矩阵的概念-PPT精选
合集下载
线性代数 矩阵及其运算
A22 ...
... ...
An 2 ...
A1n A2n ... Ann
称矩阵A的伴随矩阵,记为A*
精选版课件ppt
27
伴 随 矩 阵 有 如 下 重 要 性 质 : AA*A*A(detA)E
矩阵运算举例
例 例 1 8 设 A123T, B11 21 3, CAB ,
求 Cn
精选版课件ppt
例4
如:A 11
11
B
1 1
11
AB O
BA
2 2
22
显然有:AB 0 AB BA
总结:矩阵乘法不满足交换律与消去律.
精选版课件ppt
18
例5 设
A1 1
2 1
1 1,
求AB与BA
1 2 B1 1
2 3
解
3 0 3
1 3 AB2 6
BA0 3 0 1 7 1
定理2.1 若矩阵A的第i行是零行,则乘积 AB的第i行
a..i.1
... ...
a..is.n......
... bnjs
... ...
cij
精选版课件ppt
14
例2 计算
2 1
1 8 10
1 3
4 01 3
2 4
051 9
2 5 22 15
精选版课件ppt
15
例3. 非齐次线性方程组的矩阵表示
a11x1 a12x2 a1nxn b1
a21x1
关于矩阵乘法的注意事项: (1)矩阵 A 与矩阵 B 做乘法必须是左矩阵的列数与右
矩阵的行数相等; (2)矩阵的乘法中,必须注意矩阵相乘的顺序,AB是
A左乘B的乘积,BA是A右乘B的乘积;
线性代数课件第2章矩阵
于乘法中的数1. 课件
20
定义5 方阵 A 的 n 次幂定义为 n 个方阵 A 连
乘,即
6 47n个48
An A AL A
其中 n 为正整数,规定 A0 E ,其运算规律:
(1)AkAl Akl ;
(2)(Ak)l Akl (k,l为正整数) .
因为矩阵乘法不满足交换律,所以两个 n 阶方
数,记 A ( a ij ) , A 称为 A的共轭矩阵.
其运算规律(设 A,B为复矩阵,为复数,且
运算都是可行的):
(1) ABAB; (2) AA ;
(3) ABAB.
课件
27
2.3 逆矩阵
课件
28
2.3.1 逆矩阵的定义及性质
定义9 设 A 为 n 阶方阵,若存在 n 阶方阵 B ,
课件
23
所以
0 17
( A B )T
1
4
1
3
3 1 0
解法2 (AB)TBTAT
1 4 2 2 1 0 17 7 2 0 0 314 13
1 3 11 2 3 10
课件
24
定义7 设 A为 n阶方阵,若满足 AT A ,则
称 A为对称矩阵,即 ai jaji(i,j1 ,2,,n)
a21
b21
M
a12 b12 L a22 b22 L
M
am1
bm1
am2 bm2
L
a1n b1n
a2n
b2n
M
amn
bmn
= (aij + bij ) 课件
10
例1 设
A
3 1
0 4
75,
则
2.1 矩阵的概念
y1 , y 2 , , y m x 1 , x 2 , , x n
与另外 m 个变量
P29 例3
之间存在如下的线性关系:
线性变换的系数可构成矩阵
A ( a ij ) m n .
线性变换和矩阵之间存在着一一对应关系.
16
§2.1 矩阵的概念 第 附:图像举例 二 章 矩 阵
30 33 37 40 48 58 53 52 65 64 71 69 62 68 76 67 74 86 88 70 58 48 37 33
a a 0 (?) aI a n n
0
11
§2.1 矩阵的概念 第 三、几种特殊的矩阵 二 章 3. 方阵 (1) 单位矩阵 矩 (2) 数量矩阵 阵 (3) 对角矩阵
1
2
0
0
记为 Λ diag ( 1 , 2 , , n ) . n n n
a11 a12 a 21 a 22 (A b) am1 am 2 a1 n a2 n am n b1 b2 bm
称为方程组的增广矩阵. 15
§2.1 矩阵的概念 第 例 二 章 矩 阵 线性变换是指 n 个变量
数表内部 进行操作
4
§2.1 矩阵的概念 第 二、矩阵的定义与一些基本概念 二 1. 矩阵的定义 章 定义 由 m×n 个数 ai j 排成的 m 行 n 列的数表 矩 阵 P26
定义 2.1 记为
A 或者
Am n
称为 m×n 阶矩阵,简记为 A
(a i j )mn
或
(a i j ) .
5
补
数表
与另外 m 个变量
P29 例3
之间存在如下的线性关系:
线性变换的系数可构成矩阵
A ( a ij ) m n .
线性变换和矩阵之间存在着一一对应关系.
16
§2.1 矩阵的概念 第 附:图像举例 二 章 矩 阵
30 33 37 40 48 58 53 52 65 64 71 69 62 68 76 67 74 86 88 70 58 48 37 33
a a 0 (?) aI a n n
0
11
§2.1 矩阵的概念 第 三、几种特殊的矩阵 二 章 3. 方阵 (1) 单位矩阵 矩 (2) 数量矩阵 阵 (3) 对角矩阵
1
2
0
0
记为 Λ diag ( 1 , 2 , , n ) . n n n
a11 a12 a 21 a 22 (A b) am1 am 2 a1 n a2 n am n b1 b2 bm
称为方程组的增广矩阵. 15
§2.1 矩阵的概念 第 例 二 章 矩 阵 线性变换是指 n 个变量
数表内部 进行操作
4
§2.1 矩阵的概念 第 二、矩阵的定义与一些基本概念 二 1. 矩阵的定义 章 定义 由 m×n 个数 ai j 排成的 m 行 n 列的数表 矩 阵 P26
定义 2.1 记为
A 或者
Am n
称为 m×n 阶矩阵,简记为 A
(a i j )mn
或
(a i j ) .
5
补
数表
线性代数第2章矩阵PPT课件
线性代数第2章矩阵ppt 课件
目录 CONTENT
• 矩阵的定义与性质 • 矩阵的逆与行列式 • 矩阵的秩与线性方程组 • 矩阵的特征值与特征向量 • 矩阵的对角化与相似变换
01
矩阵的定义与性质
矩阵的基本概念
矩阵是一个由数字组 成的矩形阵列,行数 和列数可以不同。
矩阵的维度是指行数 和列数的数量。
矩阵的元素通常用方 括号括起来,并用逗 号分隔。
矩阵的运算规则
01
02
03
加法
两个矩阵的加法是将对应 位置的元素相加。
数乘
一个数乘以一个矩阵是将 该数乘以矩阵的每个元素。
乘法
两个矩阵的乘法只有在第 一个矩阵的列数等于第二 个矩阵的行数时才能进行。
特殊类型的矩阵
对角矩阵
对角线上的元素非零,其他元素为零的矩阵。
行列式的递推公式法
递推公式法是一种常用的计算行列式 的方法,它通过递推关系式将n阶行 列式转化为低阶行列式进行计算。这 种方法在计算较大行列式时非常有效。
03
矩阵的秩与线性方程组
矩阵的秩
矩阵的秩定义
矩阵的秩是其行向量组或列向量 组的一个极大线性无关组中向量 的个数。
矩阵的秩的性质
矩阵的秩是唯一的,且满足行秩 等于列秩。矩阵的秩等于其任何 子矩阵的秩。
02
特征值和特征向量与矩阵的乘法 运算有关,即如果Ax=λx,那么 (kA)x=(kλ)x,其中k是任意常数。
03
特征值和特征向量与矩阵的转置 运算有关,即如果Ax=λx,那么 A^Tx=(λ^T)x。
特征值与特征向量的计算方法
定义法
根据特征值和特征向量的定义, 通过解方程组Ax=λx来计算特
征值和特征向量。
目录 CONTENT
• 矩阵的定义与性质 • 矩阵的逆与行列式 • 矩阵的秩与线性方程组 • 矩阵的特征值与特征向量 • 矩阵的对角化与相似变换
01
矩阵的定义与性质
矩阵的基本概念
矩阵是一个由数字组 成的矩形阵列,行数 和列数可以不同。
矩阵的维度是指行数 和列数的数量。
矩阵的元素通常用方 括号括起来,并用逗 号分隔。
矩阵的运算规则
01
02
03
加法
两个矩阵的加法是将对应 位置的元素相加。
数乘
一个数乘以一个矩阵是将 该数乘以矩阵的每个元素。
乘法
两个矩阵的乘法只有在第 一个矩阵的列数等于第二 个矩阵的行数时才能进行。
特殊类型的矩阵
对角矩阵
对角线上的元素非零,其他元素为零的矩阵。
行列式的递推公式法
递推公式法是一种常用的计算行列式 的方法,它通过递推关系式将n阶行 列式转化为低阶行列式进行计算。这 种方法在计算较大行列式时非常有效。
03
矩阵的秩与线性方程组
矩阵的秩
矩阵的秩定义
矩阵的秩是其行向量组或列向量 组的一个极大线性无关组中向量 的个数。
矩阵的秩的性质
矩阵的秩是唯一的,且满足行秩 等于列秩。矩阵的秩等于其任何 子矩阵的秩。
02
特征值和特征向量与矩阵的乘法 运算有关,即如果Ax=λx,那么 (kA)x=(kλ)x,其中k是任意常数。
03
特征值和特征向量与矩阵的转置 运算有关,即如果Ax=λx,那么 A^Tx=(λ^T)x。
特征值与特征向量的计算方法
定义法
根据特征值和特征向量的定义, 通过解方程组Ax=λx来计算特
征值和特征向量。
第一章(第一二节)矩阵的概念及基本运算PPT课件
没有得到老一辈数学家们的重视。如:他曾五次将一篇
代 “五次方程不能由公式给出其解”的论文寄给在格廷根的
高斯,但都没有得到回音。由于他的不断出外求学,致使
数 经济状况十分糟糕,最后只得回到自己的故乡—挪威。没
过多久,他就在忧郁中结束了自己年仅27岁的短暂生命。
就在他死后的第三天,他的朋友通知他,他已被柏林大学
代 们称之为维是 m×n 的矩阵,简称为 m×n 矩阵,简记为
。其表[ a示ij ]形m 式n (通式)为:
数
a11 a12 a1n
a
21
a 22
a2n
a m1 a m 2 a mn 7
一、矩阵的定义
a11 a12 a1n
a
21
a 22
a2n
线
a m1 a m 2 a mn
线 们满足
(1)m = p 且n = q;
性 (2)aij=bij,其中i=1,2,…,m;j=1,2,…,n。
代
则称A与B相等,记为A=B。
数
即: A 与B 两个矩阵的维和相对应的
元均一一对应相等。
24
二、矩阵的和
定义 设A=[aij]m×n ,B=[bij]m×n ,令C= [aij+ bij]m×n , 称矩
22 35 31 21
14 61 14 45
数
49 55 45 62
5
6
59
67
a21=2; a22=12; a23=24; a31=3; a32=11; a33=27。
9
试问: 6 3 1
332
B= 8 4 3 C= 4 7 分别是否为矩阵?
线
952
3 6 1 为什么?
矩阵(Matrix)的定义
amn xn .
a11 a12
A
a21
a22
am1 am1
a1n
a2n
amn
系数矩阵
线性变换与矩阵之间存在着一一对应关系.
第二节 矩阵的运算
主要内容
矩阵的加法 数与矩阵相乘 矩阵的乘法 方阵的幂
矩阵乘积的意义 矩阵的转置 方阵的行列式
一、矩阵的加法
1.定义:设有两个 m×n 矩阵 A = (aij),B = (bij) ,那么矩 阵 A 与 B 的和记作 A+B,规定为
a11 b11
A
B
a21
b21
am1 bm1
a12 b12 a22 b22
am2 bm2
a1n b1n
a2n
b2n
amn bmn
说明:只有当两个矩阵是同型矩阵时,才能进行加法运算.
2.矩阵加法的运算规律
a, b, c R
设 A、B、C 是同型矩阵
交 换 abba 律
A(B C) AB AC (B C)A BA CA
(iv) 单位矩阵在矩阵乘法中的作用类似于数1,即
Em Amn Amn En A
推论:矩阵乘法不一定满足交换律,但是纯量阵 lE 与任何
同阶方阵都是可交换的.
(l En ) An l An An (l En )
纯量阵不同 于对角阵
1 2 4 3 9 8 5 2 , 4 2 1 0
1 2 3 0
9
8
.
5 1
3
5
行列式
a11 a12
a1n
a21 a22
a2n
矩阵
a11 a12
a1n
a21 a22
a2n
a11 a12
A
a21
a22
am1 am1
a1n
a2n
amn
系数矩阵
线性变换与矩阵之间存在着一一对应关系.
第二节 矩阵的运算
主要内容
矩阵的加法 数与矩阵相乘 矩阵的乘法 方阵的幂
矩阵乘积的意义 矩阵的转置 方阵的行列式
一、矩阵的加法
1.定义:设有两个 m×n 矩阵 A = (aij),B = (bij) ,那么矩 阵 A 与 B 的和记作 A+B,规定为
a11 b11
A
B
a21
b21
am1 bm1
a12 b12 a22 b22
am2 bm2
a1n b1n
a2n
b2n
amn bmn
说明:只有当两个矩阵是同型矩阵时,才能进行加法运算.
2.矩阵加法的运算规律
a, b, c R
设 A、B、C 是同型矩阵
交 换 abba 律
A(B C) AB AC (B C)A BA CA
(iv) 单位矩阵在矩阵乘法中的作用类似于数1,即
Em Amn Amn En A
推论:矩阵乘法不一定满足交换律,但是纯量阵 lE 与任何
同阶方阵都是可交换的.
(l En ) An l An An (l En )
纯量阵不同 于对角阵
1 2 4 3 9 8 5 2 , 4 2 1 0
1 2 3 0
9
8
.
5 1
3
5
行列式
a11 a12
a1n
a21 a22
a2n
矩阵
a11 a12
a1n
a21 a22
a2n
第二章 矩阵及其运算 《工程数学线性代数》课件PPT
0
x
§2 矩阵的运算
例 某工厂生产四种货物,它在上半年和下半年向三家商店 发送货物的数量可用数表表示:
a11 a12 a13 a14 a21 a22 a23 a24 a31 a32 a33 a34
其中aij 表示上半年工厂向第 i 家 商店发送第 j 种货物的数量.
c11 c12 c13 c14 c21 c22 c23 c24 c31 c32 c33 c34
行数不等于列数 共有m×n个元素 本质上就是一个数表
det(aij )
(aij )mn
三、特殊的矩阵
1. 行数与列数都等于 n 的矩阵,称为 n 阶方阵.可记作 An.
2. 只有一行的矩阵 A (a1, a2 ,L , an ) 称为行矩阵(或行向量) .
a1
只有一列的矩阵
B
a2
M
称为列矩阵(或列向量)
说明:只有当两个矩阵是同型矩阵时,才能进行加法运算.
知识点比较
a11 a12 a13 a11 b12 a13 a11 a12 b12 a13 a21 a22 a23 a21 b22 a23 a21 a22 b22 a23 a31 a32 a33 a31 b32 a33 a31 a32 b32 a33
( )A A A (A B) A B
备 注
矩阵相加与数乘矩阵合起来,统称为矩阵的线性运算.
知识点比较
a11 a12 a13 a11 a12 a13 a11 a12 a13 a21 a22 a23 a21 a22 a23 a21 a22 a23
a31 a32 a33 a31 a32 a33 a31 a32 a33
a12 a22
a13 a23
a14 a24
线性代数教学课件:矩阵的概念
代
当i>j时, aij 0
数
2 3 0 1
如
0
1
1
1
=
0 0 0 2 0 0 0 1
=
▪下三角矩阵
a11 0
0
a21
a22
0
线
an1 , aij 0
1 0 0 0
数
如
2
4
0
0
=
3 0 1 0
1 2 1 1
=
可以建立线性方程组与矩阵的一一对应:
=
0 0 1
可以建立线性方程组与矩阵的一一对应:
如,称 A 2 1 1
线
1 0 1
为线性代数方程组
2 x1 x1
x2
x3 x3
1 的系数矩阵; 2
性 代
系数及常数项组成的矩阵
—
A
2
1
1
1
数
1 0 1 2
称为方程组的增广矩阵.
=
=
1.1 矩阵及其运算
同型矩阵: Amn , Bmn
例1.2 某企业生产4种产品,各种产品的季度产值
(单位:万元)如下表:
线
产值
季节 产品1 产品2 产品3 产品4
性
1 80 58 75 78
代
2 98 70 85 84
3 90 75 90 90
数
4 88 70 82 80
80
这个数表 98
90
58 70 75
75 85 90
78 84
具体描述了这家企业各种产品 各季度的产值,同时也揭示了
代
▪行矩阵或行向量
a1 a2 an 如(1 0 1 2) 数
矩阵教学课件
例如:
13 2
6 2
5 2
是一个3 阶方阵.
2 2 2
(2) 只有一行的矩阵 A a1,a2 ,,an ,称为行矩阵(或行向量).
(3) 只有一列的矩阵
a1
B
a2
,
an
称为列矩阵(或列向量).
第二章 矩阵
§1 矩阵的概念
(4) 元素全为零的矩阵称为零矩阵, 记作O.
注意:不同阶数的零矩阵是不相等的.
例8: 设列矩阵X = (x1 x2 ···xn)T, 满足XTX = 1, E为n 阶单位 矩阵, H = E – 2XXT, 证明: H为对称矩阵, 且HHT = E.
证明: 自学 (见P49)
第二章 矩阵
§2 矩阵的运算
五、方阵的行列式 定义:由n阶方阵A的元素所构成的行列式(各元素的位
置不变),称为方阵A的行列式,记作|A| 或det A. 例
第二章 矩阵
§1 矩阵的概念 §2 矩阵的运算 §3 逆矩阵 §4 分块矩阵 §5 矩阵的初等变换 §6 矩阵的秩
第二章 矩阵
§1 矩阵的概念
一、矩阵的定义 定义: 由m×n个数aij (i = 1,2, ∙ ∙ ∙, m ; j = 1,2, ∙ ∙ ∙, n) 排
成的m行n列的数表
称为m行n列矩阵,简称m×n矩阵.
y1 a11x1 a12 x2 a1n xn ,
y2 a21x1 a22 x2 a2n xn ,
ym am1 x1 am2 x2 amn xn .
表示一个从变量x1、x2、…xn到变量y1、y2、…ym的线性变换,
其中aij为常数。
第二章 矩阵
§1 矩阵的概念
,
x
矩阵的概念
例如
1 5
62 与 184
3 4
为同型矩阵.
3 7 3 9
2.两个矩阵 A aij 与B bij 为同型矩阵,并且
对应元素相等,即
aij bij i 1,2,,m; j 1,2,,n,
则称矩阵 A与B相等,记作 A B.
例1 n个变量x1, x2,, xn与m个变量y1, y2,, ym之 间的关系式
Px, y
O
X
例2 设 A 1 2 3, 3 1 2
B 1 x 3, y 1 z
已知 A B,求 x, y, z. 解 A B,
x 2, y 3, z 2.
三、小结
(1)矩阵的概念 m行n列的一个数表
a11
A
a21
a12
a22
a1n a2n
am1 am1 amn
§4-1 矩阵的概念
一、矩阵概念的引入
1.线性方程组
a11x1 a12 x2 a1n xn 0 a21x1a22x2 a2nxn0 am1x1 am2 x2 amn
a21
am1
a12 a22
am2
a1n a2n
amn
表示成
Ax=0
二、矩阵的定义
方阵 m n;
a1
(2) 特殊矩阵
行矩阵与列矩阵;
单位矩阵; 11
00 对角矩阵;
A 00
12
aB1 ,a20000,aan2., ,an
,
零矩阵.
00 00 1n
思考题
矩阵与行列式的概念有什么区别?
思考题解答
矩阵与行列式有本质的区别,行列式是 一个算式,一个数字行列式经过计算可求得 其值,而矩阵仅仅是一个数表,它的行数和 列数可以不同.
矩阵PPT课件
.
am1 am1 amn
第21页/共179页
2、数乘矩阵的运算规律
(设 为A、矩B阵, m为数)n
,
1 A A;
2 A A A; A B A B.
31A A.
4若kA O,则k 0或A O.
矩阵相加与数乘矩阵合起来,统称为矩阵的线 性运算.
第22页/共179页
例1 已知矩阵
第16页/共179页
思考题解答
矩阵与行列式有本质的区别,行列式是一个 算式,一个数字行列式经过计算可求得其值,而 矩阵仅仅是一个数表,它的行数和列数可以不同.
第17页/共179页
§2.2 矩阵的运算
一、矩阵的加法
1、定义
设有两个m 矩n阵 A aij 那, B么矩b阵ij ,
A与 的B和记作 A,规B定为
3 6 8 3 2 1 12 1 3 8 5 9 13 11 4 1 6 9 5 0 4 7 4 4. 3 3 6 2 8 1 6 8 9
第19页/共179页
2、 矩阵加法的运算规律
1 A B B A;
2 A B C A B C .
3 A O O A A.
是一个m 矩n阵 C , 其cij 中
cij
a bi1 1 j
ai b2 2 j
aisbsj
s
aik bkj
k 1
i 1,2,m; j 1,2,,n,
并把此乘积记作 C AB .
第25页/共179页
例3 C 2
1
4 2
222 3
4
622
16 8
?
32 16 22
B 18 6,
1 4
AT
2
5 ;
矩阵(Matrix)PPT课件
a11 a12
A
a21
a22
am1 am2
a1n x1 b1
a2n
,
x
x2
,
b
b2
amn xn bn
ai1x1 ai2 x2 ain xn bi
则方程组又可表示为 Ax b.
x1ai1 x2ai2 xnain bi
a11 a21
定义成
a11 a21
x1 x1
a12 x2 a22 x2
x1
a11
a21
x2
a12
a22
x1 1 x2 2
e2
(a12 , a22 )
2
1
y ( y1, y2 )
2
A和x的乘法实质给出了 向量y在A坐标系(β1Oβ2) 下的刻划方法。
e1
(a11,1a21 )
y y1e1 y2e2
ai1b1 j ai 2b2 j a b b 1j is sj
a a a i1 i2
b2 j is
注:A的列数和B的行数相等时 b,sj AB才有意义。
• 例3 设矩阵
1 0 1
A
1
1
3
,
求乘积 AB.
解
1 0
C
AB
1
1
0 3 4 B 1 2 1
3 1 1
B
a12
a22
a1n a2n
am1
am2
y (x1, x2, , xn )
c (b1,b2, ,bm)
amn nm
则方程组又可表示为 yB c.
矩阵向量乘法意义之二:为刻划向量提供了坐标系
根据矩阵乘法定义,m n 阶矩阵A与n维列向
矩阵的概念ppt-沪教版PPT优选课件
x 2y 5 7y 7
x2y 5, y 1.
x 3,
y
1.
13
2 1
85
10
2 7
57
10
2 1
51
10
0 1
31
方程组 的解
12
如何用矩阵变换的方法解二元一次方程组?
1. 第1步,把二元一次方程组的系数和常数 写成一个增广矩阵;
(注意:方程要写成ax+by=c的形式。)
第2步,逐步变化矩阵,把增广矩阵变成
2020/10/18
18
谢谢您的聆听与观看
THANK YOU FOR YOUR GUIDANCE.
感谢阅读!为了方便学习和使用,本文档的内容可以在下载后随意修改,调整和打印。欢迎下载!
汇报人:XXX 日期:20XX年XX月XX日
的形式,则方程组的解就是
x
y
a, b.
10
0 1
ab
2020/10/18
13
2. 一般地,矩阵变换有三种: (1) 互换两行 (2) 用非零数乘或除某一行 (3) 某一行乘以一个数加到另一行上
2020/10/18
14
例3:《九章算术》中有一个问题:今有牛五羊二 直金十两,牛二羊五直金八两. 问牛羊各直金几何?
21
5
0
170
21
①÷5
0 1
20 21
1 0 34
21
0
1
20 21
答 : 每3头 4金牛 ,值 每2只 0金羊 。值
21
21
2020/10/18
16
用矩阵变换的方法解下列二元一次方程组:
2xy20
矩阵论简明教程整理全PPT课件
k
ei
e
H j
E ei , ej , k
第45页/共188页
Remark
det E u,v, det In uvH det 1 vHu
1 vHu (由n Im AB m In BA 得到)
第46页/共188页
四、其他特殊矩阵
1幂零矩阵:Ak 0, k : 某正整数; 2幂等矩阵:A2 A; 3 实对称正定矩阵:
a a jn 1 j1 2 j2
anjn
j1 j2 jn
第13页/共188页
二、块矩阵的行列式
1、设A Cmm , B Cmn , C Cnm , D Cnn , 则
1 A
0A
BA
0 AD
0D 0D CD
2 A B 1mn C D 1mn B A
CD
AB
DC
3 A B m A B
minrank A, rank B
第30页/共188页
推论1
设ACmn , B Cnk ,且AB 0,则
rank A rank B n
第31页/共188页
§1.4 特殊矩阵
一、 几类基本的特殊矩阵
1、零矩阵,单位矩阵 2、对角矩阵
a11
D
a22
diag
a11
,
a22
,
ann
第50页/共188页
§2.1 矩阵的特征值与特征向量
一、特征值与特征向量 1、定义 定义1
设ACnn ,若存在数 C和x Cn , x 0使得 Ax x
则称是A的特征值,x称为A属于的特征向量。
第51页/共188页
2、特征多项式 定义2
设ACnn , 称In A为A的特征矩阵,称detIn A 为A的特征多项式,称detIn A 0为A的特征方程。
线性代数-矩阵的概念共24页PPT
线性代数-矩阵的概念
26、机遇对于有准备的头脑有特别的 亲和力 。 27、自信是人格的核心。
28、目标的坚定是性格中最必要的力 量泉源 之一, 也是成 功的利 器之一 。没有 它,天 才也会 在矛盾 无定的 迷径中 ,徒劳 无功。- -查士 德斐尔 爵士。 29、困难就是机遇。--温斯顿.丘吉 尔。 30、我奋斗,所以我快乐。--格林斯 潘。
▪
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
▪
28、知之者不如好之者,好之者不如乐之者。——孔子
▪——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
24
26、机遇对于有准备的头脑有特别的 亲和力 。 27、自信是人格的核心。
28、目标的坚定是性格中最必要的力 量泉源 之一, 也是成 功的利 器之一 。没有 它,天 才也会 在矛盾 无定的 迷径中 ,徒劳 无功。- -查士 德斐尔 爵士。 29、困难就是机遇。--温斯顿.丘吉 尔。 30、我奋斗,所以我快乐。--格林斯 潘。
▪
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
▪
28、知之者不如好之者,好之者不如乐之者。——孔子
▪——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
24
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练一练
已A 知 2 y 3 x,B2 m x ny m x y n,若 AB, 试x求 ,y,m,n的值。
谈谈这堂课你有 哪些收获?
小结:
1.矩阵的概念,零矩阵,行矩阵,列矩阵; 2.矩阵的表示; 3.相等的矩阵; 4.用矩阵表示实际生活中的问题 ,数学问 题.
矩阵的概念
1.了解提出矩阵概念的一些实际背景;
2.掌握矩阵行、列、元素等概念,知道零 矩阵、矩阵的相等等相关知识;
3.会用矩阵表示一些简单的实际问题。
何为矩阵?
y P(1,3)
3
O
1
1 3
x
简
记
为
1
3
某电视台举行的歌唱比赛,甲、乙两选手 初赛、复赛成绩如表:
初赛 复赛
甲
80
90
乙
60
85
80 90 60 85
简记为8600
90 85
2x 3y mz 1, 3x2y 4z 2
2 3m 3 2 4
简记为32
3 2
m 4
矩阵的概念
形
如
1
3
,
80 90
6
0
8
5
,
2 3 m
3
2
4
这样的矩形数字(或字母)阵列称为矩阵
而组成矩阵的每一个数(或字母)称为矩阵的元素
通常用大写的拉丁字母A、B、C…表示,或
者用( a ij )表示,其中 i, j 分别表示元素 a ij 所
在的行与列.
矩阵的概念
同一横排中按原来次序排列的一行数 (或字母)叫做矩阵的行,
同一竖排中按原来次序排列的一列数 (或字母)叫做矩阵的列.
表 示 列 矩 阵 .
矩阵的概念
行向量: [ x y ]
列向量: xy
ቤተ መጻሕፍቲ ባይዱ
习 惯 上 , 我 们 把 平 面 上 的 向 量 ( x,y)的 坐 标
写 成 列 向 量 x y的 形 式 .
例1:用矩阵表示如图所示的ABC,
其 A ( 中 1 ,0 ), B (0 ,2 )C ,(2 ,0 ).
对 于 两 个 矩 阵 A 、 B 的 行 数 与 列 数 分 别 相 等 , 且 对 应 位 置 上 的 元 素 也 分 别 相 等 时 , A和 B才 相 等 , 记 作 AB.
例3: 已 A 知 4 x 3 2 ,B 1 z y 2 ,若 A B ,试 x,y求 ,z.
解:
• 甲矿区
• 乙矿区
城市A 城市B 城市C
200 240 160 400 360 820
练一练
已知甲、乙、丙三人中,甲、乙相识,甲、丙不相 识,乙、丙相识。若用0表示两个人之间不相识,1表示 两个人之间相识,请用一个矩阵表示他们之间的相识关 系。(规定每个人都和自己相识)
矩阵的相等
1 3
,
8 0 9 0 2 3 m
6
0
8
5
,
3 2
4
21矩阵 22矩阵
23矩阵
特殊的矩阵
零矩阵: 所有元素均0的 为矩阵, 记为 0
a 1 1a 1 2 称 为 行 矩 阵 ( 仅 有 一 行 ) ,
a a1 11 2称 为 列 矩 阵 ( 仅 有 一 列 ) ,用 , L
y
2B
A
1 0
C 2
x
练一练
现用矩M阵00
1 2
3 2
40表示平面中的图形
请问该图形有什特么征几?何
例2:
某公司负责从两 向个 三矿 个区 城市送煤 矿: 区从 向甲 城市 A,B,C送煤的量分 20别 万 0 是 吨24、 万 0 吨 16、 万 0 吨;从乙矿区 城市 A,B,C送煤的量分 40别 万 0 是 吨36、 万 0 吨82、 万 0 吨。请用矩 阵表示从两矿区 城向 市三 送个 煤的量。