解答】解:∵abcd>0,∴=1,∵abcd>0,∴有三种可能:①a、b、c、d都是正数,此时=+1+1+1+1=5.②a、b、c、d都是负数,此时=1﹣1﹣1﹣1﹣1+1=﹣3.③a、b、c、d中有两个正数,有两个负数,此时=1.综上所述,此时的值为5或﹣3或1.故答案为:5或﹣3或1.【点评】本题考查绝对值的应用,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.16.已知式子|x+1|+|x﹣2|+|y+3|+|y﹣4|=10,则x+y的最小值是﹣4.【分析】令+=a,+=b,根据绝对值的几何意义进行综合分析即可得到答案.【解答】解:令+=a,+=b,根据绝对值几何意义,a表示x到﹣1与2两点之间的距离之和;b表示y到﹣3与4两点之间的距离之和;∵当﹣1≤x≤2,﹣3≤y≤4时,正好有a+b=10,∴当x=﹣1,y=﹣3时,x+y的最小值为:﹣1+(﹣3)=﹣4.故答案为:﹣4.【点评】本题考查了绝对值的几何意义,理解并正确运用“即两个实数a、b表示的两个点之间的距离”是解题的关键.17.如果一个物体某个量的实际值为a,测量值为b,我们把|a﹣b|称为绝对误差,把称为相对误差.例如,某个零件的实际长度为10cm,测量得9.8cm,那么测量的绝对误差为0.2cm,相对误差为0.02.若某个零件测量所产生的绝对误差为0.3,相对误差为0.02,则该零件的测量值b是14.7或15.3.【分析】由绝对误差和相对误差的定义得出:=0.3,=0.02,再根据绝对值的化简法则及分式的除法运算法则计算即可.【解答】解:∵绝对误差为0.3,相对误差为0.02,∴=0.3,=0.02,∴a===15,∴=0.3,∴15﹣b=±0.3,解得:b=14.7或15.3;故答案为:14.7或15.3.【点评】本题考查了绝对值在分式化简计算中的应用,根据题意正确列式并明确绝对值和分式的化简法则是解题的关键.18.若有理数x、y、z均不为0,设代数式的最大值为a,最小值为b,则a+b=0.【分析】根据a>0时,;a<0时,,可知:当x、y、z都大于0时代数式的值最大;当x、y、z都小于0时,代数数值最小,求出a和b的值即可.【解答】解:当x、y、z均为正时,xyz>0,原式取得最大值a=2018+2019+2020+2021=8078;当x、y、z均为负时,xyz<0,原式取得最小值b=(﹣2018)+(﹣2019)+(﹣2020)+(﹣2021)=﹣8078,∴a+b=0.【点评】此题主要考查了绝对值,以及有理数的除法,关键是要知道:一个非0有理数与它的绝对值的商等于±1.三.解答题(共9小题)19.已知A=,B=.(1)当m>0时,比较A﹣B与0的大小,并说明理由;(2)设y=+B,①当y=3时,求m的值;②若m为整数,求正整数y的值.【分析】(1)先根据分式的加减运算求出A﹣B,再结合m>0及(m﹣1)2≥0即可得到答案;(2)①由题意可得到关于m的分式方程,解分式方程可求得m,一定要检验;②先根据代数式变形得到y=2+,再结合m为整数,y为正整数,即可得到答案.【解答】解:(1)当m>0时,A﹣B≥0.由题意,得:A﹣B=﹣==,∵m>0,∴m+1>0,∴2(m+1)>0,(m﹣1)2≥0,∴≥0,∴A﹣B≥0;(2)∵y=+B,∴y=+=,①∵y=3,∴=3,去分母,得:2m+4=3(m+1),去括号,得:2m+4=3m+3,移项,得:2m﹣3m=3﹣4,合并同类项,得:﹣m=﹣1,系数化为1,得:m=1,检验:当m=1时,m+1=2≠0,∴m=1是方程的解.∴m的值为1.②y===2+,∵m为整数,y为正整数,∴m+1=﹣2或1或2,即m=﹣3或0或1,当m=﹣3时,y=2+=2﹣1=1,当m=0时,y=2+=2+2=4,当m=1时,y=2+=2+1=3,综上所述,正整数y的值为1或3或4.【点评】本题综合考查了分式的化简,配方法在化简求值中的应用,分式方程的解法,题目计算难度较大,综合性较强.20.a、b、c在数轴上的位置如图,则:(1)用“>、<、=”填空:a<0,b<0,c>0.(2)用“>、<、=”填空:﹣a>0,a﹣b<0,c﹣a>0.(3)化简:|﹣a|﹣|a﹣b|+|c﹣a|.【分析】(1)根据数轴得出a<b<0<c,|a|>|c|>|b|,再判断大小即可;(2)根据数轴得出a<b<0<c,|a|>|c|>|b|,再判断大小即可;(3)根据数轴得出a<b<0<c,|a|>|c|>|b|,再去掉绝对值符号,求出即可.【解答】解:从数轴可知:a<b<0<c,|a|>|c|>|b|,(1)a<0,b<0,c>0,故答案为:<,<,>;(2)﹣a>0,a﹣b<0,c﹣a>0,故答案为:>,<,>;(3)|a|﹣|a﹣b|+|c﹣a|=﹣a+a﹣b+c﹣a=c﹣b﹣a.【点评】本题考查了数轴和有理数的大小比较,有理数的化简的应用,题目比较好,难度不大.21.解答下列问题:(1)已知x是5的相反数,y比x小﹣7,求x与﹣y的差;(2)求的绝对值的相反数与的相反数的差.【分析】(1)由题意得x=﹣5,y=x﹣(﹣7)=﹣5+7=2,再代入x﹣(﹣y)计算可得.(2)根据题意列出式子计算即可.【解答】解:(1)根据题意知x=﹣5,y=x﹣(﹣7)=﹣5+7=2,则x﹣(﹣y)=﹣5﹣(﹣2)=﹣3.(2)由题意得:﹣|﹣|﹣(﹣)=.【点评】本题主要考查有理数的加法,解题的关键是根据题意列出算式并熟练掌握有理数的加减运算法则.22.已知有理数a、b、c在数轴上的位置,(1)a+b<0;a+c<0;b﹣c>0;(用“>,<,=”填空)(2)试化简|a+b|﹣|a+c|+|b﹣c|.【分析】(1)根据数轴确定a,b,c的范围,即可解答;(2)根据绝对值的性质,即可解答.【解答】解:(1)由数轴可得:c<a<0<b,∴a+b<0,a+c<0,b﹣c>0,(2)∵a+b<0,a+c<0,b﹣c>0,∴|a+b|﹣|a+c|+|b﹣c|=﹣a﹣b+a+c+b﹣c=0.故答案为:(1)<;<;>;(2)原式=0.【点评】本题考查了数轴,解决本题的关键是根据数轴确定a,b,c的范围.23.已知y=|2x+6|+|x﹣1|+4|x+1|,求y的最小值.【分析】利用x的取值不同分别得出函数的最小值,进而得出答案.【解答】解:令2x+6=0,x﹣1=0,x+1=0,解得:x=﹣3,x=1,x=﹣1.当x<﹣3时,则y=﹣2x﹣6﹣x+1﹣4x﹣4=﹣7x﹣9,则没有最小值;当﹣3≤x≤﹣1时,则y=2x+6﹣x+1﹣4x﹣4=﹣3x+3,则最小值为6;当﹣1≤x<1时,则y=2x+6﹣x+1+4x+4=5x+11,则最小值为6;当x≥1时,则y=2x+6+x﹣1+4x+4=7x+9,则最小值为16;故y的最小值为6.【点评】此题主要考查了绝对值函数最值求法,利用分类讨论得出是解题关键.24.在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答问题.【提出问题】三个有理数a,b,c满足abc>0,求++的值.【解决问题】解:由题意,得a,b,c三个有理数都为正数或其中一个为正数,另两个为负数.①a,b,c都是正数,即a>0,b>0,c>0时,则++=++=1+1+1=3;②当a,b,c中有一个为正数,另两个为负数时,不妨设a>0,b<0,c<0,则++=++=1+(﹣1)+(﹣1)=﹣1.综上所述,++值为3或﹣1.【探究拓展】请根据上面的解题思路解答下面的问题:(1)已知a,b是不为0的有理数,当|ab|=﹣ab时,则+的值是0;(2)已知a,b,c是有理数,当abc<0时,求++的值;(3)已知a,b,c是有理数,a+b+c=0,abc<0,求++的值.【分析】(1)仿照题目给出的思路和方法,解决(1)即可;(2)(3)根据已知等式,利用绝对值的代数意义判断出a,b,c中负数有2个,正数有1个,判断出abc的正负,原式利用绝对值的代数意义化简计算即可.【解答】解:(1)a,b是不为0的有理数,当|ab|=﹣ab时,a>0,b<0,或a<0,b >0,当a>0,b<0时,;当a<0,b>0时,.故答案为:0.(2)abc<0,∴a、b、c都是负数或其中一个为负数,另两个为正数,①当a、b、c都是负数,即a<0,b<0,c<0时,则:=﹣1﹣1﹣1=﹣3;②a、b、c有一个为负数,另两个为正数时,设a<0,b>0,c>0,则=﹣1+1+1=1(3)∵a,b,c为三个不为0的有理数,且a+b+c=0得,a+b=﹣c,c+a=﹣b,b+c=﹣a.a、b、c有一个为负数,另两个为正数时,设a<0,b>0,c>0,=1﹣1﹣1=﹣1.【点评】本题主要考查了绝对值的意义、分类讨论思想方法,能不重不漏的分类,会确定字母范围和字母的值是关键.25.有理数:,﹣1,5,0,3.5,﹣2.(1)将上面各数在下图的数轴上表示出来,并把这些数用“<”连接.(2)请将以上各数填到相应的横线上;正有理数:,5,3.5;负有理数:﹣1,﹣2.【分析】(1)将题中各点在数轴中表示出来,并比较大小;(2)根据正数大于0,负数小于0,0既不是正数也不是负数即可解题.【解答】解:(1)如图所示:把这些数用“<”连接为:﹣2<﹣1<0<<3.5<5.(2)正有理数:,5,3.5;负有理数:﹣1,﹣2.故答案为:,5,3.5;﹣1,﹣2.【点评】本题考查了数轴、有理数比较大小,数轴上的点表示的数右边的总比左边的大.26.有理数a,b,c在数轴上的位置如图所示,且表示数a的点、数b的点与原点的距离相等.(1)用“>”“<”或“=”填空:b<0,a+b=0,a﹣c>0,b﹣c<0;(2)|b﹣1|+|a﹣1|=a﹣b;(3)化简|a+b|+|a﹣c|﹣|b|+|b﹣c|.【分析】(1)根据数轴,判断出a,b,c的取值范围,进而求解;(2)根据绝对值的性质,去绝对值号,合并同类项即可;(3)根据绝对值的性质,去绝对值号,合并同类项即可.【解答】解:∵b<﹣1<c<0<1<a,|a|=|b|,∴(1)b<0,a+b=0,a﹣c>0,b﹣c<0;(2)|b﹣1|+|a﹣1|=﹣b+1+a﹣1=a﹣b;(3)|a+b|+|a﹣c|﹣|b|+|b﹣c|=0+(a﹣c)+b﹣(b﹣c)=0+a﹣c+b﹣b+c=a.故答案为:<,=,>,<;a﹣b.【点评】本题主要考查数轴、绝对值、整式的加减等知识的综合运用,解决此题的关键是能够根据数轴上的信息,判断出a,b,c等字母的取值范围,同时解决此题时也要注意绝对值性质的运用.27.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是3;表示﹣3和2两点之间的距离是5;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(2)如果|x+1|=3,那么x=2或﹣4;(3)若|a﹣3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B 两点间的最大距离是8,最小距离是2.(4)若数轴上表示数a的点位于﹣4与2之间,则|a+4|+|a﹣2|=6.【分析】(1)根据数轴,观察两点之间的距离即可解决;(2)根据绝对值可得:x+1=±3,即可解答;(3)根据绝对值分别求出a,b的值,再分别讨论,即可解答;(4)根据|a+4|+|a﹣2|表示数a的点到﹣4与2两点的距离的和即可求解.【解答】解:(1)数轴上表示4和1的两点之间的距离是:4﹣1=3;表示﹣3和2两点之间的距离是:2﹣(﹣3)=5,故答案为:3,5;(2)|x+1|=3,x+1=3或x+1=﹣3,x=2或x=﹣4.故答案为:2或﹣4;(3)∵|a﹣3|=2,|b+2|=1,∴a=5或1,b=﹣1或b=﹣3,当a=5,b=﹣3时,则A、B两点间的最大距离是8,当a=1,b=﹣1时,则A、B两点间的最小距离是2,则A、B两点间的最大距离是8,最小距离是2;故答案为:8,2;(4)若数轴上表示数a的点位于﹣4与2之间,|a+4|+|a﹣2|=(a+4)+(2﹣a)=6.故答案为:6.【点评】此题考查数轴上两点之间的距离的算法:数轴上两点之间的距离等于相应两数差的绝对值,应牢记且会灵活应用.。

七年级培优专题:解含绝对值的一元一次方程

七年级培优专题:解含绝对值的一元一次方程

绝对值邂逅一次方程模型①c=+b ax 1、解方程:4x -2=333-=+x 2、244-23=x 112-x 72=+ 2122-x 3-=+711-x 2-=+3、已知关于x 的方程有两个解,求a 的取值范围。

a 43-23=+x 模型②dcx +=+b ax 1、2x 1=-x 1x 1-2+=x 2、63x 3-4+=x 5-765x x x =++1x 23=-+x多重绝对值方程怕不怕1.解方程:34-2-x =2.解方程:32-x -2=3.已知满足的x 有2个,求a 的取值范围。

a 1-2-x =多个绝对值方程怕不怕1.____x ,64x 2-x 的取值范围是则已知=++2.____,842-==++x x x 则已知3.____x ,54--3==+则已知x x 4.____x ,74--3的取值范围为则已知-=+x x5.。

____x ,74-232的取值范围是则已知=++x x 6.个。

的整数解共有_____127x 25-x 2=++7.个。

的值的个数有的整数符合_____81-2-72x x x =+含绝对值的方程组1.已知,则x=___,y=_____6y x ,12y x =+=+2.____y x ,12y -y x 10,y x x =+=+=++则3.已知|x|+|y|=7,2|x|-3|y|=-1,则x+y=______。

4.已知|x-1|+|y-2|=6,|x-1|=2y-4,则x+y=________.5.已知x-y=4,|x|+|y|=7,求x,y 的值。

6.已知3a-2|b|=5,4|a|-6a=3b,则a 2+b 2=______数形结合突破绝对值1.已知,求y 的取值范围。

2-x 1-x +=y 2.当a 满足什么条件时,方程分别有2个解?无解?无数解?a 2-x 1-x =+3.已知,求y 的取值范围。

2-x -1-x =y 4.当a 满足什么条件时,方程分别有1个解?无解?无数解?a 2-x -1-x =5.____m m 5-x 4x 3-x 2x 1-x 的最大值为,恒成立,则若≥++++++6.____y x ,4x 3-x 2-1x y 的取值范围是可以取所有实数,则且已知+++=小结:解含绝对值的二元一次方程组时,分类讨论是万能的,但不到万不得已不要轻易用,杀敌一千自损八百。

七(上)绝对值培优专题

七(上)绝对值培优专题

七年级数学培优专题讲解——绝对值培优绝对值的意义:(1)几何意义:一般地,数轴上表示数a 的点到原点的距离叫做数a 的绝对值,记作|a|.(2)代数意义:①正数的绝对值是它的本身;②负数的绝对值是它的相反数;③零的绝对值是零.也可以写成: ()()()||0a a a a a a ⎧⎪⎪=⎨⎪-⎪⎩当为正数当为0当为负数典型例题例1.已知a 、b 、c 在数轴上位置如图: 则代数式 | a | + | a+b | + | c-a | - | b-c | 的值等于( )A .-3aB . 2c -aC .2a -2bD . b例2.已知:z x <<0,0>xy ,且x z y >>, 那么y x z y z x --+++的值( ) A .是正数 B .是负数 C .是零 D .不能确定符号例3.已知甲数的绝对值是乙数绝对值的3倍,且在数轴上表示这两数的点位于原点的两侧,两点之间的距离为8,求这两个数;若数轴上表示这两数的点位于原点同侧呢?例4.方程x x -=-20082008 的解的个数是( )A .1个 B .2个 C .3个 D .无穷多个 例5.已知|a b -2|与|a -1|互为相互数,试求下式的值:()()()()()()1111112220072007ab a b a b a b ++++++++++例6.(距离问题)观察下列每对数在数轴上的对应点间的距离 4与2-,3与5,2-与6-,4-与3.并回答下列各题:(1)你能发现所得距离与这两个数的差的绝对值有什么关系吗?答:___ .(2)若数轴上的点A 表示的数为x ,点B 表示的数为―1,则A 与B 两点间的距离可以表示为 ________________.(3)结合数轴求得23x x -++的最小值为 ,取得最小值时x 的取值范围为 ___.(4) 满足341>+++x x 的x 的取值范围为 ______ .(5)若1232008x x x x -+-+-++-的值为常数,试求x 的取值范围.例7.若24513a a a +-+-的值是一个定值,求a 的取值范围.例8.已知112x x ++-=,化简421x -+-.例9.若245134x x x +-+-+的值恒为常数,则x 应满足怎样的条件?此常数的值为多少?说明:(Ⅰ)|a|≥0即|a|是一个非负数; (Ⅱ)|a|概念中蕴含分类讨论思想。

七年级上培优第2讲 绝对值(专题)

七年级上培优第2讲  绝对值(专题)

七年级上数学培优第2讲绝对值(专题)一、知识要点1.绝对值的定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值还是零.即2.绝对值的几何意义:在数轴上表示一个数的点离开原点的距离叫这个数的绝对值.3.绝对值的性质:(1)|ab|=|a|·|b|;|a n|=|-a|n;|a-b|=|b-a|(2)|a|=|b|等价于a=b或a=-b,即a2=b2(3)|a-b| 就是数轴上表示数a的与表示数b的两点之间的距离(4)|a| 是一个非负数。

(0); ||0(0);(0).a aa aa a>⎧⎪==⎨⎪-<⎩二、例题精选【例1】 计算:①|3.14-π| ②111111324342-+---【巩固1】计算:①|π-3.14| ②111111 (23220072006)-+-++-错误!【例2】 已知有理数a ,b ,c 在数轴上的对应点如图所示,化简: a c c b b a +--+-【巩固2】已知a ,b ,c 为三个有理数,它们在数轴上的对应位置如图所示,则|c -b |-|b -a |-|a -c |= _________【例3】 已知-1<x<3,化简|x+2|-|x-4|+|x+1|【巩固3】若x <-2,化简|1-|1+x ||【例4】 已知:abc ≠0,且M =a b c a b c ++, 当a 、b 、c 都是正数时,M = ______; 当a 、b 、c 中有一个负数时,则M = ________;当a 、b 、c 中有2个负数时,则M = ________;当a 、b 、c 都是负数时,M =__________ .【巩固4】已知a b c ,,是非零整数,且0a b c ++=,求a b c abc a b c abc+++的值【例5】 求451+-++x x 的最小值【巩固5】试求│x+2│+│x-3│+│x+4│+│x-5│的最小值. 【例6】化简代数式24++-x x【巩固6】化简三、回家作业1.如果|-a|=-a,则a的取值范围是()A.a>0 B.a≥0 C.a≤0 D.a<02. 当x __________时,|2-x|=x-2.3. 若3230x y -++=,则y x的值是多少?5. 若a ,b 均为非零的有理数,求a b a b-的值.四、学生作业精选1、有a 、b 、c 三个有理数,且满足|a-b|=6,|b-c|=2,则|a-c|=_____________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

子与已知的式子联系起来。

【绝对值必考题型】例1:已知卜一21+年一31=0,求x+y的值。

【例瞄青讲】(-)绝对值的非负性问题1.非负性:若有几个非负数的和为0 ,那么这几个非负数均为0.2.绝对值的非负性;若同+问+上| = 0 ,则必有” =0 ,b = 0 , c = 0【例题】若卜+3|+|),+ 1| + ,+5| = 0,则x-y-z=。

总结:若干非奂数之和为0 , O【巩固】若卜〃 + 3| + 〃一 1 + 2一 1| = 0,则p-\-2n + 3m =【巩固】先化简,再求值:3。

6- 2ab2 -2(ab-^a2b) +2ab .其中。

、%满足|。

+ 3匕+ 1| + (2〃-4)2 =0.(二)绝对值的性质【例1】若a<0 ,则4a+71al等于()A . 1 laB . -1 laC . -3aD . 3a【例2]一个数与这个数的绝对值相等,那么这个数是()A. 1 ,0 B .正数 C .非正数 D ,非负数【例3】已知1x1=5 , lyl=2,且xy >。

,则x-y的值等于()A . 7 或-7B . 7 或 3C . 3 或-3D . -7 或-3【例4】若刊=7 ,则*是()x A .正数 B .负数 C .非负数 D .非正数【例5】已知:2>0/<0,团<山<1,那么以下判断正确的是( )A . l-b>-b> l+a>aB . l+a>a> 1-b>-b【例11】已知a , b , c 为三个有理数,它们在数轴上的对应位置如图所示,则 I II II Ilc-bl-lb-al-la-cl= ・1 0 ° ' bC . l+a> l-b>a>-bD . 1-b > l+a>-b>a【例6]已知a . b 互为相反数,且la-bl=6 ,则lb J 的值为( )A . 2B . 2 或3C . 4D . 2 或4【例 7】a < 0 , ab < 0 ,计算lb-a+ll-la-b-51,结果为( )A . 6B . -4 【例8】若lx+yl=y-x ,则有( A.y>0,x<0C ・-2a+2b+6D . 2a-2b-6)B . y<0,x>0 【例 9]已知:x < 0 < z , xy > 0 ,且lyl > lzl> Ixl f 那么Ix+zhdy+zl-lx-yl 的值( )A.是正数B.是负数C.是零D.不能确定符号【例10]给出下面说法:(1 )互为相反数的两数的绝对值相等;(2 )一个数的绝对值等于本身,这个数不是负数;(3 )若Iml > m ,则 m < 0 ;(4 )若lai > Ibl ,则a > b ,其中正确的有( )A. (1) (2) (3)B. (1) (2) (4)C. (1) (3) (4)D. (2) (3) (4)【巩固】知 a、b、c x d 都是整数,且la+bl+lb+cl+lc+dl+ld+al=2 ,求la+dl的值。

【例 12]若 x < -2 ,贝!Jll-ll+xll=若lal=-a ,则la-ll-la-2l=【例 13】计算+....+ —-———?—=2 3 2 2007 2006 ------------【例14] §lal+a=0 f labl=ab , lcl-c=0,化简:lbl-la+bl-lc-bl+la-cl=【例15】已知数〃,4c的大小关系如图所丞_ _______ _ _______ 一^b 0 a c则下列各式:①Z? + a + (-c)>0 ; @(-6r)-Z? + c>0 ;(3)—+—+ y = l ;®bc-a>0; H H。

⑤卜/ 一M-+ /?| +\a — c| = -2b .其中正确的有.(请填写番号)【巩固】已知:abc^O ,且M=H + 1^ + L!,当a z b , c取不同值时,M有_____ 种不同可能.a h c当a、b、c都®E数时,M=;当a、b、c中有一个负数时,则M=;当a、b、c中有2个负数时,则M=;当a、b、c都是负数时,M= .【巩固】已知“,从c是非零整数,且“+A + c = O ,求言+箸一半的值回 \b\ kl \abc\(三)绝对值相关化简问题(零点分段法)零点分段法的一般步骤:找零点分区间定符号去绝对值符号.【例题】阅读下列材料并解决相关问题:x(x>0)我们知道凶=]0(.r = 0),现在我们可以用这一结论来化简含有绝对值的代数式,-r(x<0)如化简代融|x + l| + |x — 2|时,可令x + l=0和X—2 = 0,分别求彳导x =—l,x = 2(称一1,2分另U为k+ 1|与k一2|的零点值),在有理数范围内,零点值八=-1和“ =2可将全体有理数分成不重复且不易遗漏的如下3中情况:(1)当x<-l 时,原式=-(工 + 1)-(刀-2) = -2刀+1⑵当-1,<2时,原式=、+ 1-(工-2) = 3⑶当Q2时,原式= x+l+x-2 = 2x-l^2A +1(X<-1)综上讨论,原式=3(-1W X<2)2%-1(x2 2)(1 )求出卜+ 2|和|x-4|的零点值(2 )化简代数式|x + 2| + |x-4|解:(1) lx+21和lx・4l的零点值分别为x=-2和x=4.(2)当 xV-2 时,lx+2l+lx-4l=-2x+2:当-2&V4 时,lx+2l+lx-4l=6;当应4 时,lx+2l+lx-4l=2x-2.【巩固】化简1. |x + l| + |x + 2|2.网 + |〃1-1| + |〃?-2|的值3. |X +5|+|2A-3|.4. (l)|2x-l| ;变式5.已知k一3| +卜+ 2|的最小值是“,卜一3| —k+ 2|的最大值为。

,求4 的值。

(四表示数轴上表示数“、数b的两点间的距离.【例题】(距离问题)观察下列每对数在数轴上的对应点间的距离4与-2,3与5, -2与-6, -4与3. 并回答下列各题:(1)你能发现所得距离与这两个数的差的绝对值有什么关系吗?答:.(2)若数轴上的点A表示的数为x ,点B表示的数为一1 ,则A与B两点间的距离可以表示为:⑶结合数轴求得lx-2l+lx+3l的最小值为一,取得最小值时x的取值范围为一.(4)满足卜+1| +卜+ 4| > 3的x的取值范围为:(5)若--1| +卜-2| +卜-3|+一+.一2008|的值为常数,试求式的取值范围.(五, 绝对值的最值问题例题1: 1 )当X取何值时,IX-II有最小值,这个最小值是多少?2)当x取何值时,lx-11+3有最小值,这个最小值是多少?3)当x取何值时,lx-11-3有最小值,这个最小值是多少?4 )当x取何值时,-3+lx-ll有最小值,这个最小值是多少?例题2 : 1 )当x取何值时,-lx-II有最大值,这个最大值是多少?2)当x取何值时,-lx-11+3有最大值,这个最大值是多少?3)当x取何值时,-lx-11-3有最大值,这个最大值是多少?4 )当x取何值时,3-lx-ll有最大值,这个最大值是多少?若想很好的解决以上2个例题,我们需要知道如下知识点;1)非负数:0和正数,有最小值是02)非正数:。

和负数,有最大值是03)任意有理数的绝对值都是非负数,即昨0,则-同里)4)x是任意有理数,m是常数,贝服口叫沙,有最小值是0 ,-|x+m|<0有最大值是0(可以理解为X是任意有理数,则x+a依然是任意有理数,如|x+3|* , -|x+3区0或者lx-l|NO , -lx-l|<0 )5)x是任意有理数,m和n是常数,则|x+m|g ,有最小值是n-|x+m|+n<n ,有最大值是n(可以理解为lx+ml+n是由lx+ml的值向右(n>0)或者向左(nvO)平移了Ini个单位,为如lx-1 |沙,则I X-1I+3N3,相当于lx-II的值整体向右平移了 3个单位,lx-l|>0 ,有最小值是0 ,则lx-ll+3的最小值是3 )总结:根据3 [ 4)、5 )可以发现,当绝对值前面是号时,代数式有最小值,有号时,代数式有最大值.例题1 : 1 )当X取何值时,IX-II有最小值,这个最小值是多少?2)当x取何值时,lx-11+3有最小值,这个最小值是多少?3)当x取何值时,lx-11-3有最小值,这个最小值是多少?4)当x取何值时,-3+lx-II有最小值,这个最小值是多少?解1 )当x-l=O时,即x=l时,lx-11有最小值是02)当x-l=O时,即x=l时,lx-11+3有最小值是33)当x-l=O时,即x=l时,lx-ll-3有最小值是-3____ 4)此题可以将~3+k-11变形为收-11-3,即当x-l=O时,即x=l时,lx-ll-3有最小值是-3例超2 : 1 )当x取何值时,-lx-II有最大值,这个最大值是多少?2)当x取何值时,-lx-11+3有最大值,这个最大值是多少?3)当x取何值时,-lx-ll-3有最大值,这个最大值是多少?4)当x取何值时,3-lx-ll有最大值,这个最大值是多少?思考L若x是任意有理数,a和b是常数,贝!J1) Ix+al有最大(小)值?最大(小)值是多少?此时x值是多少?2) lx+al+b有最大(小)值?最大(小)值是多少?此时x值是多少?3) -lx+al+b有最大(小)值?最大(小)值是多少?此时x值是多少? ________ 例题3 :求lx+ll+lx-21的最小值,并求出此时x的取值范围例题4 :求*+111+收-121+"131的最小值,并求出此时x的值?例题4 :求代数式lx・ll+lx・2l+lx-3l+lx,4l的最小值归档总结:若含有奇数个绝对值,处于中间的零点值可以使代数式取最小值若含有偶数个绝对值,处于中间2个零点值之间的任意一个数(包含零点值)都可以使代数式取最小值例题5 :求"111+双-121+"131的最小值,并求出此时x的值?[例题6] lx-II的最小值lx-ll+lx-21的最小值lx-ll+lx-2l+lx-3l 的最小值lx-1 l+lx-2l+lx-3l+lx ⑷的最小值lx-1 l+lx-2l+lx-3l+lx<l+lx-5l 的最 <|\ 值lx-ll+lx-2l+lx-3l+lx<l+lx-5l+lx-6l 的最 <|\ 值lx-1 l+lx-2l+lx-3l+lx<l+lx-5l+lx-6l+lx-7l 的最/J\值lx-1 l+lx-2l+lx-3l+lx4l+lx-5l+lx-6l+lx-7l+lx-8l 的最/J\ 值lx-1 l+lx-2l+lx-3l+lx<l+lx-5l+lx-6l+lx-7l+lx-8l+k・9l 的最/J\ 值lx-1 l+lx-2l+lx-3l+lx-4l+lx-5l+lx-6l+lx-7l+lx-8l+lx-91+lx-101 的最直【例题7]( 1 )已知1x73 ,求x的值(2 )已知|x饪3 ,求x的取值范围(3 )已知1x1 < 3 ,求x的取值范围(4 )已知国之3 ,求x的取值范围(5 )已知1x1 > 3 ,求x的取值范围[例题8](1 )已知闲§,则满足条件的所有x的整数值是多少?且所有整数的和是多少?(2 )已知1x1 < 3 ,则满足条件的x的所有整数值是多少?且所有整数的和是多少?【乘方最值问题】(1 )当a取何值时,代数式(a-3)2有最小值,最小值是多少?(2 )当a取何值时,代数式(a-3)44有最小值,最小值是多少?(3 )当a取何值时,代数式(a-3产< 有最小值,最小值是多少?(4 )当a取何值时,代数式-(a-3)2有最大值,最大值是多少?(5 )当a取何值时,代数式-(a-3)44有最大值,最大值是多少?(6 )当a取何值时,代数式一⑶3%4有最大值,最大值是多少?(7 )当a取何值时,代数式4- (a-3)嘴最大值,最大值是多少?[探究1]某公共汽车运营线路AB段上有A. D. C. B四个汽车站,如图现在要在AB段上修建一个加油站M ,为了使加油站选址合理,要求A. B. C. D四个汽车站到加油站M的路程总和最小,试分析加油站M在何处选址最好?【探究2]如果某公共汽车运营线路上有Al , A2 , A3A4 , A5五个汽车站(从左到右依次排列),上述问题中加油站M建在何处最好?【探究3]如果某公共汽车运营线路上有Al , A2 , A3,…,An共n个汽车站(从左到右依次排列),上述问题中加油站M建在何处最好? A 用工【探究4】根据以上结论,求lx・ll+lx・2l+.•…+lx-616l+lx-617l的最小值。

相关文档
最新文档