单自由度系统的振动
机械振动学_第二章单自由度振动系统
第二章单自由度系统振动§1-1 概述单自由度系统的振动理论是振动理论的理论基础。
(1)尽管实际的机械都是弹性体或多自由度系统,然而要掌握多自由度振动的基本规律,就必须先掌握单自由度系统的振动理论。
此外,(2)许多工程技术上的具体振动系统在一定条件下,也可以简化为单自由度振动系统来研究。
[举例如下:]例如:(1)悬臂锤削镗杆;(2)外圆磨床的砂轮主轴;(3)安装在地上的床身等。
[力学模型的简化方法]若忽略这些零部件中的镗杆、主轴和转轴的质量,只考虑它们的弹性。
忽略那些支承在弹性元件上的镗刀头、砂轮、床身等惯性元件的弹性,只考虑它们的惯性。
把它们看成是只有惯性而无弹性的集中质点。
于是,实际的机械系统近似地简化为单自由度线性振动系统的动力学模型。
在实际的振动系统中必然存在着各种阻尼,故模型中用一个阻尼器来表示。
阻尼器由一个油缸和活塞、油液组成。
汽车轮悬置系统等等。
[以上为工程实际中的振动系统]单自由度振动系统——指用一个独立参量便可确定系统位置的振动系统。
所有的单自由度振动系统经过简化,都可以抽象成单振子,即将系统中全部起作用的质量都认为集中到质点上,这个质点的质量m 称为当量质量,所有的弹性都集中到弹簧中,这个弹簧刚度k称为当量弹簧刚度。
以后讨论中,质量就是指当量质量,刚度就是指当量弹簧刚度。
在单自由度振动系统中,质量m、弹簧刚度k、阻尼系数C是振动系统的三个基本要素。
有时在振动系统中还作用有一个持续作用的激振力P。
应用牛顿运动定律,作用于一个质点上所有力的合力等于该质点的质量和该合力方向的加速度的乘积。
(牛顿运动定律)(达伦培尔原理)现取所有与坐标x 方向一致的力、速度和加速度为正,则:kx x C t P xm --= ωsin 0 (牛顿运动定律) (达伦培尔原理:在一个振动体上的所有各力的合力必等于零) (动静法分析:作用在振动体上的外力与设想加在此振动体上的惯性力组成平衡力系)上式经整理得,t P kx x C xm ωsin 0=++ (2.1) 该式就是单自由度线性振动系统的运动微分方程式的普遍式。
第二章 单自由度系统的自由振动
k
I
在圆盘的静平衡位置上任意选一根半径作 为角位移的起点位置
由牛顿第二定律:
I&& k 0
&& 02 0
扭振固有频率
0
k I
第二章 单自由度系统的自由振动
由上例可看出,除了选择了坐标不同之外,角振动与直线振动的数学描述 完全相同。如果在弹簧质量系统中将 m、k 称为广义质量及广义刚度,则弹 簧质量系统的有关结论完全适用于角振动。以后不加特别声明时,弹簧质 量系统是广义的 。
对时间求导 取平衡位置为势能零点,根据自由振动的特点,系统在平衡位置时,系统的势能 为零,其动能的极大值就是全部机械能;而在振动系统的极端位置时,系统的动 能为零,其势能的极大值等于全部的机械能,即有:
例题讲解3 均匀悬臂梁长为 l, 弯曲刚度为EJ,重量不计, 自由端附有重为P=mg的物体,如图所示。试 写出物体的振动微分方程,并求出频率。 梁的自由端将有静挠度: 物体的振动微分方程为:
8
第二章 单自由度系统的自由振动
例题讲解3 重物落下,与简支梁做完全非弹性碰撞
梁长 L,抗弯刚度 EJ m
h
第二章 单自由度系统的自由振动
2.1 简谐振动
由牛顿定律,有 设系统固有频率为 二阶常系数线性齐次常微分方程
通解形式为
1
第二章 单自由度系统的自由振动
根据三角关系式
改 写
由此可以知道:该系统以 固有频率作简谐振动。
振动周期:
振动频率:
2
第二章 单自由度系统的自由振动
设在初始时刻t=0,物体有初位移
弹簧原长位置
m&x& kx 0
机械震动--单自由度体系的自由振动
y sy(t)机械振动分析------单自由度无阻尼系统的自由振动机械振动是物体(或物体的一部分)在平衡位置(物体静止时的位置)附近作的往复运动。
可分为自由振动、受迫振动。
又可分为无阻尼振动与阻尼振动。
常见的简谐运动有弹簧振子模型、单摆模型等。
振动在机械中的应用非常普遍,例如在振动筛分行业中基本原理系借电机轴上下端所安装的重锤(不平衡重锤),将电机的旋转运动转变为水平、垂直、倾斜的三次元运动,再把这个运动传达给筛面。
若改变上下部的重锤的相位角可改变原料的行进方向。
物体受到初干扰后,仅在系统的恢复力作用下在其平衡位置附近的振动称为无阻尼自由振动。
其中仅需用一个独立坐标就可确定振体位置的系统为单自由度系统。
单自由度系统的振动理论是振动理论的基础。
研究单自由度系统的振动有着非常普遍的实际意义,因为工程上有许多问题通过简化,用单自由度系统的振动理论就能得到满意的结果。
而同时对多自由度系统和连续系统的振动,在特殊坐标系中考察时,显示出与单自由度系统类似的性态。
因此,揭示单自由度振动系统的规律、特点,为进一步研究复杂振动系统奠定了基础。
影响振动作用的因素是振动频率、加速度和振幅。
现在我们就此方面展开对单自由度无阻尼振动的讨论。
主要包括两部分:单自由度无阻尼系统的自由振动和单自由度无阻尼系统的受迫振动。
一、单自由度无阻尼系统的自由振动如下图,设此梁上的集中质量为m ,其重量为W mg ,梁由于质量的重力引起的质量处的静力位移用s y 表示,与s y 相应的质量位置称为质量的静力平衡位置。
若此质量受到扰动离开了静力平衡位置,当扰动除去后,则体系将发生振动,这样的振动称为体系的自由振动。
由于振动的方向与梁轴垂直,故称为横向振动。
在此,只讨论微小振幅的振动,由振动引起的内力限于材料的弹性极限以内,用以表示质量运动的方程将为线性微分方程。
1、建立运动方程建立运动方程常用的基本原理是达朗伯原理(亦称惯性力法或动静法)。
单自由度系统的自由振动
固有频率的计算方法
1. 建立微分方程求固有频率 2. 静位移法 3. 能量法
单自由度系统的自由振动 / 无阻尼自由振动
静位移法——求解固有频率
单自由度系统的自由振动 / 无阻尼自由振动 能量法——求解固有频率
单自由度系统的自由振动 / 无阻尼自由振动
特征方程及特征根为
2 s 2 0 0
s1, 2 i0
则式(1-1)的通解为
y e x (c1 cos x c2 sin x)
x C1 cos 0t C2 sin 0t
C1 / C2 为任意积分常数,由运动的初始条件确定。
单自由度系统的自由振动 / 无阻尼自由振动
临界阻尼系数 cc
单自由度系统的自由振动 / 阻尼自由振动
单自由度系统的自由振动 / 阻尼自由振动
单自由度系统的自由振动 / 阻尼自由振动
单自由度系统的自由振动 / 阻尼自由振动
单自由度系统的自由振动 / 阻尼自由振动
单自由度系统的自由振动 / 阻尼自由振动
单自由度系统的自由振动 / 阻尼自由振动
2 0 x x0
当作微幅振动时,可认为sin , cos 1。再由静平衡条件 mgl st ka 则上式可简化为
a 2k 引入符号 2 ,则上式变为 ml
2 0
(1-2)
此为单自由度系统无阻尼自由扭振的微分方程,其解同例(1)。
单自由度系统的自由振动 / 无阻尼自由振动
单自由度系统的自由振动 / 无阻尼自由振动
单自由度系统的自由振动 / 阻尼自由振动
单自由度系统的自由振动 / 阻尼自由振动
单自由度系统的自由振动 / 阻尼自由振动
单自由度系统的自由振动 / 阻尼自由振动
单自由度体系的自由振动
2 T
计算频率和周期的几种形式
k 1 g g m m W st
m st T 2 2 k g
频率 1.只与结构的质量与刚度有关,与外界干扰无关; 和周 2.T与m的平方根成正比,与k成反比,据此可改变周期; 期的 6 讨论 3.是结构动力特性的重要数量标志。
m ky m
.
y
k
m
y( t )
m
y
k
单自由度体系自由 振动的微分方程
m y
ky 0 m y
2
二、自由振动微分方程的解
改写为
ky 0 m y k y 0 y m
.......... .......... .......... ......(a)
k y 0 其中 y m
例1. 计算图示结构的频率和周期。 例2.计算图示结构的水平和竖向振动频率。 H 1 m EI m 1
V
l /2 1
l /2 A,E,I
E,I
E,A
l3 48EI m l3 T 2 3 48EI ml 48EI
例3.计算图示刚架的频率和周期。
m EI1= I I h
6 EI h2
l/2
解:1)求δ
l3 1 48EI
l/2
3 l/ 16
l/2
l/2
P=1
l/2
l/2
7 l 3 5 l/ 2 32 768EI P=1 l/ 2
l3 3 192EI
1
1 m 1
48EI ml3
3 1l 768 EI 1 192EI 1 l 3 l l 5 l 7 l 2 2 (2 3 3 ) 1 3 ml 2 32 768 m EI 62 2 7 16 EI ml m 3
第五章 单自由度系统的振动
上式也可改写为
F (t ) c0 ck cos(kt k )
式中
c0 a 0 / 2 ck ak2 bk2 bk k arct an ak
Cx Kx c0 ck cos(kt k ) M x
k 1
k 1
若系统的质量、刚度和阻尼分别为M、K和C,则此时受迫振动的微分方程为
c0相当于一个静载荷,它不引起振动,而只改变系统的静平衡位置。若令
k k
则稳态响应可以写为
ck x k cos(k t k k ) k 1 K
x e ( x0 cosd t
at
也可改写为 式中
d x Aeat sin(d t )
0 ax0 x
0 ax0 x
sin d t )
2 A x0 (
d
)2
arctan
d x0
0 ax0 x
从上面的式子可以看出,这时系统的运动为周期性的振动。其 振动圆频率为d ,称为有阻尼振动的固有频率,它比无阻尼自由振 动的固有频率 n 略小。振幅Ae-at随时间成指数形式衰减。如图给 出了这种衰减振动的响应曲线。
x A sin(nt )
式中:A称为振幅; 称为初相位,单位为rad。 无阻尼自由振动是一个以固有频率为频率的简谐振动。
设初始时刻t=0时的位移为x0、速度为v0,则可得
2 A x0 (v0 / 0 ) 2
x00 arctan 0 x
2、工程实例 机器或结构中的构件受一静负荷后要产生变形,其内 部要产生应力,分别称为静变形和静应力。而当受冲击或 产生振动时,构件要产生动变形和动应力。
振动理论-第2章 单自由度系统的自由振动
c
l
解:梁重物处的静变形为
st
Wc2 (l c)2 3lEI
则:
3lEI k c2 (l c)2
1g f
2 st
例3. 已知:升降机吊笼,以等速 v0 下降,钢丝绳视为弹簧,
若A端突然停止,求钢绳所受到的最大应力。
W 10000lbf l 62 ft A 2.5in2 E 15106lbf / in2
4 等效质量和等效刚度
4 等效质量和等效刚度
4 等效质量和等效刚度
4 等效质量和等效刚度
4 等效质量和等效刚度
平行串联、并联弹簧的等效刚度
4 等效质量和等效刚度
平行串联、并联弹簧的等效刚度
4 等效质量和等效刚度
例1 A suspension system of a freight truck with a parallel-spring arrangement. Find the equivalent spring constant of the suspension if each of the three helical springs is made of G 80109 N / m2
(boom) to deform by an amount x2 x cos 45 and the spring k1
Eat 3 4b3
kr
AE l
d2E
4l
1 keq
1 kb
1 kr
4b3 Eat 3
4l d2
E
keq
E 4
at3d 2
d 2b3 lat3
4 等效质量和等效刚度
斜拉弹簧在某个位移方向上的等效弹簧刚度
Fx F cos F 为弹簧的伸长量
单自由度体系自由振动
单自由度体系自由振动一、无阻尼振动单自由度体系自由振动可分为有阻尼和无阻尼振动两种。
在模型建立过程当中,可以直接进行建立。
在运行时,只需将c=0即可。
ω增加,单位时间内振动次数增加。
无阻尼振动是简谐振动,振幅和初相位仅取决于初位移和速度。
初始干扰反映了外部初始赋予体系能量的大小。
由于不考虑振动过程中体系能量的耗散,因而体系的总能量保持不变,这就表现为振幅A保持不变,永不衰减。
于是振动一旦发生便永不停息,但这仅是一种理想状态。
二、对阻尼自由振动的讨论当阻尼系数c不为0时,体系做阻尼运动。
由于有能量的耗散,体系的运动幅度会逐渐减小,最终停止振动。
有阻尼单自由度体系,自由振动的运动方程为ωξωm c m k t ky t y c t y m 2,0)()()(2===++∙∙∙, 则原式可变为022=++∙∙∙ωξωy y 。
解微分方程有如下结果:2.1 当1<ξ时,即小阻尼运动,方程的解为:)sin(A )sin cos ()(000ϕωωωξωωξωξω+=++=--t e t y v t y e t y d t d d d t 其中2200201)(ξωωωξω-=++=d d y v y A可画出小阻尼体系自由振动时的y-t曲线如图所示:是一条逐渐衰减的波动曲线2.2 当1>ξ时,即大阻尼的情况,方程的解为:⎥⎥⎦⎤⎢⎢⎣⎡-+--+=-t ch y t sh v y e t y o t ωξωξξξωωξ11)1()(20220 上式不含有简谐振动的因子,是因为体系受干扰后偏离平衡位置所积蓄起来的初始能量在恢复平衡位置的过程中全部消耗克服阻尼,由于阻尼很大,不足以引起振动。
当初始速度,初始位移都大于0时,可画出大阻尼体系自由振动时的y-t曲线如图所示:2.3 当1=ξ时,即临界阻尼的情况,方程的解为:[]t v t y e t y t 00)1)(++=-ωω(当初始速度,初始位移都大于0时,可画出临界阻尼体系自由振动时的y-t曲线如下图所示;当体系在临界阻尼时,其运动衰减的最快,即他能在最短时间内无振动的回到平衡位置。
单自由度系统的振动
? mI (F ) ? (M ? m)gR ? F ?2R ? ?4kxR
由 dH I
dt
??
mI (F )
,
有
(
3 2
M
?
m) R?x??
? 4kxR
振动微分方程:
?x??
8k 3M ? 2m
x
?
0
固有频率:
?n?
8k 3M ? 2m
解2 : 用机械能守恒定律 以x为广义坐标(取静平衡位置为 原点)
)
?
st
?
mg keq
?
mg(
1 k1
?
1 k2
)
?
keq
?
k1k2 k1 ? k2
串联
二、 求系统固有频率的方法
对于质量——弹簧这类系统,当振体静止平衡时,有:
mg ? k? st
? st ——弹簧在全部重力作用下的静变形
于是:
?n?
g
? st
无阻尼自由振动系统为保守系统,机械能守恒。
当振体运动到距静平衡位置最远时,速度为零,即系统 动能等于零,势能达到最大值(取系统的静平衡位置为零势 能点)。
振动沉拔桩机等
消耗能量,降低精度等。
3. 研究振动的目的:消除或减小有害的振动,充分利用振动
为人类服务。
4. 振动的分类:
单自由度系统的振动
按振动系统的自由度分类 多自由度系统的振动
弹性体的振动
按振动产生的原因分类: 自由振动: 无阻尼的自由振动 有阻尼的自由振动(衰减振动) 强迫振动: 无阻尼的强迫振动 有阻尼的强迫振动 自激振动
T
?
1 2
Mx?2 ?
1 2
第2章 单自由度系统的自由振动
25第2章 单自由度系统的自由振动2.1 无阻尼系统的自由振动设有质量为m 的物块(可视为质点)挂在弹簧的下端,弹簧的自然长度为l 0,弹簧刚度为k ,如不计弹簧的质量,这就构成典型的单自由度系统,称之为弹簧质量系统如图2-1所示。
工程中许多振动问题都可简化成这种力学模型。
例如,梁上固定一台电动机,当电机沿铅直方向振动时,梁和电机组成一个振动系统,如不计梁的质量,则它在该系统中的作用相当于一根无重弹簧,而电机可视为集中质量。
于是这个系统可简化成如图2-1所示的弹簧质量系统。
2.1.1自由振动方程以图2-1所示的弹簧质量系统为研究对象。
取物块的静平衡位置为坐标原点O ,x 轴顺弹簧变形方向铅直向下为正。
当物块在静平衡位置时,由平衡条件∑F x = 0,得到st δk mg = (A )st δ称为弹簧的静变形。
当物块偏离平衡位置为x 距离时,物块的运动微分方程为mxkx &&=− (2-1) 将式(2-1)两边除以m ,并令mkp =n (2-2) 则式(2-1)可写成02n =+x p x && (2-3)这就是弹簧质量系统置之只在线弹性力-kx 的作用下所具有的振动微分方程,称之为无阻尼自由振动的微分方程,是二阶常系数线性齐次方程。
由微分方程理论可知,式(2-3)的通解为t p C t p C x n 2n 1sin cos +=其中C 1和C 2为积分常数,由物块运动的起始条件确定。
设0=t 时,x x xx ==00,&&。
可解得 C x 10= n02p xC &=t p p xt p x x n n0n 0sin cos &+= (2-4) 式(2-4)亦可写成下述形式)sin(n α+=t p A x (2-5)26 其中⎪⎪⎩⎪⎪⎨⎧=+=)arctan()(00n 2n020x x p p x x A &&α (2-6) 式(2-4)、(2-5)是物块振动方程的两种形式,称为无阻尼自由振动,简称自由振动。
第二章-(第1节)单自由度系统的自由振动
tan 1
ωn x0 x 0
(2.1-11)
2.1 简谐振动
弹簧悬挂的物体沿铅锤方向的振动
当振动系统为静平衡时弹簧在 重力mg的作用下将有静伸长
s
mg k
(2.1-12)
在重力与弹簧力的作用下,
物体的运动微分方程为
mx mg k(s x) (2.1-13)
因为mg=ks,上式仍可简化为
mx kx
波变化。
2.1 简谐振动
振动周期
振动重复一次所需要的时间间隔,称之为振
动周期。 在简谐振动的情况下,每经过一个周期,相
位就增加2,因此
[n(t+T)+]-(nt+)=2
故有
T 2 n
(2.1-9)
实际上T代表发生一次完整运动所需要的时间
,周期通常以秒(s)计。
2.1 简谐振动
振动频率
在单位秒时间内振动重复的次数,称为振动 频率,一般用f 表示。
解:取偏角为坐标。从平衡位
置出发,以逆时针方向为正,锤的
切向加速度为 ,l故 有运动微分方
程为
ml2 mgl sin
假定角不大,可令sin,则
上式简化为 g 0
l
图 2.1-5
2.1 简谐振动
例题:列写振动微分方程求系统的周期(例2.1-2)
故
n2
g l
则振动周期为
T 2 2 l
n
g
2.1 简谐振动
或
② x(t) Asin(nt )
(2.1-7)
式中常数A和(=/2-)分别称为振幅和相角。方程(2.1-
7)说明该系统以固有频率n作简谐振动。
2.1 简谐振动 简谐振动的定义及矢量表示
第一部分 单自由度系统的振动
x0 + ζω n x0 & , A = x0 + ωd
2 2
x = Ae
−ζω n t
sin (ω d t + ϕ )
得 x0 = A sin ϕ ,
& x0 + ζω n x0
ωd
= A cos ϕ
ωd x0 tgϕ = & x0 + ζω n x0
系统的势能为: 系统的势能为:
k2 k1 1 1 1 1 2 2 U = k1 x1 + k 2 x2 = k1 x + k2 x 2 2 2 2(k1 + k 2 ) 2 2(k1 + k 2 ) 1 k1k 2 1 2 = x = ke x 2 2 4(k1 + k 2 ) 2
第一部分 单自由度系统的振动 3 有阻尼系统的自由振动(小阻尼情况) 有阻尼系统的自由振动(小阻尼情况) ●响应求解 −ζωn t [ D1 cos ωd t + D2 sin ωd t ] 第二种形式 x = e 式中D 为待定常数,决定于初始条件。 式中 1与D2为待定常数,决定于初始条件。 由
x = e −ζωnt [ D1 cos ωd t + D2 sin ωd t ] & x = −ζωn e −ζωnt ( D1 cos ωd t + D2 sin ωd t )
+e
−ζωn t
( − D1ωd sin ωd t + D2ωd cos ωd t )
& x0 + ζωn x0
得 x0 = D1 ,
单自由度体系的自由振动
【例10.1】 等截面简支梁[图10.9(a)]的跨长为l, 弯曲刚度EI 为常数,在距梁端A点处有一集中质量m,若 不计梁本身的质量,试求梁的自振频率和自振周期。
图10.9
【解】 该结构为单自由度体系。由式(10.12)求自振频
率ω时,须先求出体系的柔度系数 11 ,即求出在单位力
作用下体系所产生的位移。利用图乘法,由图10.9(b), 算得
结构力学
单自由度体系的自由振动
一、自由振动的微分方程
建立运动微分方程通常有两种方法,一种方法是根据达朗贝尔 原理,利用刚度系数列出平衡方程,这种方法称为刚度法;另 一种方法是根据位移条件,利用柔度系数列出位移方程,这种 方法称为柔度法。
1. 刚度法
图10.7
2. 柔度法
FI +Fe= 0
my(t) k11y(t) 0
y(t) Asin(t )
v0 A cos
y0 Asin
t an1 y0
v0
A
y02
(
v0
)2
图10.8
简谐振动 振幅 相位角 初相角
三、结构的自振周期与频率
T 就是结构的自振周期
T 2π
自振周期的倒数表示每秒钟内的振动次数,称为工程频率, 以f 表示
f 1
T 2π
ω称为圆频率
图10.10
【解】 由于横梁各质点的水平位移相同[图10.10(b)], 故结构为单自由度体系。
在本例中,体系的刚度系数较易计算。取横梁为研究 对象[图10.10(c)],由平衡方程,得
k11
3
3EI1 h3
9EI1 h3
结构的自振频率为
k11 gk11 3 gEI1
mW
单自由度系统振动
齿轮减(变)速器:轴——齿轮的扭转振动 汽轮机、发电机:转子不平衡引起的扭转振动
讨论:请列举其他单自由度振动的实际例子(工程中、家用设备、相关课程中涉及到的)
1.2 单自由度系统振动
单自由度振动系统类型:
1.无阻尼自由振动 2.有阻尼自由振动 3.有阻尼受迫振动 4.MATLAB数值仿真
动拉力与静拉力之比为动力放大系数
Fmax 64268 3.2134 G 20000
结论:当紧急制动时,起重机钢丝绳中的动拉力是正常提升时的3.2134倍
2.有阻尼自由振动解
单自由度有阻尼系统振动方程为:
cx kx 0 m x
其通解为: x e
n
n t
通解为: x Ae nt sin( 1 2 n t )
ξ>1时,称为强阻尼状态
2 1 ) n t
通解为: x c1e (
c2 e (
2 1 ) n t
ξ=1时,称为临界阻尼状态
n
V0 ( 2 1)n x0 c1 2n 2 1 V0 ( 2 1)n x0 c2 2n 2 1
1.无阻尼自由振动解
单自由度无阻尼系统振动方程为:
kx 0 m x 方程的通解为: x a sin n t b cos n t
k k 令 n 则固有频率为 n m m x 0 V0 若振动的初始条件: xt 0 x0 x
2
则其解为: x sin n t x0 cos n t
钢丝绳长度为 l 16m ,钢丝绳弹性模量 E 1.78105 MPa
单自由度系统的振动
第2章 单自由度(SDOF)系统振动(Single Degree of freedom)如果振动系统任意时刻的空间位置只需要一个独立参数来表达,则称为单自由度系统。
本章介绍单自由度系统运动方程的建立,以及自由振动的特点和动力响应的计算问题。
2.1 运动方程的建立此处分别应用基于达朗贝尔原理的直接平衡法、虚位移原理和哈密顿原理建立振动微分方程。
2.1.1 直接平衡法承受动力荷载作用的任何单自由度系统均可以由图2—1所示的模型来代表。
图2—1(a)中,m 为质量块的质量(kg ),是为弹簧的刚度(m N /),c 为粘滞阻尼系数(m s N /⋅),)(t P 为干扰力(N )。
将坐标原点设在质量块的静平衡位置处,坐标y 即为相对于静平衡位置产生的质量块的动位移。
在任意瞬时取质量块的隔离体,如图2—1(b)所示,作用于质量块上的力有下列四种:(1)弹性恢复力(它等于弹簧刚度k 与位移y 的乘积),ky f s =,与位移的方向相反;(2)阻尼力(假设为粘滞阻尼机理,它等于阻尼常数c 与速度y 的乘积),yc f D =,与速度的方向相反;(3)惯性力(根据d ’Alembert 原理,它等于质量m 与加速度y的乘积),ym f I =,与加速度的方向相反; (4)干扰力,)(t P .(根据竖向力的动平衡条件即直接平衡法得出))(t P ky y c ym =++ (2—1) 在振动的任意时刻,这四种力都保持着平衡,只是各个力所占的比例不同而已。
由方程(2—1)可知,相对于动力系统的静力平衡位置所建立的运动方程是不受重力影响的。
换言之,此类情况可以不考虑重力影响建立方程。
由于这个原因,建立方程时,位移都以静力平衡位置作为坐标原点,由此方程仅能得到系统的动位移,而总的位移应该是动力位移响应和静力位移值的叠加。
2.1.2 虚位移原理以图2—1所示的结构系统说明如何应用虚位移原理建立方程。
令质量m 发生虚位移y δ,则作用在质量m 上的四个力所作的总虚功应该等于零,即0)(=+---y t P y f y f y f s D I δδδδ式中的负号是因为力的方向和虚位移的方向相反。
第2章单自由度系统的振动
第2章 单自由度系统的振动
2.1 单自由度系统的自由振动
n
k eq k i i1
串联时弹簧的等效刚度
(2-3)
在图2-4(b)所示的串联情况下,可以得到如下关系
Fs k1(x0x1)
Fsk2(x2x0)
将x0 消掉,可得
Fs keq(x2x1)
keq
1 k1
1 k2
(2-11) (2-12)
x(t)Acosnt
(2-13)
A和φ也是积分常数,同样由x(0) 和 x(0) 决定。 方程(2-13)表明系统以为ωn 频率的简谐振动,这 样的系统又称为简谐振荡器。(2-13)式描述的是最 简单的一类振动。
第2章 单自由度系统的振动
2.1 单自由度系统的自由振动
飞行器结构动力学
第2章 单自由度系统的振动
西北工业大学航天学院
飞行器设计工程系
文 立 华
主 讲 教 师
第2章 单自由度系统的振动
飞行器结构动力学
第2章 单自由度系统的振动
西北工业大学
第2章 单自由度系统的振动
第2章 单自由度系统的振动
2.1 单自由度系统的自由振动 2.2 单自由度系统的强迫振动 2.3 单自由度系统的工程应用
表示,下面用牛顿定律来建立系统的运动方程。绘系 统的分离体图如图2-5(b)。
第2章 单自由度系统的振动
2.1 单自由度系统的自由振动
用 F(t)表示作用于系统上的外力,用x(t) 表示质量m 相对 于平衡位置的位移,可得:
F (t) F s(t) F d(t) m x (t)
(2 -7)
由于Fs(t)kx(t), Fd(t)cx(t) 方程(2-7)变为:
结构振动理论2-单自由度系统自由振动
由 dE 0 1、求出运动方程: mx kx 0
dt
有常力作用的机械能: E 1 mx&2 1 k( x)2 Fx
2
2
dE mx&&x& k( x)x& Fx& x&(m&x& kx) 0
dt
由 Ek max E p max E 2、求固有频率
假设 x Asin( pt ) 则 x Apcos(pt )
2
l 0
/
2
y02{3(
x l
)
4(
x l
)3}2
dx
1 2
0.486
ly02
Ek
1 2
me
y02
me 0.486 l
n
ke me
00:03
单自由度系统自由振动
例 铰接式直升机旋翼挥舞振动分析
取微元做受力分析,微元
cos
R
L
2(R cos)d 离心力对铰链轴o的力矩为
θ
ξ
(2 (R cos )d )( sin )
则系统的自由振动方程为: me ke 0
固有频率为:
n
ke me
需要注意的是,me不是梁的总质量,它可以通过梁上各 点位移关系和动能等效的原则求得。
00:03
单自由度系统自由振动
y( x, t )
y0
(t
)[3x l
4(
x )3 ] l
(x 1) l2
Ek
1 2
l y2dm 1 2
0
由此可见,弹性元件并联将提高总刚度,串联将降低总刚
度。这与电学中电阻的并联、串联结论是相反的。阻尼器串联
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
st,而弹性力分别是
F1 k1 st F2 k2 st
系统平衡方程是 Fx 0
mg F1 F2 (k1 k2 ) st
Mechanical and Structural Vibration
2.1 无阻尼系统的自由振动
2.1 无阻尼系统的自由振动
自由振动方程
另一种形式
x Asin( pnt )
初
振幅
相 两种形式描述的物
A
x02
(
v0 pn
)2
位 块振动,称为无阻 角 尼自由振动,简称
自由振动。
arctg(
pn x0 v0
)
无阻尼的自由振动是以其静平衡位置为振动中心的 简谐振动
Mechanical and Structural Vibration
v0 pn
2
振动的振幅;
arctan
pn q0 q0
-振动的位相;q0-初始广义坐标;v0-初始速度。
Mechanical and Structural Vibration
2.1 无阻尼系统的自由振动
等效刚度系数
串联弹簧与并联弹簧的等效刚度
例 在图中,已知物块的质量为m,弹簧的弹簧刚度系数分别为k1、 k2,分别求并联弹簧与串联弹簧直线振动系统的固有频率。 解:(1)并联情况。弹簧并联的特征是:二弹簧变形相等。
Mechanical and Structural Vibration
2.1 无阻尼系统的自由振动
等效刚度系数
等效的概念
meq
d2 q dt2
keq q=0
q=C1cospnt C2cospnt
d2 q dt2
pnq=0
q=Asin pnt
pn=
keq -系统的固有频率;A meq
q02
2.1 无阻尼系统的自由振动
振幅、初相位和频率
系统振动的周期 T 2π 2π m
pn
k
系统振动的频率 f 1 pn 1 k
T 2π 2π m
系统振动的圆频率为 pn 2πf
圆频率pn 是物块在自由振动中每2 秒内振动的次数。 f、 pn只与振动系统的弹簧常量k和物块的质量 m 有关, 而与运动的初始条件无关。因此,通常将频率f 称为
自由振动方程
无阻尼自由振动微分方程
其通解为: x C1 cos pnt C2 sin pnt
其中C1和C2为积分常数,由物块运动的起始条件确定。
设t=0时, x x0,v v0 可解
C1 x0
C2
v0 pn
x
x0 cos pnt
v0 pn
sin
pnt
Mechanical and Structural Vibration
等效刚度系数
如果用一根弹簧刚度系数为k的弹簧来代替原来的两根弹簧, 使该弹簧的静变形与原来两根弹簧所产生的静变形相等,则
mg k st
mg F1 F2 (k1 k2 ) st
k k1 k2
系统的固有频率 f 1 k 1 k1 k2
2π m and Structural Vibration
2.1 无阻尼系统的自由振动
等效的概念
等效刚度系数
单自由度线性系统无阻尼自由振动微分方程
m
d2 dt
x
2
k x=0
这一方程,可以等效为广义坐标的形式
meq
d2 q dt2
keq q=0
keq-等效刚度:使系统在广义坐标方向产生单位位移,
需要在这一坐标方向施加的力或力矩。
meq-等效质量:使系统在广义坐标方向产生单位加速 度,需要在这一坐标方向施加的力或力矩。
Mechanical and Structural Vibration
2.1 无阻尼系统的自由振动
等效刚度系数
Mechanical and Structural Vibration
2.1 无阻尼系统的自由振动
自由振动方程
取物块的静平衡位置为坐标原点O, x轴顺弹簧变形方向铅直向下为正。 当物块在静平衡位置时,由平衡条 件,得到
mg k st
弹簧的静变形
Mechanical and Structural Vibration
工程振动与测试
第2章 单自由度系统的振动
Mechanical and Structural Vibration
第2章单自由度系统的振动
目录
2.1 无阻尼系统的自由振动 2.2 计算固有频率的能量法 2.3 瑞利法 2.4 有阻尼系统的衰减振动 2.5 简谐激励作用下的受迫振动 2.6 周期激励作用下的受迫振动 2.7 任意激励作用下的受迫振动 2.8 响应谱
2.1 无阻尼系统的自由振动
等效刚度系数
并联后的等效弹簧刚度系数是各并联弹簧刚度系数 的算术和。
Mechanical and Structural Vibration
2.1 无阻尼系统的自由振动
等效刚度系数
(2)串联情况。串联弹簧的特征是:二弹簧受力相等。
当物块在静平衡位置时,它的静位移st等于每根弹簧 的静变形之和,即 st = 1st + 2st
固有频率,圆频率pn称为固有圆频率。
Mechanical and Structural Vibration
2.1 无阻尼系统的自由振动
振幅、初相位和频率
用弹簧静变形量st表示固有圆频率的计算公式
物块静平衡位置时
固有圆频率 pn
mg k st
k m
k mg
st
g
pn st
Mechanical and Structural Vibration
Mechanical and Structural Vibration
第2章单自由度系统的振动
2.1 无阻尼系统的自由振动
Mechanical and Structural Vibration
第2章 单自由度系统的振动 关于单自由度系统振动的概念 典型的单自由度系统:弹簧-质量系统 梁上固定一台电动机,当电机沿铅直 方向振动时,可视为集中质量。如不 计梁的质量,则相当于一根无重弹簧, 系统简化成弹簧-质量系统
2.1 无阻尼系统的自由振动
当物块偏离平衡位置为x距离时,物块的 运动微分方程为
自由振动方程
m
d2 x dt2
mg
k ( st
x)
d2 x dt2
pn2 x
0
k 其中pn m 固有圆频率
无阻尼自由振动微分方程
Mechanical and Structural Vibration
2.1 无阻尼系统的自由振动