2017内蒙古高考文科数学真题及答案

合集下载

内蒙古2017届高三第一次统一考试(文)(word版,附答案)

内蒙古2017届高三第一次统一考试(文)(word版,附答案)

内蒙古2017届高三第一次统一考试(文)本试卷分第卷(选择题)和第卷(非选择题)两部分.第Ⅰ卷 (选择题 共60分) 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知全集U =R ,集合A ={0,1,2,3,4,5},B ={x ∈R |x ≥2},则图中阴影部分所表示的集合( ) A .{0,1} B .{1} C .{1,2} D .{0,1,2}2.已知x ,y ∈R ,i 为虚数单位,且x i -y =-1+i ,则(1+i)x +y 的值为( )A .2B .-2iC .-4D .2i3.已知向量a ,b ,满足|a |=3,|b |=23,且a ⊥(a +b ),则a 与b 的夹角为( ) A.π2 B.2π3 C.3π4 D.5π64等差数列{a n }中,a 1,a 2,a 3分别是下表第一、二、三行中的某一个数,且a 1,a 2,a 3中的任何两个数不在下表的同一列. 则a 4的值为( )A .20B .18C .15D .12 5.某程序框图如图所示,该程序运行后输出的k 的值是( )A .4B .5C .6D .76.用抽签法从1 000名学生(其中男生250人)中抽取200人进行体育测试,某男学生被抽到的概率是( )A.11 000 B.1250 C.15 D.147.已知等比数列{a n }的首项为1,若4a 1,2a 2,a 3成等差数列,则数列1n a ⎧⎫⎨⎬⎩⎭的前5项和为( )A.3116 B .2 C.3316 D.16338.将函数()2(2)4f x sim x π=+的图象向右平移φ(φ>0)个单位,再将图象上每一点横坐标缩短到原来的12倍,所得图象关于直线x =π4对称,则φ的最小正值为( )A.π8B.3π8C.3π4D.π2 9.“m <0”是“函数f (x )=m +log 2x (x ≥1)存在零点”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.不充分又不必要条件10.定义在R 上的函数f (x )的图象关于直线x =2对称,且f (x )在(-∞,2)上是增函数,则( ) A .f (-1)=f (3) B .f (0)=f (3) C. f (-1)<f (3) D .f (0)>f (3)11. F 1,F 2是双曲线22221(0,0)x y a b a b-=>>的左、右两个焦点,以坐标原点O 为圆心,|OF 1|为半径的圆与该双曲线左支的两个交点分别为A ,B ,且△F 2AB 是等边三角形,则双曲线的离心率为( )A.2+1B.3+1C.2+12 D.3+1212.已知正三角形ABC 三个顶点都在半径为2的球面上,球心O 到平面ABC 的距离为1,E 是线段AB 的中点,过点E 作球O 的截面,则截面面积的最小值是( ) A.7π4 B .2π C.9π4D .3π第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分. 13.曲线y =x 3-2x +3在x =1处的切线方程为________.14.在样本的频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形的面积和的14,且样本容量为160,则中间一组的频数为________.15.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于________cm 3.16.设x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -6≤0x -y +2≥0x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为12,则2a +3b的最小值为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程及演算步骤) 17.(本小题满分12分)已知函数2()(2)2cos 16f x sim x x π=-+-(x ∈R )(1)求f (x )的单调递增区间;(2)在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,已知f (A )=12,b ,a ,c 成等差数列,且AB →·AC →=9,求a 的值.18. (本小题满分12分)某中学高三年级从甲、乙两个班级各选出7名学生参加数学基本公式大赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83.(1)求x 和y 的值;(2)从成绩在90分以上的学生中随机抽取两名学生,求甲班至少有一名学生的概率.19.(本小题满分12分)已知直三棱柱ABC -A ′B ′C ′满足∠BAC=90°,AB =AC =12AA ′=2,点M 、N 分别为A ′B 和B ′C ′的中点.(1)证明:MN ∥平面A ′ACC ′; (2)求三棱锥C -MNB 的体积.20.(本小题满分12分)已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1. (1)求椭圆C 的标准方程;(2)若直线l :y =kx +m 与椭圆C 相交于A ,B 两点(A ,B 不是左,右顶点),且以AB 为直径的圆过椭圆C 的右顶点D .求证:直线l 过定点,并求出该定点的坐标.21.(本小题满分12分)已知函数21()(1)23ln ,(1)2f x m x x x m =--++≥. (1)当32m =时,求函数()f x 在区间上的极小值; (2)求证:函数f (x )存在单调递减区间;(3)是否存在实数m ,使曲线C :()y f x =在点P (1,1)处的切线l 与曲线C 有且只有一个公共点?若存在,求出实数m 的值;若不存在,请说明理由.请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4-1:几何证明选讲如图,四边形ABCD 是边长为a 的正方形,以D 为圆心,DA 为半径的圆弧与以BC 为直径的半圆O 交于点C 、F ,连接CF 并延长交AB 于点E . (1)求证:E 是AB 的中点; (2)求线段BF 的长.23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos αy =sin α(α为参数),以原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为()4sim πρθ+=(1)求曲线C 1的普通方程与曲线C 2的直角坐标方程;(2)设P 为曲线C 1上的动点,求点P 到C 2上点的距离的最小值,并求此时点P 的坐标.24.(本小题满分10分)选修4-5:不等式选讲 设函数f (x )=|x +1|+|x +2|-a . (1)当a =5时,求函数f (x )的定义域;(2)若函数f (x )的定义域为R ,试求a 的取值范围.参考答案13 .10x y -+= 14. 32 15.3 16. 617.解:(1)f (x )=sin ⎝⎛⎭⎫2x -π6+2cos 2x -1=32sin 2x -12cos 2x +cos 2x =32sin 2x +12cos2x =sin ⎝⎛⎭⎫2x +π6..........3分 令2k π-π2≤2x +π6≤2k π+π2(k ∈Z )f (x )的单调递增区间为⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z )………………….6分 (2)由f (A )=12,得sin ⎝⎛⎭⎫2A +π6=12 ∵π6<2A +π6<2π+π6,∴2A +π6=5π6,∴A =π3…………8分 由b ,a ,c 成等差数列得2a =b +c ∵AB →·AC →=9,∴bc cos A =9,∴bc =18由余弦定理,得a 2=b 2+c 2-2bc cos A =(b +c )2-3bc ∴a 2=4a 2-3×18,∴a =3 2............12分18.解:(1)∵甲班学生的平均分是85,∴92+96+80+80+x +85+79+787=85.∴x =5………….3分∵乙班学生成绩的中位数是83,∴y =3…………5分 (2)甲班成绩在90分以上的学生有两名,分别记为A ,B , 乙班成绩在90分以上的学生有三名,分别记为C ,D ,E .从这五名学生任意抽取两名学生共有10种情况:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E ).其中甲班至少有一名学生共有7种情况:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ).…………. 9分记“从成绩在90分以上的学生中随机抽取两名学生,甲班至少有一名学生”为事件M , 则P (M )=710.即从成绩在90分以上的学生中随机抽取两名学生,甲班至少有一名学生的概率为710………..12分19.解:(1)如图,连接AB ′、AC ′,∵四边形ABB ′A ′为矩形,M 为A ′B 的中点,∴AB ′与A ′B 交于点M ,且M 为AB ′的中点,又点N 为B ′C ′的中点. ∴MN ∥AC ′,………3分又MN ⊄平面A ′ACC ′,且AC ′⊂平面A ′ACC ′. ∴MN ∥平面A ′ACC ′........6分 (2)由图可知V C -MNB =V M -BCN ,∵∠BAC =90°,∴BC =AB 2+AC 2=22, 又三棱柱ABC -A ′B ′C ′为直三棱柱,且AA ′=4, ∴S △BCN =12×22×4=4 2..........8分∵A ′B ′=A ′C ′=2,∠BAC =90°,点N 为B ′C ′的中点, ∴A ′N ⊥B ′C ′,A ′N = 2. 又BB ′⊥平面A ′B ′C ′, ∴A ′N ⊥BB ′, ∴A ′N ⊥平面BCN . 又M 为A ′B 的中点, ∴M 到平面BCN 的距离为22,……….10分 ∴V C -MNB =V M -BCN =13×42×22=43………..12分20.解:(1)由题意设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),由已知得:a +c =3,a -c =1,解得a =2,c =1,……….3分 所以b 2=a 2-c 2=3,所以椭圆的标准方程为x 24+y 23=1………….5分(2)设A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =kx +m x 24+y 23=1得(3+4k 2)x 2+8mkx +4(m 2-3)=0.则⎩⎨⎧Δ=64m 2k 2-16(3+4k 2)(m 2-3)>0,即3+4k 2-m 2>0x 1+x 2=-8mk3+4k 2x 1x 2=4(m 2-3)3+4k2..........7分y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2=3(m 2-4k 2)3+4k 2.因为以AB 为直径的圆过椭圆的右顶点D (2,0), 所以k AD k BD =-1,即y 1x 1-2·y 2x 2-2=-1,所以y 1y 2+x 1x 2-2(x 1+x 2)+4=0, 3(m 2-4k 2)3+4k 2+4(m 2-3)3+4k 2+16mk3+4k 2+4=0,7m 2+16km +4k 2=0.解得m 1=-2k ,m 2=-2k7,且均满足3+4k 2-m 2>0…………..10分当m 1=-2k 时,直线l 的方程为y =k (x -2),过点(2,0),与已知矛盾; 当m 2=-2k7时,直线l 的方程为y =k ⎝⎛⎭⎫x -27,过定点⎝⎛⎭⎫27,0. 所以直线l 过定点,定点坐标为⎝⎛⎭⎫27,0…………12分 21.解:(1)f ′(x )=m (x -1)-2+1x (x >0).当m =32时,f ′(x )=3 x -2 ⎝⎛⎭⎫x -132x,令f ′(x )=0,得x 1=2,x 2=13…………2分f (x ),f ′(x )在x ∈(0,+∞)上的变化情况如下表:所以当x =2时,函数f (x )在x ∈上取极小值为f (2)=ln 2-14………..4分(2)令f ′(x )=0,得mx 2-(m +2)x +1=0.(*)因为Δ=(m +2)2-4m =m 2+4>0,所以方程(*)存在两个不等实根,记为a ,b (a <b ).因为m ≥1,所以⎩⎨⎧a +b =m +2m>0ab =1m >0,所以a >0,b >0,即方程(*)有两个不等的正根,因此f ′(x )<0的解为(a ,b ). 故函数f (x )存在单调递减区间.…………8分(3)因为f ′(1)=-1,所以曲线C :y =f (x )在点P (1,1)处的切线l 的方程为y =-x +2.若切线l 与曲线C 有且只有一个公共点,则方程12m (x -1)2-2x +3+ln x =-x +2有且只有一个实根.显然x =1是该方程的一个根.令g (x )=12m (x -1)2-x +1+ln x ,则g ′(x )=m (x -1)-1+1x =m (x -1)⎝⎛⎭⎫x -1m x.当m =1时,有g ′(x )≥0恒成立,所以g (x )在(0,+∞)上单调递增,所以x =1是方程的唯一解,m =1符合题意.当m >1时,由g ′(x )=0,得x 1=1,x 2=1m ,则x 2∈(0,1),易得g (x )在x 1处取到极小值,在x 2处取到极大值.………….10分所以g (x 2)>g (x 1)=0,又当x 趋近0时,g (x )趋近-∞,所以函数g (x )在⎝⎛⎭⎫0,1m 内也有一个解,m >1不符合题意.综上,存在实数m =1使得曲线C :y =f (x )在点P (1,1)处的切线l 与曲线C 有且只有一个公共点.……….12分22.解:(1)连接OD ,OF ,DF ,∵四边形ABCD 是边长为a 的正方形, ∴BC =CD ,∠EBC =∠OCD =90°, ∵OF =OC ,DF =DC ,OD =OD ,∴△OFD ≌△OCD ,∴∠ODC =ODF ,∠ECB =12∠FDC =∠ODC ,又∠EBC =∠OCD =90°,BC =CD ,……….3分∴△EBC ≌△OCD ,∴EB =OC =12AB ,∴E 是AB 的中点.………..5分(2)由BC 为圆O 的直径可得BF ⊥CE ,∴△BEC 的面积S △BEC =12BF ·CE =12CB ·BE ,……….8分∴BF BE =CB CE ,∴BF =55a ………..10分23.解:(1)对于曲线C 1有⎩⎪⎨⎪⎧x 3=cos αy =sin α⇔⎝⎛⎭⎫x32+y 2=cos 2α+sin 2α=1,即C 1的普通方程为x 23+y 2=1;对于曲线C 2有ρsin ⎝⎛⎭⎫θ+π4=22ρ(cos θ+sin θ)=42⇔ρcos θ+ρsin θ=8⇔x +y -8=0,所以C 2 的直角坐标方程为x +y -8=0………….5分(2)显然椭圆C 1与直线C 2无公共点,椭圆上点P (3cos α,sin α)到直线x +y -8=0的距离为:d =|3cos α+sin α-8|2=⎪⎪⎪⎪2sin ⎝⎛⎭⎫α+π3-82,当sin ⎝⎛⎭⎫α+π3=1时,d 取得最小值为32,此时点P 的坐标为⎝⎛⎭⎫32,12……..10分 24.解:(1)当a =5时,f (x )=|x +1|+|x +2|-5,由|x +1|+|x +2|-5≥0得⎩⎪⎨⎪⎧x ≥-12x -2≥0或⎩⎪⎨⎪⎧ -2≤x <-1-4≥0或⎩⎪⎨⎪⎧x <-2-8-2x ≥0,解得x ≥1或x ≤-4.即函数f (x )的定义域为{x |x ≥1或x ≤- 4}.……………5分(2)由题可知|x +1|+|x +2|-a ≥0恒成立,即a ≤|x +1|+|x +2|恒成立,而|x +1|+|x +2|≥|(x +1)-(x +2)|=1,所以a ≤1,即a 的取值范围为(-∞,1]...10分。

新课标2017年普通高等学校招生全国统一考试(文科数学)及答案

新课标2017年普通高等学校招生全国统一考试(文科数学)及答案

新课标2017年普通高等学校招生全国统一考试(文科数学)及答案一、单选题:本题共12小题,每小题5分,共60分。

1.()i 23i +=( ) A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则A B =( )A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x --=的图象大致为( )4.已知向量a ,b 满足1=a ,1⋅=-a b ,则()2⋅-=a a b ( ) A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为( ) A .0.6B .0.5C .0.4D .0.36.双曲线()222210,0x y a b a b-=>>)A.y =B.y =C.y =D.y =7.在ABC △中,cos 2C =1BC =,5AC =,则AB =( )A.BCD.8.为计算11111123499100S=-+-++-,设计了右侧的程序框图,则在空白框中应填入( )A .i i 1=+B .i i 2=+C .i i 3=+D .i i 4=+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE与CD 所成角的正切值为( ) ABCD 10.若()cos sin f x x x =-在[]0,a 是减函数,则a 的最大值是( ) A .π4B .π2C .3π4D .π11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为( ) A.1 B.2-CD 112.已知()f x 是定义域为(),-∞+∞的奇函数,满足()()11f x f x -=+.若()12f =, 则()()()()12350f f f f ++++=( ) A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。

2017年全国高考卷文科数学试题及答案详细解析(选择、填空、解答全解全析) 精品

2017年全国高考卷文科数学试题及答案详细解析(选择、填空、解答全解全析)  精品

2017年普通高等学校招生全国统一考试文科数学(必修+选修I)解析版本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷 注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.第Ⅰ卷共l2小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的. 一、选择题 (1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U =(M N )Ið(A ){}12, (B ){}23, (C ){}2,4 (D ){}1,4 【命题意图】本题主要考查集合交并补运算.【解析】{2,3},(){1,4}U M N C M N =∴=【答案】D(2)函数0)y x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥(C )24y x =()x R ∈ (D )24(0)y x x =≥ 【命题意图】本题主要考查反函数的求法.【解析】由0)y x =≥反解得24y x =,又原函数的值域为0y ≥,所以函数0)y x =≥的反函数为2(0)4x y x =≥.【答案】B(3)设向量,a b 满足||||1a b == ,12a b ⋅=-r r ,则2a b +=(A(B(C(D【命题意图】本题主要考查平面向量的数量积与长度的计算方法.【解析】2221|2|||44||14()432a b a a b b +=+⋅+=+⨯-+= ,所以2a b +=【答案】B(4)若变量x ,y 满足约束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为(A )17 (B )14 (C )5 (D )3 【命题意图】本题主要考查简单的线性规划.【解析】作出不等式组表示的可行域,从图中不难观察当直线=23z x y +过直线x=1与x-3y=-2的交点(1,1)时取得最小值,所以最小值为5. 【答案】C(5)下面四个条件中,使a b >成立的充分而不必要的条件是(A )1a b +> (B )1a b -> (C )22a b > (D )33a b >【命题意图】本题主要考查充要条件及不等式的性质.【解析】即寻找命题P ,只需由P a b ⇒>,且由a b >不能推出P ,可采用逐项验证的方法,对A ,由1a b +>,且1b b +>,所以a b >,但a b >时,并不能得到1a b +>,故答案为A 。

2017年高考文科数学试题全国Ⅰ卷全国卷高考真题精校Word版含答案

2017年高考文科数学试题全国Ⅰ卷全国卷高考真题精校Word版含答案

绝密★启用前2017年普通高等学校招生全国统一考试文科数学本试卷共5页,满分150分。

考生注意:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,监考员将试题卷和答题卡一并交回。

12560分。

在每小题给出的四个选项中,只有一项是符合题一、选择题:本大题共分,共小题,每小题目要求的。

????0???22xx|3x|x B1A==,则.已知集合,3???|xx ABABAB= ??..??2??3???x|x?ABRCADB=..??2??2n.nkgxx…,.为评估一种农作物的种植效果,选了块地作试验田)分别为这,块地的亩产量(单位:,21x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是n Axx…xBxx…x 的标准差,..,,,,,的平均数nn2211Cxx…xDxx…x 的中位数,的最大值,.,,.,,nn21123 .下列各式的运算结果为纯虚数的是222Di(1+i)i B (1-i)C(1+i)i(1+i)A....4ABCD.正方形内切圆中的黑色部分和白色部分关于正方形如图,正方形内的图形来自中国古代的太极图.. 在正方形内随机取一点,则此点取自黑色部分的概率是的中心成中心对称ππ11 CAD B....82442y25FCx-=1PCPFxA(1,3).APF△是双曲线上一点,且:的坐标是.已知与的右焦点,则是轴垂直,点 3 的面积为1123 D B C A ....22336ABMNQ为所在棱的中点,则在这四个正方为正方体的两个顶点,,.如图,在下列四个正方体中,,,ABMNQ 不平行的是体中,直接与平面x?3y?3,??x?y?1,zy=x+y 7x的最大值为满足约束条件.设,则??y?0,?A0 B1 C2 D3 ....sin2x?y 8.的部分图像大致为函数.1?cosxf(x)?lnx?ln(2?x) 9,则.已知函数f(x)f(x)0,2AB0,2 )单调递减在(.)单调递增在(.f(x)f(x)1,0=1Cy=Dy= x)对称对称的图像关于点(..的图像关于直线nn10n1000??23两个空白框中,可以分别填入的最小偶数,那么在.如图是为了求出满足和AA>1000n=n+1BA>1000n=n+2 和.和.CA≤1000n=n+1DA≤1000n=n+2和..和sinB?sinA(sinC?cosC)?0、、、、==2cb11ABCAcBaCa,.△,的内角的对边分别为,。

2017年高考文科数学全国卷1含答案

2017年高考文科数学全国卷1含答案

框中,可以分别填入( )
A. A>1000 和 n n 1 C. A≤1000 和 n n 1
B. A>1000 和 n n 2 D. A≤1000 和 n n 2 数学试卷 第 3页(共 16页)
11.△ ABC 的内角 A , B , C 的对边分别为 a , b , c .已知 sin B sin A(sin C cos C) 0 ,
毕业学校_____________ 姓名_____________ 考生号_____________ ____________________________________________________
------------- -------------------- -------------------- -------------------- -------------------- -------------------- -------------------- -------------------- ----------------

i 1, 2,,16 .
(1)求 (xi , i) (i 1, 2,,16) 的相关系数 r ,并回答是否可以认为这一天生产的零件尺寸
不随生产过程的进行而系统地变大或变小(若 | r | 0.25 ,则可以认为零件的尺寸不随生产过

程的进行而系统地变大或变小).
(2)一天内抽检零件中,如果出现了尺寸在 (x 3s, x 3s) 之外的零件,就认为这条生产
A. f (x) 在 (0, 2) 单调递增 C. y f (x) 的图像关于直线 x 1 对称
B. f (x) 在 (0, 2) 单调递减 D. y f (x) 的图像关于点 (1,0) 对称

2017内蒙古高考文科综合真题及答案

2017内蒙古高考文科综合真题及答案

2017内蒙古高考文科综合真题及答案本试卷共47题,共300分,共14页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑字迹的签字笔书写,字体工整,笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.作图可先用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本大题共35小题,每小题4分,共140分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

19世纪50年代,淮河自洪泽湖向南经长江入海;黄河结束夺淮历史,改从山东入海。

1968年,南京长江大桥建成通车;自1999年,江苏境内又陆续建成了多座长江大桥。

江苏习惯上以长江为界分为苏南和苏北两部分(图1)。

据此完成1~3题。

1.目前,在洪泽湖以东地区,秦岭—淮河线A.无划分指标依据B.与自然河道一致C.无对应的自然标志D.两侧地理差异显著2.习惯上苏南、苏北的划分突出体现了长江对两岸地区A.自然地理分异的影响B.人文地理分异的影响C.互相联系的促进作用D.相互联系的阻隔作用3.进入21世纪,促使苏南、苏北经济合作更加广泛的主导因素是A.市场B.技术C.资金D.交通汽车轮胎性能测试需在不同路面上进行。

芬兰伊瓦洛(位置见图2)吸引了多家轮胎企业在此建设轮胎测试场,最佳测试期为每年11月至次年4月。

据此完成4~5题。

4.推测该地轮胎测试场供轮胎测试的路面是A.冰雪路面B.湿滑路面C.松软路面D.干燥路面5.在最佳测试期内,该地轮胎测试场A.每天太阳从东南方升起B.有些日子只能夜间进行测试C.经常遭受东方寒潮侵袭D.白昼时长最大差值小于12时热带沙漠中的尼罗河泛滥区孕育了古埃及农耕文明。

2017年内蒙古高考文科数学试卷(含答案)

2017年内蒙古高考文科数学试卷(含答案)

2017年内蒙古高考文科数学试卷(含答案)
内蒙古高考语文试题内蒙古高考数学试题内蒙古高考英语试题内蒙古高考理综试题内蒙古高考文综试题内蒙古高考语文答案内蒙古高考数学答案内蒙古高考英语答案内蒙古高考理综答案内蒙古高考文综答案考生们已经决战了高考战场,圆梦就在今朝,挑战人生是考生们必须迈出的一步,在这里,出国留学网高考栏目为您带来了“2017年内蒙古高考文科数学试卷(含答案)”,希望能对广大考生有所帮助。

2017年高考全国卷2文科数学真题及答案
适用地区:甘肃、青海、内蒙古、黑龙江、吉林、辽宁、宁夏、新疆、西藏、陕西、重庆。

2017年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2017年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)
AUB={xl lx<2) ,故 C, D 错误; 故选: A. 【点评】 本题考查的知识点梨合的父生和并炊运算,难度小大,屈千基础题.
2. 【觥答】 解:在 A 中,平均数是表不一组数据仗中趋势的址数,它是反映数据梊中趋势的一项指标, 故 A 不可以用来评估这种农什物由产量稳定程度; 在 B 中,标准差能反映一个数据集的离散程度,故 B 可以用来评估这种农作物亩产量稳定程度; 在 C 中,最大值是一组数据最大的量,故 C 不可以用来评估这种农作物亩产量稳定程度; 在 D 中,中位数将数据分成前半部分和后半部分,用来代表一组数据的"中等水平”, 故 D 不可以用来评估这种农作物亩产量稳定程度. 故选: B.
尺寸的均值与标准差.(精确到 0.01) n
区 ( xi-x) ( yi-y)
:n11(=:1 云) 2荨了 ' 三=0.09. 附:杆本 (x;, y;) (i=l, 2,..., n) 的相关系数 r=
21. (12 分)已知函数 f (x) =e'(e•-a) -a奴
( 1) 讨论 f (x) 的单调性; ( 2) 若 f (x) ?co, 求 a 的取值范围.
I: (x, - x) (i - 8.5) = - 2.78, 其中 x 为抽取的第 i 个零件的尺寸, i=l, 2,..., 16.
1=1
( 1) 求 (x;, i) (i=l, 2,..., 16) 的相关系数 r, 并回答是否可以认为这一天生产的零件尺寸不随生 产过程的进行而系统地变大或变小(若 I rl <o.2s, 则可以认为零件的尺寸不随生产过程的进行而
-冗
x
-冗
X
A. 1-4
B. 千
c. 1_2
D. 于

2017年内蒙古高考数学试卷(文科)(全国新课标ⅱ)[答案版]

2017年内蒙古高考数学试卷(文科)(全国新课标ⅱ)[答案版]

面积为

16.(5 分)△ABC 的内角 A,B,C 的对边分别为 a,b,c,若 2bcosB=acosC+ccosA,则 B


三、解答题:共 70 分.解答应写出文字说明,证明过程或演算步骤,第 17 至 21 题为必考
题,每个试题考生都必须作答.第 22、23 题为选考题,考生根据要求作答.(一)必考题:
何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )
A.90π
B.63π
C.42π
D.36π
7.(5 分)设 x,y 满足约束条件
,则 z=2x+y 的最小值是( )
第 1 页(共 17 页)
A.﹣15
B.﹣9
C.1
8.(5 分)函数 f(x)=ln(x2﹣2x﹣8)的单调递增区间是(
D.9 )
=BC= AD,∠BAD=∠ABC=90°.
(1)证明:直线 BC∥平面 PAD; (2)若△PCD 面积为 2 ,求四棱锥 P﹣ABCD 的体积.
19.(12 分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽
取了 100 个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:
A.(﹣∞,﹣2) B.(﹣∞,﹣1) C.(1,+∞)
D.(4,+∞)
9.(5 分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人
中有 2 位优秀,2 位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成
绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )
张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )

2017高考全国1卷文科数学试题和答案解析.docx

2017高考全国1卷文科数学试题和答案解析.docx
15
这条生产线当天生产的零件尺寸的标准差的估计值为
0.008
0.09.
20.(12分)解:
(1)设A(x1,y1),B(x2,y2),则x1
x2,y1
x1
2
,y2
x2
2
,x1+x2=4,
4
4
于是直线AB的斜率k
y1
y2
x1
x2
1 .
x1
x2
4
(2)由y
x2
,得y'
x.
4
2
设M(x3,y3),由题设知
4小题,每小题
5分,共20分。
13.已知向量a=(–1,2),b=(m,1).若向量a+b与a垂直,则m=______________.
14.曲线y
x2
1
在点(1,2)处的切线方程为_________________________.
x
15.已知a
π
,tanα,=2则cos (
π
(0,)
4
) =__________。
|,即4
2( m 1)
2( m
1),解得m
7 .
所以直线AB的方程为yx7 .
21.
(12
分 ) (1) 函 数f ( x)
的 定 义 域 为( ,
),
f (x)
2e2x
aex
a2
(2 ex
a)(ex
a),
①若a
0
,则f ( x)
e2 x,在(
,
)单调递增.
②若a
0
,则由f ( x)
0
得x
ln a
.
(二)选考题:共10分。请考生在第22、23题中任选一题作答,如果多做,则按所做的第

2017年文数高考真题全国Ⅱ卷(内蒙古用)答案

2017年文数高考真题全国Ⅱ卷(内蒙古用)答案

第1页 共18页 ◎ 第2页 共18页2017年文数高考真题全国Ⅱ卷(内蒙古用)答案组题人:李明辉1.设集合{1,2,3},{2,3,4}A B ==,则A B =UA .{}123,4,, B .{}123,, C .{}234,, D .{}134,, 【答案】A 【解析】由题意{1,2,3,4}A B =U ,故选A. 点睛:集合的基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决. (3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图.2.(2017新课标全国卷II 文科)(1i)(2i)++= A .1i - B .13i + C .3i + D .33i +【答案】B 【解析】由题意2(1i)(2i)23i i 13i ++=++=+,故选B.点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如(+i)(+i)()+a b c d ac bd =-(+)i(,,,)ad bc a b c d R ∈. 其次要熟悉复数相关基本概念,如复数+i(,)a b a b R ∈的实部为a 、虚部为b(,)a b 、共轭复数为i a b -.3.函数π()sin(2)3f x x =+的最小正周期为( )A .4πB .2πC .πD .π2【答案】C 【解析】 由题意22T ππ==,故选C . 【名师点睛】函数()sin (0,0)y A x B A ωϕω=++>>的性质:(1)max min =+y B A y B A =-,. (2)最小正周期2.T πω=(3)由()ππ2x k k Z ωϕ+=+∈求对称轴. (4)由()ππ2π2π22k x k k Z ωϕ-+≤+≤+∈求增区间;由()π3π2π2π22k x k k Z ωϕ+≤+≤+∈求减区间.4.(2017新课标全国Ⅱ文科)设非零向量a ,b 满足+=-a b a b ,则 A .a ⊥b B .=a b C .a ∥b D .a b >【答案】A 【解析】由+=-a b a b 平方得222222a a b b a a b b +⋅+=-⋅+,即0⋅=a b ,则a b ⊥r r ,故选A.点睛:已知1122(,),(,)x y x y ==a b .(1)向量平行:1221x y x y ⇒=∥a b ,,,λλ≠⇒∃∈=0R ∥a b b a b ,11BA AC OA OB λλ=⇔=++u u u r u u u r u u u r u u ur 1OC λλ+u u u r . (2)向量垂直:121200x x y y ⊥⇔⋅=⇔+=a b a b .(3)向量运算:221212(,),||,||||cos ,x x y y ±=±±=⋅=⋅a b a a a b a b a b .5.若1a >,则双曲线2221x y a-=的离心率的取值范围是( )A.)+∞ B.2)C.D .(1,2)【答案】C【解析】221c a =+,222222111c a e a a a+===+ ,1a >Q ,2101a∴<< ,212e <<,则0e <<,选C. 6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为第3页 共18页 ◎ 第4页 共18页A .90πB .63πC .42πD .36π【答案】B 【解析】由题意,该几何体是由高为6的圆柱截取一半后的图形加上高为4的圆柱,故其体积为2213634632V πππ=⋅⋅⋅+⋅⋅=,故选B.点睛:(1)解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.(2)三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.7.设,x y 满足约束条件2+330233030x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )A .15-B .9-C .1D .9【答案】A 【解析】 【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论. 【详解】作出2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩表示的可行域,如图,由23302330x y x y +-=⎧⎪⎨⎪-+=⎩可得63x y =-⎧⎪⎨⎪=-⎩, 将2z x y =+变形为2y x z =-+,平移直线2y x z =-+,由图可知当直2y x z =-+经过点()6,3--时, 直线在y 轴上的截距最小,最小值为()26315z =⨯--=-,故选A. 【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.8.函数2()ln(28)f x x x =--的单调递增区间是 A .(,2)-∞- B .(,1)-∞ C .(1,)+∞ D .(4,)+∞【答案】D 【解析】由228x x -->0得:x ∈(−∞,−2)∪(4,+∞), 令t =228x x --,则y =ln t ,∵x ∈(−∞,−2)时,t =228x x --为减函数;x ∈(4,+∞)时,t =228x x --为增函数; y =ln t 为增函数,故函数f (x )=ln(228x x --)的单调递增区间是(4,+∞),故选:D.第5页 共18页 ◎ 第6页 共18页点睛:形如()()y f g x =的函数为()y g x =,()y f x =的复合函数,() y g x =为内层函数,() y f x =为外层函数.当内层函数()y g x =单增,外层函数()y f x =单增时,函数()()y f g x =也单增; 当内层函数()y g x =单增,外层函数()y f x =单减时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单增时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单减时,函数()()y f g x =也单增. 简称为“同增异减”.9.甲、乙、丙,丁四位同学一起去问老师询问成语竞赛的成绩。

2017年高考新课标1文科数学真题及答案

2017年高考新课标1文科数学真题及答案

2017年普通高等学校招生全国统一考试(新课标全国卷Ⅰ)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分,考试时间120分钟。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)已知集合{}{}2,|320A x x B x x =<=->,则A .AB =3|2x x ⎧⎫<⎨⎬⎩⎭B .A B =∅C .A B 3|2x x ⎧⎫=<⎨⎬⎩⎭ D .A B=R (2)为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地 的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可 以用来评估这种农作物亩产量稳定程度的是A .x 1,x 2,…,x n 的平均数B .x 1,x 2,…,x n 的标准差C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数 (3)下列各式的运算结果为纯虚数的是A .i(1+i)2B .i 2(1-i) C .(1+i)2D .i(1+i) (4)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内 切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方 形内随机取一点,则此点取自黑色部分的概率是A.14B.π8C.12D.π4(5)已知F是双曲线C:2213yx-=的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3).则△APF的面积为A.13B.12C.23D.32(6)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直接AB与平面MNQ不平行的是(7)设x,y满足约束条件33,1,0,x yx yy+≤⎧⎪-≥⎨⎪≥⎩则z=x+y的最大值为A.0 B.1 C.2 D.3(8)函数sin21cosxyx=-的部分图像大致为(9)已知函数()ln ln(2)f x x x =+-,则A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称(10)如图是为了求出满足321000n n->的最小偶数n ,那么在和两个空白框中,可以分别填入A .A >1000和n =n +1B .A >1000和n =n +2C .A ≤1000和n =n +1D .A ≤1000和n =n +2 (11)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin (sin cos )0,B A C C +-=2a =,c =C =A .π12B .π6C .π4D .π3(12)设A 、B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M满足∠AMB =120°,则m 的取值范围是A .(0,1][9,)+∞B .[9,)+∞C .(0,1][4,)+∞D .[4,)+∞第Ⅱ卷二、填空题:本大题共4小题,每小题5分(13)已知向量a=(–1,2),b=(m,1).若向量a+b与a垂直,则m=______________.(14)曲线21y xx=+在点(1,2)处的切线方程为_________________.(15)已知π(0)2a∈,,tan α=2,则πcos()4α-=__________.(16)已知三棱锥S-ABC的所有顶点都在球O的球面上,SC是球O 的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S-ABC的体积为9,则球O的表面积为________.三、解答题:解答应写出文字说明,证明过程或演算步骤.(一)必考题:共60分.(17)(本小题满分12分)记S n为等比数列{}n a的前n项和,已知S2=2,S3=-6.(Ⅰ)求{}n a的通项公式;(Ⅱ)求S n,并判断S n+1,S n,S n+2是否成等差数列.如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=(Ⅰ)证明:平面PAB ⊥平面PAD ;(Ⅱ)若PA =PD =AB =DC ,90APD ∠= ,且四棱锥P-ABCD 的体积为83,求该四棱锥的侧面积.为了监控某种零件的一条生产线的生产过程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s ==≈18.439≈,161()(8.5) 2.78ii x x i =--=-∑,其中ix 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅. (Ⅰ)求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(Ⅱ)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数()()niix x y y r --=∑,0.09≈.(20)(本小题满分12分)设A,B为曲线2:4xC y=上两点,A与B的横坐标之和为4.(Ⅰ)求直线AB的斜率;(Ⅱ)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.(21)(本小题满分12分)已知函数()2()e e .x x f x a a x =--(Ⅰ)讨论()f x 的单调性; (Ⅱ)若()0f x ≥,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.(22)[选修4―4:坐标系与参数方程] (10分) 在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (Ⅰ)若1a =-,求C 与l 的交点坐标;(Ⅱ)若C 上的点到la .(23)[选修4—5:不等式选讲](10分) 已知函数()()24,11f x x ax g x x x =-++=++-. (Ⅰ)当1a =时,求不等式()()f x g x ≥的解集;(Ⅱ)若不等式()()f x g x ≥的解集包含[–1,1],求a 的取值范围.2017年高考文科数学真题及答案全国卷1本试卷共5页,满分150分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017内蒙古高考文科数学真题及答案注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{}{}123234A B ==,,, ,,, 则=ABA. {}123,4,,B. {}123,,C. {}234,,D. {}134,, 2.(1+i )(2+i )=A.1-iB. 1+3iC. 3+iD.3+3i 3.函数()fx =πsin (2x+)3的最小正周期为A.4πB.2πC. πD. 2π4.设非零向量a ,b 满足+=-b b a a 则A a ⊥b B. =b a C. a ∥b D. >b a5.若a >1,则双曲线x y a=222-1的离心率的取值范围是A. ∞)B. )C. (1D. 12(,)6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A.90π B.63π C.42π D.36π7.设x 、y 满足约束条件2+330233030x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩。

则2z x y =+ 的最小值是A. -15B.-9C. 1 D 98.函数2()ln(28)f x x x =-- 的单调递增区间是A.(-∞,-2)B. (-∞,-1)C.(1, +∞)D. (4, +∞)9.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则 A.乙可以知道两人的成绩 B.丁可能知道两人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩 10.执行右面的程序框图,如果输入的a =-1,则输出的S=A.2B.3C.4D.511.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A.110B.15C.310D.2512.过抛物线C:y 2=4x 的焦点F 的直线交C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN ⊥l,则M 到直线NF 的距离为A. C.二、填空题,本题共4小题,每小题5分,共20分. 13.函数()cos sin =2+fx x x 的最大值为 .14.已知函数()f x 是定义在R 上的奇函数,当x ()-,0∈∞时,()322=+f x x x ,则()2=f15.长方体的长、宽、高分别为3,2,1,学|科网其顶点都在球O 的球面上,则球O 的表面积为16.△ABC 的内角A,B,C 的对边分别为a,b,c,若2b cosB=a cosC+c cosA,则B=三、解答题:共70分。

解答应写出文字说明,证明过程或演算步骤,第17至21题为必考题,每个试题考生都必须作答。

第22、23题为选考题,考生根据要求作答。

(一)必考题:共60分。

17.(12分)已知等差数列{a n }的前n 项和为Sn ,等比数列{b n }的前n 项和为Tn ,a 1=-1,b1=1,a3+b2=2. (1) 若a3+b2=5,求{b n }的通项公式; (2) 若T=21,求S 1 18.(12分)如图,四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB=BC=12AD, ∠BAD=∠ABC=90°。

(1) 证明:直线BC ∥平面PAD;(2) 若△PAD 面积为,求四棱锥P-ABCD 的体积。

19(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg ), 学.科网其频率分布直方图如下:(1) 记A 表示事件“旧养殖法的箱产量低于50kg ”,估计A 的概率;(2) 填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg 箱产量≥50kg 旧养殖法 新养殖法(3) 根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较。

P ()0.050 0.010 0.001 k3.8416.63510.82822()()()()()n ad bc K a b c d a c b d -=++++20.(12分)设O 为坐标原点,动点M 在椭圆C上,过M 作x 轴的垂线,垂足为N ,点P满足(1) 求点P 的轨迹方程; (2) 设点 在直线x =-3上,且.证明过点P 且垂直于OQ 的直线l 过C 的左焦点F.(21)(12分)设函数f(x)=(1-x 2)e x. (1)讨论f(x)的单调性;(2)当x ≥0时,f(x)≤ax +1,求a 的取值范围.(二)选考题:共10分。

请考生在第22、23题中任选一题作答。

如果多做,则按所做的第一题计分。

22. [选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系。

曲线C 1的极坐标方程为(1)M 为曲线C 1的动点,点P 在线段OM 上,且满足16⋅OM OP =,求点P 的轨迹C 2的直角坐标方程;(2)设点A 的极坐标为π23(,),点B 在曲线C 2上,求△OAB 面积的最大值。

23. [选修4-5:不等式选讲](10分)已知=2。

证明: (1):(2)。

绝密★启用前2017年普通高等学校招生全国统一考试文科数学试题答案一、选择题1.A2.B3.C4.A5.C6.B7.A8.D9.D 10.B 11.D 12.C二、填空题13. 14. 12 15. 14π 16.三、解答题17.解:设的公差为d,的公比为q,则,.由得d+q=3. ①(1)由得②联立①和②解得(舍去),因此的通项公式(2)由得.解得当时,由①得,则.当时,由①得,则.18.解:(1)在平面ABCD内,因为∠BAD=∠ABC=90°,所以BC∥AD.又BC PAD⊄平面,AD PAD⊂平面,故BC∥平面PAD.(2)去AD的中点M,学科&网连结PM,CM,由12AB BC AD==及BC∥AD,∠ABC=90°得四边形ABCM为正方形,则CM⊥AD.因为侧面PAD为等边三角形且垂直于底面ABCD,平面PAD∩平面ABCD=AD,所以PM⊥AD,PM ⊥底面ABCD,因为CM ABCD⊂底面,所以PM⊥CM.设BC=x,则CM=x,CD=,PM=,PC=PD=2x.取CD的中点N,连结PN,则PN⊥CD,所以因为△PCD的面积为,所以,解得x=-2(舍去),x=2,于是AB=BC=2,AD=4,PM=,所以四棱锥P-ABCD的体积.19.解:(1)旧养殖法的箱产量低于50kg的频率为(0.012+0.014+0.024+0.034+0.040)×5=0.62因此,事件A的概率估计值为0.62.(2)根据箱产量的频率分布直方图得列联表箱产量<50kg 箱产量≥50kg旧养殖法62 38新养殖法34 66K2=15.70510010096104⨯⨯⨯≈由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关.(3)箱产量的频率分布直方图平均值(或中位数)在45kg到50kg之间,且新养殖法的箱产量分布集中程度较旧养殖法的箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法.20.解:(1)设P(x,y),M(),则N(),由得.因为M()在C上,所以.因此点P的轨迹为.(3)由题意知F(-1,0),设Q(-3,t),P(m,n),则,.由得-3m-+tn-=1,学&科网又由(1)知,故3+3m-tn=0.所以,即.又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ 的直线l过C的左焦点F.21. 解(1)f ’(x)=(1-2x-x2)e x令f’(x)=0得x2,x2当x∈(-∞,2)时,f’(x)<0;当x∈(2,2)时,f’(x)>0;当x∈(2+∞)时,f’(x)<0所以f(x)在(-∞,2),(2,+∞)单调递减,在(2,2增(2) f (x)=(1+x)(1-x)e x当a≥1时,设函数h(x)=(1-x)e x,h’(x)= -xe x<0(x>0),因此h(x)在[0,+∞)单调递减,而h (0)=1, 故h (x )≤1,所以f (x )=(x +1)h (x )≤x +1≤ax +1当0<a <1时,设函数g (x )=e x-x -1,g ’(x )=e x-1>0(x >0),所以g (x )在在[0,+∞)单调递增,而g (0)=0,故e x ≥x +1当0<x <1,2()(1)(1)f x x x =-+,22(1)(1)1(1)x x ax x a x x -+--=---,取0541a x --=则2000000(0,1),(1)(1)0,()1x x x ax f x ax ∈-+-=〉+故当 00000510,()1-(1)211a x f x x x ax -≤=〉+=〉+时,取() 综上,a 的取值范围[1,+∞) 22.解:(1)设P 的极坐标为()(>0),M 的极坐标为()由题设知|OP|=,=.由|OP|=16得的极坐标方程因此的直角坐标方程为.(2)设点B 的极坐标为 ().由题设知|OA|=2,,于是△OAB 面积当时,学|科网S 取得最大值.所以△OAB 面积的最大值为.优秀文档23. 解:++=+++336556(1)()()a b a b a ab a b b=+-++3323344()2()a b a b ab a b=+-2224()ab a b≥4. (2)因为+=+++33223()33a b a a b ab b=++23()ab a b+≤++23()2(a b)4a b +=+33()24a b所以 +≤3()8a b ,因此+≤2a b。

相关文档
最新文档