运筹学清华版习题答案(第一章)
运筹学课后习题答案
第一章 线性规划1、由图可得:最优解为2、用图解法求解线性规划: Min z=2x 1+x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤≥+≤+-01058244212121x x x x x x解:由图可得:最优解x=1.6,y=6.4Max z=5x 1+6x 2⎪⎩⎪⎨⎧≥≤+-≥-0,23222212121x x x x x x解:由图可得:最优解Max z=5x 1+6x 2, Max z= +∞Maxz = 2x 1 +x 2⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤0,5242261552121211x x x x x x x由图可得:最大值⎪⎩⎪⎨⎧==+35121x x x , 所以⎪⎩⎪⎨⎧==2321x xmax Z = 8.1212125.max 23284164120,1,2maxZ .jZ x x x x x x x j =+⎧+≤⎪≤⎪⎨≤⎪⎪≥=⎩如图所示,在(4,2)这一点达到最大值为26将线性规划模型化成标准形式:Min z=x 1-2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≥-=++-≥+-≤++无约束321321321321,0,052327x x x x x x x x x x x x解:令Z ’=-Z,引进松弛变量x 4≥0,引入剩余变量x 5≥0,并令x 3=x 3’-x 3’’,其中x 3’≥0,x 3’’≥0Max z ’=-x 1+2x 2-3x 3’+3x 3’’⎪⎪⎩⎪⎪⎨⎧≥≥≥≥≥≥-=++-=--+-=+-++0,0,0'',0',0,05232'''7'''5433213215332143321x x x x x x x x x x x x x x x x x x x7将线性规划模型化为标准形式Min Z =x 1+2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≤-=--≥++-≤++无约束,321321321321,00632442392-x x x x x x x x x x x x解:令Z ’ = -z ,引进松弛变量x 4≥0,引进剩余变量x 5≥0,得到一下等价的标准形式。
清华大学《运筹学教程》胡运权主编课后习题答案
st
8x1 3x1
x2 x6
4x3 0
2 x5
10
x j 0(, j 1,,6)
基可行解
x1 x2 x3 x4 x5 x6 Z 0 3 0 0 3.5 0 3
0 0 1.5 0 8 0 3
0003500
page 10
0.7 0 0 0 2 2.2 2.2 10
5 13 April 2021
5 5 School of Management
运筹学教程
第一章习题解答
min Z 5x1 2x2 3x3 2x4
(2)
st
2x1x1 22x2x23xx33
4 x4 2 x4
7 3
x j 0, ( j 1,4)
x1 0 0 2/5
page 11 13 April 2021
基可行解
6 x2 2 x2
6 4
x1, x2 0
无穷多最优解,
x1
1, x2
1,Z 3
3是一个最优解
max Z 3x1 2x2
(2)
st.32xx11
x2 2 4x2 12
x1, x2 0
该问题无解
4
School of Management
运筹学教程
page 5 13 April 2021
a=3, j=5, k= -1.5
page 23 13 April 2021
23
School of Management
运筹学教程
第一章习题解答
1.9 若X(1)、X(2)均为某线性规划问题的
最优解,证明在这两点连线上的所有点也是
该问题的最优解。 max Z CT X
设X (1)和X (2)满足: AX b
运筹学基础及应用课后习题答案(第一二章习题解答)
运筹学基础及应用课后习题答案(第一二章习题解答)第一章:线性规划一、选择题1. 线性规划问题中,目标函数可以是()A. 最大化B. 最小化C. A和B都对D. A和B都不对答案:C解析:线性规划问题中,目标函数可以是最大化也可以是最小化,关键在于问题的实际背景。
2. 在线性规划问题中,约束条件通常表示为()A. 等式B. 不等式C. A和B都对D. A和B都不对答案:C解析:线性规划问题中的约束条件通常包括等式和不等式两种形式。
二、填空题1. 线性规划问题的基本假设是______。
答案:线性性2. 线性规划问题中,若决策变量个数和约束条件个数相等,则该问题称为______。
答案:标准型线性规划问题三、计算题1. 求解以下线性规划问题:Maximize Z = 2x + 3ySubject to:x + 2y ≤ 83x + 4y ≤ 12x, y ≥ 0答案:最优解为 x = 4, y = 2,最大值为 Z = 14。
解析:画出约束条件的图形,找到可行域,再求目标函数的最大值。
具体步骤如下:1) 将约束条件化为等式,画出直线;2) 找到可行域的顶点;3) 将顶点代入目标函数,求解最大值。
第二章:非线性规划一、选择题1. 以下哪个方法适用于求解非线性规划问题()A. 单纯形法B. 拉格朗日乘数法C. 柯西-拉格朗日乘数法D. A和B都对答案:B解析:非线性规划问题通常采用拉格朗日乘数法求解,单纯形法适用于线性规划问题。
2. 非线性规划问题中,以下哪个条件不是K-T条件的必要条件()A. 梯度条件B. 正则性条件C. 互补松弛条件D. 目标函数为凸函数答案:D解析:K-T条件包括梯度条件、正则性条件和互补松弛条件,与目标函数是否为凸函数无关。
二、填空题1. 非线性规划问题中,若目标函数和约束条件都是凸函数,则该问题称为______。
答案:凸非线性规划问题2. 非线性规划问题中,K-T条件是求解______的必要条件。
清华大学《运筹学教程》胡运权主编课后习题答案
运筹学教程
第一章习题解答
1.3 对下述线性规划问题找出所有基解, 指出哪些是基可行解,并确定最优解。
max Z 3x1 x2 2x3
12x1 3x2 6x3 3x4 9
(1)
st
8 3
x1 x1
x2 x6
4x3 0
2 x5
10
x j 0(, j 1,,6)
min Z 5x1 2x2 3x3 2x4
第一章习题解答
max Z x1 x2 6x1 10x2 120 (3) st. 5 x1 10 5 x2 8
唯一最优解,x1 10, x2 6, Z 16
max Z 5x1 6x2
(4)
st.22xx11
x2 3x2
2
2
x1, x2 0
该问题有无界解
5
School of Management
X
0
对于任何0 a 1, 两点连线上的点X满足:
X aX (1) (1 a) X (2)也是可行解,且
CT X CT aX (1) CT (1 a) X (2)
C T aX (1) aCT X (2) C T X (2)
CT X (2) , 所以X也是最优解。
page 24 13 April 2021
(1)
st
x12x1x23xx23
2x4 x3
14 x4
. 2
x1, x2, x3 0, x4无约束
max Z 3x1 4x2 2x3 5x41 5x42
4x1 x2 2x3 x41 x42 2
st
x1 x2 x3 2x1 3x2
2x41 2x42 x3 x41 x42
运筹学教程
清华_第三版_运筹学教程_课后答案~(_第一章_第五章部分)
清华第三版 运筹学 答案[键入文字] [键入文字] [键入文字]运筹学教程1. 某饲养场饲养动物出售,设每头动物每天至少需700g 蛋白质、30g 矿物质、100mg 维生素.现有五种饲料可供选用,各种饲料每kg 营养成分含量及单价如表1所示. 表1要求确定既满足动物生长的营养需要,又使费用最省的选用饲料的方案。
解:设总费用为Z.i=1,2,3,4,5代表5种饲料.i x 表示满足动物生长的营养需要时,第i 种饲料所需的数量.则有:⎪⎪⎩⎪⎪⎨⎧=≥≥++++≥++++≥++++++++=5,4,3,2,1,01008.022.05.0305.022.05.07008623..8.03.04.07.02.0min 54321543215432154321i x x x x x x x x x x x x x x x x t sx x x x x Z i2. 某医院护士值班班次、每班工作时间及各班所需护士数如表2所示。
每班护士值班开始时间向病房报道,试决定:(1) 若护士上班后连续工作8h ,该医院最少需要多少名护士,以满足轮班需要; (2) 若除22:00上班的护士连续工作8h 外(取消第6班),其他班次护士由医院排定上1~4班的其中两个班,则该医院又需要多少名护士满足轮班需要.表2解:(1)设i x 第i 班开始上班的人数,i=1,2,3,4,5,6⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=≥≥+≥+≥+≥+≥+≥++++++=且为整数6,5,4,3,2,1,0302050607060..min 655443322161654321i x x x x x x x x x x x x x t s x x x x x x Z i 解:(2)在题设情况下,可知第五班一定要30个人才能满足轮班需要。
则设设i x 第i 班开始上班的人数,i=1,2,3,4。
⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧=≥=+++=≥+++=+++=≥+++=+++=≥+++=+++=≥+++++++=4,3,2,1,1002150216021702,160..30min i44434241444443342241143433323133443333223113242322212244233222211214131211114413312211114321j i y x y y y y y x y x y x y x y y y y y y x y x y x y x y y y y y y x y x y x y x y y y y y y x y x y x y x y t s x x x x Z ij 变量,—是,,,第四班约束,,第三班约束,,第二班约束,第一班约束3. 要在长度为l 的一根圆钢上截取不同长度的零件毛坯,毛坯长度有n 种,分别为ja (j=1,2,…n )。
运筹学 第一章 线性规划 清华
① ② ③
x2
②
Q3 Q2
Q4
③
3
①
o
4 Q1
x1
*
6
首先取z = 0,然后,使z逐 渐增大,直至找到最优解所对 应的点。
x2
②
Q3
Q4
③
Q2(4,2)
3
①
*
4 Q1
x1
可见,在Q2点z取到最大值。 因此, Q2点所对应的解为最优解。 Q2点坐标为(4,2)。 即: x1 = 4,x2 = 2
5
1.2 图解法 eg. eg. [eg.3]用图解法求eg.1。 max z = 2x1 + 3x2 1x1 + 2x2 ≤ 8 4x1 ≤ 16 4x2 ≤ 12 x1 ,x2 ≥ 0 解: (1)建立x1 - x2坐标; x (2)约束条件的几何表示; (3)目标函数的几何表示; z = 2x1 + 3x2
15
1.4 线性规划解的概念 设线性规划为 max z = CX ① AX = b ② X≥0 ③ 矩阵, (A为行满秩矩阵) A为m × n矩阵, n > m, Rank A = m (A为行满秩矩阵) 为行满秩矩阵 1、可行解:满足条件②、③的X; 可行解:满足条件② 2、最优解:满足条件①的可行解; 最优解:满足条件①的可行解; 条件 子矩阵, 则称B 3、基:取B为A中的m × m子矩阵,Rank B = m,则称B为线性 中的m 规划问题的一个基。 规划问题的一个基。 取B = (P1,P2,,Pm) ,P Pj = (a1j,a2j,,amj)T ,a 则称x1,x2,,xm为基变量,其它为非基变量。 则称x ,x 为基变量,其它为非基变量。
运筹学第一章详解答案
运筹学详解答案:1.1分别用图解法和单纯形法求解下列线性规划问题,(1)指出问题具有惟一最优解、无穷多最优解、无界解还是无可行解;(2)当具有有限最优解时,指出单纯形表中的各基可行解对应可行域的那一顶点。
A. 图解法图中蓝线代表目标函数线,箭头代表其运动的方向,根据可行域的形状可知此题无最优解。
B. 单纯形法1.行变换法写出此线性规划问题的标准形式max z =5x 1+6x 2s.t.{2x 1−x 2−x 3=2−2x 1+3x 2+x 4=2x i ≥0,(i =1,2,3,4)系数矩阵经过行变换后可的到等价的约束条件如下max z =5x 1+6x 2⎪⎩⎪⎨⎧≥≤+-≥-+=0,23222.65max )4(21212121x x x x x x st x x Zs.t.{x 1−12⁄x 2−12⁄x 3+0x 4=10x 1+2x 2−x 3+x 4=4x i ≥0,(i =1,2,3,4)显然x 1,x 4是基变量利用单纯形表可以求出此题具有无界解。
当然还可以采用其他变量为基变量,例如将约束条件转化为s.t.{x 1+0x 2−34⁄x 3+14⁄x 4=20x 1+x 2−12⁄x 3+12⁄x 4=2x i ≥0,(i =1,2,3,4)此时x 1,x 2成为了基变量。
然后在利用单纯形法可以解出此题具有无界解。
C. 大M 法易知转换成标准形式后,约束问题的系数矩阵中不包含单位矩阵,这时我们可以添加一个人工变量x 5,并在系数矩阵中添加一列单位向量,同时令目标函数中人工变量的系数为任意大的负值,用“-M ”表示。
具体形式如下max z =5x 1+6x 2−Mx 5s.t.{2x 1−x 2−x 3+x 5=2−2x 1+3x 2+x 4=2x i ≥0,(i =1,2,3,4,5)1.在进行第二次迭代时,因为人工变量已经移除基了,我们可以在后续的计算中不考虑它。
2.在进行第三次迭代时,进基的变量是x 3,而其对应的列向量都是小于0的,故此我们可以判断此问题有无界解。
清华大学胡运权运筹学
cx°-cx* >0;
V是maxZ = C*X的S优解, 故 /
C*X*-C'X°>0;
Jr
(C*-C)(X*-X°)
= C(X°-X*) + C*(X*-X°)>0
page 25 7 April 2015
25
School of Management
第一章习题解答
1.11考虑线性规划问题
□
minZ =叫 +2JC2 + — 4X4
□
行域的每个顶点依次使目标函数达到最优。 鲤. 锒剎曷錄里姉取妾加下.
c广
cd
0
0
基b Xi x2
x3
d
x2 3/ 0 1
5/14
2
X4 j
-3/4
c
page 14
7 April 2 ns
Xi 1 1 0
Qi—'0
0
-2/14 ^W35
-
3/14d- i
第一章习题解答
□ □
当c/d在3/10到5/2之间时最优解为图中 的A 点;当c/d大于5/2且c大于等于0时最优解 为图中 的B点;当c/d小于3/10且d大于0时最优 解为图中
Bi. ■
规划问题的 maxZ = C1 X (AX =b
□
最优解, 证明[在x >0这两点连线
■
上的所有点也是 对于任何0 < a < 1, 两点连线」:的点¥满足:
X =aX⑴+(l-a)JT2)也是可行解, 且
CTX = CTaXG) +Cf\l-a)X(2y
=CTaXay -aCrX(2} +CrX
School of Management
运筹学作业(清华版第一章习题)答案
运筹学作业(清华版第一章习题)答案运筹学作业(第一章习题)答案1.1用图解法求解下列线性规划问题,并指出问题具有唯一最优解、无穷多最优解、无界解还是无可行解。
(2)12121212m ax 322..34120,0z x x x x s t x x x x =++≤??+≥??≥≥?解:先画出问题的可行区域:如右图所示,两条边界直线所围成的区域没有公共部分,即可行区域是空的。
故该问题无可行解。
1.2将下述线性规划问题化成标准形式:(1)12341234123412341234m in 3425422214..232,,0,z x x x x x x x x x x x x s t x x x x x x x x =-+-+-+-=-??+-+≤??-++-≥??≥?无约束, 解:由于4x 无约束,故引进两个新变量,即444x x x '''=-代入原问题,并对方程2和方程3分别引入新变量5x 和6x ,则此问题的标准形式为: 12344123441234451234461234456m ax ()342554222214..232,,,,,,0z x x x x x x x x x x x x x x x x s t x x x x x x x x x x x x x '''-=-+-+'''-+-+=-??'''+-+-+=??'''-++-+-=??'''≥?1.4分别用图解法和单纯型法求解下述线性规划问题,并对照指出单纯表中的各基可行解对应图解法中可行区域的哪一顶点。
(1)12121212m ax 105349....5280,0z x x x x s t s t x x x x =++≤??+≤??≥≥? 解:图解法:先画出可行区域K ,如右图所示,K 即为OABC ,B 点为最优解。
运筹学清华第四版答案
运筹学清华第四版答案【篇一:清华_第三版_运筹学教程_课后答案~(_第一章_第五章部分)】文字]运筹学教程1. 某饲养场饲养动物出售,设每头动物每天至少需700g蛋白质、30g矿物质、100mg维生素。
现有五种饲料可供选用,各种饲料每kg营养成分含量及单价如表1所示。
表1要求确定既满足动物生长的营养需要,又使费用最省的选用饲料的方案。
解:设总费用为z。
i=1,2,3,4,5代表5种饲料。
xi表示满足动物生长的营养需要时,第i种饲料所需的数量。
则有:minz?0.2x1?0.7x2?0.4x3?0.3x4?0.8x5?3x1?2x2?x3?6x4?8x5?700?x10.5x20.2x32x40.5x530s.t.0.5x1x20.2x32x40.8x5100x0,i1,2,3,4,5i2. 某医院护士值班班次、每班工作时间及各班所需护士数如表2所示。
每班护士值班开始时间向病房报道,试决定:(1)若护士上班后连续工作8h,该医院最少需要多少名护士,以满足轮班需要;(2)若除22:00上班的护士连续工作8h外(取消第6班),其他班次护士由医院排定上1~4班的其中两个班,则该医院又需要多少名护士满足轮班需要。
表262:00~6:00 30解:(1)设x第i班开始上班的人数,i=1,2,3,4,5,6minz?x1?x2?x3?x4?x5?x6?x1x1?x2?s.t.?x3x4x5xix660x270x360x450x520x6300,i1,2,3,4,5,6且为整数解:(2)在题设情况下,可知第五班一定要30个人才能满足轮班需要。
则设设xi第i班开始上班的人数,i=1,2,3,4。
minz?x1?x2?x3?x4?30y11x1y21x2y31x3y41x460,第一班约束y111,y11y12y13y142yxyxyxyx70,第二班约束121222323424?y221,y21?y22?y23?y24?2?s.t.?y13x1?y23x2?y33x3?y43x4?60,第三班约束?y?1,y?y?y?y?23132333433y14x1y24x2y34x3y44x450,第四班约束?y441,y41?y42?y43?y44?2x0,y是0—1变量,i,j?1,2,3,4ij?i3. 要在长度为l的一根圆钢上截取不同长度的零件毛坯,毛坯长度有n种,分别为aj(j=1,2,…n)。
运筹学第一章习题完整版
-1/2 3 1/6 4 -1/3 -8
0 点(0,0,15,24)
A 点(4,0,3,0)
Zmax=8
10.解 1)要使 A(0,0)成为最优解则需 C ≤ 0 且 d ≤ 0; 2)要使 B(8/5,0)成为最优解则 C ≥ 0 且 d=0 或 C>0 且 d<0 或 C/d ≥ 5/2 且 Cd>0; 3)要使 C(1,3/2)成为最优解则 -5/2 ≤ -C/d ≤ -3/4 且 Cd>0;即 5/2 ≥ C/d ≥ 3/4 且 Cd>0; 4)要使 D(0,9/4)成为最优解则 C<0 且 d>0 或 C=0,d>0
y5=(0,0,-5/2,8,0,0)T
y6=(0,0,3/2,0,8,0)T
y7=(1,0,-1/2,0,0,3)T
y8=(0,0,0,3,5,0)T
y9=(5/4,0,0,-2,0,15/4)T
y10=(0, 3,-7/6,0,0,0)T
y11=(0,0,-5/2,8,0,0)T
y12=(0,0,-5/2,3,5,0)T
x1,x2,x3,x'4,x"4,x'5,x 6 ≥ 0
(2)
max
z'
=
2 x1'
+
2 x2
−
3x
' 3
+
3x"3
+
0x
4
st. x1'
+
x
2
+
x
' 3
−
x"3 = 4
2x1' + x2 − x'3 + x"3 +x 4 = 6
运筹学第一章作业答案
第一章作业1.对于下列线性规划模型,找出顶点和约束之间的对应关系(图解法)122121212 max 25156224..50,0z x x x x x s t x x x x =+≤⎧⎪+≤⎪⎨+≤⎪⎪≥≥⎩(答案略: 任何一个顶点对应两个约束的交点)2.用单纯形法求解线性规划模型12121212 max 2324..50,0z x x x x s t x x x x =++≤⎧⎪+≥⎨⎪≥≥⎩(答案略:最好两阶段法和大M 法均练习一遍)3.通过观察,判断下列线性规划模型有无最优解、在有解的情况下是否为无界解(说明理由)(1)12121212 max 25..2280,0z x x x x s t x x x x =++≥⎧⎪+≤⎨⎪≥≥⎩因为 125x x +≥和12228x x +≤是两个矛盾的条件,所以问题无解(2)12312312312 max 225..32580,0z x x x x x x s t x x x x x =++-+≥⎧⎪--≥⎨⎪≥≥⎩ 因为(M ,0,0)是模型的一个可行解,所以可认为问题为无界解。
4.判断题(说明理由)1.最优解不唯一,那么一定有两个最优基可行解。
错误。
最优解不唯一,可能存在一个基可行解,也可能存在r(r ≥2)个基可行解。
举一例子进行反驳即可。
(注意区分基可行解和可行解)2.在最优单纯形表中,如果某个非基变量的检验数值为0,且相应的技术系数均小于等于0,则相应的线性规划有无界解。
错误。
判定无界解的原则有二:(1)某一单纯表中某一非基变量的检验数为正(目标函数求最大值时,求最小值时正好相反),而该变量的技术向量P ≤0;(2)某一单纯表中某一非基变量的技术向量P ≤0,而该变量的价值系数又大于0(目标函数求最大值时,求最小值时正好相反)。
(注意:区分无界解和无穷多最优解) 5 线性规划问题max ,,0z CX AX b X ==≥,如果*X 是该问题的最优解,又0λ>为一常数,分别讨论下述情况时最优解的变化:(a ) 目标函数变为 max z CX λ= 方法1: 使用检验数进行讨论最优单纯表中, 变量X 的检验数为1B C C B A σ-=-, 显然 10B C C B A --≤设这时的最优解为*X . 当价值系数变为C λ时, *X 仍然是新问题的可行解,但变量X 的检验数变为111()B B C C B A C C B A σλλλ--=-=-仍有10σ≤, 因而两个问题具有同样的最优基, 进而有同样的最优解,仅仅最优目标函数值变化了λ倍.方法2: 设*X 为原问题的一个最优解, X 是原问题的任意一个可行解因而必有*CX CX ≥由于*X 和X 均也为新问题的可行解,由于0λ≥, 因而 *CX CX λλ≥ 因而*X 也是新问题的最优解.(b ) 目标函数变为 max ()z C X λ=+提示: 通过选择具体的例子, 分析目标函数的变化, 最优解可能发生改变, 也可能不变. 6.已知线性规划问题1122331111221334121122223352max ..01,2,3,4jz c x c x c x a x a x a x x b s t a x a x a x x b x j =++⎧+++=⎪+++=⎨⎪≥ =⎩试确定模型中各参数的值 解法1: 直接使用矩阵变换.解法2: 使用B 和1B -解题(关键知识点), 具体略.11/201/61/3B -⎡⎤=⎢⎥-⎣⎦7. (证明题)线性规划问题max ,,0z CX AX b X ==≥,设0X 是问题的最优解,若目标函数中用*C 替换C 后,问题的最优解为*X ,则必有**()()0C C X X --≥证明:对于原问题,由于0X 和*X 均为可行解,0X 为最优解,因而有0*CX CX ≥ (7.1)对于替换后的问题,由于0X 和*X 均为可行解,*X 为最优解,因而有 ***C X C X ≥ (7.2) 结合(7.1)和(7.2)命题成立.8.(选做题)对于大M 法和两阶段法下面线性规划需要引入m 个人工变量, 你是否可以设计一种方法只引入一个人工变量就可112211112211211222221122 m i n .................0,1,2,...,n n n n n n m m mn n mi z c x c x c x a x a x a x b a x a x a x b s t a x a x a x bx i n=++++++≥⎧⎪+++≥⎪⎪⎨⎪+++≥⎪≥=⎪⎩ 9.(选做题)证明标准的线性规划模型,要么不存在可行解,要么至少存在一个基可行解。
运筹学1至6章习题参考答案
-6
-7
0
0
0
0
* Big M
-2
-6
2
1
0
0
0
X2
-6
1/5
1
-3/5
-1/5
0
1/5
0
3
M
S2
0
31/5
0
32/5
-6/5
1
6/5
0
38
95/16
A3
M
4/5
0
[8/5]
1/5
0
-1/5
1
2
5/4
C(j)-Z(j)
31/5
0
-53/5
-6/5
0
6/5
0
* Big M
-4/5
-1/2
17/2
-7/4
0
0
0
-5/4
X5
0
32
0
15
0
1
11
-1
120
M
X2
1
5
1
5/2
0
0
2
-1/2
10
10
X4
5
8
0
7/2
1
0
3
-1/2
20
M
C(j)-Z(j)
-43
0
-23
0
0
-17
3
因为λ7=3>0并且ai7<0(i=1,2,3),故原问题具有无界解,即无最优解。
(3)
【解】
C(j)
3
2
-0.125
0
-3
1
6
0.75
C(j)-Z(j)
清华大学《运筹学教程》胡运权主编课后习题答案(第一章)
2)c=0
3)c>0
d<0 d=0 d>0
0
c 3 d 4
A1点 A1点 A3点
A2A3线段
3 c 5 4 d 2
c 5 d 2 c 5 d 2
c 3 d 4
A2点
A1A2线段 A1点
l.6 考虑下述线性规划问题:
max Z c1 x1 c2 x2 a11 x1 a12 x2 b1 st .a21 x1 a22 x2 b2 x1 , x2 0
-1
x2
0
x3
0
x4
-M
x5
-M
x6
CB
xB
x5
x6
x4
i
-M -M 0
3 6 4
[3] 4 1
1 3 2
0 -1 0
0 0 1
1 0 0
0 1 0 0
1 3/2 4 3 6/5 9/5
cj zj
7M-4
1 2 3 1 0 0 0
4M-1
1/3 [5/3] 5/3
5M/3+1/3
-M
0 -1 0 -M
0
0 0 1 0
0
1/3 -4/3 -1/3
-7M/3+4/3
-4 -M 0
x1
0
1 0 0
x6
x4
cj zj
cj
x6
是否基 可行解
Z
(x1,x2,x3)
(x1,x2,x4) (x1,x2,x5) (x1,x2,x6)
0
0 0 7/4
61/3
10 3 -4
-7/6
0 0 0
运筹学1至6章习题参考答案
运筹学1至6章习题参考答案第1章 线性规划工厂每月生产A 、B 、C 三种产品 ,单件产品的原材料消耗量、设备台时的消耗量、资源限量及单件产品利润如表1-23所示.表1-23310和130.试建立该问题的数学模型,使每月利润最大.【解】设x 1、x 2、x 3分别为产品A 、B 、C 的产量,则数学模型为123123123123123max 1014121.5 1.2425003 1.6 1.21400150250260310120130,,0Z x x x x x x x x x x x x x x x =++++≤⎧⎪++≤⎪⎪≤≤⎪⎨≤≤⎪⎪≤≤⎪≥⎪⎩ 建筑公司需要用5m 长的塑钢材料制作A 、B 两种型号的窗架.两种窗架所需材料规格及数量如表1-24所示:表1-24 窗架所需材料规格及数量【解】 第一步:求下料方案,见下表。
设x j (j =1,2,…,10)为第j 种方案使用原材料的根数,则 (1)用料最少数学模型为10112342567368947910min 28002120026002239000,1,2,,10jj j Z x x x x x x x x x x x x x x x x x x j ==⎧+++≥⎪+++≥⎪⎪+++≥⎨⎪+++≥⎪⎪≥=⎩∑L (2)余料最少数学模型为2345681012342567368947910min 0.50.50.52800212002*********0,1,2,,10j Z x x x x x x x x x x x x x x x x x x x x x x x x j =++++++⎧+++≥⎪+++≥⎪⎪+++≥⎨⎪+++≥⎪⎪≥=⎩L某企业需要制定1~6月份产品A 的生产与销售计划。
已知产品A 每月底交货,市场需求没有限制,由于仓库容量有限,仓库最多库存产品A1000件,1月初仓库库存200件。
1~6月份产品A 的单件成本与售价如表1-25所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
page 21 30 July 2013
21
School of Management
运筹学教程
第一章习题解答
1.2 将下述线性规划问题化成标准形式。
min Z 3 x1 4 x2 2 x3 5 x4 4 x1 x2 2 x3 x4 2 x x x 2 x 14 2 3 4 st 1 . 2 x1 3 x2 x3 x4 2 x1 , x2 , x3 0, x4无约束
max Z 3 x1 6 x2 1x1 2 x2 12 st. 2 x1 4 x2 14 x ,x 0 1 2
最优值(上界)为:21
page 17 30 July 2013
17
School of Management
运筹学教程
第一章习题解答
解:下界对应的模型如下( c,b取小,a取大)
page 10 30 July 2013
x1 0 0 0 0.7 5
x2 3 0 0 0
基可行解 x3 x4 x5 0 0 3.5 1.5 0 8 0 3 5 0 0 2
x6 Z 0 3 0 3 0 0 2.2 2.2 10 School Management 5 of5
运筹学教程
第一章习题解答
( 2) min Z 5 x1 2 x2 3 x3 2 x4 x1 2 x2 3 x3 4 x4 7 st 2 x1 2 x2 x3 2 x4 3 x 0, ( j 1, 4) j
page 15 30 July 2013
15
School of Management
运筹学教程
第一章习题解答
l.6 考虑下述线性规划问题:
max Z c1 x1 c2 x2 a11 x1 a12 x2 b1 st.a21 x1 a22 x2 b2 x1 , x2 0
x1 x2 x3 6 2 x x 2 (1) 1 3 st 2 x2 x3 0 x j 0(j 1, ,3) , 该题是无界解。
1 2 3
page 19 30 July 2013
19
School of Management
运筹学教程
运筹学教程
第一章习题解答
min Z 3 x1 4 x2 2 x3 5 x4 4 x1 x2 2 x3 x4 2 x x x 2 x 14 (1) 4 st 1 2 3 . 2 x1 3 x2 x3 x4 2 x1 , x2 , x3 0, x4无约束 max Z 3 x1 4 x2 2 x3 5 x41 5 x42 4 x1 x2 2 x3 x41 x42 2 x x x 2 x 2 x x 14 2 3 41 42 5 st 1 2 x1 3 x2 x3 x41 x42 x6 2 x1 , x2 , x3 , x41 , x42 , x6 0
c
page 14 30 July 2013
x1 j
1 0
0 0
-2/14 -
10/35 3/14d-
14
School of Management
运筹学教程
第一章习题解答
当c/d在3/10到5/2之间时最优解为图中 的A点;当c/d大于5/2且c大于等于0时最优解 为图中的B点;当c/d小于3/10且d大于0时最优 解为图中的C点;当c/d大于5/2且c小于等于0 时或当c/d小于3/10且d小于0时最优解为图中 的原点。
运筹学教程
第一章习题解答
1.1 用图解法求解下列线性规划问题。 并指出问题具有惟一最优解、无穷多最优解、 无界解还是无可行解。
(1) min Z 2 x1 3 x2 4 x1 6 x2 6 st.2 x1 2 x2 4 x ,x 0 1 2
( 2)
max Z 3 x1 2 x2 2 x1 x2 2 st.3 x1 4 x2 12 x , x 0 1 2 max Z 5 x1 6 x2 2 x1 x2 2 st. 2 x1 3 x2 2 x ,x 0 1 2
式中,1≤c1≤3, 4≤c2≤6, -1≤a11≤3, 2≤a12≤5, 8≤b1≤12, 2≤a21≤5, 4≤a22≤6, 10≤b2≤14,试确定目标函数最优值的下界和 上界。
page 16 30 July 2013 16
School of Management
运筹学教程
第一章习题解答
解:上界对应的模型如下(c,b取大,a取小)
min Z 2 x1 2 x2 3 x3 x1 x2 x3 4 st 2 x1 x2 x3 6 x 0, x 0, x 无约束 2 3 1
6
(1)
( 2)
page 6 30 July 2013
School of Management
page 13 30 July 2013
13
School of Management
运筹学教程
第一章习题解答
l.5 上题(1)中,若目标函数变为max Z = cx1 + dx2,讨论c,d的值如何变化,使该问题 可行域的每个顶点依次使目标函数达到最优。 解:得到最终单纯形表如下: Cj→ c d 0 0 CB 基 b x1 x2 x3 x4 d x2 3/ 2 ool of Management
运筹学教程
第一章习题解答
1.3 对下述线性规划问题找出所有基解, 指出哪些是基可行解,并确定最优解。
max Z 3 x1 x2 2 x3 12 x1 3 x2 6 x3 3 x4 9 8 x x 4 x 2 x 10 1 2 3 5 st 3 x1 x6 0 x j 0, j 1, ,6) (
( 2)
max Z 3 x1 2 x2 2 x1 x2 2 st.3 x1 4 x2 12 x , x 0 1 2
4
该问题无解
page 4 30 July 2013
School of Management
运筹学教程
第一章习题解答
(3) max Z x1 x2 6 x1 10 x2 120 st. 5 x1 10 5 x 8 2
page 20 30 July 2013
20
School of Management
运筹学教程
第一章习题解答
max Z 4 x1 x2 3x1 x2 3 4 x 3 x x 6 (3) 1 2 3 st x1 2 x2 x4 4 x j 0(j 1,,4) , 该题是唯一最优解: 2 9 17 x1 , x2 , x3 1, x4 0, Z 5 5 5
max Z x1 4 x2 3 x1 5 x2 8 st.4 x1 6 x2 10 x ,x 0 1 2
最优值(下界)为:6.4
page 18 30 July 2013
18
School of Management
运筹学教程
第一章习题解答
l.7 分别用单纯形法中的大M法和两阶 段法求解下列线性规划问题,并指出属哪—类 解。 max Z 3 x x 2 x
School of Management
运筹学教程
第一章习题解答
(1) max Z 3 x1 x2 2 x3 12 x1 3 x2 6 x3 3 x4 9 8 x x 4 x 2 x 10 1 2 3 5 st 3 x1 x6 0 x j 0, j 1, ,6) (
max Z 2 x1 2 x2 3 x31 3 x32 x1 x2 x31 x32 4 st 2 x1 x2 x31 x32 x4 6 x1 , x2 , x31 , x32 , x4 0
page 8 30 July 2013
唯一最优解,x1 10, x2 6, Z 16
max Z 5 x1 6 x2 2 x1 x2 2 ( 4) st. 2 x1 3 x2 2 x ,x 0 1 2 该问题有无界解
page 5 30 July 2013
5
School of Management
运筹学教程
同样适合 第三版黄皮版
page 1 30 July 2013
1
School of Management
运筹学教程
运筹学教程(第二版) 习题解答
安徽大学管理学院
洪 文
电话:5108157(H), 5107443(O) page 2 E-mail: 30 July 2013
School of Management
(1) max Z 10 x1 5 x2 3 x1 4 x2 9 st.5 x1 2 x2 8 x ,x 0 1 2
page 12 30 July 2013
12
School of Management
运筹学教程
第一章习题解答
( 2) max Z 2 x1 x2 3 x1 5 x2 15 st .6 x1 2 x2 24 x ,x 0 1 2
x1 0 0 2/5
page 11 30 July 2013
基可行解 x2 x3 x4 0.5 2 0 0 1 1 0 11/5 0
Z 5 5 43/5
11
School of Management
运筹学教程
第一章习题解答