人教版七年级数学上册有理数的乘方

合集下载

人教版数学七年级上册 有理数的乘方及混合运算

人教版数学七年级上册   有理数的乘方及混合运算

有理数的乘方及混合运算(基础)【要点梳理】要点一、有理数的乘方定义:求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power ). 即有:n a a a a n ⋅⋅⋅=个.在na 中,a 叫做底数, n 叫做指数. 要点诠释:(1)乘方与幂不同,乘方是几个相同因数的乘法运算,幂是乘方运算的结果.(2)底数一定是相同的因数,当底数不是单纯的一个数时,要用括号括起来.(3)一个数可以看作这个数本身的一次方.例如,5就是51,指数1通常省略不写. 要点二、乘方运算的符号法则(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数,负数的偶次幂是正数;(3)0的任何正整数次幂都是0;(4)任何一个数的偶次幂都是非负数,即 . 要点诠释:(1)有理数的乘方运算与有理数的加减乘除运算一样,首先应确定幂的符号,然后再计算幂的绝对值.(2)任何数的偶次幂都是非负数.要点三、有理数的混合运算有理数混合运算的顺序:(1)先乘方,再乘除,最后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.要点诠释:(1)有理数运算分三级,并且从高级到低级进行运算,加减法是第一级运算,乘除法是第二级运算,乘方和开方(以后学习)是第三级运算;(2)在含有多重括号的混合运算中,有时根据式子特点也可按大括号、中括号、小括号的顺序进行.(3)在运算过程中注意运算律的运用.【典型例题】类型一、有理数乘方1. 把下列各式写成幂的形式:(1)22225555⎛⎫⎛⎫⎛⎫⎛⎫+⨯+⨯+⨯+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭; (2)(-3.7)×(-3.7)×(-3.7)×(-3.7)×5×5;(3)xxxxxxyy .2.计算:(1)3(4)-(2)(3)(4)(5)⎛⎫⎪⎝⎭335(6)335(7)22×3()(8)22×3举一反三:【变式1】计算:(1)(-4)4(2)23(3)225⎛⎫⎪⎝⎭(4)(-1.5)2【变式2】(2015•长沙模拟)比较(﹣4)3和﹣43,下列说法正确的是()A.它们底数相同,指数也相同B.它们底数相同,但指数不相同C.它们所表示的意义相同,但运算结果不相同D.虽然它们底数不同,但运算结果相同类型二、乘方的符号法则3.不做运算,判断下列各运算结果的符号.(-2)7,(-3)24,(-1.0009)2009,553⎛⎫⎪⎝⎭,-(-2)2010 34-4(3)-43-举一反三:【变式】计算:(-1)2009的结果是( ).A .-lB .1C .-2009D .2009类型三、有理数的混合运算4.计算: (1)()⎡⎤⎛⎫⎡⎤ ⎪⎢⎥⎣⎦⎝⎭⎣⎦211-1-0.5××2--33(2)()⎡⎤⎣⎦341-1-×2--36 (3)3201111(1+-2.75)×(-24)+(-1)--238(4)33211-+|-2-3|(-0.1)(-0.2)举一反三:【变式1】计算:4211(10.5)[2(3)]3---⨯---【变式2】计算:2421(2)(4)12⎛⎫-÷-⨯- ⎪⎝⎭5. 20032004(2)(2)-+-= ( )(A )2- (B )4007(2)- (C )20032 (D )20032-举一反三: 【变式】计算:7734()()43-⨯-【巩固练习】一、选择题1.(2015•郴州)计算(﹣3)2的结果是( )A .﹣6B . 6C . ﹣9D . 92.下列说法中,正确的是( )A .一个数的平方一定大于这个数;B .一个数的平方一定是正数;C .一个数的平方一定小于这个数;D .一个数的平方不可能是负数.3.下列各组数中,计算结果相等的是 ( ).A .-23与(-2)3B .-22与(-2)2C .22()5与225D .(2)--与2-- 4.式子345-的意义是 ( ) A. 4与5商的立方的相反数 B.4的立方与5的商的相反数 C.4的立方的相反数除5 D.45-的立方 5.计算(-1)2+(-1)3=( )A .-2B .- 1C .0D .26.观察下列等式:71=7,72=49,73=343,74=2401,75=16807,76=117649…由此可判断7100的个位数字是( ) .A .7B .9C .3D .17.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此下去,第6次后剩下的绳子的长度为( ) .A .312⎛⎫ ⎪⎝⎭米B .512⎛⎫ ⎪⎝⎭米C .612⎛⎫ ⎪⎝⎭米D .1212⎛⎫ ⎪⎝⎭米二、填空题8.在(-2)4中,指数是________,底数是________,在-23中,指数是________,底数是________,在225中底数是________,指数是________. 9.(2015•湖州)计算:23×()2= . 10.()3--= ;52-= ;313⎛⎫-- ⎪⎝⎭= ;225= . 11. 3[(3)]_______---=,233(2)_______-⨯-=12.213____+= , 2135_____++=,21357_____+++= ,……,从而猜想:135+++……22005_____+=.13. 21(2)________3-=三、解答题14.(2014秋•渭城区校级期末)﹣23+(﹣3)2﹣32×(﹣2)2.15. 已知x 的倒数和绝对值都是它本身,y 、z 是有理数,并且2|3|(23)0y x z +++=,求32525x yz x y --+-的值.。

人教七年级数学上册第二章 有理数乘方的概念和计算

人教七年级数学上册第二章 有理数乘方的概念和计算

A.23和32
B.(-3)3和-33
C.(-3)2和-32
D.-(-2)和-|-2|
变式1:已知(x+2)2+|y+1|=0,则3xy2的值为-__6__.
变式2:计算:(1)0100;
-(542)
3;
(3)-25;
(4)(-0.5)3.
解:(1)原式=0.
(2)原式=-16245.
(3)原式=-32.
Байду номын сангаас境导入
同学们,珠穆朗玛峰是世界最高的山峰,它的海拔高度约是8849 米,听说把一张足够大的厚度为0.1毫米的纸,连续对折30次的厚 度能超过珠穆朗玛峰,这是真的吗? 对折一次,纸的厚度是多少? 对折两次,纸的厚度是多少? 对折五次呢?
故事导入 传说,古印度国王第一次玩国际象棋就被深深的迷住了.他决 定奖赏发明者,并让他自己提要求,发明者指着棋盘对国王说: “那就在棋盘的第一格中放入一粒麦粒,第二格中放入二粒麦 粒,第三格中放入四粒麦粒,第四格中放入八粒麦粒……按这 样的规律放满64格.” 国王反对说:“不、不、这么一点麦子算不上什么奖赏.”但发 明者坚持如此. 同学们,请想一想,如果国王答应发明者的要求,国王应给发 明者多少粒麦子?
24 3
,所以234

24 3
是不一样的
类似地,说说-an与-an、abn与
an b
的区别.
(-a)n 表示 n 个-a 相乘,而-an 表示 n 个 a 相乘的积的相反
数;abn表示
n
个ab相乘,而
an b
表示
a

n
次方与
b
的商
小组展示
越展越优秀
提疑惑:你有什么疑惑?

新人教版数学七年级上有理数的乘方课件

新人教版数学七年级上有理数的乘方课件

(5)、 0.=13 -0;.001 (6)、
(7)、 1=2n ;1 (8)、
点击中招:
= =
;.112n31
2
-1
1
8
2 若
x
3
=27,
=y225,xy<0,则x+y的值为____
若a、b互为相反数,c、d互为倒数,则
a b=2009 0 = cd 2008 1
课堂小结 通过这节课的学习,你有哪些收获?
思考:
(-1)的偶数次幂为_1__
(-1)的奇数次幂为_-_1_
1的任何次幂为__1__
0的正整数次幂为_0___
0.13 ___, 1 4 _____ 2
104 _____,104 ____, 103 _____,103 _____
例1 :计算 (1) 53 =125 (2) 4 2 =16 (3) (-3)4 =81
22 2
100
计算,在这个积中有100个2相乘。 这么长的算式有简单的记法吗?
§1.5.1有理数的乘方
知识目标:了解乘方的意义并能正确的读、写; 掌握幂的性质并能进行乘方的运算。
能力目标:培养观察、类比、归纳、知识迁移的能力。 通过乘方运算,培养运算能力;
教学重难点: 重点:有理数乘方的意义; 难点:幂、底数、指数的概念及其表示
课堂小结
1、通过这节课的学习,你有 哪些收获?
2、乘方的结果叫做幂,设n为正整数,
(-1)2n+1=_-1____
(-1)
2n
=
___1_____
珠穆朗玛峰是世 界的最高峰,它 的海拔高度是 8848米。
猜一猜
≈ 把一张足够大的 厚度为0.1毫米

人教版七年级数学上册1.5有理数的乘方教案

人教版七年级数学上册1.5有理数的乘方教案
其次,针对乘方的性质和运算法则,我打算在下一节课通过更多的例题和练习,让学生们熟练掌握,尤其是负整数乘方的计算,这是学生们的一个难点。
再者,我发现学生们在解决实际问题时,运用乘方知识的能力较弱。因此,我计划在接下来的课程中,设计更多与生活实际相结合的案例,让学生在实践中感受数学的魅力,提高他们解决实际问题的能力。
1.培养学生的逻辑推理能力:通过有理数乘方的性质和运算法则的学习,让学生掌握数学推理方法,提高其逻辑思维水平。
2.提升解决问题的能力:通过解决实际应用问题,使学生能够运用有理数乘方知识分析和解决问题,增强其数学应用意识。
3.培养数学抽象和建模能力:让学生从具体实例中抽象出有理数乘方的概念和规律,建立数学模型,提高其数学抽象和建模能力。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“有理数乘方在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数乘方的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对有理数乘方的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
人教版七年级数学上册1.5有理数的乘方教案
一、教学内容
本节教学内容为人教版七年级数学上册1.5节“有理数的乘方”。主要内容包括:

人教版七年级数学上册1.有理数的乘方——有理数的混合运算

人教版七年级数学上册1.有理数的乘方——有理数的混合运算

总结
知1-讲
利用相反数、绝对值及倒数的概念求出字母单 个的取值及整体之间关系的取值,然后再求出式子 的值.
知1-练
1 计算:
(1)(-1)10×2+(-2)3÷4;
(2)
(-5)3-3×
1 2
4;
(3)
11 5
1 3
1 2
3 11
5 4
;
(4) (-10)4+[(-4)2-(3+32)×2].
为( B )
A.-4 B.4 C.12
D.-12
知识点 2 混合运算中的数字规律
例4 视察下面三行数:
知2-讲
-2 ,4,-8,16,-32,64,…;
0 ,6,-6,18,-30,66,…;
-1,2,-4,8,-16,32, ….
(1)第①行数按什么规律排列?
(2)第②③行数与第①行数分别有什么关系?
对照①③两行中位置对应的数,可以发现:
第③行数是第①行相应的数的0.5倍,即
-2×0.5,(-2)2×0.5,(-2)3×0.5,(-2)4×0.5,…. (3)每行数中的第10个数的和是
Hale Waihona Puke (-2)10+[(-2)10+2]+(-2)10×0. 5 =1 024+(1 024+2)-1 024×0. 5
第一章 有理数
1.5 有理数的乘方
第2课时 有理数的乘方——有 理数的混合运算
1 课堂讲授 2 课时流程
有理数的混合运算 混合运算中的数字规律
逐点 导讲练
课堂 小结
作业 提升
回顾旧知
有理数的乘法法则 1)两数相乘同号得正,异号得负,并把绝对值相乘; 2)零与任何数相乘都得零. 有理数的除法法则 1)除以一个数就是乘以这个数的倒数; 2)两数相除同号得正,异号得负;并把绝对值相除; 3)零除以任何非零的数为零.

人教版七年级数学上册课件《乘方》

人教版七年级数学上册课件《乘方》

2 10
!议一议
3 2 与 (-3)2 结果相等吗?
-32 读作 32 的相反数,而(-3)2 读作-3的 平方
所以
(-3)2 =9
2
-3
=-9
思考:说说下列各数的意义,它们一样吗?
(2)4和 24;
( 2)4的意义是 2的4次方; 即4个 2相乘;
24的意义是2的4次方的相反数。
解:(1)原式= 2 (27) (12) 15 541215 27
例3 计算:
(2)(2)3 (3) [(4)2 2] (3)2 (2)
解: (2)原式= 8 (3)(16 2) 9 (2)
8 (3)18 (4.5) 854 4.5 57.5
第一章 有理数
1.5.1 乘方(2)
乘方的意义
这种求n个相同因数a的积的运算叫做乘方,
乘方的结果叫做幂,a叫做底数,n叫做指数,
an读作a的n次幂(或a的n次方)。
a×a×……×a = a n
n个

a n 指数
因数的个数
底数 因数
(1次方可省略不写,2次方又叫平方,3次方又叫立方。)
在不会引起误解的情况下,乘号也 可以用“·”表示。例如: (-3)×(-3)×(-3) ×(-3) 可写成 (-3)·(-3)·(-3)·(-3)
(3)(1)8=1(4)(1)2008 =1
(5)(1)7=-1(6)(1)2007 =-1
(1) 1的任何次幂都为 1。
(2) -1的幂很有规律: -1的奇次幂是-1 , -1的偶次幂是1。
抢答练习: 计算
102 100 103 1000; 104 10000

人教版七年级数学上册有理数的乘方

人教版七年级数学上册有理数的乘方

一个数可以看作是这个数的本身的一 次方,如5就是51,指数1通常省略不写。
(-4)5的底数是 -4 ,指数是 5 ,是负数。
-45的底数是 4 ,指数是 5 ,是 负 数。
3 2
4

23×
23×
3 2
×
3 2

81 16
3 2
4
=
3×3×3×3 2

81 2
当底数是负数或分数时,底数一定 要加上括号。这也是辩认底数的方法。

(-3)4

(-3)5

偶数

奇数

归纳
①正数的任何次幂都是_正___数;
②负数的奇次幂是负 数,负数的偶次幂是_正__数。
② 0的任何次幂等于__零___; l 的任何次幂等于_1__.
课堂练习(一)
计算 : (1)(-4)3 ; (2)(-2)4;
(3)
; (4)(-1)7.
巩固练习:P42 练习 1
2.同级运算,从左到右进行;如有括号, 3.先做括号内的运算,按小括号、中括号、大括号依次进行
课堂练习2
(1)8十(-3)2×(-2); (2)100÷(-2)2-(-2)÷(- );
问题探究3
1.观察下列三行数 -2,4,-8,16,-32,64……①; 0, 6,-6,18,-30,66……②; -1,2,-4,8, -16,32……③.
乘方的结果叫做幂(mì) 。 一般地,n个相同的因数a相乘: a×a×a···×a
记作: 底数
an
指数
n个a
(相同因数的个数)

即 an = a×a×a···×a an 读作“a的n次方”

人教版数学七年级上册第一章有理数乘方

人教版数学七年级上册第一章有理数乘方
2.有理数的乘方运算 计算一个有理数的乘方时,应将乘方运算转化为乘法运算,先确定幂的 符号,再计算幂的绝对值.特别地,当底数较大时,可借助于计算器计算. 注意 任何数的偶次幂都是非负数,1的任何次幂都是1,-1的偶次幂是1, -1的奇次幂是-1.
示例 有理数的乘方运算
1.5.1 乘方
栏目索引
1.5.1 乘方
(2)-32×(-3)3-(-2)3÷2
=32×33+23÷2=9×27+8÷2=243+4=247.
(3) 12
1
2 3

7 4

×(-6)2= 12

5 3

7 4
× 36
= 1 ×36- 5×36+ ×736=18-60+63=21.
2
3
4
(4)-22+[18-(-3)×(-2)4]÷6
栏目索引
3.an,-an及(-a)n的区别与联系
an
-an
(-a)n
相同点
指数都是n
不同点 意义不同
n个a相乘的积
n个a相乘的积的相反数
n个-a相乘的积
底数不同
a
a
-a
联系
n为奇数
-an=(-a)n,且-an,(-a)n都与an互为相反数(a≠0)
n为偶数
an=(-a)n,且an,(-a)n都与-an互为相反数(a≠0)
(2)-42-3×22×

1 3


1
1 3

=-16-3×4× 23× =34-16-6=-22.
点拨 对于乘方运算,要注意幂的符号,注意区分负数乘方与正数乘方

人教版初中数学七年级上册 1.5有理数的乘方

人教版初中数学七年级上册  1.5有理数的乘方

答:能够超过,需对折18次
218 0.1 262144 0.1 26214 .4(毫米) 26.2144 (米)
课堂小结
乘方的 意义
求n个相同因数积的运算叫做乘方.
正数 1、正数的任何次幂都是_____
(3)对折三次有几层?
(4)对折四次有几层?
……
……
(5)对折二十次有几层? (6)对折三十次呢?
(1)对折一次有几层?
2 2× 2 2× 2 × 2
(2)对折二次有几层?
(3)对折三次有几层? (4)对折四次有几层?
……
……
2× 2 × 2 × 2
20个
(5)对折二十次有几层?
……
…… 2×2 ×2 …… 2×2 ×2
53 中底数是
2
; ;
指数是 3
1 10、在 3
中底数是
指数是 2
。 指数是 2 。
8


结果是 1 11、在 3 中底数是 结果是
2
12、
2 2011
的个位数字是

生活与数学
你喜欢吃拉面吗?拉面馆的师傅,用一 根很粗的面条,把两头捏合在一起拉伸, 再捏合,再拉伸,反复几次,就把这根 很粗的面条拉成了许多细的面条。如图 所示:
9
-2,指数是____ 4 , 读作 (2)在(-2)4中,底数是___ 负2的4次方 负2的4次幂 __________ 或读作____________ ; -0.3 5 ,读作 (3)在(-0.3)5中,底数是___, 指数是____ 负0.3的5次幂 负0.3的5次方 __________ 或读作____________ ;

人教版数学七年级上册1 有理数的乘方

人教版数学七年级上册1 有理数的乘方
18
• 解:(1)579.56≈5.796×102. • (2)0.004 078 3≈0.0041. • (3)8.973≈9.0. • (4)692 547≈6.925 5×105. • (5)8.03×104≈8.0×104. • (6)43.95 kg≈44核心素养题】用2,3,4,5,6,8这六个数字和一个小数点组 成一个小数,且这个小数四舍五入到十分位约等于5.8,这个小数最大 是多少?
►走进颐和园,眼前是繁华的苏州街,现在依稀可以想象到当年的热闹场面, 苏州街围着一片湖,沿着河岸有许多小绿盘子里装着美丽的荷花。这里是 仿照江南水乡--苏州而建的买卖街。当年有古玩店、绸缎店、点心铺等, 店铺中的店员都是太监、宫女妆扮的,皇帝游览的时候才营业。我正享受 着皇帝的待遇,店里的小贩都在卖力的吆喝着。 ►走近一看,我立刻被这美丽的荷花吸引住了,一片片绿油油的荷叶层层叠 叠地挤在水面上,是我不由得想起杨万里接天莲叶无穷碧这一句诗。荷叶 上滚动着几颗水珠,真像一粒粒珍珠,亮晶希望对您有帮助,谢谢 晶的。 它们有时聚成一颗大水珠,骨碌一下滑进水里,真像一个顽皮的孩子!
一是精确到哪一位;二是保留几位小数或有效数字. • (2)一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到
哪一位. • (3)求一个精确到某一位的近似数时,应将这一位后面的第一个数进行
四舍五入,后面其他的数字不予考虑. • 注意:有效数字是指一个近似数,从左边第一个不为0的数字起到精确
到的数位止,所有数字称为这个近似数的有效数字.
17
• 17.按括号里的要求用四舍五入法对下列各数取近似数: • (1)579.56(精确到十分位); • (2)0.004 078 3(精确到0.0001); • (3)8.973(精确到0.1); • (4)692 547(精确到十位); • (5)8.03×104(精确到千位); • (6)43.95 kg(精确到0.1 kg).

【有理数的乘方教案(精选多篇)】

【有理数的乘方教案(精选多篇)】

【有理数的乘方教案(精选多篇)】第一篇:七年级数学上册有理数的乘方教案人教版有理数的乘方教学目的:知识与才能:在现实背景中,理解有理数乘方的意义,掌握有理数乘方的运算;过程与方法:培养学生观察、分析^p 、比拟、归纳、概括的才能,浸透转化的思想;情感态度与价值观:培养学生勤思,认真,勇于探究的精神,并联络实际,加强理解,体会数学给我们的生活带来的便利。

教学重点:正确理解乘方的意义,掌握乘方的运算法那么,进展有理数乘方运算。

教学难点:正确理解乘方、底数、指数的概念并合理运算。

教材分析^p :本节内容从小学所学过的一个数的平方与立方出发,介绍了乘方的概念,容有关联的是后面“科学计数法”、“有理数的混合运算”等局部内容。

教学方法:教法:引导探究法、尝试指导法,充分表达学生主体地位;学法:学生观察考虑,自主探究,合作交流。

教学用具:电脑多媒体。

课时安排:一课时板书设计:有理数的乘方底数a幂规律:正数的任何次幂都是正数负数的奇数次幂是负数负数的偶数次幂是正数n教学反思:本节课的教学设计采用:“先学后教,当堂训练”的教学形式。

整个教学过程从考虑问题到问题解决,学生自主学习贯穿始终,中间围绕“自学-交流、更正-点拨、归纳”三个环节组织教学,注重培养学生观察、考虑、交流归纳的才能。

缺乏之处:在练习的讲评上,应给学生一个较为自由的空间,让学生互相启发,互相交流。

第二篇:第一章有理数乘方(2)教案第周第节§1.5.1有理数乘方〔2〕教案备课人:李冶学习目的:1、掌握有理数混合运算的顺序,能正确的进展有理数的加,减,乘除,乘方的混合运算。

2、培养学生观察,归纳,猜测,推理的才能。

重点:能正确的进展有理数的混合运算。

难点:灵敏的运用运算律,使计算简单。

教学过程:一课前提问:1、我们已经学习了哪几种有理数的运算?2、有理数的乘方的意义是什么?3、以下的算式里有哪些运算?应按照怎样的顺序运算?3+50÷22×〔-15〕-1二、新课探究:有理数混合运算的顺序:1、先乘方,再乘除,最后加减;2、同级运算,从左到右进展;3、如有括号,先做括号内的运算,按小括号、中括号,大括号依次进展;三、例题精析:例1 、计算:〔1〕2?(?3)34(3)15〔2〕(?2)3(3)[(?4)22]?(?3)2(2)例2、观察下面三行数:-2 ,4 ,-8,16,-32,64,…;0,6,-6,18,-30,66,…;-1 ,2,-4, 8,-16,32,…。

人教版数学七年级上册课件有理数的乘方(共15张PPT)

人教版数学七年级上册课件有理数的乘方(共15张PPT)

乘方运算的 符号规律
中底数是 (5)
(,2指)数负(是) 数,幂是的.偶次幂是正数;负数的奇次幂是负数;
(3)0的任何次幂等于零; (4)
()
古时候,有个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋.
(4)1的任何次幂等于1;
(4)1的任何次幂等于1;
(5)-1的偶次幂等于1;-1的奇次幂是-1.
-24=-2×2×2×2=-16.
(5)
2 3
2
22 3
.
()
×
2 322 32 34 9, 2322 324 3.
例2.用计算器计算 ( 8和) 5 (. 3 ) 6
应用1
同学们,现在我们能解决本节课开始时《棋盘上 的学问》中的问题吗?
1 2 1 2 2 2 3 2 6 3 1_ ._ 8_ 4_ 4_ 6_ 7_ ×_ 1_ 0_ 1_ 9 _ ( 粒 ) .
建议利用计算器帮助计算.
估计每千颗米粒重40克,这么多颗米粒总重超过 700亿0 吨.
应用2
珠穆朗玛峰是世界最高峰,它的海拔高度是 8844米.把一张足够大的厚度为0.1毫米的纸,连 续对折30次的厚度是多少?
0 .1 2 3 0 _ _ _ _ _ _ _ _ ( m m ) _ _ _ _ _ _ _ _ ( m ) .
求n个相同因数a的积的运算叫做乘方。 (4)1的任何次幂等于1;
其运算步骤是什么? 中底数是 ,指数是 ,幂是 .
(2)负数的偶次幂是正数;
(-2)3=-8,(-3)2=9.
(1)平方等于它本身的数是 ,
如果对折n国王哈哈大笑.
(5)
()
.59049
3.判断正误:(对的画“√”,错的画“×”) (1)32 =3×2=6. ( ×) 32=3×3=9.

新人教版七年级数学(上)——有理数的乘方

新人教版七年级数学(上)——有理数的乘方

第一部分:知识精讲知识点一、乘方的有关概念(1)求n 个相同因数a 的积的运算叫乘方,乘方的结果叫幂.a 叫底数,n 叫指数,a n 读作:a 的n 次幂(a 的n 次方).(2)乘方的意义:a n 表示________.n an a a a a a =⨯⨯⨯⨯个(3)写法的注意:当底数是负数或分数时,底数一定要打括号,不然意义就全变了. 如:(32-)2=(32-)×(32-),表示两个32-相乘. 而322-=322⨯-,表示2个2相乘的积除以3的相反数.2.知识点二、a n 与-a n 的区别.(1)a n 表示___________,底数是 ,指数是 ,读作:___________. (2)-a n 表示___________,底数是 ,指数是 ,读作:___________. 如:(-2)3底数是 ,指数是 ,读作___________,表示___________.有理数的乘方(-2)3=(-2)×(-2)×(-2)=.-23底数是,指数是,读作___________.-23=-(2×2×2)=.注:(-2)3与-23的结果虽然都是-8,但表示的含义并不同.知识点三、乘方运算的符号规律.(1)正数的任何次幂都是数.(2)负数的奇次幂是数.(3)负数的偶次幂是数.(4)0的奇数次幂,偶次幂都是.所以,任何数的偶次幂都是或.知识点四、有理数混合运算法则①先乘方,再乘除,最后加减;②同级运算,从左到右进行;③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.注意:加法和减法叫做第一级运算;乘法和除法叫做第二级运算;乘方和开方(今后将会学到)叫做第三级运算。

第二部分:例题精讲例1.计算:(1) ()32-; (2) ()42-; (3) ()52-例2.把下列各式写成乘方运算的形式,并指出底数,指数各是多少? ①(-2.3)×(-2.3)×(-2.3)×(-2.3) ②(-14)×(-14)×(-14)×(-14)③ x ·x ·x ·……·x(1999个)④(-6)×(-6)×(-6)⑤ 23 ×23 ×23 ×23例3、把5)21( 写成几个相同因数相乘的形式。

人教版七年级数学上册1.乘方——有理数的乘方运算

人教版七年级数学上册1.乘方——有理数的乘方运算
计算器显示的结果为1.44. (3)按键顺序为 ( (-) 1 7 ) ^ 7 = ,
计算器显示的结果为-410 338 673. (4)按键顺序为 2 3 × 6 ÷ 5 = ,
计算器显示的结果为27.6.
总结
知3-讲
用计算器计算时,要弄清计算器的每个按键 的作用,结合有理数运算的顺序,进行计算.
A.1
B.-1
C.2 016
D.-2 016
知2-练
4 下列等式成立的是( B )
A.(-3)2=-32
B.-23=(-2)3
C.23=(-2)3
D.32=-32
5 计算: (1)(-4)3;
(2) (-2)4;
(3) (- 2 )3.
3
(1)-64;(2)16;(3) 8 .
27
知识点 3 利用计算器计算有理数的乘方
第一章 有理数
1.5 有理数的乘方
第1课时 乘方——有理数 的乘方运算
1 课堂讲授 有理数的乘方的意义
有理数的乘方运算
利用计算器计算有理数的乘方
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
复习回顾 1.如图,边长为a厘米的正方形的面积为_a_×__a_平方厘米. 2.如图,一正方体的棱长为a厘米, 则它的体积 为
(1)-(-3)3;
(2)
3 42 ;(3)源自2 33 ;
(4)
1
2 3
2
.
解:(1)-(-3)3=-(-33)=33=3×3×3=27.
(2)
3 4
2
3 4
3 4
9 16
.
(3)
2 3
3
2 3

人教版七年级上册数学1.有理数的乘方课件

人教版七年级上册数学1.有理数的乘方课件

第2次撕: 4 =2×2 记作22
读作“2的四次方”
第3次撕: 8 =4×2 =2×2×2 记作23
第4次撕: 16 =8×2 =2×2×2×2 记作24
同样的,像:
(-3)× (-3)×(-3) ×(-3) ×(-3)
5个-3
记作(-3)5 读作-3的五次方
(-
1 2
)
× (-
1 2
)
×
(-
1 2
a的n次方;当 an 看作一个结果时,也可以读作 a
的 n次幂.
底数
an
指数

an的意义: an= a·a·…·a n个a
举例说明
在94中,底数是( 9),指数是(4). 读作: 9的4次方 或 9的4次幂 。 意义: 4个9相乘 ,即: 94=9×9×9×9 。
特别地,一个数可以看作这个数本身的一 次方。例如,5就是51 。指数1通常省略不 写。
=0
(3) 04
(2)原式 =0×0×0
=0 (3)原式 =0×0×0×0
=0
0的任何正整数次幂都是0.
归纳:
根据有理数的乘法法则不难得出: 负数的奇次幂是负数, 负数的偶次幂是正数; 正数的任何次幂都是正数, 0的任何正整数次幂都是0.
口答,直接说出下列各式中,幂的符号。
(1)(-3)3 负 (2)(-3)4 正 (3)105 正 (4)(-10)4 正 (5)(-5)2 正
2 2、3×
2× 3
2× 3
2 ( 2 )4 3=____3___
(-1)4 与-14 一样吗?
三、把下列乘方写成乘法的情势:
1. 0.=93 0.9;0.9 0.9
2. 9=4

七年级数学人教版(上册)【知识讲解】第1课时乘方

七年级数学人教版(上册)【知识讲解】第1课时乘方

13.计算: 1
(1)(-12)4. 3
解:原式=(-2)4 81
=16.
3 (2)-(-4)3×(-2)4.
27 解:原式=64×16
27 =4.
14.已知|a-1|与(b+1)2 互为相反数,求 a2 019+b2 020+(a+b)2 021 的值.
解:由题意,得|a-1|+(b+1)2=0, 因为|a-1|≥0,(b+1)2≥0, 所以|a-1|=0,(b+1)2=0,则 a-1=0,b+1=0. 解得 a=1,b=-1.所以 a+b=1+(-1)=0. 所以 a2 019+b2 020+(a+b)2 021=12 019+(-1)2 020+02 021=2.
11 (2)除方也可以转化为乘方的形式,如 2④=2÷2÷2÷2=2×2×2
11 × 2 = ( 2 )2. 试 将 下 列 运 算 结 果 直 接 写 成 乘 方 的 形 式 : ( - 3) ④

(13)2
1 ;(2)⑩= 28 ;a
)= (1a)n-2

1 (3)计算:22×(-3)④÷(-2)③-(-3)②.
第一章 有理数 1.5 有理数的乘方
1.5.1 乘方
第1课时 乘方
知识点 1 有理数乘方的意义
1.32 可表示为( C )
A.3×2
B.2×2×2
C.3×3
D.3+3
2.对于-34,下列叙述正确的是( C ) A.读作-3 的 4 次幂 B.底数是-3,指数是 4 C.表示 4 个 3 相乘的积的相反数 D.表示 4 个-3 相乘的积
1 解:原式=22×(-3)2÷(-2)-[(-3)÷(-3)] =4×9×(-2)-1 =-72-1 =-73.

七年级上册数学第一章1.5有理数的乘方(人教版)

七年级上册数学第一章1.5有理数的乘方(人教版)

七年级上册数学第一章1.5有理数的乘方(人教版)1.5 有理数的乘方1.5.1 乘方第1课时乘方1.理解有理数乘方的意义.2.理解乘方运算、幂、底数等概念的意义.3.正确进行有理数乘方运算.阅读教材P41~42,思考下列问题.1.某种细胞每过30分钟便由1个分裂成2个,经过5小时后,这种细胞1个能分裂成多少个?(1)细胞每30分钟分裂一次,则5个小时共分裂10次;(2)5个小时后,细胞的个数一共有2×2×2×…×2,sd4(( 10 )个2))=1__024个,为了简便,可以记作210个.2.(1)边长为a的正方形的面积为:a2;(2)棱长为a的正方体的体积为:a3;(3)把一张纸对折1次可裁成两张,对折2次可裁成4张,问对折3次可裁成几张?用算式如何表示?如果对折10次、100次,用算式如何表示?知识探究1.求n个相同因数a的积的运算叫乘方,乘方的结果叫幂,a叫底数,n叫指数.乘方an有双重含义:(1)表示一种运算,这时读作“a的n次方”;(2)表示乘方运算的结果,这时读作“a的n次幂”.2.正数的任何次幂都是正数,0的任何正整数次幂都是0;负数的奇次幂是负数,偶次幂是正数.自学反馈1.在(-2)6中,底数是-2,指数是6,运算结果是64;在-26中,底数是2,指数是6,运算结果是-64.2.底数是-12,指数是3的幂是__-18.3.(-1)2 017=-1,02 017=0,(-0.1)4=0.000__1.在书写乘方时,若底数为负数或分数时,一定要加括号.活动1 小组讨论例1 计算:(1)(-4)3;(2)(-2)4;(3)(-23)3.解:(1)(-4)3=(-4)×(-4)×(-4)=-64.(2)(-2)4=(-2)×(-2)×(-2)×(-2)=16.(3)(-23)3=(-23)×(-23)×(-23)=-827.例2 用计算器计算(-8)5和(-3)6.解:用带符号键(—)的计算器.((—)8)∧5=显示:(-8)∧5-32768.((—)3)∧6=显示:(-3)∧6729.所以(-8)5=-32 768,(-3)6=729.活动2 跟踪训练1.(-12)4表示的意义是4个-12相乘,23×23×23×23可写成(23)4.2.计算:(-25)3=-8125;3×23=24;(3×2)3=216;(-3) 3×(-42)=432;(-324)2-324=4516.3.计算(-2)3,(-3)3,(-12)3,(-13)3,并找出其中最大的数和最小的数.解:(-2)3=-8,(-3)3=-27,(-12)3=-18,(-13)3=-127.其中最大的数为-127,最小的数为-27.4.平方得64的数是±8;立方得64的数是4.5.若a满足(2 006-a)2 008=1,则a=2__005或2__007.活动3 课堂小结1.乘方.2.乘方的计算:3.乘方的性质.第2课时有理数的混合运算1.能确定有理数加、减、乘、除、乘方混合运算的顺序.2.会进行有理数的混合运算.阅读教材P43~44,思考并回答下列问题.讨论:2×(-3)3-4÷(-13)+15中有哪几种运算?可以分几类?试着计算出结果.知识探究有理数混合运算的顺序:1.先乘方,再乘除,最后加减;2.同级运算,从左到右进行;3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.自学反馈1.下列运算结果是正数的是(B)A.1+(-2)3 B.-22×(1-22).(-2)3÷(-3)2 D.-32-(-2)22.计算13×(-3)÷(-13)×3等于(B)A.1 B.9 .-3 D.273.计算(-1)2 016+(-1)2 017-(-1)2 018+02 019等于(B)A.0 B.-1 .1 D.2(1)(-1)10×2+(-2)3÷4;(2)(-5)3-3×(-12)4.解:(1)0. (2)-125316.活动1 小组讨论例1 计算:(1)2×(-3)3-4×(-3)+15;(2)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2).解:(1)-27.(2)-5712.例2 探究规律.观察下面三行数:-2,4,16,-8,-32,64,…;①0,6,-6,18,-30,66,…;②-1,2,-4,8,-16,32,….③(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)取每行数的第10个数,计算这三个数的和.解:略.提示学生从乘方出发,在符号和绝对值两个方面研究,同时注意引导学生探究规律时要依次递进,在递进中总结规律,激励学生拿起笔大胆计算.活动2 跟踪训练(1)-0.752÷(-112)3+(-1)12×(12-13)2;(2)[(-3)2-(-5)2]÷(-2);(3)-10+8÷(-2)2-3×(-4)-15.解:(1)736.(2)8.(3)3.2.观察下列各式:1=21-1,1+2=22-1,1+2+22=23-1,….猜想:(1)1+2+22+23+…+263=264-1;(2)若n是正整数,则1+2+ 22+23+…+2n=2n+1-1.活动3 课堂小结1.运算顺序:(1)先乘方,再乘除,最后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.2.探究规律.1.5.2 科学记数法1.认识比较大的数据.2.掌握科学记数法的写法.3.能用科学记数法表示比较大的数据.阅读教材P44~45,思考如何表示一些比较大的数.知识探究把一个大于10的数用科学记数法可以表示为a×10n的形式(其中a是大于或等于1且小于10的数,即1≤a<10;n等于原整数的位数减去1).自学反馈用科学记数法表示下列各数:(1)1 000 000=1×106;(2)57 000 000=5.7×107;(3)-123 000 000 000=-1.23×1011;在上面的计算中,等号左边整数的位数与右边10的指数有什么关系?用科学记数法表示一个n位整数,其中10的指数是n -1.活动1 小组讨论例用科学记数法表示下列各数:(1)中国森林面积有128 630 000公顷;(2)2008年临沂市总人口达1 022.7万人;(3)地球到太阳的距离大约是150 000 000千米;(4)光年是天学中的距离单位,1光年大约是950 000 000 000千米;(5)2008年北京奥运会门票预算收入为140 000 000美元;(6)一只苍蝇腹内的细菌多达2 800万个.(在使用科学记数法时要注意单位的转换,如1万=104,1亿=108)解:(1)1.286 3×108.(2)1.022 7×103万.(3)1.5×108.(4)9.5×1011.(5)1.4×108.(6)2.8×103万.活动2 跟踪训练1.将0.36×45×105的计算结果用科学记数法表示,正确的是(B)A.16.2×105 B.1.62×106.16.2×106 D.16.2×100 0002.1纳米相当于1根头发丝直径的六万分之一,用科学记数法表示头发丝的半径是(D)A.6×103纳米 B.6×104纳米.3×103纳米 D.3×104纳米3.若-59 600 000用科学记数法表示为a×10n,则a =-5.96,n=7.4.用科学记数法表示下列各数:(1)700 900;(2)-50 090 000;(3)人体中约有25 000 000 000 000个细胞;(4)地球离太阳约有一亿五千万米;(5)在1∶50 000 000的地图上量得两地的距离是1.3厘米,则两地的实际距离为多少米?解:(1)7.009×105.(2)-5.009×107.(3)2.5×1013.(4)1.5×108.(5)6.5×105.活动3 课堂小结1.现实生活中的大数据.2.科学记数法:1.了解近似数的概念.2.能按要求取近似数.3.体会近似数的意义及在生活中的作用.阅读教材P45~46,思考下列问题.什么样的数是近似数?近似数与准确数有哪些区别?分别试举出几个例子.知识探究近似数与准确数的接近程度可以用精确度表示.一般地,一个近似数,四舍五入到某一位,就说这个近似数精确到哪一位.自学反馈下列由四舍五入得到的近似数,各精确到哪一位?(1)0.025;(2)0.404 0;(3)1.8;(4)1.80;(5)103万; (6)1.60×104; (7)10亿; (8)10.解:(1)千分位.(2)万分位. (3)十分位.(4)百分位. (5)万位.(6)百位. (7)亿位.(8)个位.精确度的一般表示形式是精确到哪一位.活动1 小组讨论例按括号内的要求,用四舍五入法对下列各数取近似数:(1)0.015 8(精确到0.001);(2)304.35(精确到个位);(3)1.804(精确到0.1);(4)1.804(精确到0.01).解:(1)0.015 8≈0.016.(2)304.35≈304.(3)1.804≈1.8.(4)1.804≈1.80.活动2 跟踪训练1.1.90精确到百分位.2.用四舍五入法对60 340取近似值(精确到千位):60 340≈6.0×104.3.近似数6.00×103精确到十位.4.0.020 76保留四位小数约为0.020__8.5.对3.04×104精确到千位约是3.0×104.6.圆周率π=3.141 592…,精确到百分位是3.14.活动3 课堂小结精品文档1.准确数与近似数.2.按要求取近似值.11/ 11。

人教版数学七年级上册有理数的乘方

人教版数学七年级上册有理数的乘方
解 观察可知, 3n的末位数字是按 3, 9, 7, 1四个数字循环的. 因为32019的 指数为2019, 而2019÷4=504……3, 所以32019的末位数字是7.
锦囊妙计
有理数乘方的其他结论 0, 1, 5, 6的任何正整数次幂的个位数字都 是它们本身;2的 正整数次幂的个位数字是按 2, 4, 8, 6四个数字循环的;3的正整数 次幂的个 位数字是按3, 9, 7, 1四个数字循环的;4的正整 数次幂 的个位数字是按4, 6两个数字循环的;7的 正整数次幂的个位数字 是按7, 9, 3, 1四个数字循环 的;8的正整数次幂的个位数字是按8, 4, 2, 6四个 数字循环的;9的正整数次幂的个位数字是按9, 1 两个 数字循环的.
锦囊妙计
把较大的数精确到十位、百位、千位的方法 把较大的数按要求用四舍五入法精确到十 位、百位、千 位, 先把较大的数用科学记数法 表示为a×10n的形式, 再按照 精确度的要求, 在 a中确定出精确度所对应的数字, 然后用四舍 五 入法取近似值.
题型七 有理数乘方的规律探究题
例题9 已知:31=3, 32=9, 33=27, 34=81, 35=243, 36=729, 37=2187, 38=6561, …, 试确定32019 的末位数字.
例题6 下列用科学记数法表示的数, 原来各 是什么数? (1)5.18×103;(2)-3.12×105;(3)4.05×1012.
解 (1)5.18×103=5180. (2)-3.12×105=-312 000. (3)4.05×1012=4 050 000 000 000.
锦囊妙计
用科学记数法表示数的方法 (1)确定a:a是只有一位整数的数. (2)确定 n:当原数的 绝对值≥10时, n为正整数, n等于原 数的整数位数减1. 把含计数单位的数用科学记数法表示时, 先把计数单位化 去, 再用科学记数法表示.如 1亿= 108, 1万= 104.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 思考:说说下列各数的意义,它们一样吗?
23
32
23 表示3个2相乘
32 表示2个3相乘
人教版七年级数学上册 1.5.1 有理数的乘方
人教版七年级数学上册 1.5.1 有理数的乘方
• 思考:请指出下列幂的底数与指数并说说下列各数 的意义,它们一样吗?
(2)4和 24;
( 2)4的意义是 2的4次方; 即4个 2相乘;
小结与回顾
一、定义:
求n个相同因数的积的运算叫做乘方,乘方
的结果叫幂.
底数
an
指数 幂
二、性质
(1)负数的奇次幂是负数;负数的偶次幂是正数;
(2)正数的任何次幂都是正数;
(3)0的任何正整数次幂都是0;
1、负数的 次幂是负数,负数的 次幂是正数
2、正数的 3、0的
次幂都是正数 次幂都是0
偷偷告 诉你呦!
a读n 作 的a 次n方,也可以读作 的a 次幂n。

a n 指数 因数的个数
底数 因数
人教版七年级数学上册 1.5.1 有理数的乘方
人教版七年级数学上册 1.5.1 有理数的乘方
练习一
1)在 12中10 ,12是 数底,10是
指数,读作 12的10;次方
2) 2的底7 数是
2
,指3 数是
作 3 2 的;7次方
(1)32 =9
24 =16
16 =1
(2)51 =5
23 =8
19 =1
(3)(-9)2 =81 (-2)6 =64 (-3)4=54
(4)(-2)5 =-32 (-3)3 =-27 (-1)3 =-1
(5)02 =0 03 =0
有理数乘方的规律
04 =0 09 =0
1、正数的任何次幂都是正数
2、负数的偶次幂是正数,负数的奇次幂是负数
达标训练
1)、计 算
(1)(4)3 (2) (2)4
(3) 2 3
3
2) 在94中,底数是 ,指数是 ,读作
,或读作

3) 在(-2)3中,底数是 ,指数是 ,读作 ,或读作 ;
4)

3
4
中,底数是
,指数是
,读作

4
5) 在 5 中,底数是
,指数是

6) 02 =
,03 =
, 04 =

7)23 =
我就不 吃你!
动手探究:拿出一张纸,将纸
对折,再对折,对折足够多次。观察 对折的次数与纸的层数的关系。你发 现了什么?
人教版七年级数学上册 1.5.1 有理数的乘方
次数:
1 2 3 4
n
人教版七年级数学上册 1.5.1 有理数的乘方
…… ……
层数: 2 2x2 2x2x2 2x2x2x2
2x2x……x2
3 、零的任何正整数次幂都是零
人教版七年级数学上册 1.5.1 有理数的乘方
人教版七年级数学上册 1.5.1 有理数的乘方
火眼金睛,判断下列各运算结果的符号
(-3)13 (负) -(-2)23 (正)
(-2)24 (正) 02004 (零)
(-1.7)2003 (负) (-3.9)12 (正)
注意:“一看底数,二看指数”
练习2、把下列乘法式子写成乘方的形式:
1、
1 3
1 3
13=
1 3

1 4 3
2、(-2)×(-2)×(-2)×(-2)×(-2) = 25 ;
人教版七年级数学上册 1.5.1 有理数的乘方
计算(观察各题结果,你能发现乘方运算的符号有什么规律?) 人教版七年级数学上册 1.5.1有理数的乘方
,24 =
, 25 =

8)(-3)2 =
,(-3)3 = ,(-3)4 =
, (-3)5 = ;
计算:
(1)2 (3)3 4 (3) 15
2 (27) (12) 15 54 12 15 27
(2)(2)3 (3) (4)2 2 (3)2 (2)
8 (3) (16 2) 9 (2) 8 (3)18 (4.5) 8 54 4.5 57.5
3
,读7
人教版七年级数学上册 1.5.1 有理数的乘方
人教版七年级数学上册 1.5.1 有理数的乘方
3)在 3中16,-3是 数底,16是 数指,读

-3的;16次方
4)在 a中17,底数是 ;指a 数是 ;读17

; a的17次方
人教版七年级数学上册 1.5.1 有理数的乘方
人教版七年级数学上册 1.5.1 有理数的乘方
n个
人教版七年级数学上册 1.5.1 有理数的乘方
1.边长为a的正方形的面积为 S=a·a ,可记作 a2 , 读作 a的平方或a的二次方 ; 2.棱长为a的正方体的体积为 V=a·a·a ,可记作a3 ,
读作 a的立方或a的三次方 。
同样:a·a·a·a可以记作 a4 ,
读作 a的四次方

a ·a ·… ·a ,记作 an ,读作 a的n次方 .
24的意义是2的4次方的相反数。
人教版七年级数学上册 1.5.1 有理数的乘方
• 思考:说说下列各数的意义,它们一样吗?
(2)2和 22 33
2 3
2
的意义是
2 3
22 的意义是“2的平方再除以3”。 3
对于分数的乘方,负数的乘方,书
写时一定要注意小括号,这也是辩 认底数的方法.
当底数是正数时,结果为正;当底数是0时,结果是0; 当底数是负数时,再看指数,若指数为偶数,结果为正,
若指数是奇数,结果为负
人教版七年级数学上册 1.5.1 有理数的乘方
人教版七年级数学上册 1.5.1 有理数的乘方 人教版七年级数学上册 1.5.1 有理数的乘方
人教版七年级数学上册 1.5.1 有理数的乘方
1.5.1 有理数的乘方
教学目标
1.理解有理数乘方的意义。 2.能正确判断底数,指数。 3.掌握有理数的乘方运算,特别是 “符号”的确定。
如果你第一天给我1元,第二天 给我2元,第三天给我4元,以 此类推,一直给20天,我就答 应你!
每天给我10 元,一共给 20年。
灰太狼能不 能吃着喜羊 羊呢?
n个
人教版七年级数学上册 1.5.1 有理数的乘方
人教版七年级数学上册 1.5.1 有理数的乘方
n 个相同的因数 a相乘,即 a • a • … • a
我们把它记作 a;n 即a • a • … • a=an
这种求 n个 相同的因积数的运算,叫做乘方。
乘方的结果叫做幂。
在 a中n , 叫a 做底数, 叫n做指数。
4、除
的任何数的0次幂都是1
5、1的
次幂都是1
6、-1的 次幂是1,-1的 次幂是-1
感谢大家
相关文档
最新文档