[合集3份试卷]2020云南省玉溪市中考数学检测试题
云南省玉溪市2019-2020学年中考数学三模试卷含解析
云南省玉溪市2019-2020学年中考数学三模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.1903年、英国物理学家卢瑟福通过实验证实,放射性物质在放出射线后,这种物质的质量将减少,减少的速度开始较快,后来较慢,实际上,放射性物质的质量减为原来的一半所用的时间是一个不变的量,我们把这个时间称为此种放射性物质的半衰期,如图是表示镭的放射规律的函数图象,根据图象可以判断,镭的半衰期为()A.810 年B.1620 年C.3240 年D.4860 年2.不等式组21xx≥-⎧⎨>⎩的解集在数轴上表示为()A.B.C.D.3.甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A.1806x+=1206x-B.1806x-=1206x+C.1806x+=120xD.180x=1206x-4.将一把直尺与一块三角板如图所示放置,若140∠=︒则∠2的度数为( )A.50°B.110°C.130°D.150°5.如图,直角三角形ABC中,∠C=90°,AC=2,AB=4,分别以AC、BC为直径作半圆,则图中阴影部分的面积为()A .2π﹣3 B .π+3 C .π+23 D .2π﹣236.如图,AB 是O e 的直径,弦CD AB ⊥,垂足为点E ,点G 是AC 上的任意一点,延长AG 交DC 的延长线于点F ,连接,,GC GD AD .若25BAD ∠=︒,则AGD ∠等于( )A .55︒B .65︒C .75︒D .85︒7.如图,将一块含有30°角的直角三角板的两个顶点放在长方形直尺的一组对边上,如果∠1=30°,那么∠2的度数为( )A .30°B .40°C .50°D .60°8.如图,这是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积为( )A .9πB .10πC .11πD .12π9.对于不为零的两个实数a ,b ,如果规定:a ★b =()()a b a b a a b b+<⎧⎪⎨-≥⎪⎩,那么函数y =2★x 的图象大致是( ) A . B . C . D .10.如图,在⊙O中,直径AB⊥弦CD,垂足为M,则下列结论一定正确的是()A.AC=CD B.OM=BM C.∠A=12∠ACD D.∠A=12∠BOD11.若,则的值为()A.﹣6 B.6 C.18 D.3012.一次函数112y x=-+的图像不经过的象限是:()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题:(本大题共6个小题,每小题4分,共24分.)13.某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A、B、C、D,并将统计结果绘制成两幅不完整的统计图.该年级共有700人,估计该年级足球测试成绩为D等的人数为_____人.14.2011年,我国汽车销量超过了18500000辆,这个数据用科学记数法表示为▲ 辆.15.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是_________.16.如图,已知反比例函数y=(k为常数,k≠0)的图象经过点A,过A点作AB⊥x轴,垂足为B,若△AOB 的面积为1,则k=________________.17.双察下列等式:111242-=,112393-=,113416-=,…则第n个等式为_____.(用含n的式子表示)18.若式子23x+有意义,则x的取值范围是______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知一个二次函数的图象经过A(0,﹣3),B(1,0),C(m,2m+3),D(﹣1,﹣2)四点,求这个函数解析式以及点C的坐标.20.(6分)如图,在△ABC中,AD=15,AC=12,DC=9,点B是CD延长线上一点,连接AB,若AB=1.求:△ABD的面积.21.(6分)已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.22.(8分)问题探究(1)如图①,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,则线段BE、EF、FD之间的数量关系为;(2)如图②,在△ADC中,AD=2,CD=4,∠ADC是一个不固定的角,以AC为边向△ADC的另一侧作等边△ABC,连接BD,则BD的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由;问题解决(3)如图③,在四边形ABCD中,AB=AD,∠BAD=60°,2,若BD⊥CD,垂足为点D,则对角线AC的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由.23.(8分)为响应国家“厉行节约,反对浪费”的号召,某班一课外活动小组成员在全校范围内随机抽取了若干名学生,针对“你每天是否会节约粮食”这个问题进行了调查,并将调查结果分成三组(A.会;B.不会;C.有时会),绘制了两幅不完整的统计图(如图)(1)这次被抽查的学生共有______人,扇形统计图中,“A组”所对应的圆心度数为______;(2)补全两个统计图;(3)如果该校学生共有2000人,请估计“每天都会节约粮食”的学生人数;(4)若不节约零食造成的浪费,按平均每人每天浪费5角钱计算,小江认为,该校学生一年(365天)共将浪费:2000×20%×0.5×365=73000(元),你认为这种说法正确吗?并说明理由.24.(10分)如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=1OD,OE=1OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(1)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图1.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.25.(10分)如图,在△ABC中,∠ACB=90°,O是AB上一点,以OA为半径的⊙O与BC相切于点D,与AB交于点E,连接ED并延长交AC的延长线于点F.(1)求证:AE=AF;(2)若DE=3,sin∠BDE=13,求AC的长.26.(12分)如图,△ABC中AB=AC,请你利用尺规在BC边上求一点P,使△ABC~△PAC不写画法,(保留作图痕迹).27.(12分)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交BE于点F,点D,E的坐标分别为(3,0),(0,1).(1)求抛物线的解析式;(2)猜想△EDB的形状并加以证明;(3)点M在对称轴右侧的抛物线上,点N在x轴上,请问是否存在以点A,F,M,N为顶点的四边形是平行四边形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据半衰期的定义,函数图象的横坐标,可得答案.【详解】由横坐标看出1620年时,镭质量减为原来的一半,故镭的半衰期为1620年,故选B.【点睛】本题考查了函数图象,利用函数图象的意义及放射性物质的半衰期是解题关键.2.A【解析】【分析】根据不等式组的解集在数轴上表示的方法即可解答.【详解】∵x≥﹣2,故以﹣2为实心端点向右画,x<1,故以1为空心端点向左画.故选A.【点睛】本题考查了不等式组解集的在数轴上的表示方法,不等式的解集在数轴上表示方法为:>、≥向右画,<、≤向左画,“≤”、“≥”要用实心圆点表示;“<”、“>”要用空心圆点表示.3.A【解析】分析:直接利用两船的行驶距离除以速度=时间,得出等式求出答案.详解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:1806x+=1206x-.故选A.点睛:此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键.4.C【解析】【分析】如图,根据长方形的性质得出EF∥GH,推出∠FCD=∠2,代入∠FCD=∠1+∠A求出即可.【详解】∵EF∥GH,∴∠FCD=∠2,∵∠FCD=∠1+∠A,∠1=40°,∠A=90°,∴∠2=∠FCD=130°,故选C.【点睛】本题考查了平行线的性质,三角形外角的性质等,准确识图是解题的关键.5.D【解析】分析:观察图形可知,阴影部分的面积= S半圆ACD +S半圆BCD -S△ABC,然后根据扇形面积公式和三角形面积公式计算即可.详解:连接CD.∵∠C=90°,AC=2,AB=4,∴2242-3.∴阴影部分的面积= S半圆ACD +S半圆BCD -S△ABC=2211113223 222ππ⨯+⨯-⨯⨯=323 22ππ+-223π=-.故选:D.点睛:本题考查了勾股定理,圆的面积公式,三角形的面积公式及割补法求图形的面积,根据图形判断出阴影部分的面积= S半圆ACD +S半圆BCD -S△ABC是解答本题的关键.6.B【解析】【分析】连接BD,利用直径得出∠ABD=65°,进而利用圆周角定理解答即可.【详解】连接BD,∵AB是直径,∠BAD=25°,∴∠ABD=90°-25°=65°,∴∠AGD=∠ABD=65°,故选B.【点睛】此题考查圆周角定理,关键是利用直径得出∠ABD=65°.7.D【解析】如图,因为,∠1=30°,∠1+∠3=60°,所以∠3=30°,因为AD∥BC,所以∠3=∠4,所以∠4=30°,所以∠2=180°-90°-30°=60°,故选D.8.B【解析】【分析】由三视图可判断出几何体的形状,进而利用圆锥的侧面积公式求出答案.【详解】由题意可得此几何体是圆锥,底面圆的半径为:2,母线长为:5,故这个几何体的侧面积为:π×2×5=10π,故选B.【点睛】本题考查了由三视图判断几何体的形状以及圆锥侧面积求法,正确得出几何体的形状是解题关键.9.C【解析】【分析】先根据规定得出函数y=2★x的解析式,再利用一次函数与反比例函数的图象性质即可求解.【详解】由题意,可得当2<x,即x>2时,y=2+x,y是x的一次函数,图象是一条射线除去端点,故A、D错误;当2≥x,即x≤2时,y=﹣2x,y是x的反比例函数,图象是双曲线,分布在第二、四象限,其中在第四象限时,0<x≤2,故B错误.故选:C.【点睛】本题考查了新定义,函数的图象,一次函数与反比例函数的图象性质,根据新定义得出函数y=2★x的解析式是解题的关键.10.D【解析】【分析】根据垂径定理判断即可.【详解】连接DA.∵直径AB⊥弦CD,垂足为M,∴CM=MD,∠CAB=∠DAB.∵2∠DAB=∠BOD,∴∠CAD=12∠BOD.故选D.【点睛】本题考查的是垂径定理和圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.11.B【解析】试题分析:∵,即,∴原式=====﹣12+18=1.故选B.考点:整式的混合运算—化简求值;整体思想;条件求值.12.C【解析】试题分析:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限;当k>0,b<0时,图像过一三四象限;当k<0,b>0时,图像过一二四象限;当k<0,b<0,图像过二三四象限.这个一次函数的k=12-<0与b=1>0,因此不经过第三象限.答案为C考点:一次函数的图像二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】试题解析:∵总人数为14÷28%=50(人),∴该年级足球测试成绩为D等的人数为47005650⨯=(人).故答案为:1.14.2.85×2.【解析】【分析】根据科学记数法的定义,科学记数法的表示形式为a×20n,其中2≤|a|<20,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于2还是小于2.当该数大于或等于2时,n为它的整数位数减2;当该数小于2时,-n为它第一个有效数字前0的个数(含小数点前的2个0).【详解】解:28500000一共8位,从而28500000=2.85×2.15.136°.【解析】【详解】由圆周角定理得,∠A=12∠BOD=44°,由圆内接四边形的性质得,∠BCD=180°-∠A=136°【点睛】本题考查了1.圆周角定理;2. 圆内接四边形的性质.16.-1【解析】试题解析:设点A的坐标为(m,n),因为点A在y=的图象上,所以,有mn=k,△ABO的面积为=1,∴=1,∴=1,∴k=±1,由函数图象位于第二、四象限知k<0,∴k=-1.考点:反比例外函数k的几何意义.171 n+【解析】【分析】探究规律后,写出第n个等式即可求解.【详解】12=3==…则第n=1 n=+【点睛】本题主要考查二次根式的应用,找到规律是解题的关键.18.x>32 -.【解析】解:依题意得:2x+3>1.解得x>32-.故答案为x>32-.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.y=2x2+x﹣3,C点坐标为(﹣32,0)或(2,7)【解析】【分析】设抛物线的解析式为y=ax2+bx+c,把A(0,﹣3),B(1,0),D(﹣1,﹣2)代入可求出解析式,进而求出点C的坐标即可.【详解】设抛物线的解析式为y=ax2+bx+c,把A(0,﹣3),B(1,0),D(﹣1,﹣2)代入得32 ca b ca b c=-⎧⎪++=⎨⎪-+=-⎩,解得213 abc=⎧⎪=⎨⎪=-⎩,∴抛物线的解析式为y=2x2+x﹣3,把C(m,2m+3)代入得2m2+m﹣3=2m+3,解得m1=﹣32,m2=2,∴C点坐标为(﹣32,0)或(2,7).【点睛】本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.20.2.【解析】试题分析:由勾股定理的逆定理证明△ADC是直角三角形,∠C=90°,再由勾股定理求出BC,得出BD,即可得出结果.解:在△ADC中,AD=15,AC=12,DC=9,AC2+DC2=122+92=152=AD2,即AC2+DC 2=AD2,∴△ADC是直角三角形,∠C=90°,在Rt△ABC中,BC===16,∴BD=BC﹣DC=16﹣9=7,∴△ABD的面积=×7×12=2.21.证明见解析【解析】试题分析:首先根据AF=DC,可推得AF﹣CF=DC﹣CF,即AC=DF;再根据已知AB=DE,BC=EF,根据全等三角形全等的判定定理SSS即可证明△ABC≌△DEF.试题解析:∵AF=DC,∴AF﹣CF=DC﹣CF,即AC=DF;在△ABC和△DEF中∴△ABC≌△DEF(SSS)22.(1)BE+DF=EF;(2)存在,BD的最大值为6;(3)存在,AC的最大值为26.【解析】【分析】(1)作辅助线,首先证明△ABE≌△ADG,再证明△AEF≌△AEG,进而得到EF=FG问题即可解决;(2)将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE,由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,可得DE=BD,根据DE<DC+CE,则当D、C、E三点共线时,DE存在最大值,问题即可解决;(3)以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,由旋转的性质得△DBE是等边三角形,则DE=AC,根据在等边三角形BCE中,EF⊥BC,可求出BF,EF,以BC为直径作⊙F,则点D在⊙F上,连接DF,可求出DF,则AC=DE≤DF+EF,代入数值即可解决问题.【详解】(1)如图①,延长CD至G,使得DG=BE,∵正方形ABCD中,AB=AD,∠B=∠AFG=90°,∴△ABE≌△ADG,∴AE=AG,∠BAE=∠DAG,∵∠EAF=45°,∠BAD=90°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠GAF=∠EAF,又∵AF=AF,∴△AEF≌△AEG,∴EF=GF=DG+DF=BE+DF,故答案为:BE+DF=EF;(2)存在.在等边三角形ABC中,AB=BC,∠ABC=60°,如图②,将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE.由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,∴△DBE是等边三角形,∴DE=BD,∴在△DCE中,DE<DC+CE=4+2=6,∴当D、C、E三点共线时,DE存在最大值,且最大值为6,∴BD的最大值为6;(3)存在.如图③,以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,∵AB=BD,∠ABC=∠DBE,BC=BE,∴△ABC≌△DBE,∴DE=AC,∵在等边三角形BCE 中,EF ⊥BC ,∴BF=BC=2, ∴EF=BF=×2=2,以BC 为直径作⊙F ,则点D 在⊙F 上,连接DF ,∴DF=BC=×4=2, ∴AC=DE≤DF+EF=2+2,即AC 的最大值为2+2.【点睛】本题考查了全等三角形的判定与性质以及旋转的性质,解题的关键是熟练的掌握全等三角形的判定与性质以及旋转的性质.23.(1)50 ,108°(2)见解析;(3)600人;(4)不正确,见解析.【解析】【分析】(1)由C 组人数及其所占百分比可得总人数,用360°乘以A 组人数所占比例可得;(2)根据百分比之和为1求得A 组百分比补全图1,总人数乘以B 的百分比求得其人数即可补全图2; (3)总人数乘以样本中A 所占百分比可得;(4)由样本中浪费粮食的人数所占比例不是20%即可作出判断.【详解】(1)这次被抽查的学生共有25÷50%=50人, 扇形统计图中,“A 组”所对应的圆心度数为360°×1550=108°, 故答案为50、108°;(2)图1中A 对应的百分比为1-20%-50%=30%,图2中B 类别人数为50×20%=5, 补全图形如下:(3)估计“每天都会节约粮食”的学生人数为2000×30%=600人;(4)不正确,因为在样本中浪费粮食的人数所占比例不是20%,所以这种说法不正确.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时本题还考查了通过样本来估计总体.24.(1)见解析;(1)①30°或150°,②AF'的长最大值为222+,此时0315α=.【解析】【分析】(1)延长ED交AG于点H,易证△AOG≌△DOE,得到∠AGO=∠DEO,然后运用等量代换证明∠AHE=90°即可;(1)①在旋转过程中,∠OAG′成为直角有两种情况:α由0°增大到90°过程中,当∠OAG′=90°时,α=30°,α由90°增大到180°过程中,当∠OAG′=90°时,α=150°;②当旋转到A、O、F′在一条直线上时,AF′的长最大,AF′=AO+OF′=22+1,此时α=315°.【详解】(1)如图1,延长ED交AG于点H,∵点O是正方形ABCD两对角线的交点,∴OA=OD,OA⊥OD,∵OG=OE ,在△AOG 和△DOE 中,90OA OD AOG DOE OG OE =⎧⎪∠=∠=︒⎨⎪=⎩,∴△AOG ≌△DOE ,∴∠AGO=∠DEO ,∵∠AGO+∠GAO=90°,∴∠GAO+∠DEO=90°,∴∠AHE=90°,即DE ⊥AG ;(1)①在旋转过程中,∠OAG′成为直角有两种情况:(Ⅰ)α由0°增大到90°过程中,当∠OAG′=90°时,∵OA=OD=12OG=12OG′, ∴在Rt △OAG′中,sin ∠AG′O=OA OG '=12, ∴∠AG′O=30°,∵OA ⊥OD,OA ⊥AG′,∴OD ∥AG′,∴∠DOG′=∠AG′O=30°∘,即α=30°;(Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时,同理可求∠BOG′=30°,∴α=180°−30°=150°.综上所述,当∠OAG′=90°时,α=30°或150°. ②如图3,当旋转到A. O 、F′在一条直线上时,AF′的长最大,∵正方形ABCD的边长为1,∴OA=OD=OC=OB=22,∵OG=1OD,∴2,∴OF′=1,∴2+1,∵∠COE′=45°,∴此时α=315°.【点睛】本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,掌握正方形的四条边相等、四个角相等,旋转变换的性质是解题的关键,注意特殊角的三角函数值的应用.25.(1)证明见解析;(2)1.【解析】【分析】(1)根据切线的性质和平行线的性质解答即可;(2)根据直角三角形的性质和三角函数解答即可.【详解】(1)连接OD,∵OD=OE,∴∠ODE=∠OED.∵直线BC为⊙O的切线,∴OD⊥BC.∴∠ODB=90°.∵∠ACB=90°,∴OD∥AC.∴∠ODE=∠F.∴∠OED=∠F.∴AE=AF;(2)连接AD,∵AE是⊙O的直径,∴∠ADE=90°,∵AE=AF,∴DF=DE=3,∵∠ACB=90°,∴∠DAF+∠F=90°,∠CDF+∠F=90°,∴∠DAF=∠CDF=∠BDE,在Rt△ADF中,DFAF=sin∠DAF=sin∠BDE=13,∴AF=3DF=9,在Rt△CDF中,CFDF=sin∠CDF=sin∠BDE=13,∴CF=13DF=1,∴AC=AF﹣CF=1.【点睛】本题考查了切线的性质,解直角三角形的应用,等腰三角形的判定等,综合性较强,正确添加辅助线、熟练掌握和灵活运用相关知识是解题的关键.26.见解析【解析】【分析】根据题意作∠CBA=∠CAP即可使得△ABC~△PAC.【详解】如图,作∠CBA=∠CAP,P点为所求.【点睛】此题主要考查相似三角形的尺规作图,解题的关键是作一个角与已知角相等.27.(1)y=﹣34x2+3x;(2)△EDB为等腰直角三角形;证明见解析;(3)2,﹣2).【解析】【分析】(1)由条件可求得抛物线的顶点坐标及A点坐标,利用待定系数法可求得抛物线解析式;(2)由B、D、E的坐标可分别求得DE、BD和BE的长,再利用勾股定理的逆定理可进行判断;(3)由B、E的坐标可先求得直线BE的解析式,则可求得F点的坐标,当AF为边时,则有FM∥AN 且FM=AN,则可求得M点的纵坐标,代入抛物线解析式可求得M点坐标;当AF为对角线时,由A、F 的坐标可求得平行四边形的对称中心,可设出M点坐标,则可表示出N点坐标,再由N点在x轴上可得到关于M点坐标的方程,可求得M点坐标.【详解】解:(1)在矩形OABC中,OA=4,OC=3,∴A(4,0),C(0,3),∵抛物线经过O、A两点,∴抛物线顶点坐标为(2,3),∴可设抛物线解析式为y=a(x﹣2)2+3,把A点坐标代入可得0=a(4﹣2)2+3,解得a=﹣34,∴抛物线解析式为y=﹣34(x﹣2)2+3,即y=﹣34x2+3x;(2)△EDB为等腰直角三角形.证明:由(1)可知B(4,3),且D(3,0),E(0,1),∴DE2=32+12=10,BD2=(4﹣3)2+32=10,BE2=42+(3﹣1)2=20,∴DE2+BD2=BE2,且DE=BD,∴△EDB为等腰直角三角形;(3)存在.理由如下:设直线BE解析式为y=kx+b,把B、E坐标代入可得341k bb=+⎧⎨=⎩,解得1k2b1⎧=⎪⎨⎪=⎩,∴直线BE 解析式为y=12x+1, 当x=2时,y=2,∴F (2,2), ①当AF 为平行四边形的一边时,则M 到x 轴的距离与F 到x 轴的距离相等,即M 到x 轴的距离为2, ∴点M 的纵坐标为2或﹣2,在y=﹣34x 2+3x 中,令y=2可得2=﹣34x 2+3x ,解得 ∵点M 在抛物线对称轴右侧,∴x >2,∴∴M 2);在y=﹣34x 2+3x 中,令y=﹣2可得﹣2=﹣34x 2+3x ,解得, ∵点M 在抛物线对称轴右侧,∴x >2,∴x=3,∴M 2); ②当AF 为平行四边形的对角线时,∵A (4,0),F (2,2),∴线段AF 的中点为(3,1),即平行四边形的对称中心为(3,1),设M (t ,﹣34t 2+3t ),N (x ,0),则﹣34t 2+3t=2,解得t=63±, ∵点M 在抛物线对称轴右侧,∴x >2,∵t >2,∴∴M2);综上可知存在满足条件的点M2,﹣2).【点睛】本题为二次函数的综合应用,涉及矩形的性质、待定系数法、勾股定理及其逆定理、平行四边形的性质、方程思想及分类讨论思想等知识.在(1)中求得抛物线的顶点坐标是解题的关键,注意抛物线顶点式的应用,在(2)中求得△EDB各边的长度是解题的关键,在(3)中确定出M点的纵坐标是解题的关键,注意分类讨论.本题考查知识点较多,综合性较强,难度较大.。
(3份试卷汇总)2019-2020学年云南省玉溪市中考数学检测试题
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则m+n 的值是( ) A .﹣5 B .﹣3 C .3 D .12.如图,在直角坐标系中,有两点A(6,3)、B(6,0).以原点O 为位似中心,相似比为13,在第一象限内把线段AB 缩小后得到线段CD ,则点C 的坐标为( )A .(2,1)B .(2,0)C .(3,3)D .(3,1)3.若抛物线y =kx 2﹣2x ﹣1与x 轴有两个不同的交点,则k 的取值范围为( ) A .k >﹣1B .k≥﹣1C .k >﹣1且k≠0D .k≥﹣1且k≠04.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在ABC ∆处的'A 处,折痕为DE .如果A α∠=,'CEA β∠=,'BDA γ∠=,那么下列式子中正确的是( )A .2γαβ=+B .2γαβ=+C .γαβ=+D .180γαβ=--5.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是( ) A .3cm ,4cm ,8cm B .8cm ,7cm ,15cm C .13cm ,12cm ,20cm D .5cm ,5cm ,11cm6.如图,矩形ABCD 中,E 为DC 的中点,AD :AB =3:2,CP :BP =1:2,连接EP 并延长,交AB 的延长线于点F ,AP 、BE 相交于点O .下列结论:①EP 平分∠CEB ;②2BF =PB•EF ;③PF•EF =22AD ;④EF•EP =4AO•PO .其中正确的是( )A .①②③B .①②④C .①③④D .③④7.如图,点M是正方形ABCD边CD上一点,连接MM,作DE⊥AM于点E,BF⊥AM于点F,连接BE,若AF=1,四边形ABED的面积为6,则∠EBF的余弦值是()A.21313B.31313C.23D.13138.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A.①②B.②③C.①③D.②④9.若一个圆锥的底面半径为3cm,母线长为5cm,则这个圆锥的全面积为()A.15πcm2B.24πcm2C.39πcm2D.48πcm210.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(-1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>-1时,y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(本题包括8个小题)11.如图,一艘轮船自西向东航行,航行到A处测得小岛C位于北偏东60°方向上,继续向东航行10海里到达点B处,测得小岛C在轮船的北偏东15°方向上,此时轮船与小岛C的距离为_________海里.(结果保留根号)12.因式分解:4x 2y ﹣9y 3=_____.13.月球的半径约为1738000米,1738000这个数用科学记数法表示为___________.14.如图,一根直立于水平地面的木杆AB 在灯光下形成影子AC (AC >AB ),当木杆绕点A 按逆时针方向旋转,直至到达地面时,影子的长度发生变化.已知AE =5m ,在旋转过程中,影长的最大值为5m ,最小值3m ,且影长最大时,木杆与光线垂直,则路灯EF 的高度为_____ m .15.如图,等边△ABC 的边长为1cm ,D 、E 分别是AB 、AC 边上的点,将△ADE 沿直线DE 折叠,点A 落在点'A 处,且点'A 在△ABC 的外部,则阴影部分图形的周长为_____cm.16.如图,矩形ABCD 中,8AB =,4BC =,将矩形沿AC 折叠,点D 落在点'D 处.则重叠部分AFC ∆的面积为______.17.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB =8,CD =2,则EC 的长为_______.18.已知关于x 的不等式组0521x a x -≥⎧⎨-⎩只有四个整数解,则实数a 的取值范是______.三、解答题(本题包括8个小题)19.(6分)山地自行车越来越受中学生的喜爱.一网店经营的一个型号山地自行车,今年一月份销售额为30000元,二月份每辆车售价比一月份每辆车售价降价100元,若销售的数量与上一月销售的数量相同,则销售额是27000元.求二月份每辆车售价是多少元?为了促销,三月份每辆车售价比二月份每辆车售价降低了10%销售,网店仍可获利35%,求每辆山地自行车的进价是多少元?20.(6分)为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x天(1≤x≤15,且x为整数)每件产品的成本是p元,p与x 之间符合一次函数关系,部分数据如表:任务完成后,统计发现工人李师傅第x天生产的产品件数y(件)与x(天)满足如下关系:y=() () 220110401015x x xx x⎧+≤<⎪⎨≤≤⎪⎩,且为整数,且为整数,设李师傅第x天创造的产品利润为W元.直接写出p与x,W与x之间的函数关系式,并注明自变量x的取值范围:求李师傅第几天创造的利润最大?最大利润是多少元?任务完成后.统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金.请计算李师傅共可获得多少元奖金?21.(6分)庐阳春风体育运动品商店从厂家购进甲,乙两种T恤共400件,其每件的售价与进货量m(件)之间的关系及成本如下表所示:(1)当甲种T恤进货250件时,求两种T恤全部售完的利润是多少元;若所有的T恤都能售完,求该商店获得的总利润y(元)与乙种T恤的进货量x(件)之间的函数关系式;在(2)的条件下,已知两种T 恤进货量都不低于100件,且所进的T恤全部售完,该商店如何安排进货才能使获得的利润最大?22.(8分)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.求甲、乙两种树苗每棵的价格各是多少元?在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?23.(8分)如图1所示,点E在弦AB所对的优弧上,且为半圆,C是上的动点,连接CA、CB,已知AB=4cm,设B、C间的距离为xcm,点C到弦AB所在直线的距离为y1cm,A、C两点间的距离为y2cm.小明根据学习函数的经验,分别对函数y1、y2岁自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整.按照下表中自变量x的值进行取点、画图、测量,分别得到了y1、y2与x的几组对应值:x/cm 0 1 2 3 4 5 6y1/cm 0 0.78 1.76 2.85 3.98 4.95 4.47y2/cm 4 4.69 5.26 5.96 5.94 4.47(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1、y2的图象;结合函数图象,解决问题:①连接BE,则BE的长约为cm.②当以A、B、C为顶点组成的三角形是直角三角形时,BC的长度约为cm.24.(10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=nx(n≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点B 坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=32.求该反比例函数和一次函数的解析式;求△AOB的面积;点E是x轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点的坐标.25.(10分)如图,直线y=kx+2与x轴,y轴分别交于点A(﹣1,0)和点B,与反比例函数y=mx的图象在第一象限内交于点C(1,n).求一次函数y=kx+2与反比例函数y=mx的表达式;过x轴上的点D(a,0)作平行于y轴的直线l(a>1),分别与直线y=kx+2和双曲线y=mx交于P、Q两点,且PQ=2QD,求点D的坐标.26.(12分)某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为______;请补全条形统计图;该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×27300=108”,请你判断这种说法是否正确,并说明理由.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.D【解析】【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出m、n 的值,代入计算可得.【详解】∵点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,∴1+m=3、1﹣n=2,解得:m=2、n=﹣1,所以m+n=2﹣1=1,故选D.【点睛】本题考查了关于y轴对称的点,熟练掌握关于y轴对称的两点的横坐标互为相反数,纵坐标不变是解题的关键.2.A【解析】【分析】根据位似变换的性质可知,△ODC∽△OBA,相似比是13,根据已知数据可以求出点C的坐标.【详解】由题意得,△ODC∽△OBA,相似比是13,∴OD DCOB AB,又OB=6,AB=3,∴OD=2,CD=1,∴点C的坐标为:(2,1),故选A.【点睛】本题考查的是位似变换,掌握位似变换与相似的关系是解题的关键,注意位似比与相似比的关系的应用.3.C【解析】【分析】根据抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,得出b2﹣4ac>0,进而求出k的取值范围.【详解】∵二次函数y=kx2﹣2x﹣1的图象与x轴有两个交点,∴b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0,∴k>﹣1,∵抛物线y=kx2﹣2x﹣1为二次函数,∴k≠0,则k的取值范围为k>﹣1且k≠0,故选C.【点睛】本题考查了二次函数y=ax2+bx+c的图象与x轴交点的个数的判断,熟练掌握抛物线与x轴交点的个数与b2-4ac的关系是解题的关键.注意二次项系数不等于0.4.A【解析】【详解】分析:根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.详解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选A.点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键. 5.C【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】A、3+4<8,不能组成三角形;B、8+7=15,不能组成三角形;C、13+12>20,能够组成三角形;D、5+5<11,不能组成三角形.故选:C.【点睛】本题考查了三角形的三边关系,关键是灵活运用三角形三边关系.6.B【解析】【分析】由条件设,AB=2x ,就可以表示出,BP=3x ,用三角函数值可以求出∠EBC 的度数和∠CEP 的度数,则∠CEP=∠BEP ,运用勾股定理及三角函数值就可以求出就可以求出BF 、EF 的值,从而可以求出结论. 【详解】解:设,AB=2x ∵四边形ABCD 是矩形∴AD=BC ,CD=AB ,∠D=∠C=∠ABC=90°.DC ∥AB ∴,CD=2x ∵CP :BP=1:2∴,x∵E 为DC 的中点, ∴CE=12CD=x ,∴tan ∠CEP=PC EC tan ∠EBC=EC BC ∴∠CEP=30°,∠EBC=30° ∴∠CEB=60° ∴∠PEB=30° ∴∠CEP=∠PEB∴EP 平分∠CEB ,故①正确; ∵DC ∥AB , ∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°, ∴△EBP ∽△EFB , ∴BE BP EF BF∴BE·BF=EF·BP ∵∠F=∠BEF , ∴BE=BF∴2BF =PB·EF ,故②正确 ∵∠F=30°,∴PF=2PB=433x,过点E作EG⊥AF于G,∴∠EGF=90°,∴3∴PF·43x·32 2AD2=2×3x)2=6x2,∴PF·EF≠2AD2,故③错误. 在Rt△ECP中,∵∠CEP=30°,∴EP=2PC=33x∵tan∠PAB=PBAB =3∴∠PAB=30°∴∠APB=60°∴∠AOB=90°在Rt△AOB和Rt△POB中,由勾股定理得,3,PO=3 3∴4AO·3x·33x=4x2又EF·3x·232∴EF·EP=4AO·PO.故④正确.故选,B【点睛】本题考查了矩形的性质的运用,相似三角形的判定及性质的运用,特殊角的正切值的运用,勾股定理的运。
云南省玉溪市2020年中考数学试卷(I)卷
云南省玉溪市2020年中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019七上·义乌期中) 下列各数中,比-2小的数是()A . -1B .C . 0D . 12. (2分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A .B .C .D .3. (2分) (2018八上·钦州期末) 下列等式从左到右的变形,属于因式分解的是()A . a(x﹣y)=ax﹣ayB . x2﹣9+x=(x﹣3)(x+3)+xC . (x+1)(x+2)=x2+3x+2D . x2y﹣y=(x﹣1)(x+1)y4. (2分)下列事件是必然发生事件的是()A . 打开电视机,正在转播足球比赛B . 小麦的亩产量一定为1000公斤C . 在只装有5个红球的袋中摸出1球,是红球D . 农历十五的晚上一定能看到圆月5. (2分)(2017·兰州模拟) 由5个大小相同的小正方体拼成的几何体如图所示,则下列说法正确的是()A . 主视图的面积最小B . 左视图的面积最小C . 俯视图的面积最D . 三个视图的面积相等6. (2分) (2019七下·温州期中) 一滴水重0.00005千克.用科学记数法表示这个数是()千克.A .B .C .D .7. (2分)(2019·台州模拟) 下列说法正确的个数是()①一组数据的众数只有一个②样本的方差越小,波动性越小,说明样本稳定性越好③一组数据的中位数一定是这组数据中的某一数据④数据:1,1,3,1,1,2的众数为4 ⑤一组数据的方差一定是正数.A . 0个B . 1个C . 2个D . 4个8. (2分)(2020·凉山模拟) 如图,点A,B,C,D,E,F等分⊙O,分别以点B、D、F为圆心,AF的长为半径画弧,形成美丽的“三叶轮”图案.已知⊙O的半径为1,那么“三叶轮”图案的面积为()A . +B . -C .D .9. (2分) (2020九上·温州期末) 将抛物线y=x2-2向上平移1个单位后所得新抛物线的表达式为()A . y=x2-1B . y=x2-3C . y=(x+1)2-2D . y=(x-1)2-210. (2分) (2019七下·利辛期末) 将一直角三角板与两边平行的纸条如图放置若∠1=60°,则∠2的度数为()A . 60°B . 45°C . 50°D . 30°二、填空题 (共5题;共5分)11. (1分) (2017八下·蒙阴期末) 的结果是________.12. (1分)老师对甲、乙两同学最近5次数学测试成绩进行统计,发现两人的平均成绩相同,但甲同学的方差5,乙同学的方差 4.2,则________ 的成绩较稳定(填“甲”或“乙”).13. (1分)(2019·天府新模拟) 小明把如图所示的3×3的正方形网格纸板挂在墙上玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域(四个全等的直角三角形的每个顶点都在格点上)的概率是________.14. (1分) (2018九上·丰台期末) 半径为2的圆中,60°的圆心角所对的弧的弧长为________.15. (1分)函数的图象如图所示,则结论:①两函数图象的交点的坐标为;②当时,;③当时,;④当逐渐增大时,随着的增大而增大,随着的增大而减小.其中正确结论的序号是________.三、用心做一做 (共3题;共13分)16. (5分) (2019七下·城固期末) 计算:[(a+2b)2-(a+2b)(a-2b)]÷4b.17. (5分)已知方程=1的解是a,求关于y的方程+ay=0的解.18. (3分)如图,下列图形均可以由“基本图案”通过变换得到.(1)通过平移变换,但不能通过旋转变换得到的图案是________;(2)可能通过旋转变换,但不能通过平移变换得到的图案是________;(3)既可以由平移变换,也可以由旋转变换得到的图案是________.(填序号)四、沉着冷静,缜密思考 (共2题;共25分)19. (10分) (2017九下·江阴期中) 某市某幼儿园六一期间举行亲子游戏,主持人请三位家长分别带自己的孩子参加游戏,主持人准备把家长和孩子重新组合完成游戏,A、B、C分别表示三位家长,他们的孩子分别对应的是a、b、c.(1)若主持人分别从三位家长和三位孩子中各选一人参加游戏,恰好是A、a的概率是多少(直接写出答案)(2)若主持人先从三位家长中任选两人为一组,再从孩子中任选两人为一组,四人共同参加游戏,恰好是两对家庭成员的概率是多少.(画出树状图或列表)20. (15分)(2018·深圳模拟) 南岗区某中学的王老师统计了本校九年一班学生参加体育达标测试的报名情况,并把统计的数据绘制成了不完整的条形统计图和扇形统计图.根据图中提供的数据回答下列问题:(1)该学校九年一班参加体育达标测试的学生有多少人?(2)补全条形统计图的空缺部分;(3)若该年级有1200名学生,估计该年级参加仰卧起坐达标测试的有多少人?五、满怀信心,再接再厉 (共3题;共30分)21. (10分) (2020八下·宝安月考) 已知:如图,P是∠AOB平分线上的一点,PD⊥OA,PE⊥OB,垂足分别为D,E.求证:(1) OD=OE(2) OP是DE的垂直平分线22. (10分)已知一次函数的图象与y轴交于点A,点B(-1,n)是该函数图象与反比例函数(k≠0)图象在第二象限内的交点.(1)求点B的坐标及k的值;(2)试在x轴上确定点C,使AC=AB,请直接写出点C的坐标.23. (10分)当a取何值时,式子 -2a的值满足下列条件:(1)大于2;(2)不大于1-3a.六、灵动智慧,超越自我 (共2题;共30分)24. (15分)(2019·遵义模拟) 如图,已知△ABC内接于⊙O,AB是直径,点D在⊙O上,OD∥BC,过点D 作DE⊥AB,垂足为E,连接CD交OE边于点F.(1)求证:△DOE∽△ABC;(2)求证:∠ODF=∠BDE;(3)连接OC.设△DOE的面积为S.sinA= ,求四边形BCOD的面积(用含有S的式子表示)25. (15分) (2019九上·潮南期末) 在平面直角坐标系xOy中(如图).已知抛物线y=﹣ x2+bx+c经过点A(﹣1,0)和点B(0,),顶点为C,点D在其对称轴上且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.(1)求这条抛物线的表达式;(2)求线段CD的长;(3)将抛物线平移,使其顶点C移到原点O的位置,这时点P落在点E的位置,如果点M在y轴上,且以O、D、E、M为顶点的四边形面积为8,求点M的坐标.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、用心做一做 (共3题;共13分)16-1、17-1、18-1、18-2、18-3、四、沉着冷静,缜密思考 (共2题;共25分)19-1、19-2、20-1、20-2、20-3、五、满怀信心,再接再厉 (共3题;共30分) 21-1、21-2、22-1、22-2、23-1、23-2、六、灵动智慧,超越自我 (共2题;共30分)24-1、24-2、24-3、25-1、25-2、25-3、。
2020年玉溪市中考数学试题附答案
2020年玉溪市中考数学试题附答案一、选择题1.若一个凸多边形的内角和为720°,则这个多边形的边数为( )A .4B .5C .6D .72.通过如下尺规作图,能确定点D 是BC 边中点的是( )A .B .C .D .3.函数31x y x +=-中自变量x 的取值范围是( ) A .x ≥-3 B .x ≥-3且1x ≠ C .1x ≠ D .3x ≠-且1x ≠4.三张外观相同的卡片分别标有数字1,2,3,从中随机一次性抽出两张,则这两张卡片上的数字恰好都小于3的概率是( )A .19B .16C .13D .23 5.已知11(1)11A x x ÷+=-+,则A =( ) A .21x x x -+B .21x x -C .211x - D .x 2﹣16.不等式x+1≥2的解集在数轴上表示正确的是( ) A .B .C .D .7.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q 8.观察下列图形中点的个数,若按其规律再画下去,可以得到第9个图形中所有点的个数为( )A .61B .72C .73D .869.下面的几何体中,主视图为圆的是( )A .B .C .D .10.若关于x 的一元二次方程kx 2﹣4x +3=0有实数根,则k 的非负整数值是( ) A .1 B .0,1 C .1,2 D .1,2,311.某商店销售富硒农产品,今年1月开始盈利,2月份盈利240000元,4月份盈利290400元,且从2月份到4月份,每月盈利的平均增长率相同,则每月盈利的平均增长率是( )A .8%B .9%C .10%D .11%12.已知实数a ,b ,若a >b ,则下列结论错误的是A .a-7>b-7B .6+a >b+6C .55ab > D .-3a >-3b二、填空题13.如图,已知AB ∥CD ,F 为CD 上一点,∠EFD=60°,∠AEC=2∠CEF ,若6°<∠BAE <15°,∠C 的度数为整数,则∠C 的度数为_____.14.如图,直线a 、b 被直线l 所截,a ∥b ,∠1=70°,则∠2= .15.已知圆锥的底面圆半径为3cm ,高为4cm ,则圆锥的侧面积是________cm 2.16.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =_____.17.我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为______.18.正六边形的边长为8cm,则它的面积为____cm2.19.已知(a-4)(a-2)=3,则(a-4)2+(a-2)2的值为__________.20.对于有理数a、b,定义一种新运算,规定a☆b=a2﹣|b|,则2☆(﹣3)=_____.三、解答题21.国家自2016年1月1日起实行全面放开二胎政策,某计生组织为了解该市家庭对待这项政策的态度,准备采用以下调查方式中的一种进行调查:A.从一个社区随机选取1 000户家庭调查;B.从一个城镇的不同住宅楼中随机选取1 000户家庭调查;C.从该市公安局户籍管理处随机抽取1 000户城乡家庭调查.(1)在上述调查方式中,你认为比较合理的一个是.(填“A”、“B”或“C”)(2)将一种比较合理的调查方式调查得到的结果分为四类:(A)已有两个孩子;(B)决定生二胎;(C)考虑之中;(D)决定不生二胎.将调查结果绘制成如下两幅不完整的统计图.请根据以上不完整的统计图提供的信息,解答下列问题:①补全条形统计图.②估计该市100万户家庭中决定不生二胎的家庭数.22.2018年“妇女节”前夕,扬州某花店用4000元购进若干束花,很快售完,接着又用4500元购进第二批花,已知第二批所购花的束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少5元,求第一批花每束的进价是多少?23.某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?24.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:2+=(),善于思考的小明进行了以下探索:32212设()2a b 2m n 2+=+(其中a b m n 、、、均为整数),则有22a b 2m 2n 2mn 2+=++.∴22a m 2n b 2mn =+=,.这样小明就找到了一种把部分a b 2+的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:当a b m n 、、、均为正整数时,若()2a b 3m n 3+=+,用含m 、n 的式子分别表示a b 、,得a = ,b = ;(2)利用所探索的结论,找一组正整数a b m n 、、、,填空: + =( + 3)2;(3)若()2433a m n +=+,且a b m n 、、、均为正整数,求a 的值. 25.如图1,已知二次函数y=ax 2+32x+c (a≠0)的图象与y 轴交于点A (0,4),与x 轴交于点B 、C ,点C 坐标为(8,0),连接AB 、AC . (1)请直接写出二次函数y=ax 2+32x+c 的表达式; (2)判断△ABC 的形状,并说明理由; (3)若点N 在x 轴上运动,当以点A 、N 、C 为顶点的三角形是等腰三角形时,请写出此时点N 的坐标;(4)如图2,若点N 在线段BC 上运动(不与点B 、C 重合),过点N 作NM∥AC,交AB 于点M ,当△AMN 面积最大时,求此时点N 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=720°,然后解方程即可.【详解】设这个多边形的边数为n,由多边形的内角和是720°,根据多边形的内角和定理得(n-2)180°=720°.解得n=6.故选C.【点睛】本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键. 2.A解析:A【解析】【分析】作线段BC的垂直平分线可得线段BC的中点.【详解】作线段BC的垂直平分线可得线段BC的中点.由此可知:选项A符合条件,故选A.【点睛】本题考查作图﹣复杂作图,解题的关键是熟练掌握五种基本作图.3.B解析:B【解析】分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.≥0,∴x+3≥0,∴x≥-3,∵x-1≠0,∴x≠1,∴自变量x的取值范围是:x≥-3且x≠1.故选B.4.C解析:C【解析】【分析】画出树状图即可求解.【详解】解:画树状图得:∵共有6种等可能的结果,而两张卡片上的数字恰好都小于3有2种情况,∴两张卡片上的数字恰好都小于3概率=13;故选:C.【点睛】本题考查的是概率,熟练掌握树状图是解题的关键. 5.B解析:B【解析】【分析】由题意可知A=111)11x x++-(,再将括号中两项通分并利用同分母分式的减法法则计算,再用分式的乘法法则计算即可得到结果.【详解】解:A=11111x x++-=111xx x+-=21xx-故选B.【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.6.A解析:A【解析】试题解析:∵x+1≥2,∴x≥1.故选A.考点:解一元一次不等式;在数轴上表示不等式的解集.7.C解析:C【解析】试题分析:∵点M,N表示的有理数互为相反数,∴原点的位置大约在O点,∴绝对值最小的数的点是P点,故选C.考点:有理数大小比较.8.C解析:C【解析】【分析】设第n个图形中有a n个点(n为正整数),观察图形,根据各图形中点的个数的变化可得出变化规律“a n=n2+n+1(n为正整数)”,再代入n=9即可求出结论.【详解】设第n个图形中有a n个点(n为正整数),观察图形,可知:a1=5=1×2+1+2,a2=10=2×2+1+2+3,a3=16=3×2+1+2+3+4,…,∴a n=2n+1+2+3+…+(n+1)=n2+n+1(n为正整数),∴a9=×92+×9+1=73.故选C.【点睛】本题考查了规律型:图形的变化类,根据各图形中点的个数的变化找出变化规律“a n=n2+n+1(n为正整数)”是解题的关键.9.C解析:C【解析】试题解析:A、的主视图是矩形,故A不符合题意;B、的主视图是正方形,故B不符合题意;C、的主视图是圆,故C符合题意;D、的主视图是三角形,故D不符合题意;故选C.考点:简单几何体的三视图.10.A解析:A【解析】【分析】【详解】由题意得,根的判别式为△=(-4)2-4×3k,由方程有实数根,得(-4)2-4×3k≥0,解得k≤43,由于一元二次方程的二次项系数不为零,所以k≠0,所以k的取值范围为k≤43且k≠0,即k 的非负整数值为1,故选A .11.C解析:C【解析】【分析】设月平均增长率为x ,根据等量关系:2月份盈利额×(1+增长率)2=4月份的盈利额列出方程求解即可.【详解】设该商店的每月盈利的平均增长率为x ,根据题意得:240000(1+x )2=290400,解得:x 1=0.1=10%,x 2=-0.21(舍去),故选C.【点睛】此题主要考查了一元二次方程的应用,属于增长率的问题,一般公式为原来的量×(1±x )2=后来的量,其中增长用+,减少用-.12.D解析:D【解析】A.∵a >b ,∴a-7>b-7,∴选项A 正确;B.∵a >b ,∴6+a >b+6,∴选项B 正确;C.∵a >b ,∴55a b >,∴选项C 正确;D.∵a >b ,∴-3a <-3b ,∴选项D 错误.故选D. 二、填空题13.36°或37°【解析】分析:先过E 作EG ∥AB 根据平行线的性质可得∠AEF=∠BA E+∠DFE 再设∠CEF=x 则∠AEC=2x 根据6°<∠BAE <15°即可得到6°<3x-60°<15°解得22°<解析:36°或37°.【解析】分析:先过E 作EG ∥AB ,根据平行线的性质可得∠AEF=∠BAE+∠DFE ,再设∠CEF=x ,则∠AEC=2x ,根据6°<∠BAE <15°,即可得到6°<3x-60°<15°,解得22°<x <25°,进而得到∠C 的度数.详解:如图,过E 作EG ∥AB ,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,设∠CEF=x,则∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x-60°,又∵6°<∠BAE<15°,∴6°<3x-60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角,∠C的度数为整数,∴∠C=60°-23°=37°或∠C=60°-24°=36°,故答案为:36°或37°.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解决问题的关键是作平行线,解题时注意:两直线平行,内错角相等.14.110°【解析】∵a∥b∴∠3=∠1=70°∵∠2+∠3=180°∴∠2=110°解析:110°【解析】∵a∥b,∴∠3=∠1=70°,∵∠2+∠3=180°,∴∠2=110°15.15π【解析】【分析】设圆锥母线长为l根据勾股定理求出母线长再根据圆锥侧面积公式即可得出答案【详解】设圆锥母线长为l∵r=3h=4∴母线l=∴S侧=×2πr×5=×2π×3×5=15π故答案为15π解析:15π【解析】【分析】设圆锥母线长为l,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.【详解】设圆锥母线长为l,∵r=3,h=4,∴母线225r h+=,∴S侧=12×2πr×5=12×2π×3×5=15π,故答案为15π.【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.16.6【解析】分析:根据BD=CDAB=CD可得BD=BA再根据AM⊥BDDN⊥AB即可得到DN=AM=3依据∠ABD=∠MAP+∠PAB∠ABD=∠P+∠BAP即可得到△APM是等腰直角三角形进而得到解析:6【解析】分析:根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到AM=6.详解:∵BD=CD,AB=CD,∴BD=BA,又∵AM⊥BD,DN⊥AB,∴,又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,∴∠P=∠PAM,∴△APM是等腰直角三角形,∴AM=6,故答案为6.点睛:本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM是等腰直角三角形.17.4×109【解析】【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>10时n是正解析:4×109【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】4400000000的小数点向左移动9位得到4.4,所以4400000000用科学记数法可表示为:4.4×109,故答案为4.4×109.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.【解析】【分析】【详解】如图所示正六边形ABCD中连接OCOD过O作OE⊥CD;∵此多边形是正六边形∴∠COD=60°;∵OC=OD∴△COD是等边三角形∴OE=CE•tan60°=cm∴S△OCD解析:3【解析】【分析】【详解】如图所示,正六边形ABCD中,连接OC、OD,过O作OE⊥CD;∵此多边形是正六边形,∴∠COD=60°;∵OC=OD,∴△COD是等边三角形,∴OE=CE•tan60°=83432⨯=cm,∴S△OCD=12CD•OE=12×8×43=163cm2.∴S正六边形=6S△OCD=6×163=963cm2.考点:正多边形和圆19.10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体利用完全平方公式求解【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a ﹣4)(a﹣2)+2(a﹣4)(a﹣2)=解析:10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体,利用完全平方公式求解.【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a﹣4)(a﹣2)+2(a﹣4)(a﹣2)=[(a﹣4)-(a﹣2)]2+2(a﹣4)(a﹣2)=(-2)2+2×3=10故答案为10【点睛】本题考查了完全平方公式:(a±b)2=a2±2ab+b2求解,整体思想的运用使运算更加简便.20.1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1故答案为1点睛:此题考查有理数的混合运算掌握规定的运算方法是解决问题的关键解析:1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1.故答案为1.点睛:此题考查有理数的混合运算,掌握规定的运算方法是解决问题的关键.三、解答题21.(1)C;(2)①作图见解析;②35万户.【解析】【分析】(1)C项涉及的范围更广;(2)①求出B,D的户数补全统计图即可;①100万乘以不生二胎的百分比即可.【详解】解:(1)A、B两种调查方式具有片面性,故C比较合理;故答案为:C;(2)①B:100030%300⨯=户1000-100-300-250=350户补全统计图如图所示:(3)因为350100351000⨯=(万户),所以该市100万户家庭中决定不生二胎的家庭数约为35万户.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.20元/束.【解析】【分析】设第一批花每束的进价是x元/束,则第一批进的数量是:4000x,再根据等量关系:第二批进的数量=第一批进的数量×1.5可得方程.【详解】设第一批花每束的进价是x元/束,依题意得:4000x ×1.5=45005x -, 解得x =20. 经检验x =20是原方程的解,且符合题意.答:第一批花每束的进价是20元/束.【点睛】本题考查了分式方程的应用.关键是根据等量关系:第二批进的数量=第一批进的数量×1.5列方程.23.银杏树的单价为120元,则玉兰树的单价为180元.【解析】试题分析:根据题意可以列出相应的分式方程,从而可以解答本题.试题解析:解:设银杏树的单价为x 元,则玉兰树的单价为1.5x 元,根据题意得:1200090001501.5x x+= 解得:x =120,经检验x =120是原分式方程的解,∴1.5x =180.答:银杏树的单价为120元,则玉兰树的单价为180元.24.(1)22m 3n +,2mn ;(2)4,2,1,1(答案不唯一);(3)a =7或a =13.【解析】【分析】【详解】(1)∵2(a m +=+,∴2232a m n +=++,∴a =m 2+3n 2,b =2mn .故答案为m 2+3n 2,2mn .(2)设m =1,n =2,∴a =m 2+3n 2=13,b =2mn =4.故答案为13,4,1,2(答案不唯一).(3)由题意,得a =m 2+3n 2,b =2mn .∵4=2mn ,且m 、n 为正整数,∴m =2,n =1或m =1,n =2,∴a =22+3×12=7,或a =12+3×22=13. 25.(1)y=﹣14x 2+32x+4;(2)△ABC 是直角三角形.理由见解析;(3)点N 的坐标分别为(﹣8,0)、(8﹣0)、(3,0)、(0).(4)当△AMN 面积最大时,N 点坐标为(3,0).【解析】【分析】(1)由点A 、C 的坐标利用待定系数法即可求出二次函数的解析式;(2)令二次函数解析式中y=0,求出点B 的坐标,再由两点间的距离公式求出线段AB 、AC 、BC 的长度,由三者满足AB2+AC2=BC2即可得出△ABC为直角三角形;(3)分别以A、C两点为圆心,AC长为半径画弧,与x轴交于三个点,由AC的垂直平分线与x轴交于一点,即可求得点N的坐标;(4)设点N的坐标为(n,0)(-2<n<8),通过分割图形法求面积,再根据相似三角形面积间的关系以及三角形的面积公式即可得出S△AMN关于n的二次函数关系式,根据二次函数的性质即可解决最值问题.【详解】(1)∵二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)如图,设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,∴MD∥OA,∴△BMD∽△BAO,∴=,∵MN∥AC∴=,∴=,∵OA=4,BC=10,BN=n+2∴MD=(n+2),∵S△AMN=S△ABN﹣S△BMN=BN•OA﹣BN•MD=(n+2)×4﹣×(n+2)2=﹣(n﹣3)2+5,当n=3时,△AMN面积最大是5,∴N点坐标为(3,0).∴当△AMN面积最大时,N点坐标为(3,0).【点睛】本题考查了二次函数的综合问题,熟练掌握二次函数的知识点是本题解题的关键.。
云南省玉溪市中考2020年数学试卷
云南省玉溪市中考2020年数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列运算中,正确的一个是()A . (-2)3=-6B . -(-3)2=-9C . 23×23=29D . 23÷(-2)=42. (2分)温家宝总理强调,“十二五”期间,将新建保障性住房36 000 000套,用于解决中低收入和新参加工作的大学生住房的需求.把36 000 000用科学记数法表示应是()A . 3.6×107B . 3.6×106C . 36×106D . 0.36×1083. (2分) (2019八上·黄石港期中) 如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B=()A . 25°B . 45°C . 30°D . 20°4. (2分) (2020七上·莲湖期末) 在下列几何体中,从正面看到的平面图形为三角形的是()A .B .C .D .5. (2分)如图已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A . 315°B . 270°C . 180°D . 135°6. (2分)今年,我国部分地区“登革热”流行,党和政府采取果断措施,防治结合,防止病情继续扩散.如图是某同学记载的9月1日至30日每天某地的“登革热”新增确诊病例数据日.将图中记载的数据每5天作为一组,从左至右分为第一组至第六组,下列说法:①第一组的平均数最大,第六组的平均数最小;②第二组的中位数为146;③第四组的众数为28.其中正确的有()A . 0个B . 1个C . 2个D . 3个7. (2分)当x=2时,代数式x2(2x)3-x(x+8x4)的值是()A . 4B . -4C . 0D . 18. (2分)(2018·吉林模拟) 如图,点的坐标为(,),点是轴正半轴上的一动点,以为边作等腰直角,使,设点的横坐标为,点的纵坐标为,能表示与的函数关系的图象大致是()A .B .C .D .9. (2分)下列说法正确的是()A . 圆的对称轴是圆的直径B . 相等的圆周角所对的弧相等C . 平分弦的直径垂直于弦,并且平分弦所对的两条弧D . 经过半径的外端并且垂直于这条半径的直线是圆的切线10. (2分) (2015九上·平邑期末) 如图所示是二次函数y=ax2+bx+c图象的一部分,图象过A点(3,0),二次函数图象对称轴为x=1,给出四个结论:①b2>4ac;②bc<0;③2a+b=0;④a+b+c=0,其中正确结论是()A . ②④B . ①③C . ②③D . ①④二、填空题 (共6题;共6分)11. (1分) (2017七下·东营期末) 分解因式:a2b-b3=________.12. (1分) (2016七上·孝义期末) 已知线段AB=10cm,直线AB上有一点C,BC=4cm,则线段AC=________cm.13. (1分)(2019·襄州模拟) 某校为了了解全校400名学生参加课外锻炼的情况,随机对40名学生一周内平均每天参加课外锻炼的时间进行了调查,结果如下:(单位:分)40 21 35 24 40 38 23 52 35 62 36 15 51 45 40 42 40 32 43 36 34 53 38 4039 32 45 40 50 45 40 40 26 45 40 45 35 40 42 45(1)补全频率分布表和频率分布直方图.分组频数频率4.5﹣22.520.05022.5﹣30.5330.5﹣38.5100.25038.5﹣46.51946.5﹣54.550.12554.5﹣62.510.025合计40 1.000(2)填空:在这个问题中,总体是________,样本是________.由统计结果分析的,这组数据的平均数是38.35(分),众数是________,中位数是________.(3)如果描述该校400名学生一周内平均每天参加课外锻炼时间的总体情况,你认为用平均数、众数、中位数中的哪一个量比较合适?(4)估计这所学校有多少名学生,平均每天参加课外锻炼的时间多于30分?14. (1分)(2018·潘集模拟) 如图,四边形ABCD中,AB=CD,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连接AF,CE,若DE=BF,则下列结论:①CF=AE;②OE=OF;③图中共有四对全等三角形;④四边形ABCD是平行四边形;其中正确结论的是________.15. (1分)一个圆的周长是37.68dm,这个圆的半径是________dm,面积是________16. (1分)(2018·河南模拟) 如图所示,一次函数y=k1x+3(k1<0)的图象与反比例函数y= (k2>0)的图象交于M、N两点,过点M作MC⊥y轴于点C,已知CM=1,则k1﹣k2=________.三、解答题 (共9题;共75分)17. (5分)解下列方程组:(1);(2);(3);(4).18. (5分) (2017八下·汶上期末) 如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC 的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)求证:BD=CD;(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.19. (5分) (2019九上·尚志期末) 先化简,再求代数式()÷ 的值,其中a=2sin45°+tan45°.20. (10分) (2018九上·苏州月考) 如图,⊙ 是的外接圆,,,交的延长线于点,交于点 .(1)求证:是⊙ 的切线;(2)若, .求⊙ 的半径和线段的长.21. (10分)在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1 ,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.(1)如图1,观察并猜想,在旋转过程中,线段BE与BF有怎样的数量关系?并证明你的结论;(2)如图2,当α=30°时,试判断四边形BC1DA的形状,并说明理由.22. (10分) (2018八上·沈河期末) 我国边防局接到情报,近海处有一可疑船只正向公海方向航行,边防部迅速派出快艇追赶如图1,图2中分别表示两船相对海岸的距离 (海里)与追赶时间 (分)之间的关系.根据图象回答问题:(1)哪条线表示到海岸的距离与追赶时间之间的关系?(2)哪个速度快?(3) 15分钟内能否追上?为什么?(4)如果一直追下去,那么能否追上?(5)当逃离海岸12海里时,将无法对其进行检查,照此速度,能否在逃入公海前将其拦截?为什么?(6)与对应的两个一次函数与中,的实际意义各是什么?可疑船只与快艇的速度各是多少?23. (10分) (2018八上·焦作期末) 某校举办了一次成语知识竞赛,满分10分,学生得分均为整数,成绩达到6分及6分以上为合格,达到9分或10分为优秀,这次竞赛中,甲、乙两组学生成绩分布的折线统计图和成绩统计分析表如图所示.(1)求出下列成绩统计分析表中,的值:组别平均分中位数方差合格率优秀率甲组6.8 3.7690%30%乙组7.5 1.9680%20%(2)小英同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上面表格判断,小英是甲、乙哪个组的学生;(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你写出两条支持乙组同学观点的理由.24. (10分) (2019八下·芜湖期中) 如图,在边长为1的正方形ABCD中,动点E,F分别在边AB,CD上,将正方形ABCD沿直线EF折叠,使点B的对应点M始终落在边AD上(点M不与点A,D重合),点C落在点N处,MN与CD交于点P,设BE=x.(1)当AM= 时,求x的值;(2)随着点M在边AD上位置的变化,ΔPDM的周长是否发生变化?如变化,请说明理由;如不变,请求出该定值;(3)若AM=a,四边形BEFC的面积为S,求S与a之间的函数表达式.25. (10分) (2018九上·北京月考) 如图所示,二次函数y=﹣2x2+4x+m的图象与x轴的一个交点为A(3,0),另一个交点为B,且与y轴交于点C.(1)求m的值及点B的坐标;(2)求△ABC的面积;(3)该二次函数图象上有一点D(x,y),使S△ABD=S△ABC,请求出D点的坐标.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11、答案:略12-1、13-1、13-2、13-3、13-4、14-1、15-1、16-1、三、解答题 (共9题;共75分) 17-1、17-2、17-3、17-4、18-1、18-2、19-1、20-1、20-2、21-1、21-2、22-1、22-2、22-3、22-4、22-5、22-6、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、25-3、。
云南省玉溪市2019-2020学年中考数学三模考试卷含解析
云南省玉溪市2019-2020学年中考数学三模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.左下图是一些完全相同的小正方体搭成的几何体的三视图 .这个几何体只能是( )A .B .C .D .2.将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是( )A .B .C .D .3.已知关于x 的方程x 2+3x+a=0有一个根为﹣2,则另一个根为( ) A .5B .﹣1C .2D .﹣54.如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为4m 的正方形,使不规则区域落在正方形内.现向正方形内随机投掷小球(假设小球落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小球落在不规则区域的频率稳定在常数0.65附近,由此可估计不规则区域的面积约为( )A .2.6m 2B .5.6m 2C .8.25m 2D .10.4m 25.若x =-2是关于x 的一元二次方程x 2+32ax -a 2=0的一个根,则a 的值为( ) A .-1或4 B .-1或-4 C .1或-4D .1或46.已知二次函数 2y ax bx c =++图象上部分点的坐标对应值列表如下: x…-3-2-112…y … 2 -1 -2 -1 2 7 …则该函数图象的对称轴是( ) A .x=-3B .x=-2C .x=-1D .x=07.如图所示,如果将一副三角板按如图方式叠放,那么 ∠1 等于( )A .120︒B .105︒C .60︒D .45︒8.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是( )A .甲超市的利润逐月减少B .乙超市的利润在1月至4月间逐月增加C .8月份两家超市利润相同D .乙超市在9月份的利润必超过甲超市9.为弘扬传统文化,某校初二年级举办传统文化进校园朗诵大赛,小明同学根据比赛中九位评委所给的某位参赛选手的分数,制作了一个表格,如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是( ) 中位数 众数 平均数 方差 9.2 9.39.1 0.3A .中位数B .众数C .平均数D .方差10.已知关于x 的不等式3x ﹣m+1>0的最小整数解为2,则实数m 的取值范围是( ) A .4≤m <7B .4<m <7C .4≤m≤7D .4<m≤711.如图,AOB V 是直角三角形,90AOB ∠=o ,2OB OA =,点A 在反比例函数1y x=的图象上.若点B 在反比例函数ky x=的图象上,则k 的值为( )A .2B .-2C .4D .-412.已知:二次函数y=ax 2+bx+c (a≠1)的图象如图所示,下列结论中:①abc>1;②b+2a=1;③a-b<m (am+b )(m≠-1);④ax 2+bx+c=1两根分别为-3,1;⑤4a+2b+c>1.其中正确的项有( )A .2个B .3个C .4个D .5个二、填空题:(本大题共6个小题,每小题4分,共24分.)13.直角三角形的两条直角边长为6,8,那么斜边上的中线长是____. 14.分解因式:a 3-a=15.阅读材料:如图,C 为线段BD 上一动点,分别过点B 、D 作AB ⊥BD ,ED ⊥BD ,连接AC 、EC .设CD=x ,若AB=4,DE=2,BD=8,则可用含x 的代数式表示AC+CE 的长为()221684x x +-++.然后利用几何知识可知:当A 、C 、E 在一条直线上时,x=83时,AC+CE 的最小值为1.根据以上阅读材料,可构图求出代数式()2225129x x +-++的最小值为_____.16.不等式组13210x x -≤⎧⎨-<⎩的解集为_____.17.已知矩形ABCD,AD >AB,以矩形ABCD 的一边为边画等腰三角形,使得它的第三个顶点在矩形ABCD 的其他边上,则可以画出的不同的等腰三角形的个数为_______________.18.抛物线y =2x 2+4向左平移2个单位长度,得到新抛物线的表达式为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为进一步深化基教育课程改革,构建符合素质教育要求的学校课程体系,某学校自主开发了A 书法、B阅读,C足球,D器乐四门校本选修课程供学生选择,每门课程被选到的机会均等.学生小红计划选修两门课程,请写出所有可能的选法;若学生小明和小刚各计划送修一门课程,则他们两人恰好选修同一门课程的概率为多少?20.(6分)如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C 点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.21.(6分)先化简,再求值:13a-﹣219-a÷126-a,其中a=1.22.(8分)今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了不完整的三种统计图表.对雾霾了解程度的统计表:对雾霾的了解程度百分比A.非常了解5%B.比较了解mC.基本了解45%D.不了解n请结合统计图表,回答下列问题.(1)本次参与调查的学生共有人,m=,n=;(2)图2所示的扇形统计图中D部分扇形所对应的圆心角是度;(3)请补全条形统计图;(4)根据调查结果,学校准备开展关于雾霾知识竞赛,某班要从“非常了解”态度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去;否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.23.(8分)如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=1OD,OE=1OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(1)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图1.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.24.(10分)如图,河的两岸MN与PQ相互平行,点A,B是PQ上的两点,C是MN上的点,某人在点A 处测得∠CAQ=30°,再沿AQ 方向前进20米到达点B ,某人在点A 处测得∠CAQ=30°,再沿AQ 方向前进20米到达点B ,测得∠CBQ=60°,求这条河的宽是多少米?(结果精确到0.1米,参考数据2≈1.414,3≈1.732)25.(10分)某校为了解本校九年级男生体育测试中跳绳成绩的情况,随机抽取该校九年级若干名男生,调查他们的跳绳成绩x (次/分),按成绩分成(155)A x <,(155160)B x <…,(160165)C x <…,D(165170)x <…,E(170)x …五个等级.将所得数据绘制成如下统计图.根据图中信息,解答下列问题:该校被抽取的男生跳绳成绩频数分布直方图(1)本次调查中,男生的跳绳成绩的中位数在________等级;(2)若该校九年级共有男生400人,估计该校九年级男生跳绳成绩是C 等级的人数.26.(12分)某校初三体育考试选择项目中,选择篮球项目和排球项目的学生比较多.为了解学生掌握篮球技巧和排球技巧的水平情况,进行了抽样调查,过程如下,请补充完整.收集数据:从选择篮球和排球的学生中各随机抽取16人,进行了体育测试,测试成绩(十分制)如下: 排球 10 9.5 9.5 10 8 9 9.5 9 7 10 4 5.5 10 9.5 9.5 10 篮球 9.5 9 8.5 8.5 10 9.5 10 869.5109.598.59.56整理、描述数据:按如下分数段整理、描述这两组样本数据:(说明:成绩8.5分及以上为优秀,6分及以上为合格,6分以下为不合格)分析数据:两组样本数据的平均数、中位数、众数如下表所示:项目平均数中位数众数排球8.75 9.5 10篮球8.81 9.25 9.5得出结论:(1)如果全校有160人选择篮球项目,达到优秀的人数约为_________人;(2)初二年级的小明和小军看到上面数据后,小明说:排球项目整体水平较高.小军说:篮球项目整体水平较高.你同意_______的看法,理由为____________________________.(至少从两个不同的角度说明推断的合理性)27.(12分)如图,把△EFP按图示方式放置在菱形ABCD中,使得顶点E、F、P分别在线段AB、AD、AC上,已知EP=FP=4,EF=43,∠BAD=60°,且AB>43.(1)求∠EPF的大小;(2)若AP=6,求AE+AF的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】试题分析:根据几何体的主视图可判断C不合题意;根据左视图可得B、D不合题意,因此选项A正确,故选A.考点:几何体的三视图2.A【解析】分析:面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.详解:A、上面小下面大,侧面是曲面,故本选项正确;B、上面大下面小,侧面是曲面,故本选项错误;C、是一个圆台,故本选项错误;D、下面小上面大侧面是曲面,故本选项错误;故选A.点睛:本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转.3.B【解析】【分析】根据关于x的方程x2+3x+a=0有一个根为-2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决.【详解】∵关于x的方程x2+3x+a=0有一个根为-2,设另一个根为m,∴-2+m=−31,解得,m=-1,故选B.4.D【解析】【分析】首先确定小石子落在不规则区域的概率,然后利用概率公式求得其面积即可.【详解】∵经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.65附近,∴小石子落在不规则区域的概率为0.65,∵正方形的边长为4m,∴面积为16 m2设不规则部分的面积为s m2则16s=0.65 解得:s=10.4 故答案为:D . 【点睛】利用频率估计概率. 5.C 【解析】试题解析:∵x=-2是关于x 的一元二次方程22302x ax a +-=的一个根, ∴(-2)2+32a×(-2)-a 2=0,即a 2+3a-2=0, 整理,得(a+2)(a-1)=0, 解得 a 1=-2,a 2=1. 即a 的值是1或-2. 故选A .点睛:一元二次方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根. 6.C 【解析】 【分析】由当x=-2和x=0时,y 的值相等,利用二次函数图象的对称性即可求出对称轴. 【详解】解:∵x=-2和x=0时,y 的值相等, ∴二次函数的对称轴为2012x -+==-, 故答案为:C . 【点睛】本题考查了二次函数的性质,利用二次函数图象的对称性找出对称轴是解题的关键. 7.B 【解析】解:如图,∠2=90°﹣45°=45°,由三角形的外角性质得,∠1=∠2+60°=45°+60°=105°.故选B .点睛:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.8.D【解析】【分析】根据折线图中各月的具体数据对四个选项逐一分析可得.【详解】A、甲超市的利润逐月减少,此选项正确,不符合题意;B、乙超市的利润在1月至4月间逐月增加,此选项正确,不符合题意;C、8月份两家超市利润相同,此选项正确,不符合题意;D、乙超市在9月份的利润不一定超过甲超市,此选项错误,符合题意,故选D.【点睛】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.9.A【解析】【分析】根据中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数可得答案.【详解】如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是中位数.故选A.点睛:本题主要考查了中位数,关键是掌握中位数定义.10.A【解析】【分析】先解出不等式,然后根据最小整数解为2得出关于m的不等式组,解之即可求得m的取值范围.【详解】解:解不等式3x﹣m+1>0,得:x>1 3m,∵不等式有最小整数解2,∴1≤13m -<2, 解得:4≤m <7,故选A .【点睛】本题考查了一元一次不等式的整数解,解一元一次不等式组,正确解不等式,熟练掌握一元一次不等式、一元一次不等式组的解法是解答本题的关键.11.D【解析】【分析】要求函数的解析式只要求出B 点的坐标就可以,过点A 、B 作AC x ⊥轴,BD x ⊥轴,分别于C 、D ,根据条件得到ACO ODB ~V V ,得到:2BD OD OB OC AC OA===,然后用待定系数法即可. 【详解】过点A 、B 作AC x ⊥轴,BD x ⊥轴,分别于C 、D ,设点A 的坐标是(),m n ,则AC n =,OC m =,Q 90AOB ∠=︒,∴90AOC BOD ∠+∠=︒,Q 90DBO BOD ∠+∠=︒,∴DBO AOC ∠=∠,Q 90BDO ACO ∠=∠=︒,∴BDO OCA ~V V ,∴BD OD OB OC AC OA==, Q 2OB OA =,∴2BD m =,2OD n =,因为点A 在反比例函数1y x=的图象上,则1mn =, Q 点B 在反比例函数k y x=的图象上,B 点的坐标是()2,2n m -,∴2244k n m mn =-⋅=-=-.故选:D .【点睛】本题考查了反比例函数图象上点的坐标特征,相似三角形的判定与性质,求函数的解析式的问题,一般要转化为求点的坐标的问题,求出图象上点的横纵坐标的积就可以求出反比例函数的解析式.12.B【解析】【分析】根据二次函数的图象与性质判断即可.【详解】①由抛物线开口向上知: a >1; 抛物线与y 轴的负半轴相交知c <1; 对称轴在y 轴的右侧知:b >1;所以:abc<1,故①错误;②Q 对称轴为直线x=-1,12b a∴-=-,即b=2a, 所以b-2a=1.故②错误;③由抛物线的性质可知,当x=-1时,y 有最小值,即a-b+c <2am bm c ++(1m ≠-),即a ﹣b <m (am+b )(m≠﹣1),故③正确;④因为抛物线的对称轴为x=1, 且与x 轴的一个交点的横坐标为1, 所以另一个交点的横坐标为-3.因此方程ax+bx+c=1的两根分别是1,-3.故④正确;⑤由图像可得,当x=2时,y >1,即: 4a+2b+c >1,故⑤正确.故正确选项有③④⑤,故选B.【点睛】本题二次函数的图象与性质,牢记公式和数形结合是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1.【解析】【分析】【详解】试题分析:∵直角三角形的两条直角边长为6,8,∴由勾股定理得,斜边=10.∴斜边上的中线长=12×10=1. 考点:1.勾股定理;2. 直角三角形斜边上的中线性质.14.(1)(1)a a a -+【解析】a 3-a=a(a 2-1)=(1)(1)a a a -+15.413【解析】【分析】根据已知图象,重新构造直角三角形,利用三角形相似得出CD 的长,进而利用勾股定理得出最短路径问题.【详解】如图所示:C 为线段BD 上一动点,分别过点B 、D 作AB ⊥BD ,ED ⊥BD ,连接AC 、EC .设CD=x , 若AB=5,DE=3,BD=12,当A ,C ,E ,在一条直线上,AE 最短,∵AB ⊥BD ,ED ⊥BD ,∴AB ∥DE ,∴△ABC ∽EDC , ∴AB BC DE CD =, ∴5123CD CD -=, 解得:DC=92. 即当x=922225(12)9x x +-++ 229925(12)9()41322+-+=故答案是:13【点睛】考查最短路线问题,利用了数形结合的思想,可通过构造直角三角形,利用勾股定理求解.16.﹣2≤x <12 【解析】【分析】根据解不等式的步骤从而得到答案.【详解】 1-x 32x-10≤⎧⎨⎩①<②, 解不等式①可得:x≥-2,解不等式②可得:x <12, 故答案为-2≤x <12. 【点睛】本题主要考查了解不等式,解本题的要点在于分别求解①,②不等式,从而得到答案.17.8【解析】【分析】根据题意作出图形即可得出答案,【详解】如图,AD >AB ,△CDE 1,△ABE 2,△ABE 3,△BCE 4,△CDE 5,△ABE 6,△ADE 7,△CDE 8,为等腰三角形,故有8个满足题意得点.【点睛】此题主要考查矩形的对称性,解题的关键是根据题意作出图形.18.y=2(x+2)2+1【解析】试题解析:∵二次函数解析式为y=2x 2+1,∴顶点坐标(0,1)向左平移2个单位得到的点是(-2,1),可设新函数的解析式为y=2(x-h)2+k,代入顶点坐标得y=2(x+2)2+1,故答案为y=2(x+2)2+1.点睛:函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)答案见解析;(2)1 4【解析】分析:(1)直接列举出所有可能的结果即可.(2)画树状图展示所有16种等可能的结果数,再找出他们两人恰好选修同一门课程的结果数,然后根据概率公式求解.详解:(1)学生小红计划选修两门课程,她所有可能的选法有:A书法、B阅读;A书法、C足球;A书法、D器乐;B阅读,C足球;B阅读,D器乐;C足球,D器乐.共有6种等可能的结果数;(2)画树状图为:共有16种等可能的结果数,其中他们两人恰好选修同一门课程的结果数为4,所以他们两人恰好选修同一门课程的概率41. 164 ==点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.(1)y=﹣x2+2x+1.(2)当t=2时,点M的坐标为(1,6);当t≠2时,不存在,理由见解析;(1)y=﹣x+1;P点到直线BC的距离的最大值为928,此时点P的坐标为(32,154).【解析】【分析】(1)由点A、B的坐标,利用待定系数法即可求出抛物线的表达式;(2)连接PC,交抛物线对称轴l于点E,由点A、B的坐标可得出对称轴l为直线x=1,分t=2和t≠2两种情况考虑:当t=2时,由抛物线的对称性可得出此时存在点M,使得四边形CDPM 是平行四边形,再根据点C的坐标利用平行四边形的性质可求出点P、M的坐标;当t≠2时,不存在,利用平行四边形对角线互相平分结合CE≠PE可得出此时不存在符合题意的点M;(1)①过点P作PF∥y轴,交BC于点F,由点B、C的坐标利用待定系数法可求出直线BC的解析式,根据点P的坐标可得出点F的坐标,进而可得出PF的长度,再由三角形的面积公式即可求出S关于t的函数表达式;②利用二次函数的性质找出S的最大值,利用勾股定理可求出线段BC的长度,利用面积法可求出P点到直线BC的距离的最大值,再找出此时点P的坐标即可得出结论.【详解】(1)将A(﹣1,0)、B(1,0)代入y=﹣x2+bx+c,得10930b cb c-++=⎧⎨-++=⎩,解得:23bc=⎧⎨=⎩,∴抛物线的表达式为y=﹣x2+2x+1;(2)在图1中,连接PC,交抛物线对称轴l于点E,∵抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(1,0)两点,∴抛物线的对称轴为直线x=1,当t=2时,点C、P关于直线l对称,此时存在点M,使得四边形CDPM是平行四边形,∵抛物线的表达式为y=﹣x2+2x+1,∴点C的坐标为(0,1),点P的坐标为(2,1),∴点M的坐标为(1,6);当t≠2时,不存在,理由如下:若四边形CDPM是平行四边形,则CE=PE,∵点C的横坐标为0,点E的横坐标为0,∴点P的横坐标t=1×2﹣0=2,又∵t≠2,∴不存在;(1)①在图2中,过点P作PF∥y轴,交BC于点F.设直线BC的解析式为y=mx+n(m≠0),将B(1,0)、C(0,1)代入y=mx+n,得303m nn+=⎧⎨=⎩,解得:13mn=-⎧⎨=⎩,∴直线BC的解析式为y=﹣x+1,∵点P的坐标为(t,﹣t2+2t+1),∴点F的坐标为(t,﹣t+1),∴PF=﹣t2+2t+1﹣(﹣t+1)=﹣t2+1t,∴S=12PF•OB=﹣32t2+92t=﹣32(t﹣32)2+278;②∵﹣32<0,∴当t=32时,S取最大值,最大值为278.∵点B的坐标为(1,0),点C的坐标为(0,1),∴线段BC=2232OB OC+=,∴P点到直线BC的距离的最大值为272928832⨯=,此时点P的坐标为(32,154).【点睛】本题考查了待定系数法求一次(二次)函数解析式、平行四边形的判定与性质、三角形的面积、一次(二次)函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线表达式;(2)分t=2和t≠2两种情况考虑;(1)①利用三角形的面积公式找出S关于t 的函数表达式;②利用二次函数的性质结合面积法求出P点到直线BC的距离的最大值.21.-1【解析】【分析】原式第二项利用除法法则变形,约分后通分,并利用同分母分式的减法法则计算,约分得到最简结果,把a的值代入计算即可求出值.【详解】解:原式=13a-﹣1(3)(3)a a+-•2(a﹣3)=13a-﹣23a+=23269a aa+-+-=299aa--,当a=1时,原式=9119--=﹣1.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22.解:(1)400;15%;35%.(2)1.(3)∵D等级的人数为:400×35%=140,∴补全条形统计图如图所示:(4)列树状图得:∵从树状图可以看出所有可能的结果有12种,数字之和为奇数的有8种,∴小明参加的概率为:P(数字之和为奇数)82 123 ==;小刚参加的概率为:P(数字之和为偶数)41 123 ==.∵P(数字之和为奇数)≠P(数字之和为偶数),∴游戏规则不公平.【解析】(1)根据“基本了解”的人数以及所占比例,可求得总人数:180÷45%=400人.在根据频数、百分比之间的关系,可得m,n的值:60m100%15%n15%15%45%35% 400=⨯==---=,.(2)根据在扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心的度数与360°的比可得出统计图中D部分扇形所对应的圆心角:360°×35%=1°.(3)根据D等级的人数为:400×35%=140,据此补全条形统计图.(4)用树状图或列表列举出所有可能,分别求出小明和小刚参加的概率,若概率相等,游戏规则公平;反之概率不相等,游戏规则不公平.23.(1)见解析;(1)①30°或150°,②AF'的长最大值为222+,此时0315α=.【解析】【分析】(1)延长ED交AG于点H,易证△AOG≌△DOE,得到∠AGO=∠DEO,然后运用等量代换证明∠AHE=90°即可;(1)①在旋转过程中,∠OAG′成为直角有两种情况:α由0°增大到90°过程中,当∠OAG′=90°时,α=30°,α由90°增大到180°过程中,当∠OAG′=90°时,α=150°;②当旋转到A 、O 、F′在一条直线上时,AF′的长最大,AF′=AO+OF′=22+1,此时α=315°. 【详解】(1)如图1,延长ED 交AG 于点H,∵点O 是正方形ABCD 两对角线的交点,∴OA=OD ,OA ⊥OD ,∵OG=OE ,在△AOG 和△DOE 中,90OA OD AOG DOE OG OE =⎧⎪∠=∠=︒⎨⎪=⎩,∴△AOG ≌△DOE ,∴∠AGO=∠DEO ,∵∠AGO+∠GAO=90°,∴∠GAO+∠DEO=90°,∴∠AHE=90°,即DE ⊥AG ;(1)①在旋转过程中,∠OAG′成为直角有两种情况:(Ⅰ)α由0°增大到90°过程中,当∠OAG′=90°时, ∵OA=OD=12OG=12OG′, ∴在Rt △OAG′中,sin ∠AG′O=OA OG '=12, ∴∠AG′O=30°,∵OA ⊥OD,OA ⊥AG′,∴OD ∥AG′,∴∠DOG′=∠AG′O=30°∘,即α=30°;(Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时,同理可求∠BOG′=30°,∴α=180°−30°=150°.综上所述,当∠OAG′=90°时,α=30°或150°.②如图3,当旋转到A. O、F′在一条直线上时,AF′的长最大,∵正方形ABCD的边长为1,∴2,∵OG=1OD,∴2,∴OF′=1,∴AF′=AO+OF′=22+1,∵∠COE′=45°,∴此时α=315°.【点睛】本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,掌握正方形的四条边相等、四个角相等,旋转变换的性质是解题的关键,注意特殊角的三角函数值的应用.24.17.3米.【解析】分析:过点C 作CD PQ ⊥于D ,根据3060CAB CBD ∠=︒∠=︒,,得到30,ACB ∠=︒ 20AB BC ==,在Rt △CDB 中,解三角形即可得到河的宽度.详解:过点C 作CD PQ ⊥于D ,∵3060CAB CBD ∠=︒∠=︒,∴30,ACB ∠=︒∴20AB BC ==米,在Rt △CDB 中,∵90BDC ,∠=︒ sin ,CD CBD BC ∠=∴sin60,CD BC︒= ∴3,220CD = ∴103CD =米,∴17.3CD ≈米.答:这条河的宽是17.3米.点睛:考查解直角三角形的应用,作出辅助线,构造直角三角形是解题的关键.25.(1)C;(2)100【解析】【分析】(1)根据中位数的定义即可作出判断;(2)先算出样本中C 等级的百分比,再用总数乘以400即可.【详解】解:(1)由直方图中可知数据总数为40个,第20,21个数据的平均数为本组数据的中位数,第20,21个数据的等级都是C 等级,故本次调查中,男生的跳绳成绩的中位数在C 等级;故答案为C.(2)400⨯1040=100(人) 答:估计该校九年级男生跳绳成绩是C 等级的人数有100人.【点睛】本题考查了中位数的求法和用样本数估计总体数据,理解相关知识是解题的关键.26.130 小明 平均数接近,而排球成绩的中位数和众数都较高.【解析】【分析】()1根据抽取的16人中成绩达到优秀的百分比,即可得到全校达到优秀的人数;()2根据平均数接近,而排球成绩的中位数和众数都较高,即可得到结论.【详解】解:补全表格成绩:()1达到优秀的人数约为16013016⨯=(人); 故答案为130; ()2同意小明的看法,理由为:平均数接近,而排球成绩的中位数和众数都较高.(答案不唯一,理由需支持判断结论)故答案为小明,平均数接近,而排球成绩的中位数和众数都较高.【点睛】本题考查众数、中位数,平均数的应用,解题的关键是掌握众数、中位数、平均数的定义以及用样本估计总体.27.(1)∠EPF =120°;(2)AE +AF =.【解析】试题分析: (1)过点P 作PG ⊥EF 于G ,解直角三角形即可得到结论;(2)如图2,过点P 作PM ⊥AB 于M ,PN ⊥AD 于N ,证明△ABC ≌△ADC ,R t △PME ≌Rt △PNF ,问题即可得证.试题解析:(1)如图1,过点P 作PG ⊥EF 于G ,∵PE=PF ,∴FG=EG=12FPG=∠EPG =12∠EPF ,在△FPG 中,sin ∠FPG=23342FG PF == , ∴∠FPG=60°, ∴∠EPF=2∠FPG=120°;(2)如图2,过点P 作PM ⊥AB 于M ,PN ⊥AD 于N ,∵四边形ABCD 是菱形,∴AD=AB ,DC=BC ,∴∠DAC=∠BAC , ∴PM=PN ,在Rt △PME 于Rt △PNF 中,PM PN PE PF ⎧⎨⎩═= , ∴R t △PME ≌R t △PNF ,∴FN=EM ,在Rt △PMA 中,∠PMA=90°,∠PAM=12∠DAB=30°, ∴AM=AP 3,同理3,∴AE+AF=(AM-EM )+(AN+NF )3.【点睛】运用了菱形的性质,解直角三角形,全等三角形的判定和性质,最值问题,等腰三角形的性质,作辅助线构造直角三角形是解题的关键.。
云南省玉溪市2020中考数学检测试题
7.某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是( )
A.参加本次植树活动共有30人B.每人植树量的众数是4棵
C.每人植树量的中位数是5棵D.每人植树量的平均数是5棵
8.等腰三角形两边长分别是2 cm和5 cm,则这个三角形周长是()
A.9 cm B.12 cm C.9 cm或12 cm D.14 cm
本次调查中,王老师一共调查了名学生;将条形统计图补充完整;为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.
20.(6分)已知关于x的方程(a﹣1)x2+2x+a﹣1=1.若该方程有一根为2,求a的值及方程的另一根;当a为何值时,方程的根仅有唯一的值?求出此时a的值及方程的根.
16.关于 的方程 有两个不相等的实数根,那么 的取值范围是__________.
17.如图,点A是反比例函数y=﹣ (x<0)图象上的点,分别过点A向横轴、纵轴作垂线段,与坐标轴恰好围成一个正方形,再以正方形的一组对边为直径作两个半圆,其余部分涂上阴影,则阴影部分的面积为______.
18.如图:图象①②③均是以P0为圆心,1个单位长度为半径的扇形,将图形①②③分别沿东北,正南,西北方向同时平移,每次移动一个单位长度,第一次移动后图形①②③的圆心依次为P1P2P3,第二次移动后图形①②③的圆心依次为P4P5P6…,依此规律,P0P2018=_____个单位长度.
A.当 时,方程无解
B.当 时,方程有一个实数解
C.当 时,方程有两个相等的实数解
D.当 时,方程总有两个不相等的实数解
4.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB.添加一个条件,不能使四边形DBCE成为矩形的是()
云南省玉溪市2020年中考数学检测试题
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体2.如图,经过测量,C地在A地北偏东46°方向上,同时C地在B地北偏西63°方向上,则∠C的度数为()A.99°B.109°C.119°D.129°3.关于x的一元二次方程x2﹣3有两个不相等的实数根,则实数m的取值范围是()A.m<3 B.m>3 C.m≤3D.m≥34.已知=2{=1xy是二元一次方程组+=8{=1mx nynx my-的解,则2m n-的算术平方根为()A.±2 B.C.2 D.45.以坐标原点为圆心,以2个单位为半径画⊙O,下面的点中,在⊙O上的是()A.(1,1) B.22C.(1,3) D.(126.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.10033100x yx y+=⎧⎨+=⎩B.1003100x yx y+=⎧⎨+=⎩C.100131003x yx y+=⎧⎪⎨+=⎪⎩D.1003100x yx y+=⎧⎨+=⎩7.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=41°,∠D=30°,斜边AB=4,CD=1.把三角板DCE 绕着点C 顺时针旋转11°得到△D 1CE 1(如图2),此时AB 与CD 1交于点O ,则线段AD 1的长度为( )A .13B .5C .22D .48.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后第七位,这一结果领先世界一千多年,“割圆术”的第一步是计算半径为1的圆内接正六边形的面积S 6,则S 6的值为( ) A .3 B .23 C .332D .2339.如图,在平面直角坐标系xOy 中,正方形ABCD 的顶点D 在y 轴上,且(3,0)A -,(2,)B b ,则正方形ABCD 的面积是( )A .13B .20C .25D .3410.下列一元二次方程中,有两个不相等实数根的是( ) A .x 2+6x+9=0B .x 2=xC .x 2+3=2xD .(x ﹣1)2+1=0二、填空题(本题包括8个小题) 11.分解因式:a 3-12a 2+36a=______. 12.分解因式:32a 4ab -= .13.如图所示,在△ABC 中,∠C=90°,∠CAB=50°.按以下步骤作图:①以点A 为圆心,小于AC 的长为半径画弧,分别交AB,AC 于点E,F;②分别以点E,F 为圆心,大于12EF 的长为半径画弧,两弧相交于点G;③作射线AG 交BC 边于点D .则∠ADC 的度数为 .14.如图,已知O 的半径为2,ABC ∆内接于O ,135ACB ∠=,则AB =__________.15.如图,在矩形ABCD 中,AB=4,BC=6,点E 为BC 的中点,将△ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF,则CF 的长度为_____16.已知实数m ,n 满足23650m m +-=,23650n n +-=,且m n ≠,则n mm n+= . 17.如图,正方形ABCD 中,E 为AB 的中点,AF ⊥DE 于点O ,那么AODO等于( )A .25; B .13; C .23; D .12. 18.一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm 的圆盘,如图所示,AB 与CD 水平,BC 与水平面的夹角为60°,其中AB=60cm ,CD=40cm ,BC=40cm ,那么该小朋友将圆盘从A 点滚动到D 点其圆心所经过的路线长为____cm .三、解答题(本题包括8个小题)19.(6分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.第一批饮料进货单价多少元?若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?20.(6分)已知关于x 的一元二次方程2(3)0x m x m ---=.求证:方程有两个不相等的实数根;如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.21.(6分)如图,建筑物AB的高为6cm,在其正东方向有个通信塔CD,在它们之间的地面点M(B,M,D三点在一条直线上)处测得建筑物顶端A、塔项C的仰角分别为37°和60°,在A处测得塔顶C的仰角为30°,则通信塔CD的高度.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,3=1.73,精确到0.1m)22.(8分)某运动品牌对第一季度A、B两款运动鞋的销售情况进行统计,两款运动鞋的销售量及总销售额如图6所示.1月份B款运动鞋的销售量是A款的,则1月份B款运动鞋销售了多少双?第一季度这两款运动鞋的销售单价保持不变,求3月份的总销售额(销售额=销售单价×销售量);结合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议.23.(8分)在我校举办的“读好书、讲礼仪”活动中,各班积极行动,图书角的新书、好书不断增多,除学校购买的图书外,还有师生捐献的图书,下面是九(1)班全体同学捐献图书情况的统计图(每人都有捐书).请你根据以上统计图中的信息,解答下列问题:该班有学生多少人?补全条形统计图.九(1)班全体同学所捐图书是6 本的人数在扇形统计图中所对应扇形的圆心角为多少度?请你估计全校2000 名学生所捐图书的数量.24.(10分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本) 频数(人数) 频率 5 a0.2 6 18 0.367 14 b8 80.16 合计c1(1)统计表中的a =________,b =________,c =________;请将频数分布表直方图补充完整;求所有被调查学生课外阅读的平均本数;若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.25.(10分)随着地铁和共享单车的发展,“地铁+单车”已经成为很多市民出行的选择.李华从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间1y (单位:分钟)是关于x 的一次函数,其关系如下表: 地铁站 A B C D E X(千米)8 9 10 11.5 13 1y (分钟)1820222528(1)求1y 关于x 的函数表达式;李华骑单车的时间2y (单位:分钟)也受x 的影响,其关系可以用221y x 11x 782=-+来描述.请问:李华应选择在哪一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.26.(12分)雅安地震,某地驻军对道路进行清理.该地驻军在清理道路的工程中出色完成了任务.这是记者与驻军工程指挥部的一段对话:记者:你们是用9天完成4800米长的道路清理任务的? 指挥部:我们清理600米后,采用新的清理方式,这样每天清理长度是原来的2倍. 通过这段对话,请你求出该地驻军原来每天清理道路的米数.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.A【解析】【分析】根据三视图的形状可判断几何体的形状.【详解】观察三视图可知,该几何体是直三棱柱.故选A.本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.2.B【解析】【分析】方向角是从正北或正南方向到目标方向所形成的小于90°的角,根据平行线的性质求得∠ACF与∠BCF的度数,∠ACF与∠BCF的和即为∠C的度数.【详解】解:由题意作图如下∠DAC=46°,∠CBE=63°,由平行线的性质可得∠ACF=∠DAC=46°,∠BCF=∠CBE=63°,∴∠ACB=∠ACF+∠BCF=46°+63°=109°,故选B.本题考查了方位角和平行线的性质,熟练掌握方位角的概念和平行线的性质是解题的关键.3.A【解析】分析:根据关于x的一元二次方程x2有两个不相等的实数根可得△=(2-4m>0,求出m的取值范围即可.详解:∵关于x的一元二次方程x2有两个不相等的实数根,∴△=()2-4m>0,∴m<3,故选A.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.4.C【解析】二元一次方程组的解和解二元一次方程组,求代数式的值,算术平方根.【分析】∵=2{=1xy是二元一次方程组+=8{=1mx nynx my-的解,∴2+=8{2=1m nn m-,解得=3{=2mn.∴.即2m n-的算术平方根为1.故选C.5.B【解析】【分析】根据点到圆心的距离和半径的数量关系即可判定点与圆的位置关系.【详解】A选项,(1,1)<2,因此点在圆内,B选项) 到坐标原点的距离为2=2,因此点在圆上,C选项(1,3) >2,因此点在圆外D选项(1) 因此点在圆内,故选B.【点睛】本题主要考查点与圆的位置关系,解决本题的关键是要熟练掌握点与圆的位置关系. 6.C【分析】设大马有x匹,小马有y匹,根据题意可得等量关系:①大马数+小马数=100;②大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程组即可.【详解】解:设大马有x匹,小马有y匹,由题意得:100131003x yx y+=⎧⎪⎨+=⎪⎩,故选C.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.7.A【解析】试题分析:由题意易知:∠CAB=41°,∠ACD=30°.若旋转角度为11°,则∠ACO=30°+11°=41°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt△ABC中,AB=4,则AO=OC=2.在Rt△AOD1中,OD1=CD1-OC=3,由勾股定理得:AD1=13.故选A.考点: 1.旋转;2.勾股定理.8.C【解析】【分析】根据题意画出图形,结合图形求出单位圆的内接正六边形的面积.【详解】如图所示,单位圆的半径为1,则其内接正六边形ABCDEF中,△AOB是边长为1的正三角形,所以正六边形ABCDEF的面积为S6=6×12×1×1×sin60°=33.故选C.【点睛】本题考查了已知圆的半径求其内接正六边形面积的应用问题,关键是根据正三角形的面积,正n边形的性质解答.9.D【解析】作BE⊥OA于点E.则AE=2-(-3)=5,△AOD≌△BEA(AAS),∴OD=AE=5,22223534AD AO OD∴=+=+=,∴正方形ABCD的面积是343434=,故选D.10.B【解析】分析:根据一元二次方程根的判别式判断即可.详解:A、x2+6x+9=0.△=62-4×9=36-36=0,方程有两个相等实数根;B、x2=x.x2-x=0.△=(-1)2-4×1×0=1>0.方程有两个不相等实数根;C、x2+3=2x.x2-2x+3=0.△=(-2)2-4×1×3=-8<0,方程无实根; D 、(x-1)2+1=0. (x-1)2=-1, 则方程无实根; 故选B .点睛:本题考查的是一元二次方程根的判别式,一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.二、填空题(本题包括8个小题) 11.a(a-6)2 【解析】 【分析】原式提取a ,再利用完全平方公式分解即可. 【详解】原式=a(a 2-12a+36)=a(a-6)2, 故答案为a(a-6)2 【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键. 12.()()a a 2b a 2b +- 【解析】分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此, 先提取公因式a 后继续应用平方差公式分解即可:()()()3222a 4ab a a 4b a a 2b a 2b -=-=+-.13.65° 【解析】 【分析】根据已知条件中的作图步骤知,AG 是∠CAB 的平分线,根据角平分线的性质解答即可. 【详解】根据已知条件中的作图步骤知,AG 是∠CAB 的平分线,∵∠CAB=50°, ∴∠CAD=25°;在△ADC 中,∠C=90°,∠CAD=25°,∴∠ADC=65°(直角三角形中的两个锐角互余); 故答案是:65°.14.22【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB的度数,然后根据勾股定理即可求得AB的长.详解:连接AD、AE、OA、OB,∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴AB=22,故答案为:22.点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.15.18 5【解析】【分析】分析题意,如图所示,连接BF,由翻折变换可知,BF⊥AE,BE=EF,由点E是BC的中点可知BE=3,根据勾股定理即可求得AE;根据三角形的面积公式1122AB BE AE BH⨯⨯=⨯⨯可求得BH,进而可得到BF的长度;结合题意可知FE=BE=EC,进而可得∠BFC=90°,至此,在Rt△BFC中,利用勾股定理求出CF的长度即可【详解】如图,连接BF.∵△AEF是由△ABE沿AE折叠得到的,∴BF⊥AE,BE=EF.∵BC=6,点E为BC的中点,∴BE=EC=EF=3根据勾股定理有AE 2=AB 2+BE 2代入数据求得AE=5 根据三角形的面积公式1122AB BE AE BH ⨯⨯=⨯⨯得BH=125即可得BF=245由FE=BE=EC,可得∠BFC=90°再由勾股定理有BC 2-BF 2=CF 2代入数据求得CF=185 故答案为185【点睛】此题考查矩形的性质和折叠问题,解题关键在于利用好折叠的性质16.225-. 【解析】试题分析:由m n ≠时,得到m ,n 是方程23650x x +-=的两个不等的根,根据根与系数的关系进行求解.试题解析:∵m n ≠时,则m ,n 是方程3x 2﹣6x ﹣5=0的两个不相等的根,∴2m n +=,53mn =-. ∴原式=22m n mn +=2()2m n mn mn +-=2522()223553-⨯-=--,故答案为225-. 考点:根与系数的关系.17.D【解析】【分析】利用△DAO 与△DEA 相似,对应边成比例即可求解.【详解】∠DOA=90°,∠DAE=90°,∠ADE 是公共角,∠DAO=∠DEA∴△DAO ∽△DEA ∴AO DO AE DA=即AO AF DO DA= ∵AE=12AD ∴12AO DO = 故选D .18.20310(140)3cm π-+ 【解析】试题解析:如下图,画出圆盘滚动过程中圆心移动路线的分解图象.可以得出圆盘滚动过程中圆心走过的路线由线段OO 1,线段O 1O 2,圆弧23O O ,线段O 3O 4四部分构成. 其中O 1E ⊥AB ,O 1F ⊥BC ,O 2C ⊥BC ,O 3C ⊥CD ,O 4D ⊥CD .∵BC 与AB 延长线的夹角为60°,O 1是圆盘在AB 上滚动到与BC 相切时的圆心位置,∴此时⊙O 1与AB 和BC 都相切.则∠O 1BE=∠O 1BF=60度.此时Rt △O 1BE 和Rt △O 1BF 全等,在Rt △O 1BE 中,103cm . ∴OO 1=AB-BE=(103)cm . ∵103cm , ∴O 1O 2=BC-BF=(40-1033)cm . ∵AB ∥CD ,BC 与水平夹角为60°,∴∠BCD=120度.又∵∠O 2CB=∠O 3CD=90°,∴∠O 2CO 3=60度.则圆盘在C 点处滚动,其圆心所经过的路线为圆心角为60°且半径为10cm 的圆弧23O O .∴23O O 的长=60360×2π×10=103πcm .∵四边形O 3O 4DC 是矩形,∴O 3O 4=CD=40cm .综上所述,圆盘从A 点滚动到D 点,其圆心经过的路线长度是:()+()+103π+40=(+103π)cm . 三、解答题(本题包括8个小题)19.(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.【解析】【分析】(1)设第一批饮料进货单价为x 元,根据等量关系第二批饮料的数量是第一批的3倍,列方程进行求解即可;(2)设销售单价为m 元,根据两批全部售完后,获利不少于1200元,列不等式进行求解即可得.【详解】(1)设第一批饮料进货单价为x 元,则:1600600032x x ⨯=+ 解得:8x =经检验:8x =是分式方程的解答:第一批饮料进货单价为8元.(2)设销售单价为m 元,则: ()()8200106001200m m -⋅+-⋅≥,化简得:()()2861012m m -+-≥,解得:11m ≥,答:销售单价至少为11元.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系与不等关系是关键.20.(1)证明见解析(1)1或1【解析】试题分析:(1)要证明方程有两个不相等的实数根,只要证明原来的一元二次方程的△的值大于0即可;(1)根据根与系数的关系可以得到关于m 的方程,从而可以求得m 的值.试题解析:(1)证明:∵()230x m x m ---=,∴△=[﹣(m ﹣3)]1﹣4×1×(﹣m )=m 1﹣1m+9=(m ﹣1)1+8>0,∴方程有两个不相等的实数根;(1)∵()230x m x m ---=,方程的两实根为1x ,2x ,且2212127x x x x +-=,∴123x x m +=- ,12x x m =- ,∴()2121237x x x x +-=,∴(m ﹣3)1﹣3×(﹣m )=7,解得,m 1=1,m 1=1,即m 的值是1或1.21.通信塔CD 的高度约为15.9cm .【解析】【分析】过点A 作AE ⊥CD 于E ,设CE=xm ,解直角三角形求出AE ,解直角三角形求出BM 、DM ,即可得出关于x 的方程,求出方程的解即可.【详解】过点A 作AE ⊥CD 于E ,则四边形ABDE 是矩形,设CE=xcm ,在Rt △AEC 中,∠AEC=90°,∠CAE=30°,所以AE=330CE tan =︒xcm , 在Rt △CDM 中,CD=CE+DE=CE+AB=(x+6)cm ,DM=)36603x CD tan +=︒cm , 在Rt △ABM 中,BM=63737AB tan tan =︒︒cm , ∵AE=BD , ∴)3663373x x tan +=+︒, 解得:x=3337tan ︒+3, ∴33(cm ), 答:通信塔CD 的高度约为15.9cm .【点睛】本题考查了解直角三角形,能通过解直角三角形求出AE 、BM 的长度是解此题的关键.22.(1)1月份B 款运动鞋销售了40双;(2)3月份的总销售额为39000元;(3)详见解析.【解析】试题分析:(1)用一月份A款的数量乘以,即可得出一月份B款运动鞋销售量;(2)设A,B两款运动鞋的销量单价分别为x元,y元,根据图形中给出的数据,列出二元一次方程组,再进行计算即可;(3)根据条形统计图和折线统计图所给出的数据,提出合理的建议即可.试题解析:(1)根据题意,用一月份A款的数量乘以:50×=40(双).即一月份B款运动鞋销售了40双;(2)设A,B两款运动鞋的销量单价分别为x元,y元,根据题意得:,解得:.则三月份的总销售额是:400×65+500×26=39000=3.9(万元);(3)从销售量来看,A款运动鞋销售量逐月增加,比B款运动鞋销量大,建议多进A款运动鞋,少进或不进B款运动鞋.考点:1.折线统计图;2.条形统计图.23.(1)50;(2)详见解析;(3)36°;(4)全校2000名学生共捐6280册书.【解析】【分析】(1)根据捐2本的人数是15人,占30%,即可求出该班学生人数;(2)根据条形统计图求出捐4本的人数为,再画出图形即可;(3)用360°乘以所捐图书是6本的人数所占比例可得;(4)先求出九(1)班所捐图书的平均数,再乘以全校总人数2000即可.【详解】(1)∵捐2 本的人数是15 人,占30%,∴该班学生人数为15÷30%=50 人;(2)根据条形统计图可得:捐 4 本的人数为:50﹣(10+15+7+5)=13;补图如下;(3)九(1)班全体同学所捐图书是 6 本的人数在扇形统计图中所对应扇形的圆心角为360°×550=36°.(4)∵九(1)班所捐图书的平均数是;(1×10+2×15+4×13+5×7+6×5)÷50=157 50,∴全校2000 名学生共捐2000×15750=6280(本),答:全校2000 名学生共捐6280 册书.【点睛】本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,用到的知识点是众数、中位数、平均数.24.(1)10,0.28,50(2)图形见解析(3)6.4(4)528【解析】分析:(1)首先求出总人数,再根据频率,总数,频数的关系即可解决问题;(2)根据a的值画出条形图即可;(3)根据平均数的定义计算即可;(4)用样本估计总体的思想解决问题即可;详解:(1)由题意c=180.36=50,a=50×0.2=10,b=1450=0.28,c=50;故答案为10,0.28,50;(2)将频数分布表直方图补充完整,如图所示:(3)所有被调查学生课外阅读的平均本数为:(5×10+6×18+7×14+8×8)÷50=320÷50=6.4(本).(4)该校七年级学生课外阅读7本及以上的人数为:(0.28+0.16)×1200=528(人).点睛:本题考查频数分布直方图、扇形统计图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.25.(1) y1=2x+2;(2) 选择在B站出地铁,最短时间为39.5分钟.【解析】【分析】(1)根据表格中的数据,运用待定系数法,即可求得y1关于x的函数表达式;(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=12x2-9x+80,根据二次函数的性质,即可得出最短时间.【详解】(1)设y 1=kx+b,将(8,18),(9,20),代入y 1=kx+b,得:818,920.k b k b +=⎧⎨+=⎩解得2,2.k b =⎧⎨=⎩所以y 1关于x 的函数解析式为y 1=2x+2.(2)设李华从文化宫回到家所需的时间为y,则y=y 1+y 2=2x+2+12x 2-11x+78=12x 2-9x+80=12(x-9)2+39.5. 所以当x=9时,y 取得最小值,最小值为39.5,答:李华应选择在B 站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.【点睛】本题主要考查了二次函数的应用,解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值最小值,在求二次函数的最值时,一定要注意自变量x 的取值范围.26.1米.【解析】试题分析:根据题意可以列出相应的分式方程,然后解分式方程,即可得到结论.试题解析:解:设原来每天清理道路x 米,根据题意得:600480060092x x-+= 解得,x=1.检验:当x=1时,2x≠0,∴x=1是原方程的解.答:该地驻军原来每天清理道路1米.点睛:本题考查分式方程的应用,解题的关键是明确分式方程的解答方法,注意分式方程要验根.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.4-的相反数是()A.4 B.4-C.14-D.142.如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC,若∠A=60°,∠ADC=85°,则∠C的度数是()A.25°B.27.5°C.30°D.35°3.如图,△ABC中,BC=4,⊙P与△ABC的边或边的延长线相切.若⊙P半径为2,△ABC的面积为5,则△ABC的周长为( )A.8 B.10 C.13 D.144.如果关于x的分式方程1311a xx x--=++有负数解,且关于y的不等式组2()43412a y yyy---⎧⎪⎨+<+⎪⎩无解,则符合条件的所有整数a的和为()A.﹣2 B.0 C.1 D.35.如图,在正方形ABCD中,E为AB的中点,G,F分别为AD、BC边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为( )A.2 B.3 C.4 D.56.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为()A.B.2 C.D.7.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为()A.4 B..5 C.6 D.88.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是()A.312B.36C.33D.329.已知数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|c﹣b|的结果是()A.a+b B.﹣a﹣c C.a+c D.a+2b﹣c10.9的值是()A.±3 B.3 C.9 D.81二、填空题(本题包括8个小题)11.如图,在△ACB中,∠ACB=90°,点D为AB的中点,将△ACB绕点C按顺时针方向旋转,当CB经过点D时得到△A1CB1.若AC=6,BC=8,则DB1的长为________.12.如图,在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D在OB上,点E在OB 的延长线上,当扇形AOB的半径为22时,阴影部分的面积为__________.13.-3的倒数是___________ 14.计算:﹣1﹣2=_____.15.如图,数轴上点A 所表示的实数是________________.16.甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:吨/公顷) 品种 第1年 第2年 第3年 第4年 第5年 品种 甲 9.8 9.9 10.1 10 10.2 甲 乙9.410.310.89.79.8乙经计算,x 10 x 10==甲乙,,试根据这组数据估计_____中水稻品种的产量比较稳定.17.如图,ABC ∆中,∠BAC 75=︒,7BC =,ABC ∆的面积为14,D 为BC 边上一动点(不与B ,C 重合),将ABD ∆和ACD ∆分别沿直线AB ,AC 翻折得到ABE ∆和ACF ∆,那么△AEF 的面积的最小值为____.18.某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是___岁. 三、解答题(本题包括8个小题)19.(6分)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C 三类分别装袋,投放,其中A 类指废电池,过期药品等有毒垃圾,B 类指剩余食品等厨余垃圾,C 类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.直接写出甲投放的垃圾恰好是A 类的概率;求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.20.(6分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图①和图②,请根据相关信息,解答下列问题:本次接受随机抽样调查的中学生人数为_______,图①中m的值是_____;求本次调查获取的样本数据的平均数、众数和中位数;根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数.21.(6分)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚.到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.22.(8分)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:求n的值;若该校学生共有1200人,试估计该校喜爱看电视的学生人数;若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.23.(8分)如图,AB 是⊙O 的直径,点C 为⊙O 上一点,CN 为⊙O 的切线,OM ⊥AB 于点O ,分别交AC 、CN 于D 、M 两点.求证:MD=MC ;若⊙O 的半径为5,AC=45,求MC 的长.24.(10分)如图,在△ABC 中,∠C=90°.作∠BAC 的平分线AD ,交BC 于D ;若AB=10cm ,CD=4cm ,求△ABD 的面积.25.(10分)化简求值:212(1)211x x x x -÷-+++,其中31x =-. 26.(12分)如图,在▱ABCD 中,以点A 为圆心,AB 的长为半径的圆恰好与CD 相切于点C ,交AD 于点E ,延长BA 与⊙O 相交于点F .若EF 的长为2π,则图中阴影部分的面积为_____.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.A 【解析】 【分析】直接利用相反数的定义结合绝对值的定义分析得出答案. 【详解】-1的相反数为1,则1的绝对值是1. 故选A .【点睛】本题考查了绝对值和相反数,正确把握相关定义是解题的关键.2.D【解析】分析:直接利用三角形外角的性质以及邻补角的关系得出∠B以及∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案.详解:∵∠A=60°,∠ADC=85°,∴∠B=85°-60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°-95°-50°=35°故选D.点睛:此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC度数是解题关键.3.C【解析】【分析】根据三角形的面积公式以及切线长定理即可求出答案.【详解】连接PE、PF、PG,AP,由题意可知:∠PEC=∠PFA=PGA=90°,∴S△PBC=12BC•PE=12×4×2=4,∴由切线长定理可知:S△PFC+S△PBG=S△PBC=4,∴S四边形AFPG=S△ABC+S△PFC+S△PBG+S△PBC=5+4+4=13,∴由切线长定理可知:S△APG=12S四边形AFPG=132,∴132=12×AG•PG,∴AG=132,由切线长定理可知:CE=CF,BE=BG,∴△ABC的周长为AC+AB+CE+BE=AC+AB+CF+BG=AF+AG=2AG=13,故选C.【点睛】本题考查切线长定理,解题的关键是画出辅助线,熟练运用切线长定理,本题属于中等题型.4.B【解析】【分析】解关于y的不等式组2()43412a y yyy---⎧⎪⎨+<+⎪⎩,结合解集无解,确定a的范围,再由分式方程1311a xx x--=++有负数解,且a为整数,即可确定符合条件的所有整数a的值,最后求所有符合条件的值之和即可.【详解】由关于y的不等式组2()43412a y yyy---⎧⎪⎨+<+⎪⎩,可整理得242y ay+⎧⎨<-⎩∵该不等式组解集无解,∴2a+4≥﹣2即a≥﹣3又∵1311a xx x--=++得x=42a-而关于x的分式方程1311a xx x--=++有负数解∴a﹣4<1∴a<4于是﹣3≤a<4,且a 为整数∴a=﹣3、﹣2、﹣1、1、1、2、3则符合条件的所有整数a的和为1.故选B.【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键.5.B【解析】。
云南省玉溪市2019-2020学年中考第三次质量检测数学试题含解析
云南省玉溪市2019-2020学年中考第三次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某微生物的直径为0.000 005 035m ,用科学记数法表示该数为( )A .5.035×10﹣6B .50.35×10﹣5C .5.035×106D .5.035×10﹣52.如图,△ABC 内接于⊙O ,AD 为⊙O 的直径,交BC 于点E ,若DE=2,OE=3,则tan ∠ACB·tan ∠ABC=( )A .2B .3C .4D .53.下列等式从左到右的变形,属于因式分解的是A .8a 2b=2a·4abB .-ab 3-2ab 2-ab=-ab(b 2+2b)C .4x 2+8x-4=4x 12-x x ⎛⎫+ ⎪⎝⎭ D .4my-2=2(2my-1)4.某校在国学文化进校园活动中,随机统计50名学生一周的课外阅读时间如表所示,这组数据的众数和中位数分别是( )学生数(人)5 8 14 19 4 时间(小时)6 7 8 9 10 A .14,9 B .9,9 C .9,8 D .8,95.下列计算正确的是( )A .﹣2x ﹣2y 3•2x 3y =﹣4x ﹣6y 3B .(﹣2a 2)3=﹣6a 6C .(2a+1)(2a ﹣1)=2a 2﹣1D .35x 3y 2÷5x 2y =7xy6.某城2014年底已有绿化面积300公顷,经过两年绿化,到2016年底增加到363公顷,设绿化面积平均每年的增长率为x ,由题意所列方程正确的是( ).A .300(1)363x +=B .2300(1)363x +=C .300(12)363x +=D .2300(1)363x -=7.不等式5+2x <1的解集在数轴上表示正确的是( ).A .B .C .D .8.如图,在矩形ABCD 中,E ,F 分别是边AB ,CD 上的点,AE=CF ,连接EF ,BF ,EF 与对角线AC 交于点O ,且BE=BF ,∠BEF=2∠BAC ,FC=2,则AB 的长为( )A .83B .8C .43D .6 9.在函数y =1x x -中,自变量x 的取值范围是( ) A .x≥1 B .x≤1且x≠0 C .x≥0且x≠1 D .x≠0且x≠110.将一副三角尺(在Rt ABC ∆中,090ACB ∠=,060B ∠=,在Rt EDF ∆中,090EDF ∠=,045E ∠=)如图摆放,点D 为AB 的中点,DE 交AC 于点P ,DF 经过点C ,将EDF ∆绕点D 顺时针方向旋转α(00060α<<),DE '交AC 于点M ,DF '交BC 于点N ,则PM CN的值为( )A .3B .3C .3D .1211.如图,已知∠1=∠2,要使△ABD ≌△ACD ,需从下列条件中增加一个,错误的选法是( )A .∠ADB =∠ADC B .∠B =∠C C .AB =ACD .DB =DC12.如图,甲从A 点出发向北偏东70°方向走到点B ,乙从点A 出发向南偏西15°方向走到点C ,则∠BAC 的度数是( )A .85°B .105°C .125°D .160°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,△ABC是⊙O的内接三角形,AD是⊙O的直径,∠ABC=50°,则∠CAD=________ .14.中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为_____.15.如图所示,在△ABC中,∠C=90°,∠CAB=50°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB,AC于点E,F;②分别以点E,F为圆心,大于12EF的长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D.则∠ADC的度数为.16.如图所示,在长为10m、宽为8m的长方形空地上,沿平行于各边的方向分割出三个全等的小长方形花圃则其中一个小长方形花圃的周长是______m.17.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…、6点的标记,掷一次骰子,向上的一面出现的点数是素数的概率是_____.18.已知,直接y=kx+b(k>0,b>0)与x轴、y轴交A、B两点,与双曲线y=16x(x>0)交于第一象限点C,若BC=2AB,则S△AOB=________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平行四边形ABCD 中,24BC AB ==,点E 、F 分别是BC 、AD 的中点. (1)求证:ABE ∆≌CDF ∆;(2)当AE CE =时,求四边形AECF 的面积.20.(6分)某商店销售两种品牌的计算器,购买2个A 品牌和3个B 品牌的计算器共需280元;购买3个A 品牌和1个B 品牌的计算器共需210元.(Ⅰ)求这两种品牌计算器的单价;(Ⅱ)开学前,该商店对这两种计算器开展了促销活动,具体办法如下:A 品牌计算器按原价的九折销售,B 品牌计算器10个以上超出部分按原价的七折销售.设购买x 个A 品牌的计算器需要y 1元,购买x 个B 品牌的计算器需要y 2元,分别求出y 1,y 2关于x 的函数关系式.(Ⅲ)某校准备集体购买同一品牌的计算器,若购买计算器的数量超过15个,购买哪种品牌的计算器更合算?请说明理由.21.(6分)已知.化简;如果、是方程的两个根,求的值. 22.(8分)小马虎做一道数学题,“已知两个多项式24A x x =-W ,2234B x x =+-,试求2A B +.”其中多项式A 的二次项系数印刷不清楚.小马虎看答案以后知道2228A B x x +=+-,请你替小马虎求出系数“W ”;在(1)的基础上,小马虎已经将多项式A 正确求出,老师又给出了一个多项式C ,要求小马虎求出A C -的结果.小马虎在求解时,误把“A C -”看成“A C +”,结果求出的答案为262x x --.请你替小马虎求出“A C -”的正确答案.23.(8分)某公司销售一种新型节能电子小产品,现准备从国内和国外两种销售方案中选择一种进行销售:①若只在国内销售,销售价格y (元/件)与月销量x (件)的函数关系式为y =-1100x +150,成本为20元/件,月利润为W 内(元);②若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a 元/件(a 为常数,10≤a≤40),当月销量为x (件)时,每月还需缴纳1100x 2元的附加费,月利润为W 外(元). (1)若只在国内销售,当x =1000(件)时,y = (元/件);(2)分别求出W 内、W 外与x 间的函数关系式(不必写x 的取值范围);(3)若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a 的值.24.(10分)如图,直线l 是线段MN 的垂直平分线,交线段MN 于点O ,在MN 下方的直线l 上取一点P ,连接PN ,以线段PN 为边,在PN 上方作正方形NPAB ,射线MA 交直线l 于点C ,连接BC . (1)设∠ONP =α,求∠AMN 的度数;(2)写出线段AM 、BC 之间的等量关系,并证明.25.(10分)经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.26.(12分)如图所示,在Rt ABC △中,90ACB ∠=︒,(1)用尺规在边BC 上求作一点P ,使PA PB =;(不写作法,保留作图痕迹)(2)连接AP 当B Ð为多少度时,AP 平分CAB ∠.27.(12分)为响应学校全面推进书香校园建设的号召,班长李青随机调查了若干同学一周课外阅读的时间t (单位:小时),将获得的数据分成四组,绘制了如下统计图(A :07t <≤,B :714t <≤,C :1421t <≤,D :21t >),根据图中信息,解答下列问题:(1)这项工作中被调查的总人数是多少?(2)补全条形统计图,并求出表示A 组的扇形统计图的圆心角的度数;(3)如果李青想从D 组的甲、乙、丙、丁四人中先后随机选择两人做读书心得发言代表,请用列表或画树状图的方法求出选中甲的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】试题分析:0.000 005 035m ,用科学记数法表示该数为5.035×10﹣6,故选A . 考点:科学记数法—表示较小的数.2.C【解析】【分析】如图(见解析),连接BD 、CD ,根据圆周角定理可得,ACB ADB ABC ADC ∠=∠∠=∠,再根据相似三角形的判定定理可得ACE BDE ∆~∆,然后由相似三角形的性质可得AC CE BD DE =,同理可得AB AE CD CE =;又根据圆周角定理可得90ABD ACD ∠=∠=︒,再根据正切的定义可得tan tan ,tan tan AB AC ACB ADB ABC ADC BD CD∠=∠=∠=∠=,然后求两个正切值之积即可得出答案. 【详解】如图,连接BD 、CD ,ACB ADB ABC ADC ∴∠=∠∠=∠在ACE ∆和BDE ∆中,ACE BDE AEC BED ∠=∠⎧⎨∠=∠⎩ACE BDE ∴∆~∆AC CE BD DE∴= 2,3DE OE ==Q5,8OA OD DE OE AE OA OE ∴==+==+=2AC CE BD ∴= 同理可得:ABE CDE ∆~∆ AB AE CD CE ∴=,即8AB CD CE = AD Q 为⊙O 的直径90ABD ACD ∠∴∠==︒tan tan ,tan tan AB AC ACB ADB ABC ADC BD CD∴∠=∠=∠=∠= 8tan tan 42AB AC AC AB CE ACB ABC BD CD BD CD CE∴∠⋅∠=⋅=⋅=⋅= 故选:C .【点睛】本题考查了圆周角定理、相似三角形的判定定理与性质、正切函数值等知识点,通过作辅助线,结合圆周角定理得出相似三角形是解题关键.3.D【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A 、是整式的乘法,故A 不符合题意;B 、没把一个多项式转化成几个整式积的形式,故B 不符合题意;C 、没把一个多项式转化成几个整式积的形式,故C 不符合题意;D 、把一个多项式转化成几个整式积的形式,故D 符合题意;故选D .【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.4.C【解析】【详解】解:观察、分析表格中的数据可得:∵课外阅读时间为1小时的人数最多为11人,∴众数为1.∵将这组数据按照从小到大的顺序排列,第25个和第26个数据的均为2,∴中位数为2.故选C .本题考查(1)众数是一组数据中出现次数最多的数;(2)中位数的确定要分两种情况:①当数据组中数据的总个数为奇数时,把所有数据按从小到大的顺序排列,中间的那个数就是中位数;②当数据组中数据的总个数为偶数时,把所有数据按从小到大的顺序排列,中间的两个数的平均数是这组数据的中位数. 5.D【解析】【分析】A.根据同底数幂乘法法则判断;B.根据积的乘方法则判断即可;C.根据平方差公式计算并判断;D.根据同底数幂除法法则判断.【详解】A.-2x-2y3 2x3y=-4xy4,故本选项错误;B. (−2a2)3=−8a6,故本项错误;C. (2a+1)(2a−1)=4a2−1,故本项错误;D.35x3y2÷5x2y=7xy,故本选项正确.故答案选D.【点睛】本题考查了同底数幂的乘除法法则、积的乘方法则与平方差公式,解题的关键是熟练的掌握同底数幂的乘除法法则、积的乘方法则与平方差公式.6.B【解析】【分析】先用含有x的式子表示2015年的绿化面积,进而用含有x的式子表示2016年的绿化面积,根据等式关系列方程即可.【详解】由题意得,绿化面积平均每年的增长率为x,则2015年的绿化面积为300(1+x),2016年的绿化面积为300(1+x)(1+x),经过两年的增长,绿化面积由300公顷变为363公顷.可列出方程:300(1+x)2=363.故选B.【点睛】本题主要考查一元二次方程的应用,找准其中的等式关系式解答此题的关键.7.C【解析】【分析】先解不等式得到x<-1,根据数轴表示数的方法得到解集在-1的左边.5+1x <1,移项得1x <-4,系数化为1得x <-1.故选C .【点睛】本题考查了在数轴上表示不等式的解集:先求出不等式组的解集,然后根据数轴表示数的方法把对应的未知数的取值范围通过画区间的方法表示出来,等号时用实心,不等时用空心.8.D【解析】分析: 连接OB ,根据等腰三角形三线合一的性质可得BO ⊥EF ,再根据矩形的性质可得OA=OB ,根据等边对等角的性质可得∠BAC=∠ABO ,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC ,再利用勾股定理列式计算即可求出AB. 详解: 如图,连接OB ,∵BE=BF ,OE=OF ,∴BO ⊥EF ,∴在Rt △BEO 中,∠BEF+∠ABO=90°,由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC ,∴∠BAC=∠ABO ,又∵∠BEF=2∠BAC ,即2∠BAC+∠BAC=90°,解得∠BAC=30°,∴∠FCA=30°,∴∠FBC=30°,∵FC=2,∴3∴3,∴22AC BC -22(43)(23)-6,点睛: 本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30°角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出∠BAC=30°是解题的关键. 9.C【解析】【分析】根据分式和二次根式有意义的条件进行计算即可.【详解】由题意得:x≥2且x ﹣2≠2.解得:x≥2且x≠2.故x 的取值范围是x≥2且x≠2.故选C .【点睛】本题考查了函数自变量的取值范围问题,掌握分式和二次根式有意义的条件是解题的关键. 10.C【解析】【分析】先根据直角三角形斜边上的中线性质得CD=AD=DB ,则∠ACD=∠A=30°,∠BCD=∠B=60°,由于∠EDF=90°,可利用互余得∠CPD=60°,再根据旋转的性质得∠PDM=∠CDN=α,于是可判断△PDM ∽△CDN ,得到PM CN =PD CD ,然后在Rt △PCD 中利用正切的定义得到tan ∠PCD=tan30°=PD CD ,于是可得PM CN 【详解】 ∵点D 为斜边AB 的中点,∴CD=AD=DB ,∴∠ACD=∠A=30°,∠BCD=∠B=60°,∵∠EDF=90°,∴∠CPD=60°,∴∠MPD=∠NCD ,∵△EDF 绕点D 顺时针方向旋转α(0°<α<60°),∴∠PDM=∠CDN=α,∴△PDM ∽△CDN , ∴PM CN =PD CD ,在Rt △PCD 中,∵tan ∠PCD=tan30°=PD CD,∴PM CN =tan30°=3. 故选:C .【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了相似三角形的判定与性质.11.D【解析】【分析】由全等三角形的判定方法ASA 证出△ABD ≌△ACD ,得出A 正确;由全等三角形的判定方法AAS 证出△ABD ≌△ACD ,得出B 正确;由全等三角形的判定方法SAS 证出△ABD ≌△ACD ,得出C 正确.由全等三角形的判定方法得出D 不正确;【详解】A 正确;理由:在△ABD 和△ACD 中,∵∠1=∠2,AD=AD ,∠ADB=∠ADC ,∴△ABD ≌△ACD (ASA );B 正确;理由:在△ABD 和△ACD 中,∵∠1=∠2,∠B=∠C ,AD=AD∴△ABD ≌△ACD (AAS );C 正确;理由:在△ABD 和△ACD 中,∵AB=AC ,∠1=∠2,AD=AD ,∴△ABD ≌△ACD (SAS );D 不正确,由这些条件不能判定三角形全等;故选:D .【点睛】本题考查了全等三角形的判定方法;三角形全等的判定是中考的热点,熟练掌握全等三角形的判定方法是解决问题的关键.12.C【解析】【分析】首先求得AB与正东方向的夹角的度数,即可求解.【详解】根据题意得:∠BAC=(90°﹣70°)+15°+90°=125°,故选:C.【点睛】本题考查了方向角,正确理解方向角的定义是关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.40°【解析】连接CD,则∠ADC=∠ABC=50°,∵AD是⊙O的直径,∴∠ACD=90°,∴∠CAD+∠ADC=90°,∴∠CAD=90°-∠ADC=90°-50°=40°,故答案为: 40°.14.3【解析】试题分析:根据有理数的加法,可得图②中表示(+2)+(﹣5)=﹣1,故答案为﹣1.考点:正数和负数15.65°【解析】【分析】根据已知条件中的作图步骤知,AG是∠CAB的平分线,根据角平分线的性质解答即可.【详解】根据已知条件中的作图步骤知,AG是∠CAB的平分线,∵∠CAB=50°,∴∠CAD=25°;在△ADC中,∠C=90°,∠CAD=25°,∴∠ADC=65°(直角三角形中的两个锐角互余);故答案是:65°.16.12【解析】【分析】由图形可看出:小矩形的2个长+一个宽=10m,小矩形的2个宽+一个长=8m,设出长和宽,列出方程组解之即可求得答案.【详解】解:设小长方形花圃的长为xm ,宽为ym ,由题意得28210x y x y +=⎧⎨+=⎩,解得42x y =⎧⎨=⎩,所以其中一个小长方形花圃的周长是2()2(42)12(m)x y +=⨯+=.【点睛】 此题主要考查了二元一次方程组的应用,解题的关键是:数形结合,弄懂题意,找出等量关系,列出方程组.本题也可以让列出的两个方程相加,得3(x+y )=18,于是x+y=6,所以周长即为2(x+y )=12,问题得解.这种思路用了整体的数学思想,显得较为简捷.17.12【解析】【分析】先判断掷一次骰子,向上的一面的点数为素数的情况,再利用概率公式求解即可.【详解】解:∵掷一次这枚骰子,向上的一面的点数为素数的有2,3,5共3种情况, ∴掷一次这枚骰子,向上的一面的点数为素数的概率是:3162=. 故答案为:12. 【点睛】 本题考查了求简单事件的概率,根据题意判断出素数的个数是解题的关键.18.43【解析】【分析】根据题意可设出点C 的坐标,从而得到OA 和OB 的长,进而得到△AOB 的面积即可.【详解】∵直接y=kx+b 与x 轴、y 轴交A 、B 两点,与双曲线y=16x 交于第一象限点C ,若BC=2AB ,设点C 的坐标为(c,16c) ∴OA=0.5c,OB=1163c ⨯=163c, ∴S △AOB =1·2OA OB =1160.523c c ⨯⨯=43 【点睛】此题主要考查反比例函数的图像,解题的关键是根据题意设出C 点坐标进行求解.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析;(2)23【解析】【分析】(1)根据平行四边形的性质得出AB=CD,BC=AD,∠B=∠D,求出BE=DF,根据全等三角形的判定推出即可;(2)求出△ABE是等边三角形,求出高AH的长,再求出面积即可.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB CD=,BC AD=,B D∠∠=,∵点E、F分别是BC、AD的中点,∴1BE BC2=,1DF AD2=,∴BE DF=,在ΔABE和ΔCDF中AB CDB DBE DF=⎧⎪∠=∠⎨⎪=⎩,∴ΔABE≌ΔCDF(SAS);(2)作AH BC⊥于H,∵四边形ABCD是平行四边形,∴AD//BC,AD BC=,∵点E、F分别是BC、AD的中点,BC2AB4==,∴1BE CE BC22===,1DF AF AD22===,∴AF//CE,AF CE=,∴四边形AECF是平行四边形,∵AE CE=,∴四边形AECF是菱形,∴AE AF2==,∵AB2=,∴AB AE BE2===,即ΔABE是等边三角形,BH HE1==,由勾股定理得:AH==∴四边形AECF的面积是2=.【点睛】本题考查了等边三角形的性质和判定,全等三角形的判定,平行四边形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.20.(1)A种品牌计算器50元/个,B种品牌计算器60元/个;(2)y1=45x,y2=60(010) 42180(10)x xx x≤≤⎧⎨+⎩f;(3)详见解析.【解析】【分析】(1)根据题意列出二元一次方程组并求解即可;(2)按照“购买所需费用=折扣×单价×数量”列式即可,注意B品牌计算器的采购要分0≤x≤10和x>10两种情况考虑;(3)根据上问所求关系式,分别计算当x>15时,由y1=y2、y1>y2、y1<y2确定其分别对应的销量范围,从而确定方案.【详解】(Ⅰ)设A、B两种品牌的计算器的单价分别为a元、b元,根据题意得,23280 3210a ba b+=⎧⎨+=⎩,解得:5060 ab=⎧⎨=⎩,答:A种品牌计算器50元/个,B种品牌计算器60元/个;(Ⅱ)A品牌:y1=50x•0.9=45x;B品牌:①当0≤x≤10时,y2=60x,②当x>10时,y2=10×60+60×(x﹣10)×0.7=42x+180,综上所述:y1=45x,y2=()() 60010 4218010x xx x⎧≤≤⎪⎨+⎪⎩>;(Ⅲ)当y1=y2时,45x=42x+180,解得x=60,即购买60个计算器时,两种品牌都一样;当y1>y2时,45x>42x+180,解得x>60,即购买超过60个计算器时,B品牌更合算;当y 1<y 2时,45x <42x+180,解得x <60,即购买不足60个计算器时,A 品牌更合算,当购买数量为15时,显然购买A 品牌更划算.【点睛】本题考查了二元一次方程组的应用.21. (1) ;(2)-4.【解析】【分析】(1)先通分,再进行同分母的减法运算,然后约分得到原式(2)利用根与系数的关系得到然后利用整体代入的方法计算. 【详解】解:(1).(2)∵、是方程, ∴, ∴ 【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程的两根时,, 也考查了分式的加减法. 22.(1)-3; (2)“A -C”的正确答案为-7x 2-2x+2.【解析】【分析】(1)根据整式加减法则可求出二次项系数;(2)表示出多项式A ,然后根据A C +的结果求出多项式C ,计算A C -即可求出答案.【详解】(1)由题意得2:4A x x =-W ,2234B x x =+-, ∴A+2B=(4+W )2x +2x -8,Q 2228A B x x +=+-,∴4+W =1,W =-3,即系数为-3.(2)Q A+C=262x x--,且A=234x x--,∴C=4222x x--,∴A-C=2722x x--+【点睛】本题主要考查了多项式加减运算,熟练掌握运算法则是解题关键.23.(1)140;(2)W内=-1100x2+130x,W外=-1100x2+(150-a)x;(3)a=1.【解析】试题分析:(1)将x=1000代入函数关系式求得y,;(2)根据等量关系“利润=销售额﹣成本”“利润=销售额﹣成本﹣附加费”列出函数关系式; (3)对w内函数的函数关系式求得最大值,再求出w外的最大值并令二者相等求得a值.试题解析:(1)x=1000,y=-1100×1000+150=140;(2)W内=(y-1)x=(-1100x+150-1)x=-1100x2+130x.W外=(150-a)x-1100x2=-1100x2+(150-a)x;(3)W内=-1100x2+130x=-1100(x-6500)2+2,由W外=-1100x2+(150-a)x得:W外最大值为:(750-5a)2,所以:(750-5a)2=2.解得a=280或a=1.经检验,a=280不合题意,舍去,∴a=1.考点:二次函数的应用.24.(1)45°(2)AM=,理由见解析【解析】【分析】(1)由线段的垂直平分线的性质可得PM=PN,PO⊥MN,由等腰三角形的性质可得∠PMN=∠PNM =α,由正方形的性质可得AP=PN,∠APN=90°,可得∠APO=α,由三角形内角和定理可求∠AMN的度数;(2)由等腰直角三角形的性质和正方形的性质可得MN=,AN=,∠MNC=∠ANB=45°,可证△CBN∽△MAN,可得AM=.【详解】解:(1)如图,连接MP,∵直线l是线段MN的垂直平分线,∴PM=PN,PO⊥MN∴∠PMN=∠PNM=α∴∠MPO=∠NPO=90°-α,∵四边形ABNP是正方形∴AP=PN,∠APN=90°∴AP=MP,∠APO=90°-(90°-α)=α∴∠APM=∠MPO-∠APO=(90°-α)-α=90°-2α,∵AP=PM∴()180902452aPMA PAM a︒-︒-∠∠=︒+==,∴∠AMN=∠AMP-∠PMN=45°+α-α=45°(2)2AM BC=理由如下:如图,连接AN,CN,∵直线l是线段MN的垂直平分线,∴CM=CN,∴∠CMN=∠CNM=45°,∴∠MCN=90°∴2MN CN=,∵四边形APNB是正方形∴∠ANB=∠BAN=45°∴2AN BN =,∠MNC =∠ANB =45°∴∠ANM =∠BNC 又∵2MN AN CN BN== ∴△CBN ∽△MAN∴2AM MN BC CN== ∴2AM BC =【点睛】本题考查了正方形的性质,线段垂直平分线的性质,相似三角形的判定和性质,添加恰当辅助线构造相似三角形是本题的关键.25.两人之中至少有一人直行的概率为59. 【解析】【分析】画树状图展示所有9种等可能的结果数,找出“至少有一人直行”的结果数,然后根据概率公式求解.【详解】画树状图为:共有9种等可能的结果数,其中两人之中至少有一人直行的结果数为5,所以两人之中至少有一人直行的概率为59. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.概率=所求情况数与总情况数之比.26.(1)详见解析;(2)30°.【解析】【分析】(1)根据线段垂直平分线的作法作出AB 的垂直平分线即可;(2)连接PA ,根据等腰三角形的性质可得PAB B ∠=∠,由角平分线的定义可得PAB PAC ∠=∠,根据直角三角形两锐角互余的性质即可得∠B 的度数,可得答案.【详解】(1)如图所示:分别以A 、B 为圆心,大于12AB 长为半径画弧,两弧相交于点E 、F ,作直线EF ,交BC 于点P ,∵EF 为AB 的垂直平分线,∴PA=PB ,∴点P 即为所求.(2)如图,连接AP ,∵PA PB =,∴PAB B ∠=∠,∵AP 是角平分线,∴PAB PAC ∠=∠,∴PAB PAC B ∠=∠=∠,∵90ACB ∠=︒,∴∠PAC+∠PAB+∠B=90°,∴3∠B=90°,解得:∠B=30°,∴当30B ∠=︒时,AP 平分CAB ∠.【点睛】本题考查尺规作图,考查了垂直平分线的性质、直角三角形两锐角互余的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等;熟练掌握垂直平分线的性质是解题关键.27.(1)50人;(2)补全图形见解析,表示A 组的扇形统计图的圆心角的度数为108°;(3)12. 【解析】分析:(1)、根据B 的人数和百分比得出样本容量;(2)、根据总人数求出C 组的人数,根据A 组的人数占总人数的百分比得出扇形的圆心角度数;(3)、根据题意列出树状图,从而得出概率.详解:(1)被调查的总人数为19÷38%=50人; (2)C 组的人数为50﹣(15+19+4)=12(人),补全图形如下:表示A 组的扇形统计图的圆心角的度数为360°×1550=108°; (3)画树状图如下,共有12个可能的结果,恰好选中甲的结果有6个, ∴P (恰好选中甲)=61122. 点睛:本题主要考查的是条形统计图和扇形统计图以及概率的计算法则,属于基础题型.理解频数、频率与样本容量之间的关系是解题的关键.。
云南省玉溪市2020版中考数学三模试卷B卷
云南省玉溪市2020版中考数学三模试卷B卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列各数中,负数是()A . (-3)2B . -(-3)C . (-3)3D . -(-3)32. (2分)宁波市重点工程领导小组会议上发布消息,2012年共安排重点工程项目537个,总投资约11000亿元,那么请将数据11000用科学记数法表示()A . 11×103B . 0.11×105C . 1.1×104D . 110×1023. (2分)如图,将等腰△ABC沿DE折叠,使顶角顶点A落在其底角平分线的交点F处,若BF=DF,则∠C 的度数为()A . 60°B . 72°C . 75°D . 80°4. (2分)(2020·柳江模拟) 下列计算正确的是()A .B .C .D .5. (2分) (2017八下·郾城期末) 在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的()A . 众数B . 中位数C . 平均数D . 方差6. (2分) (2019八下·嘉兴开学考) ( -2)2003( +2)2004=()A . +2B . - -2C . -2D . 2-7. (2分) (2019七下·南山期末) 下列说法正确的是()A . 如果两个角相等,那么这两个角是对顶角B . 内错角相等C . 过直线外一点有且只有一条直线与已知直线平行D . 一个角的补角一定是钝角8. (2分)如图是一块长方形ABCD的场地,长AB=102m,宽AD=51m,从A、B两处入口的中路宽都为1m,两小路汇合处路宽为2m,其余部分种植草坪,则草坪面积为()A . 5050m2B . 5000m2C . 4900m2D . 4800m29. (2分)如图,在▱ABCD中,AC、BD相交于O,F在BC延长线上,交CD于E,如果OE=EF,则BF:CF等于()A . 3:1B . 2:1C . 5:2D . 3:210. (2分) (2017八下·官渡期末) 如图,菱形ABCD的周长为40cm,对角线AC、BD相交于点O,DE⊥AB,垂足为E,DE:AB=4:5,则下列结论:①DE=8cm;②BE=4cm;③BD=4 cm;④AC=8 cm;⑤S菱形ABCD=80cm,正确的有()A . ①②④⑤B . ①②③④C . ①③④⑤D . ①②③④⑤二、填空题 (共5题;共5分)11. (1分)已知函数y=(k+1)x2﹣2x+1的图象与x轴只有一个交点,则k的值是________ .12. (1分)(2019·伊春) 在不透明的甲、乙两个盒子中装有除颜色外完全相同的小球,甲盒中有个白球、个黄球,乙盒中有个白球、个黄球,分别从每个盒中随机摸出个球,则摸出的个球都是黄球的概率是________.13. (1分) (2017九上·遂宁期末) 如图,抛物线的对称轴为直线,与轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:① ;② 方程的两个根是;③ ;④当时,的取值范围是;⑤ 当时,随增大而增大;其中结论正确有________.14. (1分)(2020·苏州模拟) 如图,在△ABC中,BC=6,以点A为圆心,2为半径的☉A与BC相切于点D,交AB 于点E,交AC于点F,点P是优弧上的一点,且∠EPF=50°,则图中阴影部分的面积是________.15. (1分)(2017·安陆模拟) 如图所示,正六边形ABCDEF内接于⊙O,则∠ADF的度数为________.三、解答题 (共8题;共75分)16. (5分)(2017·苏州模拟) 先化简,再求值:÷(1﹣),其中x= .17. (8分)(2018·濠江模拟) 中华文明,源远流长;中华汉字,寓意深广.为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整.请你根据统计图解答下列问题:(1)参加比赛的学生共有________名;(2)在扇形统计图中,m的值为________,表示“D等级”的扇形的圆心角为________度;(3)组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.18. (15分)(2018·南宁) 如图,△ABC内接于⊙O,∠CBG=∠A,CD为直径,OC与AB相交于点E,过点E 作EF⊥BC,垂足为F,延长CD交GB的延长线于点P,连接BD.(1)求证:PG与⊙O相切;(2)若 = ,求的值;(3)在(2)的条件下,若⊙O的半径为8,PD=OD,求OE的长.19. (5分)(2018·洪泽模拟) 如图,某单位在其办公楼迎街的墙面上垂挂一宣传条幅AE,小明同学站在离办公楼的地面C处测得条幅顶端A的仰角为45°,测得条幅底端E的仰角为30°.已知小明同学距离该单位办公楼的水平距离BC=30米,求宣传条幅AE的长.(结果保留根号)20. (10分) (2017七下·博兴期末) 某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?21. (10分)(2018·岳阳模拟) 如图,正比例函数y=-2x与反比例函数y= 的图象相交于A(m,2),B 两点.(1)求反比例函数的表达式及点B的坐标;(2)结合图象直接写出当-2x>时,x的取值范围.22. (7分) (2019七下·三明期末) 周末,小梅骑自行车去外婆家,从家出发0.5小时后到达甲地,在甲地游玩一段时间后,按原速继续前进,小梅出发2小时后,爸爸骑摩托车沿小梅骑自行车的路线追赶小梅,如图是他们离家的路程y(千米)与小梅离家时间x(小时)的关系图,已知爸爸骑摩托车的速度是小梅骑自行车速度的3倍.(1)小梅在甲地游玩时间是________小时.小梅骑车的速度是________千米/小时.(2)若爸爸与小梅同时到达外婆家,求小梅家到外婆家的路程.23. (15分)(2019·北京模拟) 如图,在Rt△ABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.(1)求证:AE=BF;(2)连接GB,EF,求证:GB∥EF;(3)若AE=1,EB=2,求DG的长.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共75分)16-1、17-1、17-2、17-3、18-1、18-2、18-3、19-1、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、。
《试卷3份集锦》云南省玉溪市2020中考数学检测试题
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.关于x的一元二次方程230x x m-+=有两个不相等的实数根,则实数m的取值范围是()A.94m<B.94m C.94m>D.94m2.制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A.360元B.720元C.1080元D.2160元3.若0<m<2,则关于x的一元二次方程﹣(x+m)(x+3m)=3mx+37根的情况是()A.无实数根B.有两个正根C.有两个根,且都大于﹣3mD.有两个根,其中一根大于﹣m4.如图所示,在方格纸上建立的平面直角坐标系中,将△ABC绕点O按顺时针方向旋转90°,得到△A′B′O,则点A′的坐标为()A.(3 ,1)B.(3 ,2)C.(2 ,3)D.(1 ,3)5.如图,E为平行四边形ABCD的边AB延长线上的一点,且BE:AB=2:3,△BEF的面积为4,则平行四边形ABCD 的面积为()A.30 B.27 C.14 D.326.点A(m﹣4,1﹣2m)在第四象限,则m的取值范围是()A.m>12B.m>4C.m<4 D.12<m<47.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需( ) A .(a+b )元 B .(3a+2b )元 C .(2a+3b )元 D .5(a+b )元8.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“我”字的一面相对面上的字是( )A .国B .厉C .害D .了9.如图,矩形 ABCD 的边 AB=1,BE 平分∠ABC ,交 AD 于点 E ,若点 E 是 AD 的中点,以点 B 为圆心,BE 长为半径画弧,交 BC 于点 F ,则图中阴影部分的面积是( )A .2-4πB .324π-C .2-8πD .324π- 10.关于二次函数2241y x x =+-,下列说法正确的是( )A .图像与y 轴的交点坐标为()0,1B .图像的对称轴在y 轴的右侧C .当0x <时,y 的值随x 值的增大而减小D .y 的最小值为-3二、填空题(本题包括8个小题)11.圆锥的底面半径为3,母线长为5,该圆锥的侧面积为_______.12.关于x 的一元二次方程2210ax x -+=有实数根,则a 的取值范围是 __________.13.如图所示,点C 在反比例函数k y (x 0)x=>的图象上,过点C 的直线与x 轴、y 轴分别交于点A 、B ,且AB BC =,已知AOB 的面积为1,则k 的值为______.14.如图,直线m ∥n ,以直线m 上的点A 为圆心,适当长为半径画弧,分别交直线m ,n 于点B 、C ,连接AC 、BC ,若∠1=30°,则∠2=_____.15.已知点(﹣1,m)、(2,n )在二次函数y =ax 2﹣2ax ﹣1的图象上,如果m >n ,那么a____0(用“>”或“<”连接).16.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是( )A .783230x y x y +=⎧⎨+=⎩B .782330x y x y +=⎧⎨+=⎩C .302378x y x y +=⎧⎨+=⎩D .303278x y x y +=⎧⎨+=⎩ 17.已知函数22y x x =--,当 时,函数值y 随x 的增大而增大.18.抛物线y=﹣x 2+bx+c 的部分图象如图所示,若y >0,则x 的取值范围是_____.三、解答题(本题包括8个小题)19.(6分)如图,将边长为m 的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n 的小正方形纸板后,将剩下的三块拼成新的矩形.用含m 或n 的代数式表示拼成矩形的周长;m=7,n=4,求拼成矩形的面积.20.(6分)数学课上,李老师和同学们做一个游戏:他在三张硬纸片上分别写出一个代数式,背面分别标上序号①、②、③,摆成如图所示的一个等式,然后翻开纸片②是4x 1+5x+6,翻开纸片③是3x 1﹣x ﹣1.解答下列问题求纸片①上的代数式;若x 是方程1x =﹣x ﹣9的解,求纸片①上代数式的值.21.(6分)已知关于x 的方程220x ax a ++-=.当该方程的一个根为1时,求a 的值及该方程的另一根;求证:不论a 取何实数,该方程都有两个不相等的实数根.22.(8分)如图,已知A (﹣4,n ),B (2,﹣4)是一次函数y =kx+b 的图象和反比例函数y =m x的图象的两个交点.求反比例函数和一次函数的解析式;求直线AB 与x 轴的交点C 的坐标及△AOB 的面积;直接写出一次函数的值小于反比例函数值的x 的取值范围.23.(8分). 在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为;小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.24.(10分)如图所示,在正方形ABCD中,E,F分别是边AD,CD上的点,AE=ED,DF=14DC,连结EF并延长交BC的延长线于点G,连结BE.求证:△ABE∽△DEF.若正方形的边长为4,求BG的长.25.(10分)如图,AB=AD,AC=AE,BC=DE,点E在BC上.求证:△ABC≌△ADE;(2)求证:∠EAC=∠DEB.26.(12分)已知P是⊙O外一点,PO交⊙O于点C,OC=CP=2,弦AB⊥OC,∠AOC的度数为60°,连接PB.求BC的长;求证:PB是⊙O的切线.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.A【解析】【分析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.【详解】∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<9,4故选A.【点睛】本题考查了根的判别式,解题的关键在于熟练掌握一元二次方程根的情况与判别式△的关系,即:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.2.C【解析】【分析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.【详解】3m×2m=6m2,∴长方形广告牌的成本是120÷6=20元/m2,将此广告牌的四边都扩大为原来的3倍,则面积扩大为原来的9倍,∴扩大后长方形广告牌的面积=9×6=54m 2,∴扩大后长方形广告牌的成本是54×20=1080元,故选C .【点睛】本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.3.A【解析】【分析】先整理为一般形式,用含m 的式子表示出根的判别式△,再结合已知条件判断△的取值范围即可.【详解】方程整理为22x 7mx 3m 370+++=,△()()22249m 43m 3737m 4=-+=-,∵0m 2<<,∴2m 40-<,∴△0<,∴方程没有实数根,故选A .【点睛】本题考查了一元二次方程根的判别式,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.4.D【解析】【分析】解决本题抓住旋转的三要素:旋转中心O ,旋转方向顺时针,旋转角度90°,通过画图得A′.【详解】由图知A 点的坐标为(-3,1),根据旋转中心O ,旋转方向顺时针,旋转角度90°,画图,从而得A′点坐标为(1,3).故选D .5.A【解析】∵四边形ABCD是平行四边形,∴AB//CD,AB=CD,AD//BC,∴△BEF∽△CDF,△BEF∽△AED,∴22 BEF BEFCDF AEDS SBE BES CD S AE∆∆∆∆⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,,∵BE:AB=2:3,AE=AB+BE,∴BE:CD=2:3,BE:AE=2:5,∴44925 BEF BEFCDF AEDS SS S∆∆∆∆==,,∵S△BEF=4,∴S△CDF=9,S△AED=25,∴S四边形ABFD=S△AED-S△BEF=25-4=21,∴S平行四边形ABCD=S△CDF+S四边形ABFD=9+21=30,故选A.【点睛】本题考查了平行四边形的性质,相似三角形的判定与性质等,熟记相似三角形的面积等于相似比的平方是解题的关键.6.B【解析】【分析】根据第四象限内点的横坐标是正数,纵坐标是负数列出不等式组,然后求解即可.【详解】解:∵点A(m-1,1-2m)在第四象限,∴40120mm-⎧⎨-⎩>①,<②解不等式①得,m>1,解不等式②得,m>1 2所以,不等式组的解集是m>1,即m的取值范围是m>1.故选B.【点睛】本题考查各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).7.C【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a元的苹果2千克用去2a元,买单价为b元的香蕉3千克用去3b元,共用去:(2a+3b)元.故选C.【点睛】本题主要考查列代数式,总价=单价乘数量.8.A【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】∴有“我”字一面的相对面上的字是国.故答案选A.【点睛】本题考查的知识点是专题:正方体相对两个面上的文字,解题的关键是熟练的掌握正方体相对两个面上的文字.9.B【解析】【分析】利用矩形的性质以及结合角平分线的性质分别求出AE,BE的长以及∠EBF的度数,进而利用图中阴影部分的面积=S ABCD矩形-S ABE-S EBF扇形,求出答案.【详解】∵矩形ABCD 的边AB=1,BE 平分∠ABC ,∴∠ABE=∠EBF=45°,AD ∥BC ,∴∠AEB=∠CBE=45°,∴,∵点E 是AD 的中点,∴AE=ED=1,∴图中阴影部分的面积=S ABCD 矩形 −S ABE −S EBF 扇形 =1×2−123-24π 故选B.【点睛】此题考查矩形的性质,扇形面积的计算,解题关键在于掌握运算公式10.D【解析】分析:根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题.详解:∵y=2x 2+4x-1=2(x+1)2-3,∴当x=0时,y=-1,故选项A 错误,该函数的对称轴是直线x=-1,故选项B 错误,当x <-1时,y 随x 的增大而减小,故选项C 错误,当x=-1时,y 取得最小值,此时y=-3,故选项D 正确,故选D .点睛:本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.二、填空题(本题包括8个小题)11.15π【解析】试题分析:利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.圆锥的侧面积=12•2π•3•5=15π. 故答案为15π.考点:圆锥的计算.12.a≤1且a≠0【解析】∵关于x 的一元二次方程2210ax x -+=有实数根,∴()20240a a ≠⎧⎪⎨=--≥⎪⎩ ,解得:a 1≤, ∴a 的取值范围为:a 1≤且0a ≠ .点睛:解本题时,需注意两点:(1)这是一道关于“x”的一元二次方程,因此0a ≠ ;(2)这道一元二次方程有实数根,因此()2240a =--≥ ;这个条件缺一不可,尤其是第一个条件解题时很容易忽略.13.1【解析】【分析】根据题意可以设出点A 的坐标,从而以得到点C 和点B 的坐标,再根据AOB 的面积为1,即可求得k 的值.【详解】解:设点A 的坐标为()a,0-,过点C 的直线与x 轴,y 轴分别交于点A ,B ,且AB BC =,AOB 的面积为1, ∴点k C a,a ⎛⎫ ⎪⎝⎭, ∴点B 的坐标为k 0,2a ⎛⎫ ⎪⎝⎭, 1k a 122a∴⋅⋅=, 解得,k 4=,故答案为:1.【点睛】本题考查了反比例函数系数k 的几何意义、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解题关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.14.75°【解析】试题解析:∵直线l 1∥l 2,∴130.A ∠=∠=,AB AC =75.ACB B ∴∠=∠=2180175.ACB ∴∠=-∠-∠=故答案为75. 15.>; 【解析】 【详解】∵2y ax 2ax 1=--=a(x-1)2-a-1, ∴抛物线对称轴为:x=1,由抛物线的对称性,点(-1,m )、(2,n )在二次函数2y ax 2ax 1=--的图像上, ∵|−1−1|>|2−1|,且m >n , ∴a>0. 故答案为> 16.A 【解析】 【详解】该班男生有x 人,女生有y 人.根据题意得:303278x y x y +=⎧⎨+=⎩,故选D .考点:由实际问题抽象出二元一次方程组. 17.x≤﹣1. 【解析】试题分析:∵22y x x =--=2(1)1x -++,a=﹣1<0,抛物线开口向下,对称轴为直线x=﹣1,∴当x≤﹣1时,y 随x 的增大而增大,故答案为x≤﹣1. 考点:二次函数的性质. 18.-3<x <1 【解析】试题分析:根据抛物线的对称轴为x=﹣1,一个交点为(1,0),可推出另一交点为(﹣3,0),结合图象求出y >0时,x 的范围. 解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1,已知一个交点为(1,0), 根据对称性,则另一交点为(﹣3,0), 所以y >0时,x 的取值范围是﹣3<x <1. 故答案为﹣3<x <1. 考点:二次函数的图象.三、解答题(本题包括8个小题)19.(1)矩形的周长为4m;(2)矩形的面积为1.【解析】【分析】(1)根据题意和矩形的周长公式列出代数式解答即可.(2)根据题意列出矩形的面积,然后把m=7,n=4代入进行计算即可求得.【详解】(1)矩形的长为:m﹣n,矩形的宽为:m+n,矩形的周长为:2[(m-n)+(m+n)]=4m;(2)矩形的面积为S=(m+n)(m﹣n)=m2-n2,当m=7,n=4时,S=72-42=1.【点睛】本题考查了矩形的周长与面积、列代数式问题、平方差公式等,解题的关键是根据题意和矩形的性质列出代数式解答.20.(1)7x1+4x+4;(1)55.【解析】【分析】(1)根据整式加法的运算法则,将(4x1+5x+6)+(3x1﹣x﹣1)即可求得纸片①上的代数式;(1)先解方程1x=﹣x﹣9,再代入纸片①的代数式即可求解.【详解】解:(1)纸片①上的代数式为:(4x1+5x+6)+(3x1﹣x﹣1)=4x1+5x+6+3x1-x-1=7x1+4x+4(1)解方程:1x=﹣x﹣9,解得x=﹣3代入纸片①上的代数式得7x1+4x+4=7×(-3)²+4×(-3)+4=63-11+4=55即纸片①上代数式的值为55.【点睛】本题考查了整式加减混合运算,解一元一次方程,代数式求值,在解题的过程中要牢记并灵活运用整式加减混合运算的法则.特别是对于含括号的运算,在去括号时,一定要注意符号的变化. 21.(1)12,32-;(2)证明见解析.【解析】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可. (2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可. 试题解析:(1)设方程的另一根为x 1,∵该方程的一个根为1,∴1111{211a x a x +=--⋅=.解得132{12x a =-=.∴a 的值为12,该方程的另一根为32-.(2)∵()()222241248444240a a a a a a a ∆=-⋅⋅-=-+=-++=-+>, ∴不论a 取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用. 22.(1)y =﹣x ﹣2;(2)C (﹣2,0),△AOB=6,,(3)﹣4<x <0或x >2. 【解析】 【分析】(1)先把B 点坐标代入代入y =mx,求出m 得到反比例函数解析式,再利用反比例函数解析式确定A 点坐标,然后利用待定系数法求一次函数解析式;(2)根据x 轴上点的坐标特征确定C 点坐标,然后根据三角形面积公式和△AOB 的面积=S △AOC +S △BOC 进行计算;(3)观察函数图象得到当﹣4<x <0或x >2时,一次函数图象都在反比例函数图象下方. 【详解】解:∵B (2,﹣4)在反比例函数y =mx的图象上, ∴m =2×(﹣4)=﹣8, ∴反比例函数解析式为:y =﹣8x, 把A (﹣4,n )代入y =﹣8x, 得﹣4n =﹣8,解得n =2, 则A 点坐标为(﹣4,2).把A (﹣4,2),B (2,﹣4)分别代入y =kx+b ,得4224k bk b-+=⎧⎨+=-⎩,解得12kb=-⎧⎨=-⎩,∴一次函数的解析式为y=﹣x﹣2;(2)∵y=﹣x﹣2,∴当﹣x﹣2=0时,x=﹣2,∴点C的坐标为:(﹣2,0),△AOB的面积=△AOC的面积+△COB的面积=12×2×2+12×2×4=6;(3)由图象可知,当﹣4<x<0或x>2时,一次函数的值小于反比例函数的值.【点睛】本题考查的是一次函数与反比例函数的交点问题以及待定系数法的运用,灵活运用待定系数法是解题的关键,注意数形结合思想的正确运用.23.(1);(2)列表见解析,.【解析】试题分析:(1)一共有3种等可能的结果总数,摸出标有数字2的小球有1种可能,因此摸出的球为标有数字2的小球的概率为;(2)利用列表得出共有9种等可能的结果数,再找出点M落在如图所示的正方形网格内(包括边界)的结果数,可求得结果.试题解析:(1)P(摸出的球为标有数字2的小球)=;(2)列表如下:小华小丽-1 0 2-1 (-1,-1)(-1,0)(-1,2)0 (0,-1)(0,0)(0,2)2 (2,-1)(2,0)(2,2)共有9种等可能的结果数,其中点M落在如图所示的正方形网格内(包括边界)的结果数为6,∴P(点M落在如图所示的正方形网格内)==.考点:1列表或树状图求概率;2平面直角坐标系.24.(1)见解析;(2)BG=BC+CG=1.【解析】【分析】(1)利用正方形的性质,可得∠A=∠D,根据已知可得AE:AB=DF:DE,根据有两边对应成比例且夹角相等三角形相似,可得△ABE∽△DEF;(2)根据相似三角形的预备定理得到△EDF∽△GCF,再根据相似的性质即可求得CG的长,那么BG的长也就不难得到.【详解】(1)证明:∵ABCD为正方形,∴AD=AB=DC=BC,∠A=∠D=90 °.∵AE=ED,∴AE:AB=1:2.∵DF=14DC,∴DF:DE=1:2,∴AE:AB=DF:DE,∴△ABE∽△DEF;(2)解:∵ABCD为正方形,∴ED∥BG,∴△EDF∽△GCF,∴ED:CG=DF:CF.又∵DF=14DC,正方形的边长为4,∴ED=2,CG=6,∴BG=BC+CG=1.【点睛】本题考查了正方形的性质,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.25.(1)详见解析;(2)详见解析.【解析】【分析】(1)用“SSS”证明即可;(2)借助全等三角形的性质及角的和差求出∠DAB=∠EAC,再利用三角形内角和定理求出∠DEB=∠DAB,即可说明∠EAC=∠DEB.【详解】解:(1)在△ABC 和△ADE 中AB AD AC AE BC DE ⎧⎪⎨⎪⎩=,=,=, ∴△ABC ≌△ADE (SSS ); (2)由△ABC ≌△ADE , 则∠D =∠B ,∠DAE =∠BAC .∴∠DAE ﹣∠ABE =∠BAC ﹣∠BAE ,即∠DAB =∠EAC . 设AB 和DE 交于点O , ∵∠DOA =BOE ,∠D =∠B , ∴∠DEB =∠DAB . ∴∠EAC =∠DEB . 【点睛】本题主要考查了全等三角形的判定和性质,解题的关键是利用全等三角形的性质求出相等的角,体现了转化思想的运用.26.(1)BC=2;(2)见解析 【解析】试题分析:(1)连接OB ,根据已知条件判定△OBC 的等边三角形,则BC=OC=2; (2)欲证明PB 是⊙O 的切线,只需证得OB ⊥PB 即可. (1)解:如图,连接OB . ∵AB ⊥OC ,∠AOC=60°, ∴∠OAB=30°, ∵OB=OA ,∴∠OBA=∠OAB=30°, ∴∠BOC=60°, ∵OB=OC ,∴△OBC 的等边三角形, ∴BC=OC . 又OC=2, ∴BC=2;(2)证明:由(1)知,△OBC 的等边三角形,则∠COB=60°,BC=OC . ∵OC=CP , ∴BC=PC ,∴∠P=∠CBP.又∵∠OCB=60°,∠OCB=2∠P,∴∠P=30°,∴∠OBP=90°,即OB⊥PB.又∵OB是半径,∴PB是⊙O的切线.考点:切线的判定.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.空气的密度为0.00129g/cm 3,0.00129这个数用科学记数法可表示为( ) A .0.129×10﹣2B .1.29×10﹣2C .1.29×10﹣3D .12.9×10﹣12.如图,已知BD 是ABC △的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .333.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n 、m 的大矩形,则图中阴影部分的周长是( )A .6(m ﹣n )B .3(m+n )C .4nD .4m4.下列命题中真命题是( )A .若a 2=b 2,则a=bB .4的平方根是±2C .两个锐角之和一定是钝角D .相等的两个角是对顶角 5.下列几何体中,主视图和左视图都是矩形的是( )A .B .C .D .6.如图,AB ∥CD ,∠1=45°,∠3=80°,则∠2的度数为( )A .30°B .35°C .40°D .45°7.如图,△ABC 是等边三角形,点P 是三角形内的任意一点,PD ∥AB ,PE ∥BC ,PF ∥AC ,若△ABC 的周长为12,则PD+PE+PF =( )A .12B .8C .4D .38.甲、乙两人同时分别从A ,B 两地沿同一条公路骑自行车到C 地.已知A ,C 两地间的距离为110千米,B ,C 两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C 地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x 千米/时.由题意列出方程.其中正确的是( ) A .1101002x x=+ B .1101002x x =+ C .1101002x x=- D .1101002x x =- 9.已知方程组2728x y x y +=⎧⎨+=⎩,那么x+y 的值( )A .-1B .1C .0D .510.若正六边形的边长为6,则其外接圆半径为( ) A .3B .32C .33D .6二、填空题(本题包括8个小题)11.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金十两.牛二,羊五,值金八两。
〖精选4套试卷〗云南省玉溪市2020年中考第四次质量检测数学试题
2019-2020学年数学中考模拟试卷一、选择题 1.若1x +在实数范围内有意义,则x 的取值范围是( ) A.1x >- B.1x <-C.1x ≥-D.1x ≥-且0x ≠2.如图,不等式组315215x x --⎧⎨-<⎩…的解集在数轴上表示为( )A. B. C.D.3.不等式组的解集是( ) A.x >﹣1B.x =﹣1C.x≤2D.无解4.如图,点是边长为1的菱形对角线上的一个动点,点,分别是边,的中点,则的最小值是( )A. B.1 C. D.25.如图,已知二次函数的图象与轴交于点,顶点坐标为,与轴的交点在和之间(不包括端点).有下列结论:①当时,;②;③;④.其中正确的结论有( )A.1个B.2个C.3个D.4个6.关于的一元二次方程有两个相等的实数根,那么的值是( )A.B.C.D.7.如图,在平面直角坐标系中,点A 的坐标为()0,1,点B 是x 轴正半轴上一点,以AB 为边作等腰直角三角形ABC ,使BAC=90∠︒,点C 在第一象限。
若点C 在函数()3>0y x x=的图象上,则ABC V 的面积为( )A .1.B .2.C .52. D .3.8.如图,已知123////l l l ,相邻两条平行直线之间的距离相等,等腰直角三角形ABC 中,90ACB ∠=︒,三角形的三个顶点分别在这三条平行直线上,则sin α的值是( )A .13B .617C .5 D .10109.一个不透明的盒子里装有除颜色外其他都相同的红球6个和白球若干个,每次随机摸出一个球,记下颜色后放回,摇匀后再摸,通过多次试验发现摸到红球的频率稳定在0.3 左右,则盒子中白球可能有( ) A .12个B .14个C .18个D .20个10.如图,△ABC 内接于⊙O ,若∠OAB =35°,则∠C 的度数是( )A .35°B .45°C .65°D .55°11.由两个长方体组成的几何体如图水平放置,其俯视图为( )A .B .C .D .12.如图,在矩形ABCD 中,AD =3,AB =4,将△ABC 沿CF 折叠,点B 落在AC 上的点E 处,则AFFB等于( )A.12B.35C.53D.2二、填空题13.平行四边形ABCD中,∠A比∠B小20°,那么∠C=_____.14.如图,在Rt△BAC和Rt△BDC中,∠BAC=∠BDC=90°,O是BC的中点,连接AO、DO.若AO=3,则DO的长为_____.15.如图,双曲线y=kx(x>0)经过A、B两点,若点A的横坐标为1,∠OAB=90°,且OA=AB,则k的值为_______.16.观察下列关于自然数的式子:4×12﹣12,4×22﹣32,4×32﹣52,……,根据上述规律,则第2019个式子的值为_____17.在矩形ABCD中,AD=12,E是AB边上的点,AE=5,点P在AD边上,将△AEP沿FP折叠,使得点A落在点A′的位置,如图,当A′与点D的距离最短时,△A′PD的面积为_____.18.已知32xy=,则x yx y-+=_____.三、解答题19.如图,在△ABC中,以AB为直径的⊙O分别与BC,AC相交于点D,E,BD=CD,过点D作⊙O的切线交边AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为2,CF=1,求¶BD的长(结果保留π).20.如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB =DC(1)求证:四边形BFCE是平行四边形;(2)如果AD=5,DC=32,∠EBD=60°,那么当四边形BFCE为菱形时BE的长是多少?21.先化简,再求代数式22()a b b a ba b a b a b---÷+-+的值,其中a=3-1,b=(﹣2)022.已知锐角△ABC,∠ABC=45°,AD⊥BC于D,BE⊥AC于E,交AD于F.(1)求证:△BDF≌△ADC;(2)若BD=4,DC=3,求线段BE的长度.23.背景材料:在学习全等三角形知识时,数学兴趣小组发现这样一个模型,它是由两个共顶点且顶角相等的等腰三角形构成.在相对位置变化的同时,始终存在一对全等三角形.通过资料查询,他们知道这种模型称为手拉手模型.例如:如图1,两个等腰直角三角形△ABC和△ADE,∠BAC=∠EAD=90°,AB=AC,AE=AD,如果把小等腰三角形的腰长看作是小手,大等腰三角形的腰长看作大手,两个等腰三角形有公共顶点,类似大手拉着小手,这个就是手拉手模型,在这个模型中易得到△ABD≌△ACE.学习小组继续探究:(1)如图2,已知△ABC,以AB,AC为边分别向△ABC外作等边△ABD和等边△ACE,请作出一个手拉手图形(尺规作图,不写作法,保留作图痕迹),并连接BE,CD,证明BE=CD;(2)小刚同学发现,不等腰的三角形也可得到手拉手模型,例如,在△ABC中AB>AC,DE∥BC,将三角形ADE旋转一定的角度(如图3),连接CE和BD,证明△ABD∽△ACE.学以致用:(3)如图4,四边形ABCD中,∠CAB=90°,∠ADC=∠ACB=α,tanα=34,CD=5,AD=12.请在图中构造小刚发现的手拉手模型求BD的长.24.为了解某小区居民使用共享单车次数的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数统计如下:使用次数0 5 10 15 20人数 1 1 4 3 1 位居民一周内使用共享单车次数的中位数是次,众数是次,平均数是次.(2)若小明同学把数据“20”看成了“30”,那么中位数,众数和平均数中不受影响的是.(填“中位数”,“众数”或“平均数”)(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.25.如图,矩形CDEF两边EF、FC的长分别为8和6,现沿EF、FC的中点A、B截去一角成五边形ABCDE,P是线段AB上一动点,试确定AP的长为多少时,矩形PMDN的面积取得最大值.【参考答案】***一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案 A C C B C A C D B D A C13.80°.14.3151+516.807517.40 318.1 5三、解答题19.(1)详见解析;(2)2 3【解析】【分析】(1)连接OD,由切线的性质即可得出∠ODF=90°,再由BD=CD,OA=OB可得出OD是△ABC的中位线,根据三角形中位线的性质即可得出,根据平行线的性质即可得出∠CFD=∠ODF=90°,从而证出DF⊥AC;(2)根据圆周角定理得出BE⊥AC,证得BE∥DF,即可根据三角形相似求得EC=2,根据三角形中位线的性质得出AC=4,即可得出AE=EC,进一步证得△ABC是等边三角形,即可得出∠BOD=60°,根据弧长公式即可得出结论.【详解】(1)证明:连接OD,如图所示.∵DF是⊙O的切线,D为切点,∴OD⊥DF,∴∠ODF=90°.∵BD=CD,OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∴∠CFD=∠ODF=90°,∴DF⊥AC.(2)连接BE,∵AB是直径,∴BE⊥AC,∵DF⊥AC,∴FC CD1 EC BC2==,∵FC=1,∴EC=2,∵OD=12AC=2,∴AC=4,∴AE=EC=2,∴AB=BC,∵AB=AC=4,∴AB=BC=AC,∴△ABC是等边三角形,∴∠BAC=60°,∵OD∥AC,∴∠BOD=∠BAC=60°,∴»BD的长:6022 1803ππ⨯=.【点睛】本题考查了切线的性质、弧长公式、平行线的性质、三角形中位线定理以及等边三角形的判断,解题的关键是:(1)求出∠CFD=∠ODF=90°;(2)找出△ABC 是等边三角形.本题属于中档题,难度不大,解决该题型题目时,通过角的计算找出90°的角是关键. 20.(1)见解析; (2)BE =2. 【解析】 【分析】(1)直接利用全等三角形的判定方法得出△ABE ≌△DCF (SAS ),进而求出BE =FC ,BE ∥FC ,即可得出答案;(2)直接利用菱形的性质得出△EBC 是等边三角形,进而得出答案. 【详解】(1)证明:在△ABE 和△DCF 中,AB DC A D AE DF =⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△DCF (SAS ), ∴BE =FC ,∠ABE =∠DCF , ∴∠EBC =∠FCB , ∴BE ∥FC ,∴四边形BFCE 是平行四边形; (2)当四边形BFCE 是菱形, 则BE =EC , ∵AD =5,DC =32,AB =DC , ∴BC =2,∵∠EBD =60°,EB =EC , ∴△EBC 是等边三角形, ∴BE =2. 【点睛】此题主要考查了全等三角形的判定与性质以及菱形的性质,正确掌握菱形的性质是解题关键. 21.2aa b-;-1. 【解析】 【分析】将代数式括号中的先进行通分后,利用提公因式对分子进行因式分解,平方差公式对分母进行因式分解来化简,最后代入a ,b 的值计算. 【详解】 解:原式=(2)()()()()a b a b b a b a b a b ---++-÷2a ba b-+=224()()2a ab a b a b a b a b-+⋅+--=2(2)()()2a a b a ba b a b a b -+⋅+--=2aa b- ,a=3-1=13,b=(﹣2)0=1,当a=13,b=1时,原式=2aa b-=123113⨯-=﹣1.【点睛】本题考查了代数式的化简求值,注意本题类型题不要出现符号计算错误即可.22.(1)见解析;(2)BE=285.【解析】【分析】(1)由题意可得AD=BD,由余角的性质可得∠CBE=∠DAC,由“ASA”可证△BDF≌△ADC;(2)由全等三角形的性质可得AD=BD=4,CD=DF=3,BF=AC,由三角形的面积公式可求BE的长度.【详解】解:(1)∵AD⊥BC,∠ABC=45°∴∠ABC=∠BAD=45°,∴AD=BD,∵DA⊥BC,BE⊥AC∴∠C+∠DAC=90°,∠C+∠CBE=90°∴∠CBE=∠DAC,且AD=BD,∠ADC=∠ADB=90°∴△BDF≌△ADC(ASA)(2)∵△BDF≌△ADC∴AD=BD=4,CD=DF=3,BF=AC∴BF=5∴AC=5,∵S△ABC=12×BC×AD=12×AC×BE∴7×4=5×BE∴BE=285.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,利用三角形面积公式可求BE的长度.23.(1)作图见解析,证明见解析;(2)见解析;(3)BD= .【解析】【分析】(1)由等边三角形的性质可得AD=AB,AC=AE,∠DAB=∠EAC=60°,可得∠DAC=∠BAE,即可证△DAC≌△BAE,可得BD=CE;(2)通过证明△ADE∽△ABC,可得AB ADAC AE=,由旋转的性质可得∠BAC=∠DAE,即可得结论;(3)过点A 作AE垂直于AD,作∠AED=α,连接CE,则∠EDC=90°,通过证明△AEC∽△ADB,可得CE ACBD AB=,由锐角三角函数和勾股定理可求AE,DE,EC的长,即可求BD的长.【详解】(1)作图∵△ABD和△ACE都是等边三角形∴AD=AB,AC=AE,∠DAB=∠EAC=60°,∴∠DAC=∠BAE,且AD=AB,AC=AE∴△DAC≌△BAE(SAS)∴BE=CD(2)如图,在第一个图中,∵DE∥BC∴△ADE∽△ABC∴AB AD AC AE=∵将三角形ADE旋转一定的角度∴∠BAC=∠DAE∴∠BAD=∠CAE,且AB AD AC AE=∴△ABD∽△ACE;(3)如图,过点A 作AE垂直于AD,作∠AED=α,连接CE,则∠EDC=90°,∵∠AED=∠ACB=α,∠CAB=∠DAE=90°∴△AED∽△ACB∴AE AC AD AB=∵∠CAB=∠DAE=90°∴∠CAE=∠DAB,且AE AC AD AB=∴△AEC∽△ADB∴CE AC BD AB=∵△AED∽△ACB∴∠ADE=∠ABC∵∠ACB+∠ABC=90°,∠ADC=∠ACB ∴∠ADC+∠ADE=90°∴∠EDC=90°∵tanα=34ADAE=,AD=12.∴AE=16∴DE=20∴EC=∵43 CE AC BD AB==∴BD【点睛】本题是相似综合题,考查了相似三角形的判定和性质,全等三角形的判定和性质,勾股定理,锐角三角函数,添加恰当辅助线构造相似三角形是本题的关键.24.(1)10、10、11;(2)中位数和众数;(3)2200次【解析】【分析】(1)根据众数、中位数和平均数的定义分别求解可得;(2)由中位数和众数不受极端值影响可得答案;(3)用总人数乘以样本中居民的平均使用次数即可得.【详解】解:(1)这10位居民一周内使用共享单车次数的中位数是10102+=10(次),众数为10次,平均数为015110415320110⨯+⨯+⨯+⨯+⨯=11(次),故答案为:10、10、11;(2)把数据“20”看成了“30”,那么中位数,众数和平均数中不受影响的是中位数和众数,故答案为:中位数和众数.(3)估计该小区居民一周内使用共享单车的总次数为200×11=2200次.【点睛】本题考查的是平均数、众数、中位数的定义及其求法,牢记定义是关键.25.当AP=52时,矩形PMDN的面积取得最大值.【解析】【分析】延长MP,交EF于点Q,设AP的长x,矩形PMDN的面积为y,由△APQ∽△ABF得到AQ=45x,PQ=3 5x,则y=PN·PM=(45x+4)( 6-35x) =2121224255x x-++,然后根据二次函数的性质求得当AP=52时,矩形PMDN的面积取得最大值.【详解】解:延长MP,交EF于点Q.设AP的长x,矩形PMDN的面积为y.∵四边形CDEF为矩形,∴∠C=∠E=∠F=90°.∵四边形PMDN为矩形,∴∠PMD=∠MPN=∠PND=90°.∴∠PMC=∠QPN=∠PNE=90°.∴四边形CMQF、PNEQ为矩形.∴MQ=CF,PN=QE,且PQ∥BF.∵EF、FC的中点分别为A、B,且EF=8,CF=6,∴AF=4, BF=3,∴AB=5∵PQ∥BF,∴△APQ∽△ABF.∴AQ PQ APAF BF AB==.即435AQ PQ x==.解得AQ=45x,PQ=35x.∴PN=QE=AQ+AE=45x+4,PM=MQ-PQ=6-35x.∴y=PN·PM=(45x+4)( 6-35x) =2121224255x x-++.当x=1255122225-=⎛⎫⨯- ⎪⎝⎭时,y取得最大值.即当AP=52时,矩形PMDN的面积取得最大值.【点睛】本题主要考查了相似三角形的判定和性质以及二次函数的应用,根据相似三角形对应边成比例用AP的长表示出AQ和PQ是解题关键.2019-2020学年数学中考模拟试卷一、选择题1.如图,在平面直角坐标系中,点A,C在x轴上,点C的坐标为(﹣1,0),AC=2.将Rt△ABC先绕点C顺时针旋转90°,再向右平移3个单位长度,则变换后点A的对应点坐标是()A.(2,2)B.(1,2)C.(﹣1,2)D.(2,﹣1)2.如图,以边长为a的等边三角形各定点为圆心,以a为半径在对边之外作弧,由这三段圆弧组成的曲线是一种常宽曲线.此曲线的周长与直径为a的圆的周长之比是( )A.1:1 B.1:3 C.3:1 D.1:23.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则:①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣l <x<3,其中正确的是()A.①②④B.②④C.①④D.②③4.如图,⊙O的半径OA=8,以A为圆心,OA为半径的弧交⊙O于B,C点,则BC=()A.83B.82C.43D.425.反比例函数y=-3x-1的图象上有P1(x1,-2),P2(x2,-3)两点,则x1与x2的大小关系是()A.x1<x2B.x1=x2C.x1>x2D.不确定6.由两个长方体组成的几何体如图水平放置,其俯视图为()A .B .C .D .7.对于函数y=-2(x-3)2,下列说法不正确的是( )A.开口向下B.对称轴是3x =C.最大值为0D.与y 轴不相交8.如图,O e 的直径8AB =,30CBD ∠=︒,则CD 的长为( ).A.2B.23C.4D.439.由7个大小相同的小正方体组合成一个几何体,其俯视图如图所示,其中正方形中的数字表示该位置放置的小正方体的个数,则其左视图是( )A .B .C .D .10.若关于x 的不等式组12x x k +≤⎧⎨≥⎩无解,则k 的值可以是( ) A .-1 B .0C .1D .2 11.下列命题中,假命题的是( )A .正八边形的外角和为360°B .两组对角相等的四边形是平行四边形C .位似图形必相似D .若两直线被第三条直线所截,则同位角相等12.某宾馆有单人间、双人间和三人间三种客房供游客租住,某旅行团有18人准备同时租用这三种客房共9间,且每个房间都住满,则租房方案共有( )种.A .3B .4C .5D .6二、填空题13.写出经过点(0,0),(﹣2,0)的一个二次函数的解析式_____(写一个即可).14.如图,在⊙O 中,点B 为半径OA 上一点,且OA =13,AB =1,若CD 是一条过点B 的动弦,则弦CD 的最小值为_____.15.关于x 的方程2x ax 2a 0+-=的一个根为3,则该方程的另一个根是________.16.16的平方根等于_________.17.如图,AB=AC,点D,E分别在AB,AC上,CD,BE交于点F,只添加一个条件使△ABE≌△ACD,添加的条件是:_____.18.要使有意义,则的取值范围是__________.三、解答题19.如图,AB为⊙O的直径,点C,D在⊙O上,且点C是»BD的中点.连接AC,过点C作⊙O的切线EF 交射线AD于点 E.(1)求证:AE⊥EF;(2)连接BC.若AE=165,AB=5,求BC的长.20.如图,在△ABC中,AB=AC,AH⊥BC于点H,HE⊥AB于点E,以H为圆心,HE为半径作半圆,交AH 于点F.(1)求证:AC是⊙H的切线;(2)若点F是AH的中点,HE=6,求图中阴影部分的面积.21.先化简,再求值22122()121x x x xx x x x+++-÷--+,其中x满足x2+x﹣1=0.22.图书馆是一个很好的学习平台,某市有关部门统计了最近6个月到图书馆的读者的职业分布情况,并做了下列两个不完整的统计图.(1)在统计的这段时间内,共有万人次到图书馆阅读,其中商人占百分比为%.(2)将条形统计图补充完整.(3)5月份到图书馆的读者共有24000人次,根据以上调查结果,估计24000人次中是职工的人次.23.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,其中方程式是重要的数学成就。
云南省玉溪市2020版中考数学试卷(II)卷
云南省玉溪市2020版中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2017·市北区模拟) 相反数是5的数是()A . 5B . ﹣5C .D . ﹣2. (2分)(2019·越秀模拟) 函数中,自变量x的取值范围是()A .B .C .D .3. (2分)下列各式中,能用完全平方公式分解因式的是()A . 4x2-2x+1B . 4x2+4x-1C . x2-xy+y2D . x2-x+4. (2分)(2019·安徽) 在某时段由50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km/h)为()A . 60B . 50C . 40D . 155. (2分)(2018·聊城) 如图所示的几何体,它的左视图是()A .B .C .D .6. (2分) (2019八下·渭滨月考) 下列图形既是中心对称又是轴对称图形的是()A .B .C .D .7. (2分)如图所示,在矩形ABCD中,∠DBC=29°,将矩形沿直线BD折叠,顶点C落在点E处,则∠ABE 的度数是()A . 29°B . 32°C . 22°D . 61°8. (2分)如果,过圆O外一点P引圆O的切线PA,PB,切点为A,B,C为圆上一点,若∠APB=50°,则∠ACB=()A . 50°B . 60°C . 65°D . 70°9. (2分) (2017八下·卢龙期末) 若反比例函数的图象经过第二、四象限,则m为()A . 1B . -1C .D .10. (2分)小颖准备用21元钱买笔和笔记本,已知每支笔3元,每个笔记本2元,她买了4个笔记本,则她最多还可以买多少支笔()A . 1支B . 2支C . 3支D . 4支二、填空题 (共8题;共8分)11. (1分) (2018八上·武邑月考) 的平方根是________, =________.12. (1分) (2019七上·洮北月考) 用科学记数法表示-320000为________;0.003758× =________.13. (1分) (2017七下·洪泽期中) 小丽在计算一个二项式的平方时,得到正确结果m2﹣10mn+■,但最后一项不慎被墨水污染,这一项应是________.14. (1分) (2019九上·房山期中) 在平面直角坐标系xOy中,点A(m,n)在抛物线y=ax2 +2ax-3a上,点A关于此抛物线对称轴的对称点为B(p,q),则m+p的值是________.15. (1分)(2018·东营) 已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为________.16. (1分)(2018·新乡模拟) 一次函数y=(k−2)x+3−k的图象经过第一、二、三象限,则k的取值范围是________。
2020学年云南省玉溪市中考数学检测试题
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图所示,在长为8cm,宽为6cm的矩形中,截去一个矩形(图中阴影部分),如果剩下的矩形与原矩形相似,那么剩下矩形的面积是()A.28cm2B.27cm2C.21cm2D.20cm22.如图所示,在折纸活动中,小明制作了一张△ABC纸片,点D,E分别在边AB,AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=70°,则∠1+∠2=()A.70°B.110°C.130°D.140°3.如图1,将三角板的直角顶点放在直角尺的一边上,Ð1=30°,Ð2=50°,则Ð3的度数为A.80°B.50°C.30°D.20°4.已知关于x,y的二元一次方程组231ax byax by+=⎧⎨-=⎩的解为11xy=⎧⎨=-⎩,则a﹣2b的值是()A.﹣2 B.2 C.3 D.﹣35.如图所示的四边形,与选项中的一个四边形相似,这个四边形是()A.B.C.D.6.如图,在平面直角坐标系中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B、C在反比例函数y=2x(x>0)的图象上,则△OAB的面积等于()A.2 B.3 C. 4 D.67.如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.25B.35C.5 D.68.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“我”字的一面相对面上的字是()A.国B.厉C.害D.了9.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(32,0)B.(2,0)C.(52,0)D.(3,0)10.甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A.1806x+=1206x-B.1806x-=1206x+C .1806x +=120xD .180x =1206x - 二、填空题(本题包括8个小题)11.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是_________.12.不等式组21736x x ->⎧⎨>⎩的解集是_____.13.如图,以扇形OAB 的顶点O 为原点,半径OB 所在的直线为x 轴,建立平面直角坐标系,点B 的坐标为(2,0),若抛物线21y x k 2=+与扇形OAB 的边界总有两个公共点,则实数k 的取值范围是 .14.用半径为6cm ,圆心角为120°的扇形围成一个圆锥,则圆锥的底面圆半径为_______cm . 15.如图,已知函数y =x+2的图象与函数y =kx(k≠0)的图象交于A 、B 两点,连接BO 并延长交函数y =kx(k≠0)的图象于点C ,连接AC ,若△ABC 的面积为1.则k 的值为_____.16.正多边形的一个外角是72o ,则这个多边形的内角和的度数是___________________.17.甲,乙两家汽车销售公司根据近几年的销售量分别制作了如图所示的统计图,从2014~2018年,这两家公司中销售量增长较快的是_____公司(填“甲”或“乙”).18.如果a c eb d f===k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=_____.三、解答题(本题包括8个小题)19.(6分)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了13,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?20.(6分)矩形AOBC中,OB=4,OA=1.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=kx(k>0)的图象与边AC交于点E。
玉溪市2020版中考数学试卷(II)卷
玉溪市2020版中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)如果a,b互为相反数,那么(6a2﹣12a)﹣6(a2+2b﹣5)的值为()A . ﹣18B . 18C . 30D . ﹣302. (2分)下列说法,你认为正确的是()A . 0的倒数是0B . 3-1=-3C . π是有理数D . 是有理数3. (2分)根据2010年第六次全国人口普查主要数据公报,广东省常住人口约为10430万人.这个数据可以用科学计数法表示为().A . 1.043×108人B . 1.043×107人C . 1.043×104人D . 1043×105人4. (2分)(2017·河北模拟) 下列图形中,是轴对称图形,但不是中心对称图形的是()A .B .C .D .5. (2分) (2017七下·宁城期末) 已知点p(3-m,m-1)在第二象限,则m的取值范围在数轴上表示正确的是()A .B .C .D .6. (2分)(2020·呼和浩特模拟) 下列命题是真命题的是()A . 多边形的内角和为360°B . 若2a﹣b=1,则代数式6a﹣3b﹣3=0C . 二次函数y=(x﹣1)2+2的图象与y轴的交点的坐标为(0,2)D . 矩形的对角线互相垂直平分7. (2分)某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002、s乙2=0.03,则()A . 甲比乙的产量稳定B . 乙比甲的产量稳定C . 甲、乙的产量一样稳定D . 无法确定哪一品种的产量更稳定8. (2分)将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形是()A . 矩形B . 三角形C . 平行四边形D . 菱形9. (2分)如图,AB和CD都是⊙O的直径,∠AOC=50°,则∠C的度数是()A . 50°B . 30°C . 25°D . 20°10. (2分)(2017·达州) 已知二次函数y=ax2+bx+c的图象如下,则一次函数y=ax﹣2b与反比例函数y= 在同一平面直角坐标系中的图象大致是()A .B .C .D .二、填空题 (共6题;共6分)11. (1分)将点(1,5)向下平移2个单位后,所得点的坐标为________12. (1分) (2017八下·扬州期中) 如图,在□ABCD中,BE、CF分别是∠ABC和∠BCD的平分线,BE、CF 分别与AD相交于点E、F,AB=6,BC=10,则EF=________.13. (1分) (2019九下·乐清月考) 直角坐标系中△OAB,△BCD均为等毅直角三角形,OA=AB,BD=CD,点A 在x轴的正半轴上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年中考数学模拟试卷 一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.已知点M (-2,3 )在双曲线上,则下列一定在该双曲线上的是( ) A .(3,-2 ) B .(-2,-3 ) C .(2,3 ) D .(3,2) 2.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-23.如图,在⊙O 中,直径CD ⊥弦AB ,则下列结论中正确的是( )A .AC=AB B .∠C=12∠BODC .∠C=∠BD .∠A=∠B0D4.如图,在菱形ABCD 中,M ,N 分别在AB ,CD 上,且AM =CN ,MN 与AC 交于点O ,连接BO .若∠DAC =26°,则∠OBC 的度数为( )A .54°B .64°C .74°D .26°5.如图所示是小孔成像原理的示意图,根据图中所标注的尺寸,求出这支蜡烛在暗盒中所成像CD 的长( )A .16cmB .13cm C .12cm D .1cm6.下列图形中,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .7.如图,点A 所表示的数的绝对值是( )A .3B .﹣3C .13D .13-8.PM2.5是指大气中直径≤0.0000025米的颗粒物,将0.0000025用科学记数法表示为( )A .2.5×10﹣7B .2.5×10﹣6C .25×10﹣7D .0.25×10﹣5 9.若关于x 的方程 ()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( )A .m 1≠.B .m 1=.C .m 1≥D . m 0≠.10.方程x 2﹣3x =0的根是( )A .x =0B .x =3C .10x =,23x =-D .10x =,23x =二、填空题(本题包括8个小题)11.如图,在Rt △ACB 中,∠ACB=90°,∠A=25°,D 是AB 上一点,将Rt △ABC 沿CD 折叠,使点B 落在AC 边上的B′处,则∠ADB′等于_____.12.一个正多边形的每个内角等于150,则它的边数是____.13.如图,六边形ABCDEF 的六个内角都相等.若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于_________.14.如图,有一直径是2的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC ,用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为 米.15.如图,在扇形AOB 中,∠AOB=90°,正方形CDEF 的顶点C 是弧AB 的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为4时,阴影部分的面积为_____.16.如图,△ABC 中,AB =6,AC =4,AD 、AE 分别是其角平分线和中线,过点C 作CG ⊥AD 于F ,交AB于G,连接EF,则线段EF的长为_____.17.若关于x的方程2x m2x22x++=--有增根,则m的值是▲18.如图,半径为3的⊙O与Rt△AOB的斜边AB切于点D,交OB于点C,连接CD交直线OA于点E,若∠B=30°,则线段AE的长为.三、解答题(本题包括8个小题)19.(6分)先化简(31a+-a+1)÷2441a aa-++,并从0,-1,2中选一个合适的数作为a的值代入求值.20.(6分)为有效治理污染,改善生态环境,山西太原成为国内首个实现纯电动出租车的城市,绿色环保的电动出租车受到市民的广泛欢迎,给市民的生活带来了很大的方便,下表是行驶路程在15公里以内时普通燃油出租车和纯电动出租车的运营价格:车型起步公里数起步价格超出起步公里数后的单价普通燃油型 3 13元 2.3元/公里纯电动型 3 8元2元/公里张先生每天从家打出租车去单位上班(路程在15公里以内),结果发现,正常情况下乘坐纯电动出租车比乘坐燃油出租车平均每公里节省0.8元,求张先生家到单位的路程.21.(6分)我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.王老师采取的调查方式是(填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共件,其中b班征集到作品件,请把图2补充完整;王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率.22.(8分)计算:()10152cos 4532π-⎛⎫-+︒--+ ⎪⎝⎭. 23.(8分)已知关于 的方程mx 2+(2m-1)x+m-1=0(m≠0) . 求证:方程总有两个不相等的实数根; 若方程的两个实数根都是整数,求整数 的值.24.(10分)如图,将等边△ABC 绕点C 顺时针旋转90°得到△EFC ,∠ACE 的平分线CD 交EF 于点D ,连接AD 、AF .求∠CFA 度数;求证:AD ∥BC .25.(10分)某校计划购买篮球、排球共20个.购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.篮球和排球的单价各是多少元?若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.26.(12分)已知矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得顶点B 落在CD 边上的P 点处,如图1,已知折痕与边BC 交于点O ,连接AP 、OP 、OA .若△OCP 与△PDA 的面积比为1:4,求边CD 的长.如图2,在(Ⅰ)的条件下,擦去折痕AO 、线段OP ,连接BP .动点M 在线段AP 上(点M 与点P 、A 不重合),动点N 在线段AB 的延长线上,且BN =PM ,连接MN 交PB 于点F ,作ME ⊥BP 于点E .试问当动点M 、N 在移动的过程中,线段EF 的长度是否发生变化?若变化,说明变化规律.若不变,求出线段EF 的长度.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.A【解析】因为点M (-2,3)在双曲线上,所以xy=(-2)×3=-6,四个答案中只有A 符合条件.故选A2.A【解析】【分析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可.【详解】根据x 的不等式x-b>0恰有两个负整数解,可得x 的负整数解为-1和-2 0x b ->x b ∴>综合上述可得32b -≤<-故选A.【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.3.B【解析】【分析】先利用垂径定理得到弧AD=弧BD ,然后根据圆周角定理得到∠C=12∠BOD ,从而可对各选项进行判断. 【详解】解:∵直径CD ⊥弦AB ,∴弧AD =弧BD ,∴∠C=12∠BOD . 故选B .【点睛】本题考查了垂径定理和圆周角定理,垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 4.B【解析】【分析】根据菱形的性质以及AM =CN ,利用ASA 可得△AMO ≌△CNO ,可得AO =CO ,然后可得BO ⊥AC ,继而可求得∠OBC 的度数.【详解】∵四边形ABCD 为菱形,∴AB ∥CD ,AB =BC ,∴∠MAO =∠NCO ,∠AMO =∠CNO ,在△AMO 和△CNO 中,MAO NCO AM CNAMO CNO ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AMO ≌△CNO(ASA),∴AO =CO ,∵AB =BC ,∴BO ⊥AC ,∴∠BOC =90°,∵∠DAC =26°,∴∠BCA =∠DAC =26°,∴∠OBC =90°﹣26°=64°.故选B .【点睛】本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.5.D【解析】【分析】过O 作直线OE ⊥AB ,交CD 于F ,由CD//AB 可得△OAB ∽△OCD ,根据相似三角形对应边的比等于对应高的比列方程求出CD 的值即可.【详解】过O 作直线OE ⊥AB ,交CD 于F ,∵AB//CD ,∴OF ⊥CD ,OE=12,OF=2,∴△OAB ∽△OCD ,∵OE 、OF 分别是△OAB 和△OCD 的高,∴OF CD OE AB =,即2126CD =, 解得:CD=1.故选D.【点睛】本题考查相似三角形的应用,解题的关键在于理解小孔成像原理给我们带来的已知条件,熟记相似三角形对应边的比等于对应高的比是解题关键.6.C【解析】【分析】根据中心对称图形和轴对称图形对各选项分析判断即可得解.【详解】A 、不是轴对称图形,是中心对称图形,故本选项错误;B 、不是中心对称图形,是轴对称图形,故本选项错误;C 、既是中心对称图形,又是轴对称图形,故本选项正确;D 、是轴对称图形,不是中心对称图形,故本选项错误.故选C .【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.A【解析】【分析】根据负数的绝对值是其相反数解答即可.【详解】|-3|=3,故选A .【点睛】此题考查绝对值问题,关键是根据负数的绝对值是其相反数解答.8.B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000 0025=2.5×10﹣6;故选B.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9.A【解析】【分析】根据一元二次方程的定义可得m﹣1≠0,再解即可.【详解】由题意得:m﹣1≠0,解得:m≠1,故选A.【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.10.D【解析】【分析】先将方程左边提公因式x,解方程即可得答案.【详解】x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3,故选:D.【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.二、填空题(本题包括8个小题)11.40°.【解析】【详解】∵将Rt△ABC沿CD折叠,使点B落在AC边上的B′处,∴∠ACD=∠BCD,∠CDB=∠CDB′,∵∠ACB=90°,∠A=25°,∴∠ACD=∠BCD=45°,∠B=90°﹣25°=65°,∴∠BDC=∠B′DC=180°﹣45°﹣65°=70°,∴∠ADB′=180°﹣70°﹣70°=40°.故答案为40°.12.十二【解析】【分析】首先根据内角度数计算出外角度数,再用外角和360°除以外角度数即可.【详解】∵一个正多边形的每个内角为150°,∴它的外角为30°,360°÷30°=12,故答案为十二.【点睛】此题主要考查了多边形的内角与外角,关键是掌握内角与外角互为邻补角.13.2【解析】【分析】凸六边形ABCDEF,并不是一规则的六边形,但六个角都是110°,所以通过适当的向外作延长线,可得到等边三角形,进而求解.【详解】解:如图,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.∵六边形ABCDEF的六个角都是110°,∴六边形ABCDEF的每一个外角的度数都是60°.∴△AHF、△BGC、△DPE、△GHP都是等边三角形.∴GC=BC=3,DP=DE=1.∴GH=GP=GC+CD+DP=3+3+1=8,FA=HA=GH-AB-BG=8-1-3=4,EF=PH-HF-EP=8-4-1=1.∴六边形的周长为1+3+3+1+4+1=2.故答案为2.【点睛】本题考查了等边三角形的性质及判定定理;解题中巧妙地构造了等边三角形,从而求得周长.是非常完美的解题方法,注意学习并掌握.14.1 4【解析】【分析】先利用△ABC为等腰直角三角形得到AB=1,再设圆锥的底面圆的半径为r,则根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr=901 180π⨯,然后解方程即可.【详解】∵⊙O的直径2,∴AB=22BC=1,设圆锥的底面圆的半径为r,则2πr=901180π⨯,解得r=14,即圆锥的底面圆的半径为14米故答案为14.15.4π﹣1 【解析】分析:连结OC,根据勾股定理可求OC的长,根据题意可得出阴影部分的面积=扇形BOC的面积-三角形ODC的面积,依此列式计算即可求解.详解:连接OC∵在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是AB的中点,∴∠COD=45°,∴22,∴阴影部分的面积=扇形BOC的面积-三角形ODC的面积=22451(42)43602π⨯⨯-⨯=4π-1.故答案是:4π-1.点睛:考查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度.16.1【解析】在△AGF和△ACF中,{GAF CAFAF AFAFG AFC∠=∠=∠=∠,∴△AGF≌△ACF,∴AG=AC=4,GF=CF,则BG=AB−AG=6−4=2.又∵BE=CE,∴EF是△BCG的中位线,∴EF=12BG=1.故答案是:1.17.1.【解析】方程两边都乘以最简公分母(x-2),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于1的未知数的值求出x的值,然后代入进行计算即可求出m的值:方程两边都乘以(x-2)得,2-x-m=2(x-2).∵分式方程有增根,∴x-2=1,解得x=2.∴2-2-m=2(2-2),解得m=1.18.【解析】【分析】要求AE的长,只要求出OA和OE的长即可,要求OA的长可以根据∠B=30°和OB的长求得,OE可以根据∠OCE和OC的长求得.【详解】解:连接OD,如图所示,由已知可得,∠BOA=90°,OD=OC=3,∠B=30°,∠ODB=90°,∴BO=2OD=6,∠BOD=60°,∴∠ODC=∠OCD=60°,AO=BOtan30°=6×=2,∵∠COE=90°,OC=3,∴OE=OCtan60°=3×=3,∴AE=OE﹣OA=3-2=,【点晴】切线的性质三、解答题(本题包括8个小题)19.1.【解析】试题分析:首先把括号的分式通分化简,后面的分式的分子分解因式,然后约分化简,接着计算分式的乘法,最后代入数值计算即可求解.试题解析:原式=223111(2)a aa a-++⨯+-=2(2)(2)11(2)a a aa a-+-+⨯+-=22aa+--;当a=0时,原式=1.考点:分式的化简求值.20.8.2 km【解析】【分析】首先设小明家到单位的路程是x千米,根据题意列出方程进行求解.【详解】解:设小明家到单位的路程是x千米.依题意,得13+2.3(x-3)=8+2(x-3)+0.8x.解得:x=8.2答:小明家到单位的路程是8.2千米.【点睛】本题考查一元一次方程的应用,找准等量关系是解题关键.21.(1)抽样调查;12;3;(2)60;(3)25.【解析】试题分析:(1)根据只抽取了4个班可知是抽样调查,根据C在扇形图中的角度求出所占的份数,再根据C的人数是5,列式进行计算即可求出作品的件数,然后减去A、C、D的件数即为B的件数;(2)求出平均每一个班的作品件数,然后乘以班级数14,计算即可得解;(3)画出树状图或列出图表,再根据概率公式列式进行计算即可得解.试题解析:(1)抽样调查,所调查的4个班征集到作品数为:5÷150360=12件,B作品的件数为:12﹣2﹣5﹣2=3件,故答案为抽样调查;12;3;把图2补充完整如下:(2)王老师所调查的四个班平均每个班征集作品x=12÷4=3(件),所以,估计全年级征集到参展作品:3×14=42(件);(3)画树状图如下:列表如下:共有20种机会均等的结果,其中一男一女占12种,所以,P (一男一女)=1220=35,即恰好抽中一男一女的概率是35. 考点:1.条形统计图;2.用样本估计总体;3.扇形统计图;4.列表法与树状图法;5.图表型. 22.1【解析】【分析】根据特殊角的三角函数值,零次幂的性质,负整指数幂的性质、绝对值的性质,进行实数的混合运算即可.【详解】()10152cos4532π-⎛⎫-︒--+ ⎪⎝⎭ =1+1-3+2=123.(1)证明见解析(2)m=1或m=-1【解析】试题分析:(1)由于m≠0,则计算判别式的值得到1=,从而可判断方程总有两个不相等的实数根; (2)先利用求根公式得到1211,1x x m=-=-,然后利用有理数的整除性确定整数m 的值. 试题解析:(1)证明:∵m≠0,∴方程为一元二次方程,2(21)4(1)10m m m=---=>,∴此方程总有两个不相等的实数根;(2)∵(21)12mxm--±=,1211,1x xm∴=-=-,∵方程的两个实数根都是整数,且m是整数,∴m=1或m=−1.24.(1)75°(2)见解析【解析】【分析】(1)由等边三角形的性质可得∠ACB=60°,BC=AC,由旋转的性质可得CF=BC,∠BCF=90°,由等腰三角形的性质可求解;(2)由“SAS”可证△ECD≌△ACD,可得∠DAC=∠E=60°=∠ACB,即可证AD∥BC.【详解】解:(1)∵△ABC是等边三角形∴∠ACB=60°,BC=AC∵等边△ABC绕点C顺时针旋转90°得到△EFC∴CF=BC,∠BCF=90°,AC=CE∴CF=AC∵∠BCF=90°,∠ACB=60°∴∠ACF=∠BCF﹣∠ACB=30°∴∠CFA=12(180°﹣∠ACF)=75°(2)∵△ABC和△EFC是等边三角形∴∠ACB=60°,∠E=60°∵CD平分∠ACE∴∠ACD=∠ECD∵∠ACD=∠ECD,CD=CD,CA=CE,∴△ECD≌△ACD(SAS)∴∠DAC=∠E=60°∴∠DAC=∠ACB∴AD∥BC【点睛】本题考查了旋转的性质,等边三角形的性质,等腰三角形的性质,平行线的判定,熟练运用旋转的性质是本题关键.25.(1)篮球每个50元,排球每个30元. (2)满足题意的方案有三种:①购买篮球8个,排球12个;②购买篮球9,排球11个;③购买篮球2个,排球2个;方案①最省钱【解析】试题分析:(1)设篮球每个x 元,排球每个y 元,根据费用可得等量关系为:购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同,列方程求解即可;(2)不等关系为:购买足球和篮球的总费用不超过1元,列式求得解集后得到相应整数解,从而求解. 试题解析:解:(1)设篮球每个x 元,排球每个y 元,依题意,得:2319035x y x y+=⎧⎨=⎩ 解得5030x y =⎧⎨=⎩:. 答:篮球每个50元,排球每个30元.(2)设购买篮球m 个,则购买排球(20-m )个,依题意,得:50m+30(20-m )≤1.解得:m≤2.又∵m≥8,∴8≤m≤2.∵篮球的个数必须为整数,∴m 只能取8、9、2.∴满足题意的方案有三种:①购买篮球8个,排球12个,费用为760元;②购买篮球9,排球11个,费用为780元;③购买篮球2个,排球2个,费用为1元.以上三个方案中,方案①最省钱.点睛:本题主要考查了二元一次方程组及一元一次不等式的应用;得到相应总费用的关系式是解答本题的关键.26.(1)10;(2)【解析】【分析】(1)先证出∠C=∠D=90°,再根据∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可证出△OCP ∽△PDA ;根据△OCP 与△PDA 的面积比为1:4,得出CP=12AD=4,设OP=x ,则CO=8﹣x ,由勾股定理得 x 2=(8﹣x )2+42,求出x ,最后根据AB=2OP 即可求出边AB 的长; (2)作MQ ∥AN ,交PB 于点Q ,求出MP=MQ ,BN=QM ,得出MP=MQ ,根据ME ⊥PQ ,得出EQ=12PQ ,根据∠QMF=∠BNF ,证出△MFQ ≌△NFB ,得出QF=12QB ,再求出EF=12PB ,由(1)中的结论求出PB=228445+=,最后代入EF=12PB即可得出线段EF的长度不变【详解】(1)如图1,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°,∵由折叠可得∠APO=∠B=90°,∴∠1+∠2=90°,∴∠2=∠3,又∵∠D=∠C,∴△OCP∽△PDA;∵△OCP与△PDA的面积比为1:4,∴,∴ CP=12AD=4设OP=x,则CO=8﹣x,在Rt△PCO中,∠C=90°,由勾股定理得x2=(8﹣x)2+42,解得:x=5,∴AB=AP=2OP=10,∴边CD的长为10;(2)作MQ∥AN,交PB于点Q,如图2,∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP.∴MP=MQ,∵BN=PM,∴BN=QM.∵MP=MQ,ME⊥PQ,∴EQ=PQ.∵MQ∥AN,∴∠QMF=∠BNF,∴△MFQ≌△NFB.∴QF=FB,∴EF=EQ+QF=12(PQ+QB)=12PB,由(1)中的结论可得:PC=4,BC=8,∠C=90°,∴=∴EF=12 ∴在(1)的条件下,当点M 、N 在移动过程中,线段EF 的长度不变,它的长度为【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、勾股定理、等腰三角形的性质,关键是做出辅助线,找出全等和相似的三角形2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ2.苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需()A.(a+b)元B.(3a+2b)元C.(2a+3b)元D.5(a+b)元3.如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是( )A.B.C.D.4.一、单选题二次函数的图象如图所示,对称轴为x=1,给出下列结论:①abc<0;②b2>4ac;③4a+2b+c<0;④2a+b=0..其中正确的结论有:A .4个B .3个C .2个D .1个5.如图,AB 是⊙O 的直径,点E 为BC 的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为( )A .1B .3C .3D .236.方程x 2﹣3x =0的根是( )A .x =0B .x =3C .10x =,23x =-D .10x =,23x =7.在△ABC 中,∠C =90°,sinA =45,则tanB 等于( ) A .43 B .34C .35D .45 8.如图分别是某班全体学生上学时乘车、步行、骑车人数的分布直方图和扇形统计图(两图都不完整),下列结论错误的是( )A .该班总人数为50B .步行人数为30C .乘车人数是骑车人数的2.5倍D .骑车人数占20%9.如图,点A 、B 、C 、D 在⊙O 上,∠AOC =120°,点B 是弧AC 的中点,则∠D 的度数是( )A .60°B .35°C .30.5°D .30°10.关于x 的一元二次方程x 2+8x+q=0有两个不相等的实数根,则q 的取值范围是( )A .q<16B .q>16C .q≤4D .q≥4二、填空题(本题包括8个小题) 11.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A ,B ,C ,D 都在格点处,AB 与CD 相交于O ,则tan ∠BOD 的值等于__________.12.现有三张分别标有数字2、3、4的卡片,它们除了数字外完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a (不放回);从剩下的卡片中再任意抽取一张,将上面的数字记为b ,则点(a,b )在直线11+22y x = 图象上的概率为__. 13.如图,在平行四边形ABCD 中,E 为边BC 上一点,AC 与DE 相交于点F ,若CE=2EB ,S △AFD =9,则S △EFC 等于_____.14.长、宽分别为a 、b 的矩形,它的周长为14,面积为10,则a 2b+ab 2的值为_____.15.已知a <0,那么|2a ﹣2a|可化简为_____.16.已知点P (1,2)关于x 轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为 .17.计算:82-=_______________.18.如图,在平面直角坐标系中,一动点从原点O 出发,沿着箭头所示方向,每次移动一个单位,依次得到点P 1(0,1);P 2(1,1);P 3(1,0);P 4(1,﹣1);P 5(2,﹣1);P 6(2,0)……,则点P 2019的坐标是_____.三、解答题(本题包括8个小题)19.(6分)如图,在ABC ∆中,AB AC =,以AC 边为直径作⊙O 交BC 边于点D ,过点D 作DE AB ⊥于点E ,ED 、AC 的延长线交于点F .求证:EF是⊙O的切线;若,且,求⊙O的半径与线段的长.20.(6分)先化简,再求值:22m35m23m6m m2-⎛⎫÷+-⎪--⎝⎭,其中m是方程2x3x10++=的根.21.(6分)甲乙两件服装的进价共500元,商场决定将甲服装按30%的利润定价,乙服装按20%的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元.求甲乙两件服装的进价各是多少元;由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装每件的进价达到242元,求每件乙服装进价的平均增长率;若每件乙服装进价按平均增长率再次上调,商场仍按9折出售,定价至少为多少元时,乙服装才可获得利润(定价取整数).22.(8分)某公司为了扩大经营,决定购进6台机器用于生产某活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.甲乙价格(万元/台) 7 5每台日产量(个) 100 60(1)按该公司要求可以有几种购买方案?如果该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择什么样的购买方案?23.(8分)雅安地震,某地驻军对道路进行清理.该地驻军在清理道路的工程中出色完成了任务.这是记者与驻军工程指挥部的一段对话:记者:你们是用9天完成4800米长的道路清理任务的?指挥部:我们清理600米后,采用新的清理方式,这样每天清理长度是原来的2倍.通过这段对话,请你求出该地驻军原来每天清理道路的米数.24.(10分)华联超市准备代销一款运动鞋,每双的成本是170元,为了合理定价,投放市场进行试销.据市场调查,销售单价是200元时,每天的销售量是40双,而销售单价每降低1元,每天就可多售出5双,设每双降低x元(x为正整数),每天的销售利润为y元.求y与x的函数关系式;每双运动鞋的售价定为多少元时,每天可获得最大利润?最大利润是多少?25.(10分)某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.求原计划每天生产的零件个数和规定的天数.为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.26.(12分)如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.求证:DP是⊙O的切线;若⊙O的半径为3cm,求图中阴影部分的面积.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.D【解析】【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;Ⅱ、作线段的垂直平分线,观察可知图③符合;Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;Ⅳ、作角的平分线,观察可知图①符合,所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,故选D.【点睛】本题主要考查了基本作图,正确掌握基本作图方法是解题关键.2.C【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a元的苹果2千克用去2a元,买单价为b元的香蕉3千克用去3b元,共用去:(2a+3b)元.故选C.【点睛】本题主要考查列代数式,总价=单价乘数量.3.C【解析】【分析】根据全等三角形的判定定理进行判断.【详解】解:A、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;B、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;C、如图1,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,所以其对应边应该是BE和CF,而已知给的是BD=FC=3,所以不能判定两个小三角形全等,故本选项符合题意;D、如图2,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,∵BD=EC=2,∠B=∠C,∴△BDE ≌△CEF ,所以能判定两个小三角形全等,故本选项不符合题意;由于本题选择可能得不到全等三角形纸片的图形,故选C .【点睛】本题考查了全等三角形的判定,注意三角形边和角的对应关系是关键.4.B【解析】试题解析:①∵二次函数的图象的开口向下,∴a<0,∵二次函数的图象y 轴的交点在y 轴的正半轴上,∴c>0,∵二次函数图象的对称轴是直线x=1,12b a,∴-= ∴2a+b=0,b>0 ∴abc<0,故正确;②∵抛物线与x 轴有两个交点,240b ac ∴->,24b ac ∴>, 故正确;③∵二次函数图象的对称轴是直线x=1,∴抛物线上x=0时的点与当x=2时的点对称,即当x=2时,y>0∴4a+2b+c>0,故错误;④∵二次函数图象的对称轴是直线x=1,12b a,∴-=∴2a+b=0, 故正确.综上所述,正确的结论有3个.故选B.5.C【解析】连接AE ,OD ,OE .∵AB 是直径, ∴∠AEB=90°.又∵∠BED=120°,∴∠AED=30°.∴∠AOD=2∠AED=60°.∵OA=OD .∴△AOD 是等边三角形.∴∠A=60°.又∵点E 为BC 的中点,∠AED=90°,∴AB=AC .∴△ABC 是等边三角形,∴△EDC 是等边三角形,且边长是△ABC 边长的一半23.∴∠BOE=∠EOD=60°,∴BE 和弦BE 围成的部分的面积=DE 和弦DE 围成的部分的面积.∴阴影部分的面积=EDC 1S =23=32∆⋅C . 6.D【解析】【分析】先将方程左边提公因式x ,解方程即可得答案.【详解】x 2﹣3x =0,x (x ﹣3)=0,x 1=0,x 2=3,故选:D .【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.7.B【解析】法一,依题意△ABC 为直角三角形,∴∠A+∠B=90°,∴cosB=45,∵22cos sin 1B B +=,∴sinB=35,∵tanB=sin cos B B =34故选B法2,依题意可设a=4,b=3,则c=5,∵tanb=34ba故选B8.B【解析】【分析】根据乘车人数是25人,而乘车人数所占的比例是50%,即可求得总人数,然后根据百分比的含义即可求得步行的人数,以及骑车人数所占的比例.【详解】A、总人数是:25÷50%=50(人),故A正确;B、步行的人数是:50×30%=15(人),故B错误;C、乘车人数是骑车人数倍数是:50%÷20%=2.5,故C正确;D、骑车人数所占的比例是:1-50%-30%=20%,故D正确.由于该题选择错误的,故选B.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.9.D【解析】【分析】根据圆心角、弧、弦的关系定理得到∠AOB=12∠AOC,再根据圆周角定理即可解答.【详解】连接OB,∵点B是弧AC的中点,∴∠AOB=12∠AOC=60°,由圆周角定理得,∠D=12∠AOB=30°,故选D.【点睛】此题考查了圆心角、弧、弦的关系定理,解题关键在于利用好圆周角定理.。