工程流体力学第三章.
工程流体力学第四版第三章流体静力学
A hdAz
为压力体, 是曲面与自由液面间的柱 体体积
作用线通过压力体的几何中心
总压力的大小与方向
F Fx2 Fz2
tg Fx
Fz
总压力的作用线与作用点
总压力的作用线通过Fx与Fy作用线的交点, 且
与垂直方向成 角。总压力作用线与曲面的交
点即为作用点
例3-7
例3-8
§8 浮力( Buoyant Force)
c1 p0
zs
r 2 2
2g
p p0 g(zs z) p0 gh
从抛物面顶点至液面最
高处, 由
zs
r 2 2
2g
H 2R2
2g
从抛物面顶点至液面最高点 之间的液体体积
V 1 R2H
2
§6 静止液体对平面壁的作用力 Forces on Plane Areas
液体对容器底部的作用力
欧拉法: 研究空间上各点流体物理量随时间的 变化规律
§2流动的分类(Types of Flow)
定常与非定常流动
流场中流体的运动参数不随时间而变 化的流动, 称为定常流动. 反之,则为非 定常流动
按流动参数是几个坐标变量数的函数, 流动又可分为一元流动、 二元流动和 三元流动
§3 迹线与流线( Pathline and Streamline)
第三章 流体静力学 Chapter 3 Fluid Statics
§5液体的相对平衡 Relative Equilibrium of Liquid
1 液体作等加速直线运动(Uniform Linear Acceleration)
除重力外,按达朗贝尔原理, 虚加一个惯性力, 方向 与加速度方向相反, 大小为质量乘以加速度
流体力学-第三章
二 均匀流和非均匀流 渐变流和急变 流
按各点运动要素(主要是速度)是否随位置变化,可将流体 运动分为均匀流和非均匀流。在给定的某一时刻,各点速度 都不随位置而变化的流体运动称均匀流。均匀流各点都没有 迁移加速度,表示为平行流动,流体作匀速直线运动。反之, 则称为非均匀流。
按限制总流的边界情况,可将流体运动分为有压流、无压流和射 流。
边界全为固体的流体运动称为有压流或有压管流。 边界部分为固体、部分为气体,具有自由表面的液体运动称为 无压流或明渠流。 流体经由孔口或管嘴喷射到某一空间,由于运动的流体脱离了 原来限制他的固体边界,在充满流体的空间继续流动的这种流 体运动称为射流。
四 三维流(三元流)、二维流(二元流)、一维流(一元流)
按决定流体的运动要素所需空间坐标的维数或空间坐标变量的 个数,可将流体运动分为三维流、二维流、一维流。
若流体的运动要素是空间三个坐标和时间t的函数,这种流体运 动称为三维流或三元流。
若流体的运动要素是空间两个坐标和时间t的函数,这种流体运 动称为二维流或二元流。
拉格朗日法来研究流体运动,就归结为求出函数x(a, b, c, t), y (a, b, c, t), z (a, b, c, t)。(1)由于流体运动的复杂,要想求 出这些函数是非常繁复的,常导致数学上的困难。(2)在大多 数实际工程问题中,不需要知道流体质点运动的轨迹及其沿轨迹 速度等的变化。(3)测量流体运动要素,要跟着流体质点移动 测试,测出不同瞬时的数值,这种测量方法较难,不易做到。
3 脉线
脉线又称染色线,在某一段时间内先后流过同一空间点的所 有流体质点,在既定瞬时均位于这条线上。
在恒定流时,流线和流线上流体质点的迹线以及脉线都相互 重合。
工程流体力学--第三章--流体动力学基础ppt课件
度的物理意义。如图3-1所示,不可压缩流体流过一个中 间有收缩形的变截面管道,截面2比截面1小,则截面2的 速度就要比截面1的速度大。所以当流体质点从1点流到2 点时,由于截面的收缩引起速度的增加,从而产生了迁移
加速度,如果在某一段时间内流进管道的流体输入量有变
第三章 流体动力学基础
§1–1 描述流体运动的两种方法
§1–2 流体运动的一些基本概念
§1–3 流体运动的连续性方程
§1–4 理想流体的运动微分方程
§1–5 理想流体微元流束的伯努力方程
§1–6 伯努利(Bernoulli)方程的应用
§1–7 定常流动的动量方程和动量矩方程
§1–8 液体的空化和空蚀现象
拉格朗日方法又称随体法,是从分析流场中个别流体 质点着手来研究整个流体运动的。这种研究方法,最基本
2021/4/19
3
的参数是流体质点的位移,在某一时刻,任一流体质点的
位置可表示为:
X=x (a,b,c,t)
y=y (a,b,c,t)
z=z (a,b,c,t)
(3-1)
式中a、b、c为初始时刻任意流体质点的坐标,即不同的a、 b、c代表不同的流体质点。对于某个确定的流体质点,a、 b、c为常数,而t为变量,则得到流体质点的运动规律。 对于某个确定的时刻,t为常数,而a、b、c为变量,得到 某一时刻不同流体质点的位置分布。通常称a、b、c为拉
(3-2) (3-3)
az w t t22 zaz(a,b,c,t)
2021/4/19
5
式(3-6)是流体质点的运动轨迹方程,将上式对时间 求导就可得流体质点沿运动轨迹的三个速度分量
u dx dt
第三章 管流和边界层-工程流体力学
•
早在19世纪初,水力学家发现:由于液体具 有粘性,在不同的条件下,液体的断面流速分布 不同,液流的能量损失的规律也不相同。
图2 不同条件下的圆管流速分布图
1883年,英国科学家雷诺(Osborne Reynolds)做了著名 的雷诺实验,试图找到流动中由于粘性存在而产生的能量损 失规律。 ——雷诺实验(Reynolds experiment )
水力光滑和水力粗糙管
•
• 水力光滑壁面(管)(hydraulic smooth wall):
•
雷诺 生平简介
•
雷诺(O.Reynolds,1842-1912): 英国力学家、 理学家和工程师,1842年8月23日生 于爱尔兰,1867年毕业于剑桥大学王后 学院,1868年出任曼彻斯特欧文学院 (后改名为维多利亚大学)首席工程学教 授,1877年当选为皇家学会会员,1888 年获皇家勋章。雷诺于1883年发表了一 篇经典性论文—《决定水流为直线或曲线 运动的条件以及在平行水槽中的阻力定律 的探讨》。这篇文章用实验说明水流分为 层流与紊流两种形态,并提出以无量纲数 Re作为判别两种流态的标准。雷诺于 1886年提出轴承的润滑理论,1895年在 湍流中引入应力的概念。他的成果曾汇编 成《雷诺力学和物理学课题论文集》两卷。
v x (r)
x
边界条件 r r0
x r
,
x
0
2
r
2
ro 4
d dx
p
gh
速度分布
r 0 处
x m ax
ro
2
d
4 dx
p gh
最大速度
阻力的计算方法
hf p 8 l U r g
工程流体力学第三章
物理量
比起流体质点本身, 比起流体质点本身,工程上我们更关心某一 时刻流体质点上所携带的一些特征参量,比如: 时刻流体质点上所携带的一些特征参量,比如: 速度、压强、温度、电流等。 速度、压强、温度、电流等。 我们把这些流体具有的特征参量统称为物理 我们把这些流体具有的特征参量统称为物理 流体具有的特征参量 流动参数。 也成为流动参数 量,也成为流动参数。 流体的流动是由流体具有的物理量来表征的, 流体的流动是由流体具有的物理量来表征的, 因此,描述流体的运动也就是表达流动参数在不 因此,描述流体的运动也就是表达流动参数在不 同空间位置上随时间的变化规律。 同空间位置上随时间的变化规律。
DV V ( M ', t + ∆t ) − V ( M , t ) = lim Dt ∆t →0 ∆t
L M’ M
V (M , t ) V ( M ' , t + ∆t )
3.1.3随体导数 随体导数
这里用 D 表示这种导数不同于牛顿定律 Dt 对速度的简单导数
L M’ M
DV V ( M ', t + ∆t ) − V ( M , t ) = lim Dt ∆t →0 ∆t
速度的变化有两方面的原因:
一方面的原因, 质点由M 点运动至M 点时,
'
时间过去了∆t,由于场的时间非定常性引 起速度的变化
另一方面, 质点由M 点运动至M '点时, 位置 发生了变化,由于场的空间不均匀性引起 速度的变化
3.1.3随体导数 随体导数
按照时间和空间引起速度变化,把极限分为两部分
DV V ( M ', t + ∆t ) − V ( M , t ) = lim Dt ∆t →0 ∆t
工程流体力学(3)PPT课件
授课:XXX
14
工程上可将问题简化:
2021/3/9
授课:XXX
15
将翼展z方向看成无限长,三维问题简化
成二维处理。
2021/3/9
授课:XXX
16
§2 流线和流管
一、迹线
定义:流体质点运动的轨迹线。
2021/3/9
授课:XXX
17
二、流线
定义:
是表示某一瞬时流体各点流动趋势
的曲线,曲线上任一点的切线方向与该 点的流速方向重合。
1.边界随流团一起运动,其形状、大小随 时间变化。
2.边界上无质量交换, 即无流入也无流出。
系统
V
3.在系统边界上,受到 外界作用在系统边界上 的力。
系统边界
2021/3/9
授课:XXX
4
二、欧拉法 以流体质点流经流场中各空间点的
运动即以流场作为描述对象,研究流动 的方法。
它不直接追究质点的运动过程, 而是以充满运动液体质点的空间——流 场为对象。研究各时刻质点在流场中的 变化规律。
质点
du u u x u y u z dt t x t y t z t
导数:
2021/3/9
u t
u u v x 授课:XXX
u y
wu z
ax
8
同理
axd du t u tu u xv u yw u z
ayd dv t v tu v xv y vw v z
azd dw t w tu w xv w yw w z
dNNuNvNwN dt t x y z
N可是矢量也可是标量。
N ——当地变化率(局部变化率)
t
uNvNwN ——迁移变化率
工程流体力学-第三章
三、流管、流束和总流
1. 流管:在流场中任取一不是流 线的封闭曲线L,过曲线上的每 一点作流线,这些流线所组成的 管状表面称为流管。 2. 流束:流管内部的全部流体称 为流束。 3. 总流:如果封闭曲线取在管道 内部周线上,则流束就是充满管 道内部的全部流体,这种情况通 常称为总流。 4. 微小流束:封闭曲线极限近于 一条流线的流束 。
ax
dux dt
dux (x, y, z,t) dt
ux t
ux
ux t
uy
ux t
uz
ux t
ay
du y dt
duy (x, y, z,t) dt
u y t
ux
u y t
uy
u y t
uz
u y t
az
du z dt
duz (x, y, z,t) dt
x x(a,b,c,t)
y y(a,b,c,t)
z z(a,b,c,t)
欧拉法中的迹线微分方程
速度定义
u dr (dr为质点在时间间隔 dt内所移动的距离) dt
迹线的微分方程
dx dt
ux (x, y, z,t)
dy dt uy (x, y, z,t)
dz dt uz (x, y, z,t)
说明: (1)体积流量一般多用于表示不可压缩流体的流量。 (2)质量流量多用于表示可压缩流体的流量。
(3) 质量流量与体积流量的关系
Qm Q
(4) 流量计算 单位时间内通过dA的微小流量
dQ udA
通过整个过流断面流量
Q dQ udA A
工程流体力学 第三章 流体静力学(孔珑 第三版)
Δp pA pB 2 gh 1 gh2 1 gh1 2 1 gh
如果被测流体为气体:
21
1 gh 0
2013年9月21日
《工程流体力学》 樊小朝 电气学院
4.倾斜微压计
玻璃管倾斜角
,截面积 A1
宽广容器截面积 A2
微压计存在压差 p2 p1
F mg pe 13263 Pa 2 d 4
液柱显示的压强:
pe gH h
联立方程,解得:
H 0.8524 m
24
2013年9月21日
《工程流体力学》 樊小朝 电气学院
P30例题3-2 如图所示,为测压装置。假设容器 A 中水面上的计 h 示压强 pe 2.45 104 Pa , h 500 mm ,h1 200mm , 2 100mm 3 3 h3 300mm ,水的密度 1 1000kg m ,酒精的密度 2 800kg m B 中气体的计示压强。 水银的密度 3 13600kg m3 ,试求容器
16
2013年9月21日
《工程流体力学》 樊小朝 电气学院
三、绝对压强 计示压强 p26 绝对压强:以真空为基准计量的压强。
p pa gh pa ——大气压强
计示压强:以当地大气压强为基准计量的压强。
pe p pa gh (测压计显示压强)
真空:绝对压强小于当地大气压
pV pa p pe (又称负压)
1 p fx 0 x
同理:
1 p fy 0 y 1 p fz 0 z
——流体平衡方程式(欧拉方程)
5
2013年9月21日
《工程流体力学》 樊小朝 电气学院
工程流体力学课后答案 第三章 流体动力学基础
第3章 流体动力学基础3.1 解: zuu y u u x u u t u a x z x y x x x x ∂∂+∂∂+∂∂+∂∂=()()342246222222222=++++=+-++++=++=z y x t z y t y x t u u y xzu u yu u xu u tu a y zy yy xy y ∂∂+∂∂+∂∂+∂∂=()()32111=-++=-+++--=+-=z y x z x t z y t u u x yzu u y u u x u u t u a z z z y z x z z ∂∂+∂∂+∂∂+∂∂=()()112122211=++++=-+-+++=-+=z y x t z y t y x t u u z x222286.35s m a a a a z y x =++=3.2 解:(1)3235623=-=+=xy xy u xy y u a y x x222527310.3333231s m a a a y u y a y x y y =+===-=(2)二元流动(3)恒定流 (4)非均匀流 3.3 解:bh u y h u bdy h y u udA Q h hA m ax 07871m ax 071m ax 8787==⎪⎭⎫ ⎝⎛==⎰⎰ m ax 87u A Q v ==3.4 解:s m dd v v 02.011.02221221=⎪⎭⎫ ⎝⎛⨯=⎪⎪⎭⎫ ⎝⎛= 3.5 解:Hd v d 1v 1q 1q 2223d 3v Dv 1dv 2(1)s m v d Q 332330785.04==πs m q Q Q 32321.0=+= s m Q q Q 321115.0=+=(2)s m d Q v 12.242111==πs m d Q v 18.342222==π 3.6 解:渠中:s m m m s m bh v Q 311612/3=⨯⨯==管中:2231242.1d v s m Q Q Q ⨯⨯==-=πm v Q d 0186.1422==π 3.7 解: s m d d v v ABB A62.04.05.1442222=⨯=⋅=ππ以过A 点的水平面为等压面,则OmH g v g p h H OmH g v g p H B B B A A A 2222226964.58.925.18.9405.128980.48.9268.9302=⨯++=++==⨯+=+=ρρ可以看出:A B H H >,水将从B 点流向A 点。
《工程流体力学》第3章-邓克-机工出版社
qv vdA
A
d qv v d A cos
q v
v d A cos
A
qv vdA cos(v , n )
A
平均速度:
v qv A
3.3 连续性方程
质量守恒定律的应用。
◆方程推导
控制体内流体质量变化率为
,净质量流量为 。 vdA
A
如果流入大于流出,即净流量 vd,A 0
控制体内质量增加,
雷诺通过实验测得上、下临界雷诺数为
,
。
判别标准:
时,管中流动为层流。
时,管中流动为湍流。
3.5 流体微团的运动分析
一般情况下流体微团运动是由平移、变形(包 括直线变形与剪切变形)、旋转三种运动构成
为流体微团速度分解公式,也称亥姆霍兹速 度分解定理。
3.6 流体的旋涡流动
◆流体的旋涡运动 无旋运动:不存在旋涡的流动,微小单元只
第3章 流体运动学
流体运动学研究流体的运动规律,即描述 流体运动的方法,质点速度、加速度变化和所 遵循的规律。
3.1 研究流体运动的两种方法
描述流体在各个不同空间位置上随时间连 续变化的运动规律,分为拉格朗日法和欧拉法。
◆拉格朗日法 拉格朗日法着眼于研究流体质点,即采用理
论力学中描述质点和质点系运动的方法。 用拉格朗日变数(a,b,c,t)描述流体
d dt
0
3.7 平面势流
平面流动(或二维流动〉指所有决定流体运动 的函数仅与两个坐标及时间有关,在垂直方向上 无变化。
如果这种流动是有势的,即流体微团本身没 有旋转运动,称为平面势流。
◆速度势函数
设函数 (x,y,z) 为速度势函数,则
d
dx x
工程流体力学第3章 习题答案
由连续性方程知: vA AA = vB AB 得: vA = 4m / s 由能量方程知:
0+
pA ρg
+
v
2 A
2g
=
pB ρg
+
v
2 B
2g
+ Z2
+ h12
得:
h 12
=
2.824m
>
0
∴水流方向 A → B
3-8 参看题 3-8 图,10℃的水沿 AB 管向上流动(AB 长 5m,直径为 40mm ),然后沿 BC 流动 (长 3m,直径为 30mm)。在 A 处测得压强为 275kPa。(a)假设流量为 2.0L/s,试求 C 处的 压强,不计管道摩擦及能量损失。(b)将流动方向倒转,重作(a)题。
求 A 点酒精( ρ酒 = 806kg / m3 )液面应有的高度(空气密度为 1.2 kg/m3)
解:列 A → C 断面方程
pA
+
ρ
v12 2g
+(ρ空气
−
ρ)g(Z 2
−
Z1)=
pc
+
ρ
vc2 2
+ 3ρ
v12 2
+ 4ρ
v22 2
即:
hρ酒 g
+ 0.6 v12 2
+(1.2
−
0.6)g(60
3. 水在一条河中流动。上午 9 时,通过桥 1 的流量为 37. 2m3/s,同一瞬间通过
桥 2 的流量为 26.9m3/s。问此瞬时,水以多大的速率贮存在这两座桥之间?假设
没有渗漏,蒸发量也可以不计。 解:(1)质量守恒可以得到,37.2-26.9=10.3m3/s。
工程流体力学3
u( x, y, z, t) v( x, y, z, t ) w( x, y, z, t)
上式可写成两个微分方程的方程组。令t为参数, 对x,y,z积分上式,便可得到两个曲面方程,这两个曲 面的交线就是流线。
四、流线的几个性质
(1)定常流动,流线不随时间变化,即流体质点必沿一确 定的流线运动,流线与迹线重合。 (2)非定常流动,流线随时间变化,即流场内任意一点的 流线在不同时刻将取不同形状,而任意一流体质点的迹 线总是确定的,故流线和迹线就不再始终重合。 (3)在同一点上某一瞬时只能有一个流动方向,因此只能 给出一条流线,所以流线一般不相交,只有在流场内速 度为零或为无穷大的那些点,流线可能相交。速度为零
A
Rh
水力半径与一般圆截面的
半径是完全不同的概念。
Rh r
例:半径为r的圆管内充满流体,Rh
所以:
Rh r
r2 2 r
r 2
6.当量直径 De: 4倍的有效截面积与湿周之比。
4A
De Rh
一般的流动都是三维空间内的流动,
例: v v( x, y, z) ,称为三维流动。 若流动参数是两个坐标的函数,则称为二维流动,若 流动参量是一个坐标的函数,则称为一维流动。 例:在一带锥度的圆管内的粘性流体的流动,流体质 点的速度与圆周角θ无关,流 体质点的速度是半径r和轴线距 离x的函数,即:u=f(r,x)。 这就是一个二维流动的问题.若
(2)流经流管中任意截面的流量为:Q
AV
cos(V
,
n)dA
2.平均流速
流经有效截面的体积流量除以有效截面面积所得的
商就是平均流速,即
V Q A
4.湿周χ : 在流体的有效截面上,流体同固体边界接触 部分的周长称为湿周,用χ表示,见图。
工程流体力学 第3章 流体流动的基本方程
B F ( x, y, z, t )
比如,流体质点的速度场:
u F ( x, y, z, t )
第3章 流体流动的基本方程
速度分布的分量可表示为:
u x F1 ( x, y , z , t ) u y F2 ( x, y , z , t ) u z F3 ( x, y , z , t )
u x 2 x 2 F1 (a, b, c, t ) ax 2 t t t 2 u y 2 y 2 F2 (a, b, c, t ) ay 2 t t t 2 u z 2 z 2 F3 (a, b, c, t ) az 2 t t t 2
教学内容
第0章 绪论
第1章 流体的主要物理性质
第2章 流体静力学
第3章 流体流动的基本方程
第4章 势流理论
第5章 相似理论与量纲分析
第6章 粘性流体管内流动
第7章 粘性流体绕物体的流动
第3章 流体流动的基本方程
流体运动——满足质量守恒、牛顿第二定律、能量守恒… 推导——连续方程,动量方程,动量矩方程,能量方程…
第3章 流体流动的基本方程
流体质点的速度和加速度
u ux i uy j uz k
x F1 (a, b, c, t ) ux t t y F2 (a, b, c, t ) uy t t z F3 (a, b, c, t ) uz t t
a ax i ay j az k
两边积分 ln x 2t C ,故 x c1e
' 1
大学课程《工程流体力学》PPT课件:第三章
§3.1 研究流体运动的方法
➢ 欧拉法时间导数的一般表达式
d (v ) dt t
d :称为全导数,或随体导数。
dt
:称为当地导数。
t
v
:称为迁移导数。
例如,密度的导数可表示为: d (v )
dt t
§3.1 研究流体运动的方法
3.1.2 拉格朗日法
拉格朗日法的着眼点:特定的流体质点。
lim t0
(
dV
III
)
t
t
t
CS2 vndA
单位时间内流入控制体的物理量:
z
Ⅲ
Ⅱ’
Ⅰ
y
lim
t 0
(IdV )t t t CS1vndA
x
§3.3 雷诺输运方程
➢ 雷诺输运方程
dN dt
t
CV dV
CSvndA
雷诺输运方程说明,系统物理量 N 的时间变化率,等于控 制体该种物理量的时间变化率加上单位时间内经过控制面 的净通量。
d dt
V
dV
t
CV
dV
CS
vndA
0
因此,连续性方程的一般表达形式为:
t
CV
dV
CS
vndA
0
连续性方程是质量守恒定律在流体力学中的表现形式。
对定常流动,连续性方程简化为:
CS vndA 0
§3.4 连续性方程
对一维管流,取有效截面 A1 和 A2,及
v2
管壁 A3 组成的封闭空间为控制体:
ay
dv y dt
v y t
vx
v y x
vy
v y y
vz
v y z
az
3工程流体力学 第三章流体运动学基础
个流动区域上的所有质点的流动。
§3-3 迹线、流线和染色线,流管(续16)
三、湿周、水力半径
1.湿周x 在总流过流断面上,液体与固体相接触的线
称为湿周。用符号x 表示。
2.水力半径R
总流过流断面的面积A与湿周的比值称为水Βιβλιοθήκη 力半径。R A x
注意:水力半径与几何半径是完全不同的两个概念。
这是两个微分方程,其中 t 是参数。 可求解得到两族曲面,它们的交线就是 流线族。
§3-3 迹线、流线和染色线,流管(续10)
例3-1 已知直角坐标系中的速度场 u=x+t; v= -y+t;w=0,
试求t = 0 时过 M(-1,-1) 点的流线。
解:由流线的微分方程:
dx d y dz u vw
§3-3 迹线、流线和染色线,流管(续5)
因为u不随t变,所以同一点的流线 始终保持不变。即流线与迹线重合。
某点流速的方向是
流线在该点的切线方向 A
B
流速的大小由流 线的疏密程度反映
uA=uB ?
§3-3 迹线、流线和染色线,流管(续6)
迹线与流线方程 采用拉格朗日方法描述流动时,质
点的运动轨迹方程:
试求t = 0 时过 M(-1,-1) 点的迹线。
解:由迹线的微分方程:
dx d y dz dt u vw
u=x+t;v=-y+t;w=0
dx xt dt
d y y t
dt
求解
x C1 et t 1
t = 0 时过 M(-1,-1):C1 = C2 = 0 y C2 et t 1 x= -t-1 y= t-1 消去t,得迹线方程: x+y = -2
工程流体力学答案第三章(杜广生)习题解答
p1 p +z1 2 +z2 = w 1 H g g
由式(3) 、 (7)得:
2 2 w 1 H = 2g
12
2g
(8)
第 4 页 共 25 页
《工程流体力学(杜广生) 》习题答案
q d V 2 2 d q dA( x) 1 dA( x) qV A( x) = qV = ax x x = V 2 3 dx A( x) dx A( x) A ( x) dx A ( x) dx
6. 解:
根据已知条件,有:
x
dx dy y x , y ,代入流线微分方程: = 可得: x y 2 (x y ) 2 (x y )
y t x y x y y y z y z 0 0 9y 0 9y
ay
az
z x z y z z z 0 0 0 8z3 8z3 t x y z
3 2 3
根据不可压缩管流连续性方程: 1 A1 =2 A2 , 代入已知参数,可以得到:
1 1 0.3 0.52 =2 0.0382 ,求解方程,可得: 2 =51.94m /s 4 4
14. 解:
列 1-1,2-2 缓变流截面的伯努利方程:
1a21
2 p1 2a p 2 z1 z2 2 +hw (1) 2g 2g g g
ax
x x x y x z x 1 0+(xz t )z xy 2 1 (xz t )z xy 2 t x y z
y t x y x y y y z y z 1 (yz t )z 0 x 2 y 1 (yz t )z x 2 y
工程流体力学第三章.
dV
CV
n dA
CS
=1,N dV m 由质量守恒定律: dN dm 0
V
Hale Waihona Puke dt dt积分形式的连续性方程:
t
CV
dV
CS
n dA
0
方程含义:单位时间内控制体内流体质量的增量,等于通过控制 体表面的质量的净通量。
定常流动的积分形式的连续性方程: ndA 0 CS
基本思想:跟踪每个流体质点的运动全过程,记录它们在运动过 程中的各物理量及其变化规律。
独立变量:(a,b,c,t)——区分流体质点的标志
质点物理量:
x x(a,b,c,t)
流体质点的位置坐标: y y(a,b,c,t)
速度:
x y
x y
(a,b,c,t)= (a,b,c,t)
应用于定常管流时: 11ndA 22ndA A1,A2为管道上的任意两
A1
A2
个截面
截面A1上的质量流量
截面A2上的质量流量
1 和 分2 别表示两个截面上的平均流速,并将截面取为有效截面:
11 A1 22 A2
一维定常流动积分形式的连续性方程
方程表明:在定常管流中的任意有效截面上,流体的质量流量等于常数。
流体在直管道内的流动为缓变流,在管道截面积变化剧烈、流动方向 发生改变的地方,如突扩管、突缩管、弯管、阀门等处的流动为急变 流。 4. 有效截面 流量 平均流速 有效截面——在流束或者总流中,
与所有流线都垂直的截面。
流量——在单位时间内流过有效截面积的流体的量。
体积流量(m3)/ s: qv v dA v cos(v, n)dA vndA
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
dN dt
t
dV
CV
n dA
CS
=, N dV η表示单位质量流体具有的动量;
V
N 为系统内的流体具有的动量。
d dt
dV
V
t
dV
CV
n dA
CS
对上式应用质点系的动量定理:作用于流体系统上的所有外力之和等
基本思想:跟踪每个流体质点的运动全过程,记录它们在运动过 程中的各物理量及其变化规律。
独立变量:(a,b,c,t)——区分流体质点的标志
质点物理量:
x x(a,b,c,t)
流体质点的位置坐标: y y(a,b,c,t)
速度:
x y
x y
(a,b,c,t)= (a,b,c,t)
dt t
当地加速
迁移加速
度
度
质点全导数:
d (v ) 迁
dt t 全
移
导
当导
数
地数
导
数
0 ——定常流动; t
压强的质点导数
密度的质点导数
(v ) 0 ——均匀流动
dp p v p
dt t
d v
dt t
3.1.2 Lagrange法(拉格朗日法)
lim Ⅱ'
Ⅱ'
dV
t0
t
t CV
(dV )tt
lim Ⅲ
t 0
t
cosdA v dA ndA
CS 2
CS 2
CS 2
(dV)t
lim Ⅰ
t 0
t
cosdA v dA -ndA
d2 d1
管束
D
4( S1 S 2
d 2 ) 4
4S1 S 2
d
d
d
第四节 系统 控制体 输运公式
1. 系系体统统积边(V界(st面y)。sSt(et)m在)流—体SysControlControl的—运由动确过定程的中流不体断质发点生组变成化的。流体团或流体 S F(t) 2V.。控是制为体了研(co究n问tr题ol方vtemVolume便Surfaceol而um取e定)—的—。相边对界于面坐S 称标为系控固制定不面变。的空间体积
所谓空间一点上的物理量是指占据该空间点的流体质点的物理量。
流体质点和空间点是两个完全不同的概念。
独立变量:空间点坐标 (x, y, z)
v v(x,, y, z,t) , p p(x, y, z,t)
(x, y, z,t)
流体质点运动的加速度:
ax
x
t
x
x
x
y
F 为作用于控制体上的质量力和表面力之和。
方程表明:在定常管流中,作用于管流控制体上的所有外力之和等于单位 时间内管子流出断面上流出的动量和流入断面上流入的动量之差。
流束是一个物理概念,涉及流速、压强、动量、能量、流量等等;
流线是一个数学概念,只是某一瞬时流场中的一条光滑曲线。
总流——截面积有限大的流束。如河流、水渠、水管中的水流及风管中
的气流都是总流。
3. 缓变流和急变流 缓变流——流束内流线的夹角很小、流线的曲率半径很大,近乎平行 直线的流动。否则即为急变流。
3. 输运公式 系统:边界用虚线表示;
控制体:边界用实线表示。
左边(a)图对应着t时刻; 右边(b)图对应t+δt时刻。
N dV
系统和控制体
V
N为系统在t时刻所具有的某种物理量(如质量、动量和能量等)的总量;
η表示单位质量流体所具有的该种物理量。
t时刻流体系统所具有的某种物理量N对时间的变化率为
起始时刻
t
t
时质点的坐标
0
a, b, c ,积分得该质
点的迹线方程。
流线 —— 速度场的矢量线。
任一时刻t,曲线上每一点处的切向dr量 dxi dyj dzk 都
与该点的速度向量 vx, y, z, t 相切。
流线微分方程:
dr v 0
dx
dy
dz
vx (x, y, z,t) vy (x, y, z,t) vz (x, y, z,t)
1. 迹线和流线 迹线 —— 流体质点的运动轨迹线。属拉格朗 日法的研究内容。
r xa,b,c,ti ya,b,c,tj za,b,c,tk
给定速度场 vx, y, z, t,流体质点经过时间dt移动
了距离 dr,该质点的迹线微分方程为
dr vdt
dx
dy
dz
vx x, y, z,t vy x, y, z,t vz x, y, z,t dt
lim
(
Ⅱ'
dV )tt
(
Ⅱ'
dV )t
lim
(
Ⅲ
dV )tt
(
Ⅰ
dV )t
dt t0
t
t 0
t
t 0 时,有 II II, III 0 。
如果用CV表示控制体的体积,则有 II V (t) CV
( dV )tt ( dV )t
流场的非均匀性引起
输运公式的具体含义:
任一瞬时系统内物理量N (如质量、动量和能量等)随时间的变化率等
于该瞬时其控制体内物理量的变化率与通过控制体表面的净通量之和。
对于定常流动:
dN
dt
n dA
CS
或者
dN dt
v dA
CS
第五节 连续性方程
输运公式为
dN dt
t
dN d
( dV )tt ( dV )t
dV lim V '
V
dt dt V
t 0
t
V :系统在t时刻的体积;
V VII VI II
V’ :系统在t+δt时刻的体积。 V VIIIII
即
dN
x
y
z
x
z
ay
y
t
x
y
x
y
y
y
z
y
z
az
z
t
x
z
x
y
z
y
z
z
z
dx dt
x,
dy dt
y,
dz dt
z
质点加速度:a dv v (v )v
应用于定常管流时: 11ndA 22ndA A1,A2为管道上的任意两
A1
A2
个截面
截面A1上的质量流量
截面A2上的质量流量
1 和 分2 别表示两个截面上的平均流速,并将截面取为有效截面:
11 A1 22 A2
一维定常流动积分形式的连续性方程
方程表明:在定常管流中的任意有效截面上,流体的质量流量等于常数。
工程流体力学
第三章 流体动力学基础 (Fundamental of Fluid Dynamics)
流体力学基本方程
连 续 性 方 程
动 量 方 程
动 量 矩 方 程
伯 努 利 方 程
能 量 方 程
第一节 流体运动的描述方法
3.1.1 Euler法(欧拉法)
基本思想:考察空间每一点上的物理量及其变化。
CS1
CS1
CS1
CS2为控制体表面上的出流面积; CS1为流入控制体表面的入流面积。 整个控制体的面积 CS CS1 CS2
输运公式
dN dt
t
dV
CV
n dA
CS
或者
dN dt
t
dV
CV
v dA
CS
当地导数项
迁移导数项
流场的非稳定性引起
2. 流管和流束
流管——在流场中作一不是流线的封闭周线C,过该周线上的所有流线
组成的管状表面。 流体不能穿过流管,流管就像真正的管子一样将其内外的流体分开。 定常流动中,流管的形状和位置不随时间发生变化。
流束——充满流管的一束流体。
微元流束——截面积无穷小的流束。
微元流束的极限是流线。
微元流束和流线的差别:
流体在直管道内的流动为缓变流,在管道截面积变化剧烈、流动方向 发生改变的地方,如突扩管、突缩管、弯管、阀门等处的流动为急变 流。 4. 有效截面 流量 平均流速 有效截面——在流束或者总流中,
与所有流线都垂直的截面。
流量——在单位时间内流过有效截面积的流体的量。
体积流量(m3)/ s: qv v dA v cos(v, n)dA vndA
dV
CV
n dA
CS
=1,N dV m 由质量守恒定律: dN dm 0
V
dt dt
积分形式的连续性方程:
t
CV
dV
CS
n dA
0
方程含义:单位时间内控制体内流体质量的增量,等于通过控制 体表面的质量的净通量。
定常流动的积分形式的连续性方程: ndA 0 CS
按照流动空间区分: 内部流动和外部流动; 一维流动、二维流动和三维流动;
1.定常流动、非定常流动(steady and unsteady flow)
定常流动: B Bx, y, z
0 t
非定常流动: B Bx, y, z;t