湖泊沉积物氮磷内源负荷模拟-海洋科学

合集下载

汤逊湖·南湖及墨水湖底泥沉积物中氮

汤逊湖·南湖及墨水湖底泥沉积物中氮

汤逊湖㊃南湖及墨水湖底泥沉积物中氮磷的释放特征林子阳1,姜应和1∗,程润喜2,胡芳2,周欢2,陈铭楷1(1.武汉理工大学土木工程与建筑学院,湖北武汉430070;2.路德环境科技股份有限公司,湖北武汉430000)摘要㊀在夏季环境下以武汉汤逊湖㊁南湖和墨水湖的底泥沉积物为目标,采用蒸馏水作为上覆水进行静态释放试验,监测各试验柱上覆水中氮磷营养盐的变化趋势,计算TN㊁TP的累计释放量,分析湖泊底泥中氮磷营养盐的释放规律㊂结果表明,各湖泊底泥样本向上覆水中释放的氮主要以NO3--N的形式存在;墨水湖底泥向上覆水中释放的氮最多,南湖底泥向上覆水中释放的磷最多㊂3个湖泊的底泥向上覆水释放的氮磷总量仅占底泥氮磷总量的极少部分,说明汤逊湖㊁南湖和墨水湖底泥均具有较大的氮磷释放潜力㊂关键词㊀氮磷;底泥沉积物;释放特征中图分类号㊀X524㊀㊀文献标识码㊀A㊀㊀文章编号㊀0517-6611(2023)02-0064-04doi:10.3969/j.issn.0517-6611.2023.02.017㊀㊀㊀㊀㊀开放科学(资源服务)标识码(OSID):ReleaseCharacteristicsofNitrogenandPhosphorusintheSedimentsofTangxunLake,SouthLakeandMoshuiLakeLINZi⁃yang1,JIANGYing⁃he1,CHENGRun⁃xi2etal㊀(1.SchoolofCivilEngineeringandArchitecture,WuhanUniversityofTechnology,Wuhan,Hubei430070;2.RoadEnvironmentTechnologyCo.,Ltd.,Wuhan,Hubei430000)Abstract㊀Underthesummerenvironment,takingthesedimentsofTangxunLake,SouthLakeandMoshuiLakeinWuhanasthetarget,thestaticreleasetestwasconductedwithdistilledwaterastheoverlyingwatertomonitorthechangetrendofnitrogenandphosphorusnutrientsintheoverlyingwaterofeachtestcolumn,calculatethecumulativereleaseamountofTNandTP,andanalyzethereleaseruleofnitrogenandphosphorusnutrientsinthelakesediment.TheresultsshowedthatthenitrogenreleasedtotheoverlyingwaterfromthesedimentsamplesofeachlakemainlyexistedintheformofNO3--N;thesedimentofMoshuiLakereleasedthemostnitrogentotheoverlyingwater,andthesedi⁃mentofSouthLakereleasedthemostphosphorustotheoverlyingwater.Thetotalnitrogenandphosphorusreleasedbythesedimentofthethreelakesfromtheupperwatercoveraccountsforonlyaverysmallpartofthetotalnitrogenandphosphorusofthesediment,indicatingthatthesedimentofTangxunLake,SouthLakeandMoshuiLakeallhadgreaternitrogenandphosphorusreleasepotential.Keywords㊀Nitrogenandphosphorus;Sediment;Releasecharacteristic基金项目㊀路德环境科技股份有限公司科技攻关项目(LDHJ20200102)㊂作者简介㊀林子阳(1996 ),男,湖北武汉人,硕士研究生,研究方向:水污染控制理论及应用㊂∗通信作者,教授,博士,博士生导师,从事水污染控制理论及应用研究㊂收稿日期㊀2022-02-17㊀㊀汤逊湖位于武汉市东南部,水域面积达47.62km2,横跨江夏区㊁洪山区和东湖新技术开发区,是武汉最大的城中湖;南湖位于武昌南部,水域面积达7.67km2,是武汉市第三大的城中湖;墨水湖位于汉阳西南,水域面积达3.64km2,为浅水湖泊㊂随着湖泊周边城市发展,各类污染物排入湖中,造成水体污染㊂水中营养盐通过一系列理化作用,逐渐蓄积于湖泊底泥之中㊂其中,氮㊁磷等营养盐是湖泊底泥营养盐的主要组成部分,对水体环境影响极大㊂在外界环境的影响下,底泥中的氮磷元素部分被沉水植物吸收,重新参与物质循环;部分以闭蓄态或结合态的形式稳定存在,难以被释放;部分通过扩散作用重新进入上覆水中,造成二次污染[1]㊂这部分重新被释放的氮磷元素,也是湖泊水体治理水质难以根本好转的主因之一㊂底泥中氮磷的释放是一个物理㊁化学和生物综合作用的过程,其释放㊁累积和输送遵循一定的规律[2]㊂底泥中氮磷的释放受到如DO㊁温度㊁pH㊁上覆水污染物浓度等因素的影响[3]㊂笔者以汤逊湖㊁南湖和墨水湖为研究对象,采用实验室静态模拟法对底泥氮磷释放规律进行研究㊂1㊀材料与方法1.1㊀样品的采集㊀将带上覆水和底泥的柱样定义为A类试验柱样,不带上覆水的底泥柱样定义为B类试验柱样㊂在汤逊湖(114ʎ23ᶄE,30ʎ25ᶄN)㊁南湖(114ʎ21ᶄE,30ʎ30ᶄN)和墨水湖(114ʎ14ᶄE,30ʎ32ᶄN)各设一个取样点,每一取样点取1个A类试验柱样和2个B类试验柱样㊂A类试验柱样取样管长为2.5m,上覆水采样深度不小于1.5m,底泥采样深度不小于70cm;B类试验柱样取样管长为1.5m,底泥采样深度不小于1.0m㊂取样点具体位置如图1所示㊂图1㊀采样点分布Fig.1㊀Distributionofsamplingpoints1.2㊀样品的处理㊀各试验柱样被带回试验室后,将A类试验柱样的上覆水用虹吸管调整至相同深度(上覆水深度为1.5m)㊂对上覆水进行测量所得各理化指标如表1所示㊂对B类试验柱样的表层(0 5cm)底泥进行采样,吸除水分后置于阴凉处自然风干,研磨后过100目筛,保存在聚乙烯袋中备用㊂测得底泥TN㊁TP含量如表2所示㊂㊀㊀㊀安徽农业科学,J.AnhuiAgric.Sci.2023,51(2):64-67表1㊀各湖泊上覆水理化指标Table1㊀Physicalandchemicalindicatorsofoverlyingwaterineachlake湖泊名称LakenamepHDOmg/LTNmg/LTPmg/LNH4+-Nmg/LNO3--Nmg/L汤逊湖TangxunLake7.855.01.730.2120.890.37南湖SouthLake8.285.51.690.2310.900.62墨水湖MoshuiLake7.624.82.320.1981.320.68表2㊀各湖泊底泥中TN、TP含量Table2㊀ContentsofTNandTPinsedimentsineachlake单位:mg/kg湖泊名称LakenameTNTP汤逊湖TangxunLake257141212南湖SouthLake47152535墨水湖MoshuiLake404521121.3㊀底泥释放营养盐试验方法㊀将从3个湖泊各取的1个A类试验柱样分别命名为汤逊湖㊁南湖和墨水湖试验柱㊂该试验采样时间为夏季,试验期间水温维持在(30ʃ1)ħ㊂将试验柱中原上覆水替换为蒸馏水㊂监测上覆水中DO㊁TN㊁NH4+-N㊁NO3--N和TP的变化,前期每隔24h取样并检测,后期取样并检测的时间间隔为48h,每次采集水样后分别用蒸馏水补足㊂㊀㊀累计释放量γ(mg)用以下公式计算[4]:γn=V(Cn-C0)+ n-1j=1[Vi(Cj-Ca)](1)式中,V为试验柱中上覆水总体积(L);n为采样次数,nȡ2,当n=1,仅取式右两项中的第一项;Vj为每次采集水样的体积(L);Cn为第n次采样时测出的营养盐浓度(mg/L);Cj为第j次采样时测出的营养盐浓度(mg/L);Ca为每次取样后补充水样中营养盐浓度(mg/L);C0为各类上覆水中营养盐的初始浓度(mg/L)㊂1.4㊀水质检测方法㊀上覆水中DO采用JPB-607A溶解氧仪测定㊂TN㊁NH4+-N㊁NO3--N和TP采用‘水和废水监测分析方法(第四版)“提供的方法测定:TN采用过硫酸钾氧化,紫外分光光度法测定;TP采用钼酸铵分光光度法测定;NH4+-N采用纳氏试剂比色法测定;NO3--N采用紫外分光光度法测定㊂2㊀结果与分析2.1㊀上覆水中各指标的变化㊀不同湖泊底泥条件下,上覆水中各指标的变化趋势如图2所示㊂由图2可知,3个试验柱中水样各指标的变化趋势基本一致㊂DO含量在10d前持续下降,可能是好氧微生物的持续活动导致的[5];16d后DO略有回升,此时其他营养盐浓度基本处于平衡阶段,水体环图2㊀各试验柱上覆水各指标随时间变化曲线Fig.2㊀Variationcurveofvariousindicatorsofoverlyingwateroneachtestcolumnwithtime境相对稳定,说明存在一定程度的大气复氧㊂TN㊁NO3--N和TP均呈持续上升趋势,墨水湖试验柱的上覆水中TN浓度最高,汤逊湖试验柱次之,南湖试验柱最低;NO3--N浓度排序与TN一致;南湖试验柱的上覆水中TP浓度最高,汤逊湖试验柱次之,墨水湖试验柱最低㊂由表1可知,对于原上覆水而言,TN浓度表现为墨水湖>汤逊湖>南湖,与试验结果相符,且各试验柱中上覆水TN的最终浓度均小于各湖泊实测结果㊂这可能是因为在自然湖泊的上覆水环境内存在大量生物活动,以汤逊湖为例,现仍有相当规模的渔业养殖[6]㊂它们的代谢活动所产生的氮元素部分悬浮在上覆水中,进一步提高了TN的含量㊂TP浓度表现为南湖>汤逊湖>墨水湖,主要以溶解性磷酸盐(SRP)的形式存在[7],也与试验结果相符,但各试验柱中上覆水TP的最终浓度均大于各湖泊实测结果㊂该试验在夏季进行,气温较高,史静等[8]研究表5651卷2期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀林子阳等㊀汤逊湖·南湖及墨水湖底泥沉积物中氮磷的释放特征明,温度对氮磷元素释放的影响类似,但对磷的影响更显著㊂且当温度升高到一定程度后,由于生物活性不再提高,氮的释放不再明显增强,而磷由于氧化还原电位的降低和含磷沉积物溶解加快等原因,释放更为明显[9]㊂而自然水体中存在藻类及沉水植物对溶解性磷酸盐的吸收,降低了环境中磷的浓度,所以各湖泊TP的实测数据会低于试验条件下释放的TP㊂NH4+-N表现出先上升后下降的趋势,这可能与底泥中有机氮转化为氨氮和硝化反应有关㊂2.2㊀上覆水中氮类营养盐变化㊀不同湖泊底泥条件下,上覆水中各类含氮营养盐变化如图3所示㊂由图3可知,各试验柱中TN绝大部分由NO3--N组成㊂说明氮元素主要以无机氮的形式向上覆水中释放,难以以有机氮的形式释放㊂在试验初期,各试验柱均出现NH4+-N浓度迅速上升的趋势,这可能是由于在向试验柱内注入蒸馏水的过程中,对底泥造成了一定扰动,且试验初期水体中溶解氧充足㊂这可能是因为底泥中存在好氧微生物将有机氮转化为氨氮[10]㊂在前10d,水体中溶解氧持续下降,NH4+-N也持续下降,NO3--N则持续上升,说明水体中存在硝化反应将NH4+-N转化为NO3--N㊂但也可以看出,NO3--N增长的量大于NH4+-N减少的量,说明底泥仍在向上覆水中释放NO3--N或释放NH4+-N并转化为NO3--N㊂陶玉炎等[11]研究表明,溶解氧缺乏的条件下,沉积物氮主要以NH4+-N形式释放,溶解氧充足条件下,沉积物氮主要以NO3--N形式释放㊂王圣瑞等[12]研究表明,底泥中可释放的氮主要以NO3--N的形式存在;且由于土壤带负电荷,铵根带正电荷,易被土壤吸附难以释放,而硝酸根带负电荷,更容易释放㊂图3㊀各试验柱上覆水含氮营养盐随时间变化曲线Fig.3㊀Variationcurveofnitrogencontainingnutrientsaltsintheoverlyingwaterofeachtestcolumnwithtime2.3㊀上覆水中TN㊁TP累计释放量的变化㊀从各试验柱上覆水中TN和TP累计释放量的变化趋势(图4)可以看出,不同湖泊底泥氮磷的累计释放量变化趋势基本相同㊂由于释放强度受上覆水与底泥间的浓度差影响,根据Fick第一扩散定律[13],在静态释放条件下,由于底泥-水界面浓度梯度的影响,底泥TN和TP的释放速率在初期最大,随时间的延续,释放速率逐渐降低[14],则累计释放量的增长也由陡变缓;最终,随着浓度差的不断缩小,扩散作用不断减弱,上覆水与底泥间逐渐达到某个平衡点,累计释放量不再明显增长,呈现出动态平衡状态㊂试验结束时墨水湖TN的累计释放量最大,说明墨水湖可能具有更大的氮释放能力;南湖TP的累计释放量最大,说明南湖可能具有更大的磷释放能力㊂图4㊀各试验柱上覆水TN(a)和TP(b)累计释放量随时间变化曲线Fig.4㊀VariationcurveofcumulativereleaseamountofTN(a)andTP(b)intheoverlyingwaterofeachtestcolumnwithtime2.4㊀底泥沉积物氮磷存在形态对释放的影响㊀底泥中的氮磷元素并不都具有向上覆水中释放的潜力㊂不同湖泊表层底泥TN中可转化态氮(TAN㊁TTN)及TP中易转化态磷占比区别均较大㊂王圣瑞等[12]对太湖等长江中下游湖泊的表层底泥测量发现,TN中可交换氮(EN)占比为6.29% 19.24%;对太湖和武汉月湖表层底泥的研究发现,TN中TAN的占比随粒径的降低而升高[15],其中最容易释放的IEF-N是可转化态无机氮的主体,占总可转化态氮的7.37% 22.25%㊂赵宝刚等[16]研究发现骆马湖等4个湖泊表层底泥TN中TAN占比均值为50.93% 73.10%,IEF-N占TTN的6.74%66㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀安徽农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2023年8.82%㊂叶华香等[17]对南山湖表层底泥测量发现,潜在可移动形态磷占TP的54.06%㊂马金玉等[18]研究表明,最易释放的EX-P占华阳河湖群表层底泥TP的0.4% 4.9%㊂周帆琦等[19]测得武汉南湖与东湖表层底泥TP中EX-P占比为3% 11%㊂上述试验均表明,不同湖泊的表层底泥具有各自的形态分布特征,TN㊁TP中具有释放潜力的部分占比也因湖泊环境和外源输入的不同而有差异㊂此次试验测得3个湖泊表层(0 5cm)底泥的干重约为166g,根据表2的各湖泊底泥TN㊁TP含量计算得出的各湖泊累计释放量占表层底泥内氮磷含量的比值如表3所示㊂从表3可以看出,该试验中各湖泊底泥氮磷累计释放量仅占表层底泥氮磷含量的极少部分,显然低于潜在可释放的氮磷总量㊂大量可释放的氮磷留存在底泥中,形成内源污染,使得湖泊水质情况难以好转,持续呈现富营养化㊂通过20162020年武汉水务局发布的武汉市水资源公报[20-24]可知,汤逊湖水质条件为Ⅴ类,中度富营养化,水质变化稳定;南湖水质条件仍为劣Ⅴ类,中度富营养化;墨水湖水质条件由劣Ⅴ类转为Ⅴ类,中度富营养化,水质有所好转㊂这说明底泥中大量富集的氮磷营养盐对湖泊环境的治理仍形成较大阻碍㊂表3㊀各湖泊累计释放量占比Table3㊀Theproportionofcumulativereleaseofeachlake湖泊名称LakenameTN底泥TN量TNamountofsedimentmg释放TN量ReleaseamountofTNʊmg释放量占比Proportionofreleasedamountʊ%TP底泥TP量TPamountofsedimentmg释放TP量ReleaseamountofTPʊmg释放量占比Proportionofreleasedamountʊ%汤逊湖TangxunLake42686.430.152014.572.27南湖SouthLake7845.550.714215.031.19墨水湖MoshuiLake6717.931.183512.060.593㊀结论(1)夏季环境下各湖泊底泥样本向上覆水中释放的氮主要以NO3--N的形式存在,墨水湖底泥向上覆水中释放的氮最多,有较强的释放能力;南湖底泥向上覆水中释放的磷最多,有较强的释放能力㊂在未来的治理计划中可针对各湖泊不同的释放特点进行针对性治理㊂(2)各湖泊底泥具备释放潜力的氮磷元素占比具有不同特征,最终呈现出的释放总量不一定由不同湖泊底泥间的氮磷总量简单决定㊂此次试验中向上覆水释放的氮磷含量仅占底泥氮磷总量的极少部分,说明汤逊湖㊁南湖和墨水湖底泥均具有较大的氮磷释放潜力,这也是导致各湖泊富营养化的主因之一㊂参考文献[1]WUZ,LIUY,LIANGZY,etal.Internalcycling,notexternalloading,de⁃cidesthenutrientlimitationineutrophiclake:Adynamicmodelwithtem⁃poralBayesianhierarchicalinference[J].Waterresearch,2017,116:231-240.[2]陈平,倪龙琦.河湖底泥中氮磷迁移转化的研究进展[J].徐州工程学院学报(自然科学版),2020,35(2):60-66.[3]张茜,冯民权,郝晓燕.上覆水环境条件对底泥氮磷释放的影响研究[J].环境污染与防治,2020,42(1):7-11.[4]金相灿,屠清瑛.湖泊富营养化调查规范[M].2版.北京:中国环境科学出版社,1990:219.[5]黄炜惠.中国水环境溶解氧基准与标准初步研究[D].北京:中国环境科学研究院,2021.[6]杜明普,王红丽,刘康福,等.生态渔业养殖模式下汤逊湖鱼产力估算及对内源污染的影响[J].环境工程技术学报,2021,11(2):278-282.[7]YUPP,WANGJF,CHENJG,etal.Successfulcontrolofphosphorusre⁃leasefromsedimentsusingoxygennano⁃bubble⁃modifiedminerals[J].Sci⁃enceofthetotalenvironment,2019,663:654-661.[8]史静,于秀芳,夏运生,等.影响富营养化湖泊底泥氮㊁磷释放的因素[J].水土保持通报,2016,36(3):241-244.[9]周成,杨国录,陆晶,等.河湖底泥污染物释放影响因素及底泥处理的研究进展[J].环境工程,2016,34(5):113-117,94.[10]王红,阮爱东,徐洁.太湖氨化功能菌群的分布及其有机氮降解条件[J].河南科学,2019,37(3):439-446.[11]陶玉炎,耿金菊,王荣俊,等.环境条件变化对河流沉积物 三氮 释放的影响[J].环境科学与技术,2013,36(S1):41-44,78.[12]王圣瑞,焦立新,金相灿,等.长江中下游浅水湖泊沉积物总氮㊁可交换态氮与固定态铵的赋存特征[J].环境科学学报,2008,28(1):37-43.[13]贾艳乐,贾飞虎,马慧杰,等.白洋淀上覆水氮磷浓度对沉积物氮磷释放的影响[J].中国环境管理干部学院学报,2019,29(3):89-93.[14]韩宁,郝卓,徐亚娟,等.江西香溪流域干湿季交替下底泥氮释放机制及其对流域氮输出的贡献[J].环境科学,2016,37(2):534-541.[15]王圣瑞,金相灿,焦立新.不同污染程度湖泊沉积物中不同粒级可转化态氮分布[J].环境科学研究,2007,20(3):52-57.[16]赵宝刚,张夏彬,昝逢宇,等.不同湖泊表层沉积物氮形态的分布特征与影响因素[J].中国环境科学,2021,41(2):837-847.[17]叶华香,臧淑英,尉文佳,等.南山湖沉积物磷形态时空分布特征[J].环境工程,2019,37(5):105-110,116.[18]马金玉,罗千里,王文才,等.华阳河湖群表层沉积物磷形态及生物有效性[J].长江流域资源与环境,2021,30(12):2962-2971.[19]周帆琦,沙茜,张维昊,等.武汉东湖和南湖沉积物中磷形态分布特征与相关分析[J].湖泊科学,2014,26(3):401-409.[20]黄天荣,易相军.2016年武汉市水资源公报[R].武汉:武汉市水务局,2016.[21]徐照彪,易相军.2017年武汉市水资源公报[R].武汉:武汉市水务局,2017.[22]徐照彪,王沫.2018年武汉市水资源公报[R].武汉:武汉市水务局,2018.[23]徐照彪,王沫.2019年武汉市水资源公报[R].武汉:武汉市水务局,2019.[24]徐照彪,王沫.2020年武汉市水资源公报[R].武汉:武汉市水务局,2020.7651卷2期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀林子阳等㊀汤逊湖·南湖及墨水湖底泥沉积物中氮磷的释放特征。

湖泊内源氮磷污染分析方法及特征研究进展

湖泊内源氮磷污染分析方法及特征研究进展

第30卷 第1期2011年 1月环 境 化 学E NV I RONMENTAL C H E M I STRY V o.l 30,N o .1Janua ry 20112010年6月30日收稿.*国家自然科学基金NSFC 云南联合基金(U0833603)资助.**通讯联系人,Te:l 0871 *******;E ma i :l xjpan @kmu st .edu .cn湖泊内源氮磷污染分析方法及特征研究进展*李 辉1 潘学军1** 史丽琼1 米 娟1 宋 迪1赵 磊2 刘晓海2 贺 彬2(1.昆明理工大学环境科学与工程学院,昆明,650093; 2.云南省环境科学研究院,中国昆明高原湖泊研究中心,昆明,650034)摘 要 湖泊的内源氮磷污染已成为湖泊富营养化治理的一大难题.本文总结了沉积物中氮磷赋存形态、沉积物 水界面氮磷迁移释放行为和沉积物中氮磷的生物有效性三方面的研究进展,提出了目前研究存在的问题,并对未来发展趋势和研究方向进行了展望,以期为湖泊内源氮磷污染机理分析和湖泊富营养化治理控制技术提供参考.关键词 富营养化,内源氮磷,释放,生物有效性.大量湖泊的水体富营养化已经成为全球面临的一个重大环境问题.湖泊富营养化的特征性表现即藻类水华现象.藻类水华暴发会导致水体缺氧、鱼类死亡、产生异味及藻毒素释放等,给湖区人民的正常生产和生活产生严重影响[1].据调查显示,全球范围内有40%左右的湖泊和水库遭受不同程度的富营养化;而在我国,到20世纪90年代中后期,富营养化湖泊已占被调查湖泊数的77%[2].由此可见,我国已成为世界上湖泊富营养化范围及程度最严重、面临问题最严峻的国家之一.Va llne tyne 及Stumm 等的分析研究表明,氮和磷是限制水生植物生产量最主要的营养元素[3],因此,氮磷在湖泊中水体及沉积物中的赋存形态及其迁移释放行为,对湖泊富营养化起着决定性的作用;伴随着相关法律法规的出台及截污工程等措施的实施,外源性污染物已经相对有所控制[4];因此对内源氮磷污染的研究显得格外重要,尤其是对内源氮磷的赋存形态、迁移释放行为及其影响因素、生物有效性等内源氮磷污染机理方面的分析研究更是迫在眉睫.本文从氮磷赋存形态特征及其分布、沉积物 水界面氮磷迁移释放、氮磷生物有效性等方面,总结国内外学者在内源氮磷污染方面的研究工作,为湖泊富营养化机理及其控制技术等方面的研究提供借鉴.1 沉积物中氮磷赋存形态氮磷在湖泊沉积物及水体中的形态分布,决定着沉积物是源还是汇.而水体中的氮磷形态分析相对简单,因此沉积物中的氮磷赋存形态分析尤为重要.1.1 沉积物中氮赋存形态湖泊沉积物中氮的赋存形态、含量及分布,一定程度上反映了水体和沉积环境的演变过程,是研究其环境行为的前提[5].综合国内外的研究,一般将沉积物中的氮形态分为有机态氮和无机态氮;且主要化学形态为有机态氮,可以占到70% 90%,主要以颗粒有机氮的形式进入沉积物中,无机氮所占比例相对较小[6].1.1.1 沉积物中的有机氮沉积物中有机氮主要是蛋白质、核酸、氨基酸和腐殖质四类,大部分是腐殖质[7].有机氮主要来源于浮游植物、细菌和高等植物.其化学形态主要分为NH 3 N 、氨基酸氮、己糖氮、酸解未知氮(HUN )和非酸解氮[6].研究表明,氨基酸氮是有机氮的主要化学形态,约占有机氮的30% 60%;从氨基酸的组合特征纪念专辑稿件来看,以甘氨酸、天门冬氨酸、谷氨酸、丙氨酸、丝氨酸、苏氨酸及赖氨酸为主,约占氨基酸总量的70%以上[8].尽管有机氮在氮的生物地球化学循环中并不活跃,但是由于有机氮的矿化作用,环 境 化 学30卷282使得有机氮依然在氮的生物地球化学循环中扮演重要的角色,即沉积物中的有机态氮在微生物的作用下,经氨基化作用逐步分解为简单的有机态氨基化合物,氨化作用释出的氨大部分与有机或无机酸结合成铵盐,或被植物吸收,或在微生物作用下氧化成硝酸盐.1.1.2 沉积物中的无机氮沉积物中的无机氮可分为可交换态氮(E N)、固定态铵(F NH4)等.沉积物中的可交换态氮(Exchangeab le N itrogen,EN)是沉积物 水界面发生氮的迁移释放最主要最活跃的氮形态,是参与氮的生物地球化学循环中的重要组分.可交换态氮主要包括硝态氮和铵态氮,即NO2 N、NO3 N以及NH+4 N;其中的铵盐被称为可交换态铵,沉积物中的可交换态铵是由于沉积物颗粒对水体中的NH+4进行可交换吸附,这类吸附是发生在颗粒物表面的离子交换反应.EN易于为藻类、水草等浮游植物这类初级生产者吸收,EN的减少会促进有机氮的矿化,从而提供湖泊再生产所需氮源[9].沉积物中的固定态铵则是指固定吸附于颗粒物质内部,进入晶格结构的NH+4 N,也称作非交换态铵.这是由于沉积物中的粘土矿物层中的硅氧层之间发生同晶替代,产生负电荷,为使电性中和,这些负电荷吸引吸附在颗粒物质晶格之外的阳离子;而吸附在沉积物上的NH+4脱去水化膜进入晶格之中,就被固定下来[10].同时晶层收缩,这样NH+4因此固定态铵一般情况下很难通过离子交换等方式释放到水体中来,大量研究表明,固定态铵在沉积物总氮中占有一定的比例,De Lange等[11]研究指出在海洋和某些湖泊沉积物中固定态铵可达到总氮含量的10% 96%.所以说,固定态铵是湖泊沉积物中氮的重要储存库.1.1.3 沉积物中氮的连续分级浸取研究及其应用在上述氮的分类中,并没有具体体现出各类形态氮与沉积物的物理化学结合能力,因此仅仅通过分析沉积物中总氮、无机氮和有机氮,并不能准确解释有关氮在沉积物 水界面上发生的迁移释放行为.各形态氮与沉积物的结合能力强弱,对于评价各形态氮对沉积物 水界面氮循环的贡献,具有重要意义.针对这一问题,不少学者[12 19]对大量海洋以及湖泊的沉积物中氮进行连续分级浸取,采用不同的浸取剂,来划分不同形态氮与沉积物结合能力大小,将沉积物中的氮分类为不同结合态,测得不同结合态氮的丰度,由此解释分析并推测沉积物 水界面的氮循环过程.吴丰昌等[12]1996年对云贵高原4个湖泊(云南泸沽湖、洱海,贵州百花湖、阿哈湖)等湖泊沉积物进行研究,基于土壤学中的土壤理化分析将沉积物中氮形态进行简单的分级,是国内沉积物中氮连续分级浸取研究的开始.将沉积物氮的结合态分为可溶性NH+4 N,NO3 N、可交换态NH+4 N,NO3 N、有效态氮和残渣态氮,有效态氮指无机的矿物态氮和部分有机质中易分解的无机氮,残渣态氮主要是有机氮.这一方法开创了水体沉积物中氮分级浸取的先河,但是并没有具体的根据浸取剂得出各形态氮的化学结合能力.马红波[13]等2002年根据Ruttenberg[20]1992年提出的沉积物中磷的连续分级浸取方法,加以改进,将沉积物中氮分为可转化态氮和非转化态氮,可转化态氮根据浸取剂提取能力的强弱来决定浸取出来的氮与沉积物结合的牢固程度;依次分为离子交换态氮(I EF N)、碳酸盐结合态氮(CF N)、铁锰氧化态氮(I M OF N)、有机态和硫化物结合态氮(OSF N).非转化态氮通过总氮与可转化态氮差减得到.这一方法在进行下一步提取之前,用蒸馏水洗涤沉积物,一定程度上避免了上一级提取氮重吸附于沉积物,但是实验设计上并没有考虑各级提取剂的提取效率.马红波等打开了沉积物中氮连续分级提取研究的新领域,表征了各形态氮的相应化学结合能力.之后的研究者对沉积物中氮进行连续分级提取时,多数都是沿用这一方法,或进行一些小的改进.如吕晓霞等[14]对北黄海、戴纪翠等[15]对胶州湾、王圣瑞等[16]对五里湖等湖泊沉积物及海洋沉积物中氮的研究,均是直接使用其方法或者稍微加以改进.王圣瑞等[16]2007年对五里湖、月湖、东太湖、贡湖等不同程度富营养化湖泊沉积物中氮进行连续分级提取.其采用的方法与马红波等基本一致,但只研究了沉积物中的可转化态氮,并将其依次分为离子交换态氮(I E F N)、弱酸浸取态氮(WAEF N)、强碱浸取态氮(SAEF N)、强氧化剂浸取态氮(SOEF N).I EF N是4种可转化态氮形态中与沉积物结合能力最弱的赋存形态,因此也是参与沉积物 水界面1期李辉等:湖泊内源氮磷污染分析方法及特征研究进展283氮迁移释放最活跃的形态;WAEF N与沉积物的结合能力略高,相当于碳酸盐的结合能力;SAEF N的结合能力相当于铁锰氧化物的结合能力,稍高于WAEF N;SOEF N主要是有机形态氮,也称可转化有机氮,是最难浸取的可转化形态[14 16].王圣瑞法[16]与马红波法[13]区别在于第一步提取,采用的是1m ol L-1KC l溶液,而马红波法中采用的是1m o l L-1M g C l2溶液进行浸取.由于沉积物吸附NH+4生成固定态铵所需静电力与K+进入沉积物粘土矿物层中的硅氧层晶格所需的静电力来源相同,因此KC l溶液可能会具有更好的提取效率.基于这一点,一些研究者认可了王圣瑞的方法,且KC l提取性质稳定,不含干扰测定的物质[21],后续对沉积物中氮进行连续分级提取时,多采用王圣瑞法.如何桐等[17]对大亚湾表层沉积物氮形态的研究、郑国侠等[18]对南海深海盆表层沉积物氮形态的研究等.钟立香等[19]2009年对吴丰昌法进行改进提出了新的连续分级浸取方法,该法的特点是并不着重于各形态氮与沉积物结合力强弱,而是依据对释放影响的程度依次分为游离态氮(FN)、可交换态氮(EN)、酸解态氮(HN)、残渣态氮(RN).该法中F N是将间隙水中的营养盐浓度(m g L-1)换算成为沉积物中的营养盐浓度(m g kg-1),这主要是基于沉积物 水界面氮循环主要通过间隙水与上覆水中营养盐交换来实现这一点考虑;EN则主要是针对沉积物中有机质矿化生成的NH+4,NH+4在FN和E N之间不断根据外界环境条件分配,故EN是沉积物中较活跃的氮形态;酸解态氮可鉴别的有机化合物主要是氨基酸态氮(AAN)、氨基糖态氮(ASN)、氨态氮(AN)以及一些未鉴别的含氮化合物(UN);RN主要是有机环态.表1列出了沉积物中氮连续分级浸取方法的发展历程.表1 沉积物中氮的连续分级提取研究Table1 R esearch on t he nitrogen sequential frac ti on ex tracti on i n sedi m ents研究者浸取方法氮分级形态应用对象参考文献沉积物高速离心,0.4 m滤膜过滤可溶性氨氮、硝氮吴丰昌等(1996)40mL20%NaO H溶液,经0.45 m过滤,测滤液中可交换性氨氮、硝氮可交换性氨氮、硝氮云南泸沽湖、洱海;[12]上一步沉淀物使用碱解蒸馏法测定有效态氮有效态氮贵州百花湖、元素分析仪测定沉积物中总氮,并与上述三形态氮进行差减残渣态氮阿哈湖1m ol L-1M gC l2溶液离子交换态氮HAC N a AC(p H=5)溶液碳酸盐结合态氮马红波等(2003)0.1m ol L-1Na OH溶液铁锰氧化态氮渤海湾[13]K2S2O8(碱性)溶液(0.24mo l L-1N a OH, K2S2O820g L-1)有机态和硫化物结合态氮总氮与上述四种可转化态差减非转化态氮1m ol L-1KC l溶液离子交换态氮五里湖HAC N a AC(p H=5)溶液弱酸浸取态氮月湖王圣瑞等(2007)0.1m ol L-1Na OH溶液强碱浸取态氮东太湖[16] K2S2O8(碱性)溶液(0.24mo l L-1N a OH,K2S2O820g L-1)强氧化剂浸取态氮贡湖沉积物高速离心,过0.45 m滤膜游离态氮钟立香等(2009)2mo l L-1KC l溶液,振荡2h可交换态氮巢湖[19] 6mo l L-1HC l溶液,120 ,酸解24h酸解态氮浓硫酸,加速剂催化残渣态氮1.1.4 沉积物中氮形态分布特征沉积物中氮主要以有机态存在.Ke m p等[22]对Ontar i o湖表层沉积物中氮研究表明,有机氮含量约占总氮的92%,何桐等[17]对大亚湾表层沉积物中氮形态研究表明,有机氮约占沉积物中总氮的77 32%.沉积物中无机氮由可交换态氮和固定态铵构成,可交换态氮是湖泊初级生产力的直接氮源,固定态铵(F NH4)则是其潜在氮源[9].王圣瑞等[9]、王雨春等[5]研究表明,F NH4是无机氮中的主要形态,环 境 化 学30卷284EN也占有一定的比例;E N中的主要形态是NH+4 N(74.61% 85.85%),这是因为沉积物 水界面大量有机质的矿化分解;其次是NO3 N(13.93% 25.15%),NO2 N含量很低(0.17% 0.27%);而三者之间在不同环境和微生物作用下进行硝化反硝化作用实现相互转化,这主要与沉积物自身性质(例如含有机质的多少)、沉积物环境(氧化还原条件、微生物多少、温度等)有关[6].EN占沉积物中可转化态氮的比例大约在10% 40%[8,13,17],沉积物中可转化态氮的主要存在形态为SOEF N[13 14,17 18],这显然与沉积物中有机态氮占总氮比例有关.吕晓霞等[14]在北黄海的研究表明,SOEF N在沉积物垂直分布上,一般呈现出在表层0 3c m迅速降低的趋势;同样,I EF N在0 3c m 范围内自上而下逐渐降低,自次表层(0 6c m)以下,无明显变化,这是因为沉积物中有机质的矿化作用主要发生在表层含氧区.一般而言,SOEF N是沉积物中可转化态的绝对优势形态,I EF是可转化无机态氮的绝对优势形态[23].WAEF N、SAEF N占可转化态氮的比例极小[13],两者大小依据沉积物环境的改变而有所不同.沉积物氮形态分布与沉积物粒度有着非常重要的关系.吕晓霞等[8]对黄海沉积物氮粒度结构进行研究表明,不同形态氮在不同粒度沉积物中的分布规律相同,不同形态氮绝对含量随沉积物粒度的增大而减小,这可能是因为粗粒度沉积物中有机氮的分解速率常数比细粒度沉积物中的高一个数量级,是中粒度沉积物中的2倍;这也是SOEF N的含量随粒度大小变化最为明显的原因,因为SOEF N的主要形态是有机氮.尽管三种可转化无机氮的绝对含量随着沉积物粒度减小而增大,但是由于SOEF N的增幅太大,这三种可转化态无机氮的相对含量都有所降低.吕晓霞等[23]指出,细粒级沉积物对氮循环的贡献可能最大.而这一点与王圣瑞等[16]对云贵高原四湖泊研究结果一致.1.2 沉积物中磷赋存形态一般而言,沉积物中的磷可分为有机磷和无机磷,无机磷又分为可溶性无机磷和难溶性无机磷.可溶性无机磷包括钙结合态磷(Ca P)、铁结合态磷(Fe P)、铝结合态磷(A l P)等,难溶性磷主要是闭蓄态磷酸盐,这部分磷被包裹在铁铝氧化物膜内.1.2.1 沉积物中磷的分级浸取研究与沉积物中氮不同,由于湖泊富营养化一般是磷控制,所以湖泊沉积物中磷的分级提取研究较多[20,24 29].1957年,Chang和Jackson[24]根据土壤学中相应的化学方法,将土壤中磷分为不稳性磷(Labile P, LP)、Fe P、Ca P、可还原水溶性磷(RSP)、惰性磷(Refractory P).这一方法主要关注于沉积物中的无机态磷,对沉积物中磷化合物的化学形态进行分类,从而便于研究沉积物 水界面磷的迁移释放机制,也有助于解释环境因素(例如钙铝铁、DO、p H、Eh等)对沉积物 水界面磷迁移释放的影响.后续许多研究者只是针对C J法存在的缺陷进行改进,而在磷形态分级的思想上与C J法一致.例如H ie ltjes等[26]将沉积物中磷分为LP、Fe/A l P、Ca P;Psenner[27]将沉积物中磷分为水溶性磷(H2O P)、可还原水溶性磷(RSP)、Fe/A l P、Ca P和惰性P;Go lter m an等[30]将沉积物中磷分为Fe P、Ca P、酸可溶性有机磷(ASOP)、残余有机磷(ROP).国内金相灿等[7]的方法与C J法一脉相承,欧盟推荐发展方法(S MT法)[29]在选取浸取剂时的思路也与C J法一致.这两类方法是目前国内外应用较多的方法[31 36].金相灿法是对C J法中连续提取法的改进,将磷的形态分为LP、A l P、Fe P、C a P、OP和Org P等6种形态.NH4C l提取LP,中性NH4F提取铝结合态磷,N a OH提取铁结合态磷,稀硫酸提取钙结合态磷,还原络合提取闭蓄磷.该法每级磷形态的释放活性有明显不同,LP很容易释放;铝结合态磷和铁结合磷在氧化还原环境改变的条件下可以转化成可溶解性磷,进入上覆水体,具有很强的释放活性,也称为活性磷,它们是内源负荷的重要来源;钙结合态磷和闭蓄态磷则很难被分解参与短时相的磷循环.因为各级释放活性的差异,使用该法可以得到湖泊沉积物中可释放磷的丰度,以便进行沉积物 水界面的释放模型的建立,预测湖泊富营养化状况.SMT法[29]是由欧盟推荐发展的方法,该方法将磷形态划分为总磷(TP)、无机磷(I P)、有机磷(OP)、非磷灰岩磷(N on apatite I norgan ic Phosphorus,NA I P)及磷灰岩磷(Apatite Phosphor us,AP).该法分为三步:(1)将冷干沉积物450 煅烧3h,残渣用3.5m ol L-1HC l浸取,测其SRP(溶解态活性磷),得到TP;(2)将冷干沉积物用1m ol L-1HC l浸取测其SRP,得到I P,其残渣煅烧后用1m o l L-1H C l浸取1期李辉等:湖泊内源氮磷污染分析方法及特征研究进展285测其SRP,得到OP;(3)将冷干沉积物用1m ol L-1Na OH浸取测其SRP,取其残渣加入1m ol L-1H C l测其SRP,得到AP,再取其上清液加入3.5m ol L-1HC l测其SRP,得到NA I P.其中每一步的冷干沉积物样品质量均为0.2g.SMT法提取的步骤并非连续的,因此该法可同时进行各个形态的测定,能大量节省时间;其次,该方法在提取各形态磷时具有统一性,都是通过HC l来提取上清液中的SRP,各测定结果之间具有可对比性;此方法实验所需的试剂均为常用试剂,提高了方法的适用性及普遍性.W illia m s等[25]提出的方法并没有遵循C J法分级思路,该法更多的是从沉积物中磷的矿物形态上来来进行区分,将沉积物磷分为磷灰岩磷(AP),非磷灰岩磷(NAP)以及有机磷.这样的分级方法更为简单,着重点在于磷的矿物性和来源.部分学者也沿用了这一思想,例如Ruttenber g[20]提出的SEDEX提取法,将沉积物分为可交换性磷、碳酸氟磷灰岩盐(CF AP)、氟磷灰岩磷(FAP)、有机磷等,这两种方法现多用于海洋和河口沉积物中磷的分级研究.Ruttenber g法[20]考虑到了每一级提取的磷可能重吸附于残余沉积物,因此,在每级提取之前都用M gC l2溶液和H2O分别洗涤沉积物;但是该方法提取剂效率不高[37].实际上,S MT[29]法尽管在选用提取剂时思路与C J法相同,但分类也是来源于W illia m s等[25]的方法.表2列出了几种重要的磷分级提取方法.表2 几种重要的沉积物中磷分级提取方法Tab l e2 I m portant m ethods o f phospho rus frac ti on ex tracti on i n sedi m ents研究者提取剂分级形态参考文献1m ol L-1NH4C l不稳性磷0.5m ol L-1NH4F,pH=8.2铝结合态磷Chang&J ackson(1957)0.1m ol L-1N a OH铁结合态磷[24]0.5m ol L-1HC l钙结合态磷CBD可还原性水溶性磷Na OH惰性磷CBD非磷灰岩磷W illia m s等(1976)0.1m ol L-1N a OH[25]0.5m ol L-1HC l磷灰岩磷1m ol L-1N H4C l水溶性磷0.5m ol L-1NH4F,中性铝结合态磷金相灿等(1990)0.1m ol L-1N a OH铁结合态磷[7]0.5m ol L-1H2SO4钙结合态磷CBD闭蓄态铁/铝磷1m ol L-1M g C l2,p H=8可交换性磷CBD碳酸氟磷灰岩Ru ttenberg(1992)Na AC/N a H CO3,p H=4氟磷灰岩,钙磷[20]1m ol L-1HC l氟磷灰岩磷550 灰化,1m ol L-1HC l有机磷1m ol L-1H C l C a P1m ol L-1Na OH Fe/A l PPardo等(2004) 3.5m ol L-1HC l有机磷[29]无机磷1.2.2 沉积物中磷分级浸取应用以及分布特征研究金相灿等[38 39]采用SMT法对长江中下游7个浅水湖泊、太湖东北部沉积物中磷的赋存形态的研究、M o turi等[40]采用Ruttenber g的SEDEX法对印度德里工业区的排水沟渠中的沉积物磷的研究、章婷曦等[41]采用S MT法对太湖不同营养水平湖区沉积物中磷的研究都表明,沉积物中的磷主要形态是无机磷,而污染沉积物中的Fe/A l P明显升高,相对清洁沉积物中的Fe/A l P含量则相对较低,这说明沉286环 境 化 学30卷积物污染主要使Fe/A l P的含量增加,而Ca P或A cet P含量则变化不大,这可能是因为C a P是本地自生,与人类活动关系不大,而Fe/A l P含量则与人类活动有较强相关性.这说明不同污染程度的湖泊沉积物中磷的分布特征会有较大区别,而Ka iserli等[42]采用轻微修改的Psenner[27]的分级方法,在北希腊两个不同富营养化程度湖泊(Lakes Vo l v i&K or onia)中的研究结果印证了这一点.磷在沉积物垂向上分布规律较为复杂[33,41],这主要与湖泊生态条件、污染物排放程度以及沉积条件有关.Ruttenberg[20]研究结果表明,各形态磷在沉积物柱状上的分布呈现 沉降 降解 堆积 三阶段特征,这反映了早期成岩作用的结果.可交换性磷(Ex P)的垂直变化特征较为明显,随深度增加Ex P含量降低,Fe P在次表层以上(表层至10 15c m深)的垂直变化,主要是沉积物中氧化还原电位随深度加深而降低,导致Fe P释放的缘故;在次表层以下的深层由于有机磷的释放,会导致Fe P含量上升.Cho i 等[43]的研究结果也证明了这一点.沉积物粒度是影响不同形态磷分布的重要因素,这是因为不同沉积物粒度具有不同的比表面积以及有机质等,因此对沉积物吸附和释放磷酸盐的能力有着重要影响[44].梁海清等[44]研究表明,沉积物中的有机磷主要以中等活性有机磷存在,有机磷的分布与沉积物粒度密切相关,而有机磷主要分布在细粒度沉积物中.1.2.3 沉积物中磷分级浸取存在的问题以及发展趋势尽管对于沉积物中磷分级浸取研究众多,但是由于沉积物中磷形态的易变性和复杂性,迄今为止,仍然没有一套通用的沉积物磷分级分离的方法;对于研究者而言,为保证数据的准确性,不得不采取两种或两种以上的方法进行分级浸取,工作量非常繁重.因此十分有必要在今后的研究工作中,寻找更有效的、选择性专一的浸取剂,同时对方法的研究不仅仅考虑化学形态上的分类准确度,还应兼顾操作上的便利程度以及分级形态之间的可比性2 沉积物 水界面氮磷迁移释放研究各种来源的营养盐进入湖泊,经过一系列物理、化学及生物化学作用,其中一部分或大部分逐渐沉积到湖底,当湖泊外部环境条件发生变化,沉积物中的营养盐又释放出来进入水中,并延续湖泊的富营养化[7].沉积物 水界面的氮磷迁移扩散不仅受沉积物对营养盐的吸附解吸的影响,还与各种理化参数有关.因此研究沉积物 水界面的氮磷迁移释放行为,对湖泊富营养化预测以及治理都有着重要意义.2.1 沉积物 水界面氮释放行为及其影响因素沉积物 水界面的氮释放行为研究多集中在对NH+4 N、NO3 N、NO2 N等形态氮的扩散转移通量的研究[12,45 47],氮扩散通量即是指氮的(自湖水)输入通量与输出(至湖水)通量之间的差值.计算沉积物 水界面的氮扩散通量,需要研究其主要界面扩散过程.宋金明等[45]指出,水 沉积物界面上存在固体颗粒的沉积和水相间颗粒孔隙的侵入,这一平流过程与界面上下浓度梯度引起的扩散转移过程,是化学物质通过沉积物 水界面质量转移的两个主要过程.而这与B l a ckburn等认为水体中氮含量的急剧增加是由间隙水与上覆水之间的交换引起的这一结果相似[48].硝化和反硝化作用是沉积物 水界面氮迁移释放的主要机制.沉积物中的有机氮矿化生成NO-3、NH+4等无机态氮扩散进入上覆水体,增加水体中氮含量;同时,上覆水体中的NO-3也可扩散至沉积物厌氧层,在反硝化细菌作用下,被还原为N2和N2O等气体形态,并逸散至大气层中,降低水体中的氮含量[49].因此,目前的有些研究针对沉积物 水界面的反硝化速率进行[49 50].Con ley等[51]对波罗的海F i n land湾沉积物 水界面的NO-3、NO-2、NH+4三种形态氮的扩散通量进行了研究,结果表明NH+4、NO-3为氮界面交换的主要组分,且NH+4变化范围最大,而NO-2扩散通量很小,仅为0.1 2.45 m o l N m-2 h-1;这与Bola lek等[52]利用F ick s第一定律计算的Puck湾沉积物 水界面氨氮扩散通量规律一致,后者的研究计算结果表明,氨氮总是由沉积物向上覆水体释放,且具有较大的空间差异性;刘素美等[53]对渤海莱州湾的模拟实验也表明NH+4主要由沉积物向水体净扩散且变化范围较大.Nedw ell等[54]和Tri m m er等[55]利用培养箱对英国Great Ouse河口沉积物 水界面的NO-3、NO-2、NH+4的扩散通量逐月测定,结果表明沉积物是NO-3的汇、是NH+4的源,而NO-2扩散通量极小.综述可知,沉积物 水界面氮的主要扩散组分是NH+4、NO-3,而NO-2扩散量很小;NH+4变化范围较大,且沉积物。

杭州西湖北里湖沉积物氮磷内源静态释放的季节变化及通量估算

杭州西湖北里湖沉积物氮磷内源静态释放的季节变化及通量估算

杭州西湖北里湖沉积物氮磷内源静态释放的季节变化及通量估算刘静静;董春颖;宋英琦;孙培德【摘要】通过采集北里湖不同季节的柱状芯样,在实验室静态模拟沉积物氨氮(NH+4-N)和可溶解性磷酸盐(PO3-4-P)的释放,同时研究了沉积物间隙水中NH+4-N及PO3-4-P的垂直分布特征.结果表明,沉积物间隙水NH+4-N随深度的增加有上升的趋势,PO3-4-P随深度的增加呈先升后降的趋势.氮、磷营养盐在沉积物—水界面均存在浓度梯度,表明存在自间隙水向上覆水扩散的趋势.沉积物NH+4-N在春季、夏季、秋季、冬季的释放速率分别为0.074 mg·m-2· d-1、0.340mg· m-2· d-1、0.087 mg· m-2· d-1、0.0004 mg·m-2·d-1,pO3-4-P的释放速率则分别为0.340 mg·m-2·d-1、0.518 mg·m-2·d-1、0.094 mg·m-2·d-1、-0.037 mg· m-2·d-1.不同采样点表现出明显的季节和空间差异性,释放速率表现为夏季>春季、秋季>冬季.根据静态模拟出的不同季节下内源氮、磷释放速率计算,全湖内源氮、磷营养盐的贡献分别为0.0037、0.0057t/a.该研究可为北里湖富营养化及内源污染的治理提供基础数据.【期刊名称】《生态学报》【年(卷),期】2012(032)024【总页数】8页(P7932-7939)【关键词】沉积物;氮;磷;内源释放;释放通量;北里湖【作者】刘静静;董春颖;宋英琦;孙培德【作者单位】浙江工商大学环境科学与工程学院,杭州310012;浙江工商大学环境科学与工程学院,杭州310012;浙江工商大学环境科学与工程学院,杭州310012;浙江工商大学环境科学与工程学院,杭州310012【正文语种】中文沉积物是浅水湖泊营养物质的重要蓄积库[1],可通过对流、扩散、沉积物再悬浮等过程程向上覆水中释放营养物质[2]。

海洋环境化学 第6章 富营养化

海洋环境化学 第6章 富营养化
• 海域的第一次厌氧环境对底栖大型生物的破坏尤为严
重,它可以使经过多年才建立起来的底栖生物群落毁 于一旦。
对整个生态系统结构和生物分布的影响
• 由于水体富营养化,在改变浮游植物结构的同时,也改变
了整个生态平衡。如在水体富营养化以前通常是硅藻占支 配地位,这时鲑鱼等高等鱼种的生产量较高。
• 而在水体富营养化之后,水体中的浮游植物便以鞭毛藻类
第四章、富营养化和赤潮
一、什么是富营养化?
富营养化(eutrophication)是指湖泊、河
流、海洋、水库等水体中氮、磷等植物营养 物质含量过多所引起的水质污染现象。 由于水体中氮、磷营养物质的富集,引起藻 类及其他浮游生物的迅速繁殖,使水体溶解 氧含量下降,造成藻类、浮游生物、植物、 水生物和鱼类衰亡甚至绝迹。
藻 类 组 成 相 近 , 即 P∶N∶O( 原 子 比 ) = 1∶16∶106 ; P∶N∶C( 质 量 比 ) =1∶7.2∶41。
• 但是,过量的氮、磷营养物质的存在,
使得海水过渡的“肥沃”引起藻类大量繁 殖,这样的现象称为富营养化。
三、富营养化的影响
• 有利的:
适度的富营养化对于当地水产养殖和渔业
有机物,而不至于导致多余有机物的细菌分解,从 而使底层水处于厌氧状态。
• 但是如果上层水体过份“肥沃”,藻类大量繁殖,
情况就不同了。除了多余的有机物在分解时消耗氧 气以外,底栖动物的大量繁殖也要消耗大量的氧气。
对底栖生物的影响 2
• 在一些垂直对流差及水交换不良的海区,氧消耗量就
有可能超过供应量,从而使底层水体处于厌氧环境。 这时一些厌氧细菌通过消耗硫酸盐和硝酸盐来进行新 陈代谢。其结果是水体中出现象H2S、NH3之类 的有毒气体,最后必定引起底栖生物的大量死亡。这 又给厌氧细菌提供了大量的高质量的“食物”使其繁 殖更迅速,从而形成恶性循环。

湖泊底泥疏浚对沉积物再悬浮及营养盐负荷影响的模拟

湖泊底泥疏浚对沉积物再悬浮及营养盐负荷影响的模拟

telaigo tlupn e oi T S nu degdadde gdw t ou ee7 7a d3 8t so a o eiia h odn fo seddsl ta s d( S )i n rde n r e a rclmnw r . n . i f ht ft t l d e me t h n i
柱TS S 在第 2 达到峰值 , h 为初始值 的 3 8 ; . 倍 未疏浚水柱 T S S 含量沉 降过程最初 1 迅 速降低 了 8 . % , h 4 O 而疏浚 水柱
T S含量在沉降 3h后趋于平衡. S 伴随着 沉积物 的再悬浮过程 , 浚与未疏浚对照水柱中 T 疏 P含量均在第 5h达到最大 , 分 别增加负荷 7 . 8 6和 9 . g m . 2 2m / 就短时效而肓 , 底泥疏浚后沉积物的再悬浮过程显著受到抑制 , 并能够显著地 减小沉积 物再悬浮过程 中溶解性磷酸盐的释放 ; 但对水柱 中总磷 、 总氮、 铵氮 、 硝酸盐和亚硝酸盐含量变化影响较小. 关键词 : 底泥疏浚 ; 再悬浮; 营养盐负荷 ; 太湖
v le rs e t ev a tee do ew n . a e i u b n e( ) T Sd ce sdt 1 % o ia c ne t nteu de g dw — a . ep e v l . t h n f h idw v s r a c 5 h . S era e 6 u i t dt o f nt l o t n rd e a i i ni h
P. Chn R. ia)
Ab t t s r :A i lt d e p rme tu i g a n w s a e s d me tr s p n i n a p r t s h sb e o d ce o i v sia e t e i 。 ac smu ae x e i n sn e Y—h p e i n e us e so p a a u a e n c n u t d t n e t t h n g l e c fd e g n n s d me tr s s e so n h y a c f n tin o d n n wae ou n e h o u o n — v fu n e o r d i g o e i n e u p n in a d t e d n mi so u re tl a i g i t rc l mn u d r t e c n n n wi d wa e d su b n e. n h o tmi ae e i n r m iin y,L k a h it r a c a d t e c n a n td s d me t o Me l g Ba f a a e T i u,h sb e e e t d i i t d .Th e u t h w h t a e n s l ce n t ssu y h e r s l s o t a s

人工湿地的碳氮磷循环过程及其环境效应

人工湿地的碳氮磷循环过程及其环境效应

人工湿地的碳氮磷循环过程及其环境效应人工湿地是一种模拟自然湿地生态系统的人工构筑物,经过人为设计和管理,具有一定的水生植被,并通过土壤和植物的自净作用来处理废水和农业污染物。

人工湿地在水资源保卫、水质改善和生态系统恢复等方面发挥了重要的作用。

其中,碳、氮和磷是人工湿地中的重要元素,它们的循环过程对湿地的功能和环境效应起着至关重要的作用。

起首,人工湿地对碳的循环具有重要的作用。

湿地环境中的植物通过光合作用吸纳大气中的二氧化碳,固定为有机碳,并通过生物降解作用释放为二氧化碳。

湿地中植物和水体中的有机物还可在缺氧环境下发生厌氧分解,生成甲烷等温室气体,并通过微生物活动进一步氧化为二氧化碳。

此外,湿地中的沉积物具有较高的有机质含量,是碳的重要储库。

因此,人工湿地在整体上可减缓大气中碳的增加速度,对缓解气候变化具有乐观的影响。

其次,人工湿地对氮的循环也具有重要意义。

氮是农田和废水中的主要污染物之一,湿地通过水体中悬浮物和植物的吸纳,以及微生物的作用,将水中的氨态氮和硝态氮转化为氮气,实现氮的去除。

另外,湿地中的生物降解作用也会释放一定量的氨氮和硝酸盐,进一步影响水体中氮的循环。

此外,湿地中还存在着硝化-反硝化过程,其中硝化过程是指氨态氮和亚硝酸盐被氧化为硝酸盐,而反硝化过程是指硝酸盐被还原为氮气并释放到大气中。

这两个过程的互相作用使得人工湿地对氮的循环具有复杂性和多样性。

除了碳和氮循环外,人工湿地对磷的循环也有重要影响。

磷是农田和废水中的主要污染物之一,湿地通过植物的吸纳和沉积物的沉积,将磷从水体中去除。

湿地植物通过根系吸纳水中的无机磷,进入植物体内,一部分以有机磷的形式储存于植物体内,一部分以有机废弃物的形式释放到湿地的沉积物中。

湿地中的沉积物是磷的重要储库,它们可以长期储存磷,降低磷污染的风险。

此外,湿地中的微生物也可以通过矿化作用将有机磷转化为无机磷,进一步影响水体中磷的循环。

关于人工湿地的环境效应,它主要体此刻净水、保卫生态和改善水质等方面。

沉积物中总氮总磷测定

沉积物中总氮总磷测定

(四)沉积物总磷测定方法---SMT方法概述:SMT (The Standards,Measurements and Testing Programme)是欧洲标准测试委员会框架下发展的淡水沉积物磷形态分离方法,是一种标准的测试程序。

对于在湖泊修复中水质的监测和水资源领域的管理,尤其是实验室分析过程的质量保证和数据可比性中是一种很有价值的测试方法。

磷是湖泊生态系统中一种重要的生源要素,同时也是引起水体富营养化的重要因素,磷在海-陆相互作用中的迁移、循环会直接影响到水体的初级生产力,并因此影响到全球的碳循环。

此外,沉积物中总磷(TP)含量增加主要来自铁、铝磷(Fe/Al-P),其次是有机磷(OP)并且TP和无机磷(IP)之间呈现显著正相关关系,同时,沉积物中TP分布主要受IP控制。

因此,研究沉积物中磷是揭示湖泊富营养化的其中一个限制性因子。

相关研究主要利用此方法测定了总磷含量、与各形态磷、有机质以及与沉积物的理化性质之间的相关关系等, 有助于研究水体中磷的形态、动态循环以及磷在水-沉积物界面的迁移转化过程,以期为湖泊富营养化中磷循环机制提供科学的理论依据。

1、方法原理经高温灰化,沉积物样品中的含磷矿物及有机磷化合物全部转化为可溶性的正磷酸盐, 在酸性条件下与钼锑抗显色剂反应生成磷钼蓝,在880 nm波长出测定吸光度。

在一定浓度范围内,样品中的总磷含量与吸光度值符合朗伯比尔定律。

2、需要的设备与实验条件所需要设备主要均为实验室常用设备,主要包括紫外分光光度计、高压灭菌锅以及常规实验器皿等,一般实验室均有条件完成该项工作。

3、所需试剂及操作步骤3.1 所需试剂(1)5 mol^L-1 H2SO4:70 mL浓硫酸溶于500 mL水中存储在玻璃瓶中,常温下保存;(2)酒石酸锑钾溶液:准确称取1.3715 g酒石酸锑钾(C8H4K2012sb2)于500 mL容量瓶中定容,充分摇匀后将该溶液贮存在棕色或其他试剂瓶(玻璃瓶)中,将其置于4 ℃下保存。

5海洋沉积物中氮的形态及其生态学意义

5海洋沉积物中氮的形态及其生态学意义

第45集海洋科学集刊N o145 2003年5月ST UDIA M ARINA SINICA M ay,2003海洋沉积物中氮的形态及其生态学意义*吕晓霞1,2宋金明1(1中国科学院海洋研究所海洋生态与环境科学重点实验室)(2中国科学院研究生院)海洋沉积物作为生源要素氮的重要源与汇,在其生物地球化学循环中起着至关重要的作用。

该项研究旨在查清海洋沉积物中氮的存在形态及其生态学意义。

氮是生物生命活动必需的营养要素,海洋中的氮往往是海洋初级生产力的限制因子,氮的吸收与再生释放在估算海洋新生产力和生源要素的生物地球化学循环率上也有重要贡献。

海洋沉积物中的氮作为海水中氮的重要供给源是海洋生物赖以生存的重要物质基础,对维持海洋生态平衡、修复失衡的海洋生态环境具有重要意义。

但由于不同海区海洋沉积物的来源和环境不同,氮的形态和含量亦不相同,可被生物吸收和利用的数量就不相同,因此造成了不同海区生物种群和环境不同,进而影响生态环境。

因此,研究海洋沉积物中氮的形态,了解各个形态与沉积物中生物种群及与环境的关系,确定其生物和化学活性,查清氮不同形态的生态学功能,对于深入探讨海洋生物资源可持续利用的方法和策略具有重要意义。

本文主要阐述海洋沉积物中氮的存在形式与分布、氮的早期成岩和去营养化作用、硝化和反硝化作用以及氮与生物特定种群的关系等,探讨了影响海洋沉积物中的氮循环的主要因素,并分析了海洋沉积物中的氮与生态系的关系,以期对研究氮的海洋生物地球化学过程有所帮助。

一、海洋沉积物中氮的形态与分布由于海洋是一个复杂的生态体系,海洋中的化学物质以多样的、复杂的形态存在。

尽管目前专门从事沉积物中氮形态研究的人员较少,但纵观海洋沉积物中氮的矿化作用、硝化-反硝化作用及通量研究等,仍可以得出沉积物中氮的形态与沉积物含水量、Eh、pH、温度、沉积物中的生物种群及上覆水体的各种物理化学条件等因素有关。

通常情况下,随着沉积深度的加深,沉积物中含水量逐渐降低,Eh、pH值也随着降低,反硝化作用、NO-3的氨化作用及有机氮的矿化作用增强,致使有机碳与有机氮的比值升高, (NO3+NO2)-N及有机氮含量降低,NH4-N含量增高。

沉积物中总氮总磷测定

沉积物中总氮总磷测定

(四)沉积物总磷测定方法---SMT方法概述:SMT(The Standards,Measurements and Testing Programme)是欧洲标准测试委员会框架下发展的淡水沉积物磷形态分离方法,是一种标准的测试程序。

对于在湖泊修复中水质的监测和水资源领域的管理,尤其是实验室分析过程的质量保证和数据可比性中是一种很有价值的测试方法。

磷是湖泊生态系统中一种重要的生源要素,同时也是引起水体富营养化的重要因素,磷在海-陆相互作用中的迁移、循环会直接影响到水体的初级生产力,并因此影响到全球的碳循环。

此外,沉积物中总磷(TP)含量增加主要来自铁、铝磷(Fe/Al-P),其次是有机磷(OP)并且TP和无机磷(IP)之间呈现显著正相关关系,同时,沉积物中TP分布主要受IP控制。

因此,研究沉积物中磷是揭示湖泊富营养化的其中一个限制性因子。

相关研究主要利用此方法测定了总磷含量、与各形态磷、有机质以及与沉积物的理化性质之间的相关关系等,有助于研究水体中磷的形态、动态循环以及磷在水-沉积物界面的迁移转化过程,以期为湖泊富营养化中磷循环机制提供科学的理论依据。

1、方法原理经高温灰化,沉积物样品中的含磷矿物及有机磷化合物全部转化为可溶性的正磷酸盐,在酸性条件下与钼锑抗显色剂反应生成磷钼蓝,在880 nm波长出测定吸光度。

在一定浓度范围内,样品中的总磷含量与吸光度值符合朗伯比尔定律。

2、需要的设备与实验条件所需要设备主要均为实验室常用设备,主要包括紫外分光光度计、高压灭菌锅以及常规实验器皿等,一般实验室均有条件完成该项工作。

3、所需试剂及操作步骤3.1 所需试剂(1)5 mol·L-1 H2SO4:70 mL浓硫酸溶于500 mL水中存储在玻璃瓶中,常温下保存;(2)酒石酸锑钾溶液:准确称取1.3715 g酒石酸锑钾(C8H4K2O12Sb2)于500 mL容量瓶中定容,充分摇匀后将该溶液贮存在棕色或其他试剂瓶(玻璃瓶)中,将其置于4 ℃下保存。

基于SWAT模型的南四湖流域非点源氮磷污染模拟及湖泊沉积的响应研究

基于SWAT模型的南四湖流域非点源氮磷污染模拟及湖泊沉积的响应研究

基于SWAT模型的南四湖流域非点源氮磷污染模拟及湖泊沉积的响应研究基于SWAT模型的南四湖流域非点源氮磷污染模拟及湖泊沉积的响应研究摘要:南四湖流域是一个草地区和农田区错综交织的流域,具有典型的非点源污染特征。

本研究拟采用SWAT(Soil and Water Assessment Tool)模型模拟南四湖流域的氮磷污染输送过程,并探讨不同时期湖泊沉积物中的氮磷含量响应。

研究结果显示,南四湖流域的农业活动对流域水体中的氮磷负荷具有很大影响,而湖泊沉积物可以在一定程度上吸附氮磷污染物,起到净化水体的作用。

1. 引言随着经济的快速发展和农业生产的增加,我国农田排放的氮磷污染物逐渐成为水环境的主要污染源之一。

其中,南四湖流域的氮磷污染问题备受关注。

本研究旨在利用SWAT模型模拟南四湖流域的非点源氮磷污染和湖泊沉积的响应,为该区域水环境的治理和保护提供科学依据。

2. 方法2.1 研究区域选取本研究选取南四湖流域作为研究区域,该区域位于草地区和农田区的过渡地带,具有典型的非点源污染特征。

2.2 SWAT模型简介SWAT模型是美国农业部开发的水文过程模型,可以模拟流域内水文循环和污染物的输送过程,适用于非点源污染研究。

2.3 数据获取和预处理收集研究区域的气象数据、土地利用数据、数字高程模型数据等,并进行预处理。

2.4 模型参数设置根据研究区域特点,设置SWAT模型的参数,包括水文参数和氮磷循环参数等。

2.5 模型验证和应用利用已有的水文数据和水质监测数据对模型进行验证,并采用模拟实验的方式预测不同情景下的氮磷污染物输送过程。

3. 结果与讨论3.1 模型验证结果将模拟结果与实际观测数据进行比较,验证模型的准确性和可靠性。

3.2 氮磷污染模拟结果模拟了不同情景下南四湖流域的氮磷污染物输送过程,并分析了农业活动对流域水体中氮磷负荷的影响。

3.3 湖泊沉积物中氮磷含量的响应通过采集湖泊沉积物样品进行分析,研究了不同时期湖泊沉积物中的氮磷含量,并与模型模拟结果进行对比。

基于SWAT模型的南四湖流域非点源氮磷污染模拟及湖泊沉积的响应研究

基于SWAT模型的南四湖流域非点源氮磷污染模拟及湖泊沉积的响应研究

基于SWAT模型的南四湖流域非点源氮磷污染模拟及湖泊沉积的响应研究摘要:随着人类活动的不断增加,水体非点源污染已成为世界各地面临的严重问题之一。

本文选取南四湖流域作为研究对象,以SWAT模型为工具,模拟了该流域内非点源氮磷污染的分布及其对湖泊沉积的影响。

1. 引言南四湖是一个重要的淡水湖泊,其水质对于当地生态环境和人民的生活具有至关重要的意义。

然而,随着南四湖周边农业和城市化的发展,流域内非点源氮磷污染问题日益突出。

因此,研究南四湖流域的氮磷污染分布及其对湖泊沉积的影响对于水环境保护和景观恢复具有重要意义。

2. 方法本研究采用SWAT模型进行湖泊流域非点源氮磷污染的模拟。

首先,对研究区域进行划分,并建立数字高程模型和土地利用数据。

然后,根据气象数据和土地利用情况,设定入湖径流和非点源污染的起始条件。

接着,输入氮磷源的参数,并考虑沉积物的淤积和释放过程。

最后,通过模拟得出湖泊沉积物中氮磷含量的变化和分布。

3. 结果与讨论模拟结果显示,南四湖流域的氮磷污染主要来源于农田产氨和化肥使用,城市污水也是一个重要的污染源。

模型表明,氮磷含量随着入湖水体流向南四湖而增加,并在湖泊沉积物中积累。

在农田肥料使用量和污水处理效率不断提高的情况下,南四湖沉积物中的氮磷含量仍然呈现上升趋势。

4. 影响因素分析为了更好地理解非点源氮磷污染的影响因素,本研究还对农田表面、土壤和水体的关系进行了分析。

结果表明,土壤的氮磷含量与农田表面的农作物类型以及化肥使用量密切相关。

此外,降雨量和流速也对非点源氮磷污染具有一定的影响。

5. 结论与建议本研究基于SWAT模型对南四湖流域非点源氮磷污染的模拟结果显示,流域内的氮磷污染主要受农田产氨和化肥使用的影响。

为了减轻湖泊沉积物中的氮磷含量,需要采取一系列的全面措施,包括优化农田管理、提高农业环保意识、加强污水处理等。

此外,长期监测湖泊沉积物中的氮磷含量,及时调整环境保护和水资源管理策略也是十分必要的。

湖泊内源性氮磷释放

湖泊内源性氮磷释放

湖泊内源氮磷迁移释放姓名(XXXX单位,籍贯邮编)摘要湖泊的内源氮磷污染已成为湖泊富营养化治理的一大难题。

本文总结了沉积物—水界面氮磷迁移释放行为,提出了目前研究存在的问题,并对未来发展趋势和研究方向进行了展望,以期为湖泊内源氮磷污染机理分析和湖泊富营养化治理控制技术提供参考。

关键词富营养化内源氮磷迁移释放前言大量湖泊的水体富营养化已经成为全世界面临的一个重大环境问题。

富营养化一词原用于描述植物营养物浓度增加对水生态系统的生物学效应,但富营养化很难严格定义,因为任何一个水体的营养性质描述常常是相对于以前的情况,而且每个水体对营养盐相应存在差异。

湖泊富营养化的特征性表现即藻类水华现象。

藻类水华暴发会导致水体缺氧、鱼类死亡、产生异味及藻毒素释放等,给湖区人民的正常生产和生活产生严重影响[1]。

据调查显示,全球范围内有40%左右的湖泊和水库遭受不同程度的富营养化;而我国,到20世纪90年代中后期,富营养化湖泊已占被调查湖泊的77%[2]。

由此可见,我国已成为世界上湖泊富营养化范围及程度最严重、面临问题最严峻的国家之一。

有关分析研究表明,氮和磷是限制水生植物生产量最主要的营养元素。

水体中氮磷浓度过高,导致湖泊由大型水生植物为主的清洁型—草型稳态退化为浮游植物为主的浑浊型—藻类稳态,使得藻类水华频发[3]。

因此,氮磷在湖泊中水体及沉积物中迁移释放行为,对湖泊富营养化起着决定性的作用。

伴随着相关法律法规的出台及截污工程等措施的实施,外源性污染物已经相对有所控制[4],因此对内源氮磷迁移释放行为及其影响因素的分析研究显得格外重要。

水体中氮磷含量的测定,是了解湖泊水质情况的基本方法,故也有了许多对测定方法的研究。

本文总结国内外学者在内源氮磷迁移释放行为和测定方法的研究,以期为湖泊富营养化机理及其控制技术等方面的研究提供借鉴。

1 沉积物—水界面氮磷迁移释放研究各种来源的营养盐进入湖泊,经过一系列物理、化学及生物化学作用,其中一部分或大部分逐渐沉积湖底,当湖泊外部环境条件发生变化,沉积物中的营养盐又释放出来进入水体中,并延续湖泊的富营养化[5]。

湖泊水-沉积物界面过程对营养物质迁移转化的影响

湖泊水-沉积物界面过程对营养物质迁移转化的影响

973计划课题2004年度总结报告项目名称:湖泊富营养化过程与蓝藻水华暴发机理研究课题名称:湖泊水-沉积物界面过程对营养物迁移转化影响研究课题编号:2002CB412304课题负责人:金相灿刘建彤课题依托单位:中国环境科学研究院中国科学院水生生物研究所二零零四年十二月十五日本课题自2003 年启动以来,紧紧围绕国家需求、课题任务书的任务要求和目前国际、国内的研究进展,开展了大量的野外调查检测、室内分析和模拟试验研究工作。

下面从以下几个方面,对整个第四课题在2004 年度的研究工作做一概括性总结。

一、年度计划执行情况1.年度计划完成情况 1.1课题拟完成的研究内容和预期目标根据课题任务书的要求,本课题第二年度应完成下列研究内容。

1.1.1 掌握水体理化因素和生物因素对生源要素在水-沉积物界面形态转化的影响;1.1.2 研究富营养化条件下,水-沉积物界面微生态结构的维持机理;1.1.3 确定污染湖区主要生源要素的形态与生物可利用性之间的关系;1.1.4 掌握跨介质间营养物的动态赋存以及热力学平衡与营养状态的关系;1.1.5 在国内外核心刊物上发表文章4 篇,其中中国环境科学研究院和中科院水生生物研究所分别发表 2 篇。

1.2 课题完成的研究内容和目标1.2.1浅水湖泊水-沉积物界面物质交换过程及其水动力影响机制现场调查采样,分析,完成冬、夏两季样品采集工作,进行实验室内外分析数据的初步整理。

初步总结完成沉积物-水界面氧化还原条件的控制机理研究。

1.2.2 湖泊营养物的微生态转化及生化动力学针对长江中下游的五大浅水湖泊(滇池、洪泽湖、洞庭湖、巢湖和太湖)和两个城市湖泊(武汉月湖和南京玄武湖)进行现场调查采样、分析,进行实验室内外分析数据的整理,总结长江中下游湖泊的基本理化特征和营养状况;同时重点研究太湖不同富营养水平湖区,分春夏秋冬四季对太湖流域的梅梁湖鼋头渚、梅梁湾小丁湾、梅梁湖蠡园、贡湖、东太湖等湖区进行野外调查,分析上覆水、沉积物样品中各种理化性质。

洱海是云贵高原第二大淡水湖泊。目...

洱海是云贵高原第二大淡水湖泊。目...

摘要摘要洱海是云贵高原第二大淡水湖泊。

目前洱海处于富营养化初级阶段,水质相对较好,但其沉积物氮、磷营养水平已高于大多数富营养化湖泊。

高有机质、高氮磷底质条件必然存在较大释放风险。

本研究选择洱海不同湖区3 个点位柱状沉积物,在现场原位模拟条件下,研究pH 值和溶解氧耦合作用对上覆水氨氮、硝氮浓度变化以及沉积物氮赋存形态的影响,结果表明:(1)厌氧条件下上覆水氨氮浓度均高于好氧条件下的氨氮浓度,最高可达好氧条件下的5 倍。

但厌氧条件下的上覆水硝氮浓度与其在好氧条件下的浓度差异较小,三个点在不同溶解氧条件下的上覆水硝氮平均浓度均保持在0.1mg/l 到0.12mg/l 之间。

(2)好氧条件下不同pH 值之间上覆水氮浓度差异较小,而厌氧条件下不同pH 之间洱海氮浓度变化则较为明显。

(3)不同溶解氧和pH 状态培养体系上覆水中的氮浓度在培养过程中都有升高现象。

但在不同柱子之间存在差异,其中一点在pH=6,厌氧的条件下,上覆水中氨氮浓度上升的最高,但另外两点均是在pH=10,厌氧条件下,氨氮浓度上升最大,而硝氮浓度变化在各个处理之间的差别甚小。

(4)由于选取的这三个点沉积物理化性质差异,造成溶解氧对沉积物各形态氮释放转化影响程度不同,培养后氮污染程度较高的沉积物中各形态氮含量明显低于氮污染较轻的沉积物,培养后沉积物中各形态氮变化趋势存在较大差异。

由于目前洱海水体整体上均处于好氧阶段,通过本研究结果可推断水体pH 值的变化将不会对洱海上覆水中氮浓度有太大影响,但如果不能有效控制洱海周围的外源污染,一旦暴发大面积水华,极有可能引起水体环境条件变化,溶解氧含量降低,pH 值升高,根据本实验结果得知这些环境条件的变化将会使上覆水氨氮浓度上升,使原本受外源污染较小,不易发生水华的区域上覆水氨氮浓度极有可能会由于内源污染加重而受到巨大影响。

因此要加大洱海外源污染控制,避免因外源污染而造成环境条件变化从而引起内源污染加重,形成恶性循环,加剧洱海水体的富营养化。

五里湖不同疏浚深度沉积物对氮磷释放的影响

五里湖不同疏浚深度沉积物对氮磷释放的影响
中 图分 类 号 :X1 1 3. 2 文献 标 识 码 :A 文章 编 号 : l7 - 15( 0 7)0 ・7 00 6 22 7 2 0 30 3 -5
疏 浚 的 目的 是 通 过 底 泥 的挖 掘 去 除 底 泥 中所 含 的污染 物 ,清除 污染 水体 的 内源 ,减 少 底 泥污染 物 向水 体 的释 放 【 引 国外一 些 发 达 国家 和 地 区 , l 。 儿
积 约 56 . , 均水 深 2 底 泥 深约 1 p . 平 m, . m, H85 3 左 右 , 体 中 NH4 N 和 P 3 p及总磷 和总氮 水平 水 + - O4_ -
2 世纪 7 O O年代已开始做清除水下污染物的疏浚_ T 作 【。近年 来 ,我 国先后 在杭 州西 湖 、银 川鸣 翠湖 、 3 】
,ห้องสมุดไป่ตู้
湖 北 部五 里湖 )采集 未疏 浚 柱状 沉 积物样 ,在 室 内
模 拟 不 同疏 浚 深度 下对 氮 、磷释 放 的影 响 ,为五 里 湖 疏 浚研 究提 供一 个理 论 的参 数 。
1 材 料 与方 法
11 沉积 物 采集 与疏 浚样 制作 .
含量 与 原来相 比反而增 加 。 在 疏浚 过程 中 ,疏 浚深 度可 能成 为 影 响疏浚 效 果 的关键 参数 ,如 果疏 浚 深度控 制 不 当 ,就 会导致 深层 的污染 物 释放进 入 水体 ,可能 打破原 有 湖水 沉 积 物 和水体 中氮 、磷 溶解 释放 平 衡 ,使底 泥 中氮 、 磷 的释 放速 率成 倍增 加 ,从 而引 起疏 浚后 水体 氮 、 磷 质量 浓度 高 于疏浚 前 的质量 浓 度 。比如南 京玄 武 湖 ,在 19 年初 进行 底泥 疏浚 ,平 均 疏浚 深度 为 98 3 n 左 右 ,但是 7个 月后 对底 泥 进行 释放 实验 , 0 cl 却 发现 释放 量 达到 1 ・ 2 ~,超过 了原 有 约 8 2mgm-d . mgm-d ・ 2 的水 平 。还有 宁波 的月湖 ,为 改 善水 质 , . 宁波 市在 19 9年 对月 湖进 行 底泥 疏浚 ,结 果 发现 9 疏 浚 后 不 久 湖水 中 营 养 盐 的 质 量浓 度 比疏 浚 前 增 加 了【。 3 但是 疏浚 也有 能有 效控 制 富营养 化 的实 例 , J 如 澳 大利 亚 Wi o 、Tu n 湖 、巴吨顿 湖 的疏 浚 l x rme c 工 作 等 。因此 ,疏 浚对 湖泊 内源负 荷 的控 制效果 问

化学物添加控制湖泊内源磷负荷的有效性研究

化学物添加控制湖泊内源磷负荷的有效性研究

I : 覆水体 中总磷 的质量浓度 下降幅度 越大 , 水体中总磷的去除率越高 ,同时这 3种化学物的添加对湖泊沉积物 内源磷的释放
关键 词 :石灰 ;铝盐 ;铁盐 ;内源磷负荷 ;五里湖 中图分类号 :X 2 54 文献标识码 :A 文章编 号 :l 7 .15【 0 7)0 —0 80 6 22 7 2 0 10 0 富营养化是一个全球性 的问题 。高营养盐 负荷 是湖 泊 富营养 化 的主要 成 因之 一 。控 制 、降低 水 体 营养 盐 质 量 浓 度 是 国 内外 湖 泊 生 态 管 理 者 的 共 识 。磷 是湖 泊 富营养 化最 常 见 的限制 因子 ,控 制 湖 磷 负 荷 成 为 湖 富 营 养 化 治 理 的基 本 条 件 之 自 自 … 对于 如何 用 铝 、钙 、铁盐 有 效控 制 内源 磷 负 荷 ,以减 缓 湖泊 富营 养化 的进 程 ,国际 上 已做 了大 量 的研 究 【。加入 铝 、钙 、铁 盐 的 目的不 仅是 通 过 2 J 沉淀来降低水体 中磷 的质量浓度 ,更重要的是长期 有 效 地抑 制底 泥 中磷 的释放 。 美 国 17 9 8年分别 对威 斯康 星 州 的 Mio 湖 进 rr r 行 了投加 明矾 控制 内源磷 负荷 的实验 ,实验 结果 表 明 ,投加药品后总磷 的释放速率分别从投加前 的 17 9 8年 的 1 0 mgm-d . ・ Z 下 降到 19 年 的 03 3 . 90 . 0 m g・ -. m 2 有效 地控 制 了磷 内源 负荷 ,减 少 了在藻 类 过 量繁 殖 而 产 生 的水 华 的可 能性 ;Pea rps等 4 - J 连 续两 个夏 季 对加 拿大 艾 尔伯 塔 省 的 Fgr ih iue Eg t Lk ae湖进 行投 加碳 酸钙 和熟 石灰 的 实验 , 结果 表 明 水 体 总磷 的质量 浓度 从 1 ・ 迅速 下 降 。 国内 . mg 9

水体富营养化

水体富营养化
的藻青蛋白,能导致鱼类死亡,引起饮用此水的家畜肠胃消化系统中毒,产生疾病,甚至死亡。
兵哥出品,必属精品。
• 6 影响供水水质并增加制水成本 首先是在夏日高温藻类增殖旺盛的季节,过量的藻类会给制水厂在过滤过程中带来障碍,
需要改善或增加过滤措施。 其次,富营养水体由于缺氧而产生硫化氢、甲烷和氨等有毒有害气体,而且水藻产生的某
• 3 影响水体的溶解氧 富营养水体的表层,藻类可以获得充足的阳光,从空气中获得足够的二氧化碳进行光合作用
而放出氧气,因此表层水体有充足的溶解氧。但是,在富营养湖泊深层,情况就不同: 首先,表层的密集藻类使阳光难以透射入湖泊深层,而且阳光在穿射过程中被藻类吸收而
衰减,所以深层水体的光合作用明显受到限制而减弱,使溶解氧来源减少。 其次,湖泊藻类死亡后不断向湖底沉积,不断地腐烂分解,也会消耗深层水体大量的溶解
水面往往呈现蓝色、红色、棕色、乳白色等。这种现象在海洋中则叫做赤潮或红潮。
兵哥出品,必属精品。
我国湖泊富营养化的现状 五大淡水湖均己具备发生富营养化的条件
中型湖泊大部分已处于富营养化状态
城市湖泊富营养化严重
我国富营养化湖泊主要分布在长江中下游湖 区、云贵湖区,部分东北山地及平原湖区与 蒙新湖区
兵哥出品,必属精品。
兵哥出品,必属精品。
以上现象都是我们今天 要为大家介绍的--水体富营养化
兵哥出品,必属精品。
定义
水体富营养化(Eutrophication)是指在人类活动的影响下,生物所需的氮、磷等营养物质 大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧 量下降,水质恶化,鱼类及其他生物大量死亡的现象。
些有毒的物质,在制水过程中,更增加了水处理的技术难度。既影响制水厂的出水率,同时 也加大了制水成本费用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档