理论力学教程周衍柏第三版课件

合集下载

周衍柏《理论力学教程(第三版)》电子教案第三章4-5刚体力学解析

周衍柏《理论力学教程(第三版)》电子教案第三章4-5刚体力学解析

所以可以把所有空间力化为过一点的力和力偶. P点叫简化中心, 力的矢量和叫主矢, 力偶矩的矢量 和叫对简化中心的主矩.
主矢使刚体平动状态发生变化 主矩使刚体转动状态发生变化
2 刚体运动微分方程
如果ri代表刚体中任一质点Pi 对静止系S原点O的位 矢, rC 为质心C对O的位矢, 而ri’ 为Pi 对质心C的位矢, 动 坐标系S’随质心作平动, 其原点与质心C重合.
2
a R
T
a mg 5 m s2
mm
mM 2
h 1 at 2 2.5 m T 40 N
mg
2
例3、一质量为 m 、长为 l 的均质细杆,转轴在 O 点, 距A端 l/3 . 杆从静止开始由水平位置绕O点转动. 求: (1)水平位置的角速度和角加速度. (2)垂直位置时的角速度和角加速度.
述位置仍处于平衡状态,求棍与地面的摩擦系数
解: 受力分析知本题是一共
y
面力系的平衡问题, 取棍子所 在的平面为xy平面, 则
Fx 0, N1 sin 0 f 0
B
N1
Cl
Fy 0, N1 cos0 N2 P 0
对A点
Pl cos0 N1h / sin 0 0
h P
O
l N2
0
x
f
A
第三章 刚体力学
导读
• 空间力系和平行力系的求和 • 刚体运动微分方程和平衡方程 • 简单转动惯量的计算 •转动惯量的计算
§3.4 刚体运动方程与平衡方程
1 力系的简化
F1 F2 F3
将所有空间力作用点都迁移到一点.
力是滑移矢量
F
F
F
F
力可沿作用线移动,不能随意移动

周衍柏《理论力学教程(第三版)》电子教案 第二章1-2质点组力学

周衍柏《理论力学教程(第三版)》电子教案 第二章1-2质点组力学

例1、当质量为m的人在质量为M的车上行走时,如车与 地的摩擦可以忽略,已知人对地速度为v1,或已知人对车 的速度为v’, 试计算车对地的速度v2.设开始时人和车相 对地是静止的. 解: 由于重力和地面支持力抵 消,各种阻力忽略,故系统动量 守恒,如已知人对地速度为v1, 而开始时人和车相对地是静止
碰撞打击等动量守恒定律是物理学中最重要最普遍的定律之一它不仅适合宏观物体同样也适合微观领域例1当质量为m的人在质量为m的车上行走时如车与地的摩擦可以忽略已知人对地速度为v或已知人对车的速度为v试计算车对地的速度v
第二章
质点组力学
§2.1 质点组 导读
• 质点组
• 系统内力
• 系统外力 • 质心
1.质点组的内力和外力 设 有n个质点构成一个系统 第i个质点:
解: v= 2.5103 m/s vr= 103 m/s
设:头部仓速率为v1,容器仓速率为v2
(m1 m2 ) v m1v1 m2 v2 m1 ( v2 vr ) m2 v2
m1vr v2 v 2.17 103 m s 1 m1 m2 3 1 v1 v2 vr 3.17 10 m s
12 rC 6.8 10 mi
例2 求半径为 R 的匀质半薄球壳的质心. 解 在半球壳上取一圆环, 其质量
y
dm ds
Rsin θ
Rdθ
R
2 πR sin d
2
由于球壳关于 y 轴 对称,故 xC = zC = 0
z
2 πR 2
θ
O

Rcosθ
x
1 yC ydm m'
3 动量守恒定律 系统所受合外力为零时, 系统的总动量保持不变

周衍柏理论力学课件(PPT可修改版本)

周衍柏理论力学课件(PPT可修改版本)

爱因斯坦 (1879-1955)
1879年 3月14日生于德国乌耳姆一个经营电器作坊的 小业主家庭。一年后,随全家迁居慕尼黑。在任工程 师的叔父等人的影响下,爱因斯坦较早地受到科学和哲 学的启蒙。1894年,他的家迁到意大利米兰,继续在慕尼 黑上中学的爱因斯坦因厌恶德国学校窒息自由思想的 军国主义教育,自动放弃学籍和德国国籍,只身去米 兰。1895年他转学到瑞士阿劳市的州立中学;1896年 进苏黎世联邦工业大学师范系学习物理学,
自然和自然规律为黑暗 所蒙蔽上帝说,让牛 顿来!一切遂臻光 明!
一、理论力学研究对象
物理学是研究物质性质、结构、运动规律的科学。世界物质可分 为不同层次、不同运动级别,因而有相应的主要研究科学:
物质层 次
宇观
线度 >108m
宏观
10-1—103m
亚宏观
10-6—10-3m
原子
10-10—10-9m
矢量力学是以牛顿运动定律为基础,从分析质量和物体受 力情况,由此探讨物体的机械运动规律。在矢量力学中,涉及 的量多数是矢量,如力、动量、动量矩、力矩、冲量等。力是 分析力学中最关键的量。
分析力学以达朗伯原理为基础,从分析质量和质量系能量情 况,由此探讨物体机械运动规律。分析力学中涉及的量多数是 标量,如动能、势能、拉格朗日函数、哈密顿函数等。动能和 势能是最关键的量。
二、理论力学研究方法
观察、实验, 总结实验规律, 建立物理模型, 提出合 理假设, 数学演译、逻辑推理 , 探讨规律, 实验验 证。 理论力学与普通物理的力学不同点是:逻辑推理、数学演译 更强。主要数学要求是:微积分和解常系数微分方程。
三、理论力学的内容结构
理论力学分为矢量力学(即牛顿力学)和分析力学两大部 分。

理论力学周衍柏第三章

理论力学周衍柏第三章
一、基础知识 1. 力系:作用于刚体上里的集合. 平衡系:使静止刚体不产生任何运动的力系. 等效系:二力系对刚体产生的运动效果相同. 二、公理: 1)二力平衡原理:自由刚体在等大、反向、共线二力作 用下必呈平衡。 2)加减平衡力学原理:任意力系加减平衡体系,不改变原 力系的运动效应。 3)力的可传性原理:力沿作用线滑移,幵不改变其作用 效果,F与F’等效。 注:1)以上公理适用于刚体, 2) 力的作用线不可随便平移
(e) dT Fi dri
(e) 若 Fi dri dV 则 T V E
为辅助方程,可代替上述6个方程中任何一个
§3.5 转动惯量
一、刚体的动量矩 1. 某时刻刚体绕瞬轴OO’转动,则pi点的速度为
vi rii
动量矩为 2. 坐标表示
R Fi Fi 0 M M i ri Fi 0
2. 几种特例 1)汇交力系(力的作用线汇交于一点):取汇交点为 简化中心,则
Fix 0 R Fi 0 Fiy 0 Fiz 0
三、力偶力偶矩 1. 力偶:等大、反向、不共线的两个力组成的利系。
力 偶 所在平面角力偶面. 2. 力偶矩: 对任意一点O M rA F rB F (rA rB ) F r F M Fd
方向 : 右手法则 上式表明:
J z x mi zi xi y mi zi yi z mi ( xi2 yi2 )
I yy mi ( zi2 源自xi2 ) I zy mi zi yi I yz mi yi zi I xz mi xi zi
I zz mi ( xi2 yi2 )

理论力学教程周衍柏第三版课件_图文

理论力学教程周衍柏第三版课件_图文
•释 的矛盾. 1)高速(与c比):相对论(爱因斯坦);2)微 观粒子: 量子力学(薛定谔);3)纳米技术:0.1~100nm 尺度起关键作用 (原子直径10-10m; 人头发10-4m;人100m).
9
§0.4 力学单位制
• 物理理论组成:概念、概念的数学表示假定、方程组(物理 量的关系) 单位制通过以
[P]

X X a1 a2 12

X
am m
上式取对数
ln[P] a1lnX1 a 2lnX2 amlnXm
把lnX1, lnX2, …,lnXm看做m维空间的“正交基矢”,则 (a1,a2,…,am)相当于“矢量”ln[P]在基矢上的投影.
22
定理
设某物理问题内涉及n个物理量(包括物理常量) P1, P2 ,, Pn, 而我们所选的单位制中有m个基本量(n>m),则由此可以组成n-m
• 在力学中CGS和MKS单位制的基本量是长度、质量和 来自间, 它们的量纲分别为L、M和T.
• 任何力学量Q的量纲为[Q]=LαMβTγ,式中, ,
为量纲指数.
21
量纲分析—— 定理
设我们在选定单位制中的基本量数目为m,它们的量纲 为X1,X2,…,Xm. 用[P]代表导出量P的量纲,则
由A=A1+A2得
c2Φ() a2Φ() b2Φ()
消去(),即得 c2 a2 b2
a
c


b
这样我们就利用量纲分析定量的得到了勾股定理.
27
§0.6 微积分预备知识
1 常见函数的导数
y xn
y' dy dxn nx n1 dx dx
y sin x

理论力学教程(第三版)第二章 周衍柏编

理论力学教程(第三版)第二章   周衍柏编

v2 = U −
所以落地时水平距离之差 Δs
Δs = s1 − s2 = v1t − v2t =
⎛ 1 V 1 ⎞ ⎟ 2E⎜ + ⎟ ⎜ g ⎝ M1 M 2 ⎠
y
m
V
M
θ
O
当 m 沿半圆球 M 下滑时,M 将以 V 向所示正方向的反向运动。以 M 、m 组成系 统为研究对象,系统水平方向不受外力,动量守恒,即
I
2
2.13 长为 l 的均匀细链条伸直地平放在水平光滑桌面上,其方向与桌边缘垂直,此时链条的
2.15 机枪质量为M,放在水平地面上,装有质量为 M ′ 的子弹。机枪在单位时间内射出的质 量为m.其相对地面的速度则为 u ,如机枪与地面的摩擦系数为 μ ,试证当 M ′ 全部射出后, 机枪后退的速度为
P
等,则两球碰撞后的速度互相垂直,试证明之。
2.9 一光滑小球与另一相同的静止小球相碰撞。在碰撞前,第一小球运动的方向与碰撞时两 球的联心线成 α 角。求碰撞后第一小球偏过的角度 β 以及在各种 α 值下 β 角的最大值。设 恢复系数 e 为已知。 2.10 质量为 m 的光滑球用一不可伸长的绳系于固定点 A 。另一质量为 m 的球以与绳成 θ 2 1 角的速度 v 与 m 正碰。试求 m 与 m 碰后开始运动的速度 v′ 及 v′ 。设恢复系数 e 为已知。 1 2 1 2 1 2
建立如图 2.4.1 图所示的水平坐标。
′ a1
P
H

Δs = s2 − s1 =
S
w uv0 sin α (W + w) g
• O
水平距离
I
w u W +w
可知道
x
v1

理论力学教程(第三版)第三章 周衍柏编

理论力学教程(第三版)第三章   周衍柏编
质心 c 的纵坐标
P
∫ yc =
θ0 ρdθR(R cosθ
−θ0
θ0 ρRdθ
− R) = −R + sinθ0
θ0
R
∫−θ0
上式中 ρ 为圆弧的线密度
l = R − sinθ0 R ② θ0

[ ] ∫ I =
θ0 ρR (R cosθ − R)2 + (R sinθ )2 dθ
−θ 0
=
c2 ⎜⎜⎝⎛1 −
y2 b2
⎟⎟⎠⎞
故积分
H
S(y)
=
πac⎜⎜⎝⎛1 −
y2 b2
⎟⎟⎠⎞
P∫ ∫ ∫ y2dm =
b −b
y2S(y)

ρdy
=
b −b
y2πac⎜⎜⎝⎛1 −
y2 b2
⎟⎟⎠⎞ρdy
=
4 πρab3c 15
同理可求
∫ ∫ x2dm = 4 πρa3bc, z2dm = 4 πρabc3
第三章习题解答
3.1 解 如题 3.1.1 图。
y
N1 o
N2 θ
B
θ
x
θθ
G
A
题3.1.1图
S C
I 均质棒受到碗的弹力分别为 N1 , N2, 棒自身重力为G 。棒与水平方向的夹角为
θ 。设棒的长度为 l 。
S 由于棒处于平衡状态,所以棒沿 x 轴和 y 轴的和外力为零。沿过 A 点且与
z 轴平行的合力矩为 0。即:
I
S O 为正方体中心。Ox 、Oy 、Oz 分别与正方体的边平行。由对称性可知,Ox 、
Oy 、Oz 轴就是正方体的中心惯量主轴。设正方体的边长为 a 。设为平行于轴的 一小方条的体积,则正方体绕轴的转动惯量

周衍柏《理论力学教程(第三版)》电子教案 第一章4-8质点力学

周衍柏《理论力学教程(第三版)》电子教案 第一章4-8质点力学
2) 非光滑约束
dv m dt F R v2 Fn Rn m 0 Fb Rb (1) ( 2) (3)
R RN Rn Rb
2
2
R R Rn Rb
2
2
2
4个方程4个未知数,可解
例题1 力仅是时间的函数
自由电子在沿x轴的振荡电场中运动:
(3)初始条件
t 0, r r0, v v0
(4)求解运动微分方程
r r (t )
x x( t ) y y( t ) z z(t )
2. 非自由质点
• 解决方法:去掉约束,用约束反作用力代替
d r d r • 运动微分方程 m F (r , , t ) R 2 dt dt
dt dt ds v sec f ( ) sec t t ( ) d ds d v g g
消去参量 可得运动方程
本问题还可在直角坐标系中处理,见 P25
例题3
力是坐标的函数
m r F ( x , y , z )
F ( x , y , z ) k x x i k y yj k z z k
2 力学相对性原理和伽利略变换
(i) 力学相对性原理 力学定律在一切惯性系中数学形式不变
对于描述力学规律而言,一切惯性系都是平权 的、等价的。 在一个惯性系中所做的任何力学实验,都不能 判断该惯性系相对于其它惯性系的运动。
觉不 而 行 舟
《关于托勒密和哥白尼两大世界体系的对话》伽利略 1632
(ii) 牛顿的绝对时空观
• • • • • 自由质点 非自由质点 受力分析 写出运动微分方程矢量式 建立适当的坐标系分解标量方程 解微分方程

周衍柏《理论力学教程(第三版)》电子教案 第三章7刚体力学

周衍柏《理论力学教程(第三版)》电子教案 第三章7刚体力学

v Ax

如果=0, 则无转动瞬心, 或者说, 转动瞬心在无穷远处. 只要转动瞬心C已知,就知道薄片在此时的运动.因为 如果取C为基点,则因它此时的速度为零,薄片将仅绕C 转动而任意一点P 的速度大小为 CP 过A及B作两直线分别垂直于 vA及vB, 此两直线的交点即为 转动瞬心.
A B
自时刻t2以后, 乒乓球向后作无滑动滚动, 如不考虑滚 动摩擦, 质心速度和角速度恒定
2 3 vC vC 0 gt 2 R0 vC 0 5 2 vC 2 3 vC 0 0 R 5 2 R
例3 如图, 一半径为R的圆木以角速度0在水平面上作纯 滚动, 在前进的路上撞在以高度为h的台阶上. 设碰撞是完 全非弹性的, 即碰撞后圆木不弹回.要圆木能够翻上台阶 而又始终不跳离台阶,对台阶有什么要求?
圆木不跳离台阶的条件是台阶的支撑力N始终大于零. N在碰撞的最初时刻最小, 我们就来计算它.沿质心和 接触点方向的向心加速度是重力分量和支撑力造成 的,所以
mR 2 mgsin N
由图知 sin=1-h/R, 从而有
3R 2h N mg 1 h / R mR mg 1 h / R mR 0 0 3R 9( R h) g 2 0 (d) 2 (3R 2h)
vA
C
vB
3 平面平行运动动力学
质心作为基点, 利用质心运动定理 和相对于质心的角动量定理写出平面 平行运动的动力学方程
y
y
y

C
x x
C Fx m x C Fy m y
I zz M z I zz
o
x
Mz为诸外力(包括约束反力)对z轴的力矩的和

周衍柏《理论力学教程(第三版)》电子教案 第五章5分析力学

周衍柏《理论力学教程(第三版)》电子教案 第五章5分析力学

H作为广义动量, 广义坐标和时间的函数, 又有
H H H dH q dq p dp t dt 1
s
由于动量, 坐标和时间都是独立的, 所以
q ( 1,2, , s ) H p q H p
(3)在球面坐标系中
1 2 2 2 2 2 2 T m(r r r sin ) ,V=V(r,,) 2
1 2 r 2 2 r 2 2 sin 2 ) V(r,,) L m(r 2
L L 2 p p mr , pr mr , r
s
考虑广义动量的定义, 得
s
L dq p dq dt dL p t 1 H ( p, q, t ) L p q
1
s
对于哈密顿量
可得
s
s
L q dp p dq q dp dt dH dL p dq t 1 1
因为
只要H不显含时间, 它就是守恒的, 即不随时间变化.
H中不显含t时,再分稳定约束与不稳定约束这两种情 况来讨论。 i)稳定约束
T=T2

s 1
T q 1
s
s T2 q q 1

2T q
该题还可解得
2 m r r 2 r


粒子的径向运动方程.
常数 角动量守恒定律. p mr 2
例3: 分别用笛卡儿坐标、柱面坐标和球面坐标写出一个 自由质点在势场V( r )中的哈密顿函数H。 解: 体系为质点,自由度数s=3 (1)在笛卡儿坐标系中,取x,y,z为广义坐标, 则拉格朗日函数L为

理论力学第三版-课件PPT

理论力学第三版-课件PPT
1. 选出几个相互独立的物理量作为基本量; 通常基本量都是选取可以直接测量的 物理量.
2. 由物理规律或定义推出用基本量表示的其他量(导出量)的关系式(称为导出 关系式).
3. 确定出基本量的单位(基本单位);力学常用基本量为 长度: 米(m)、质量:千克(kg) 、时间:秒(s)
4. 由导出关系式确定出导出量的单位(导出单位); 5. 基本量的量纲为其本身,并规定用基本量的符号的正体大
理论力学教程(第三版) 电子教案
使用方法
▪ 本电子教案是用Microsoft Office中的PowerPoint
应用程序制作而成. 在所有安装了Microsoft Office 应用程序, 并能够运行自如的计算机上都能够操 作使用.
▪ 本电子教案共分五章, 每章内容都是是以节为单
位建立一个独立的PPT文件.
由于lnM,lnL,lnT是正交基矢,在上式中它们的系数应分别相等,
0 x1 1 x2 0 x3 1 (3) x1 0 x2 1 x3 1
0 x1 0 x2 (1) x3 2
求解上述方程组, 得到 x1 1, x2 1, x3 2
于是我们得到
ln[ P] 1 ln[ n] 1 ln[ m] 2 ln[ v]
§0.2 理论力学的内容结构
矢量力学(即牛顿力学)+分析力学
• 矢量力学是以牛顿运动定律为基础,从分析质量和物体受 力情况,由此探讨物体的机械运动规律. 在矢量力学中,涉及 的量多数是矢量,如力、动量、动量矩、力矩、冲量等. 力是 分析力学中最关键的量.
• 分析力学以达朗贝尔原理为基础,从分析质量和质量系能量 情况,由此探讨物体机械运动规律. 分析力学中涉及的量多数是 标量,如动能、势能、拉格朗日函数、哈密顿函数等。动能和 势能是最关键的量.

周衍柏《理论力学教程(第三版)》电子教案 第一章1-3质点力学

周衍柏《理论力学教程(第三版)》电子教案 第一章1-3质点力学

r
r0
t dr v dt
t0
2 例1 已知质点的运动方程 r 2t i 19 2t j
求:1)轨道方程;(2)t=2秒时质点的位置、速度以 及加速度;(3)什么时候位矢恰好与速度矢垂直?


解: (1)
x 2t ,
y 19 2t 2
消去时间参数
1 2 y 19 x 2

8 tg 7558 2
1
dr v 2i 4tj dt
-2
dv a 4 j dt
( 3)
方向沿y轴的负方向 a 4 m s 2 r v 2ti 19 2t j 2i 4tj
t
d 2 h0 2 v0
, hc h0 1 2 h v2 0 0
2 g h0 d 2 2 h0
2 g h0 d 2

0
显然只有
v
2 0

时才可能击中
2 极坐标系
极坐标系:空间p的位置(r,)
当p沿着曲线运动,速度沿轨道 的切线. 沿矢径方向
j p r c v i
2 ( 2) r 2 2 i 19 2 2 j 4 i 11 j t 2 dr v 2i 4tj m/s v t 2 2i 8 j dt
v2 2 8 8.25 m/s
2 2

• 自然坐标系,切向、法向加速度 • 相对运动, 绝对(加)速度、相对(加)速 度、牵连(加)速度.
§1.1
1 质点
运动的描述
具有一定质量的几何点
自由质点:可以在空间自由移动的质点. 确 定它在空间的位置需要三个独立变量.

周衍柏《理论力学教程(第三版)》电子教案 第三章1-3刚体力学

周衍柏《理论力学教程(第三版)》电子教案 第三章1-3刚体力学

4 定点转动: 一点固定不动, 刚体围绕过这点的某一 瞬时轴转动(三个变量).
5 一般运动:刚体不受任何约束,可以在空间任意运动.
质心的平动
+
绕质心的转动
§3.2 角速度矢量
1 有限转动与无限小转动
z
角坐标
约定
(t )
P
x
>0 沿顺时针方向转动 < 0
沿逆时针方向转动 角位移
O

y
x
(2) 坐标系O- 固定不动, 坐标系 O-xyz 固定在刚体上 随之一起转动.
假定O- 系和 O-xyz系开始重合, 令O-xyz绕 轴逆时 针转动 , 于是x轴和 轴分开,y 轴和轴分开, 而且Ox 轴转到Ox’(即ON);
z
O
z
y
y
O N x
变化范围:
0 2
0 2
0

z

y y

O

x

N
O 平面和xOy 平面的交线ON 称节线. ON和O间的夹角 是一个欧勒角(进动角). ON和Ox间的夹角是另一个欧勒角(自 转角). O和Oz间的夹角是第三个欧勒角(章动角).
从图知: z轴垂直ON, 故 z轴位置与N有关, 因此 z轴位置要用

x

进动
然后令活动系绕ON 转动 ,于是 z 轴和 轴分开, 活 动系三个轴变到x’’, y’’和z’’, z’’轴和 轴夹角是 , x’’ Oy’’平面和O平面夹角也是 .
z
y
O N x
z



O

y

x N

理论力学教程(第三版)第一章 周衍柏编

理论力学教程(第三版)第一章   周衍柏编
r = a(1 − e2 ) 1 + ecosθ 式中 a 为椭圆的半长轴, e 为偏心率,都是常数。
1.9 质点作平面运动,其速率保持为常数。试证其速度矢量 v 与加速度矢量 a 正交。
S 1.10 一质点沿着抛物线 y2 = 2 px 运动其切向加速度的量值为法向加速度量值的 − 2k 倍。 C 如此质点从正焦弦 ⎜⎛ p , p ⎟⎞ 的一端以速度 u 出发,试求其达到正焦弦另一端时的速率。
将离开圆柱面?假定圆柱体的半径为 r 。
1.28 重为W 的不受摩擦而沿半长轴为 a 、半短轴为 b 的椭圆弧滑下,此椭圆的短轴是竖直
的。如小球自长 2 轴的端点开始运动时,其初速度为零,试求小球在到达椭圆的最低点时它
对椭圆的压力。
1.29 一质量为 m 的质点自光滑圆滚线的尖端无初速地下滑。试证在任何一点的压力为 2mg cosθ ,式中θ 为水平线和质点运动方向间的夹角。已知圆滚线方程为
C
1.40 一质点受一与距离成反比的引力作用在一直线上运动,求其达到 O 点所需的时间。
1.41 试导出下面有心力量值的公式:
I F = mh2 dp−2 2 dr
S 式中 m 为质点的质点,r 为质点到力心的距离,h = r2θ = 常数, p 为力心到轨道切线的垂
Y 直距离。
1.42 试利用上题的结果,证明:
S 止状态释放后,求证这运动是简谐的,并求出其振动周期τ 及任何时刻两段绳中的张力T 及
T′。
a
C
IT
T


T′
2m
Sm • T′
Y 1.25 滑轮上系一不可伸长的绳,绳上悬一弹簧,弹簧另一端挂一重为W 的物体。当滑轮以
匀速转动时,物体以匀速 v0 下降。如将滑轮突然停住,试求弹簧的最大伸长及最大张力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 下步骤建立:
1. 选出几个相互独立的物理量作为基本量; 通常基本量都是 选取可以直接测量的物理量.
2. 由物理规律或定义推出用基本量表示的其他量(导出量)的 关系式(称为导出关系式).
3. 确定出基本量的单位(基本单位);力学常用基本量为 长度:米(m)、质量:千克(kg)、时间:秒(s)
10
4. 由导出关系式确定出导出量的单位(导出单位); 5. 基本量的量纲为其本身,并规定用基本量的符号的正体大
•释 的矛盾. 1)高速(与c比):相对论(爱因斯坦);2)微 观粒子:量子力学(薛定谔);3)纳米技术:0.1~100nm 尺度起关键作用 (原子直径10-10m; 人头发10-4m;人100m).
9Leabharlann §0.4 力学单位制• 物理理论组成:概念、概念的数学表示假定、方程组(物理 量的关系) 单位制通过以
§0.2 理论力学的内容结构
矢量力学(即牛顿力学)+分析力学
• 矢量力学是以牛顿运动定律为基础,从分析质量和物体受 力情况,由此探讨物体的机械运动规律. 在矢量力学中,涉及 的量多数是矢量,如力、动量、动量矩、力矩、冲量等. 力是 分析力学中最关键的量.
• 分析力学以达朗贝尔原理为基础,从分析质量和质量系能量情 况,由此探讨物体机械运动规律. 分析力学中涉及的量多数是 标量,如动能、势能、拉格朗日函数、哈密顿函数等。动能和 势能是最关键的量.
• 目前时间标准:1秒的长度等于与铯133原子基态两个 超精细能级之间跃迁相对应的辐射周期的9 192 631 770 倍.
• 未来定义: 原子氢微波激射器?因为它比铯原子钟稳 定度高100倍.
13
时钟的改进
14
长度(length)的计量
• 空间反映物质运动的广延量, 在三维空间里位置可由三个相 互独立的坐标来确定. 空间中两点间的距离为长度.
②绝对时间
③绝对空间
5
理论力学的学习
• 预备知识: 普通力学+高等数学 • 以公理、定律为依据,应用数学推演的
方法导出其他定理和结论 • 偏重于问题的提出、求解 • 严格基础训练、强化现代技术应用 • 注重问题的延拓分析 • 培养科学精神
6
科学是一种方法,它教导人们:一些事物是怎样被了解
的,什么事情是已知的,现在了解到什么程度(因为没有事
g cm / s dyn s
2
理论力学与普物力学的关系
• 理论力学是力学的延续与提高 • 主要的概念和定律一样 • 理论力学用高等数学方法处理物理问
题 • 分析力学
3
理论力学的任务
研究物体机械运动的一般规律
理论力学的研究对象
有限个自由度的力学体系
质点 两个模型
刚体
4
理论力学研究的条件
宏观低速下 ①质量不变
* v c
* 物体的尺度原子,分子尺度
19
力学量的单位
力学量 长度 质量 时间 速度 加速度 力 动量 冲量 功,能
MKS制 m(米) kg(千克) s(秒) m/s (米/秒) m/s2(米/秒2) N(牛顿) kg m / s
Ns
Nm
CGS制 cm(厘米)
g(克) s(秒) cm/s (厘米/秒) cm/s2(厘米/秒2) dyn(达因)
写字母作为基本量的量纲的符号. 6. 导出量的量纲通过导出关系式用基本量的量纲表示. • 单位制:按照上述方法制定的一套单位. • 常用单位制: MKS、CGS、自然单位制. • 单位制制订要考虑不易变化以及测量的方便程度.
11
12
时间(time)的计量
• 以前定义: 1秒为地球绕自身轴线转动一周(1天)的 1/86400.
理论力学教程
(第三版) 周衍柏 编
高等教育出版社
1
§0.1 力学的研究对象
• 力学(mechanics)的研究对象是机械 运动(mechanical motion)
• 经典力学研究在弱引力场中宏观物体的 低速运动
• 力学: 运动学、(静力学)、动力学
Nature and nature’s law lay hid in night: God said: let Newton be! And all was light!
15
质量(mass)的计量
• 物体所含物质的多少. • 惯性质量 • 引力质量 • 1889年,第一届国际计量大会:1千克质量的实物基准
是保存在法国巴黎国际计量局中的一个特制的、直径 和高均为39mm的铂钇合金圆柱体,称为国际千克原器. • 未来标准: 是否采用自然基准?
16
物质世界的层次和数量级
情是绝对已知的),如何对待疑问和不确定性,证据服从什
么法则,如何去思考事物,做出判断,如何区别真伪和表面
现象。
——理查德. 费曼
参考书
梁昆淼. 力学. (上册) 第四版, 高等教育出版社, 2009 梁昆淼. 力学. (下册) 第四版, 高等教育出版社, 2010 赵凯华. 力学. 第二版, 高等教育出版社, 2004 卢德馨. 大学物理学.第二版, 高等教育出版社,2003 7
8
§0.3 力学简史
• 牛顿力学的建立:在哥白尼(日心说)推翻了托勒密的地心 说,和在第谷布拉赫积累的天文观察资料基础上,开普勒发 现了行星三定律——总结万有引力定律,牛顿总结了三定 律(《自然哲学的数学原理》,1687).
• 分析力学:(1788)拉格朗日力学建立(至此认为力学天衣无 缝). 近代力学:19世纪末、20世纪初出现了经典力学无法解
• 1889年,第一届国际计量大会: 法国国际计量局铂铱合金 棒在0oC时两条刻线间的距离定义为1米.
• 1960年,第十一届国际计量大会:采用氪86原子橙黄光波 长的1 650 763.73倍定义为1米, 实现了自然基准.
• 1983年,第十七届国际计量大会:1米定义为光在真空中传 播(1/299 792 458)秒的时间间隔内所经路程的长度.
17
物质世界的层次和数量级
micron second, us nano second, ns
18
目前已知质量范围
已知宇宙 银河系 地球 人 灰尘 烟草 花叶病毒 质 子 电子
1053kg 2.21041kg 6.0 1024kg 6.0 101kg
6.7 10-10kg 2.3 10-13kg 1.7 10-27kg 9.1 10-31kg
相关文档
最新文档