自动控制原理Matlab实验3(系统根轨迹分析)

合集下载

MATLAB实验三_线性系统的根轨迹

MATLAB实验三_线性系统的根轨迹

武汉工程大学实验报告
专业班号
组别 01 指导教师
姓名同组者(个人)
选定图中根轨迹与虚轴的交点,单击鼠标左键得: selected_point =
0.0059 + 9.8758i
k =
选定图中根轨迹与虚轴的交点,单击鼠标左键得:
selected_point =
0.0237 + 8.3230i
k =
第二步、添加共轭极点-3+j2和-3-j2得到G(s)=1/[s(s2+2s+2)( s2+6s+13)]得其单位阶跃响应波形为
然后逐步添加如下:
第一步、添加共轭极点-6+j8和-6-j8得到G(s)=1/[(s+1)(s2+12s+100)],运行后可得其单位阶跃响应波形为
第三步、添加零点-12得到G(s)=(s+12)/[(s+1)(s2+12s+100)(s+10)], 运行后可得其单位阶跃响应波形为
然后逐步添加如下:
第一步、添加极点-1/0.0714得到G(s)=1/[s(0.0714s+1)], 运行后可得其单位阶跃响应
第三步、添加极点-20得到G(s)=1/[s(0.0714s+1)( 0.012s2+0.1s+1)(0.05s+1)],运行后可得
要求:正文用小四宋体,1.5倍行距,图表题用五号宋体,图题位于图下方,表题位于表上方。

Matlab实验三 绘制根轨迹

Matlab实验三 绘制根轨迹
Matlab
for
Principles of Automatic Control
实验三 绘制根轨迹 1: 绘制根轨迹 2: 参量分析
① 绘制根轨迹 rlocus(sys)
Gk
(s)
K *(s 1) (s 2)(s 3)
rlocus(num, den)
rlocus(sys,k)
②参量分析(根轨迹图上一顿乱点即可)
K1
(s a )nm
1
根轨迹渐进线的方程是新的根轨迹方程。
Байду номын сангаас
• 例: 绘制根轨迹及其渐近线
G(s)
K1
s(s 1)(s 2)
⑥讨论增加零点对根轨迹的影响 试试-2至-4之间的零点
G(s)
K1
s(s 1)(s 2)
r=rlocus(sys)
Gk
(s)
K *(s 1) (s 2)(s 3)
r=rlocus(num, den)
[r,k]=rlocus(sys)
[r,k]=rlocus(num, den)
③测量出根轨迹增益和对应闭环极点坐标,
在窗口显示
Gk
(s)
K *(s 1) (s 2)(s 3)
[k,poles] = rlocfind(sys)
[k,poles] = rlocfind(sys,p) P为已知的要研究的闭环极点。
④绘制零、极点以及在窗口显示零极点
pzmap(sys)
Gk
(s)
K *(s 1) (s 2)(s 3)
[p,z]=pzmap(sys) 求解零极点的好方法
⑤绘制根轨迹渐近线
一般人我不告诉他:
当根轨迹渐进线与实轴的交点已求出后, 可得到方程,这是根轨迹渐进线的方程。

《自动控制原理》实验指导书

《自动控制原理》实验指导书

《自动控制原理》实验指导书梅雪罗益民袁启昌许必熙南京工业大学自动化学院目录实验一典型环节的模拟研究--------------------------1 实验二典型系统时域响应和稳定性-------------------10 实验三应用MATLAB进行控制系统根轨迹分析----------15 实验四应用MATLAB进行控制系统频域分析------------17 实验五控制系统校正装置设计与仿真-----------------19 实验六线性系统校正-------------------------------22 实验七线性系统的频率响应分析---------------------26 附录:TDN—ACP自动控制原理教学实验箱简介----------31实验一 典型环节的模拟研究一. 实验目的1.熟悉并掌握TD-ACC +设备的使用方法及各典型环节模拟电路的构成方法。

2.熟悉各种典型环节的理想阶跃响应曲线和实际阶跃响应曲线。

对比差异、分析原因。

3.了解参数变化对典型环节动态特性的影响。

二.实验内容下面列出各典型环节的方框图、传递函数、模拟电路图、阶跃响应,实验前应熟悉了解。

1.比例环节 (P)A 方框图:如图1.1-1所示。

图1.1-1B 传递函数:K S Ui S Uo =)()( C 阶跃响应:)0()(≥=t Kt U O 其中 01/R R K =D 模拟电路图:如图1.1-2所示。

图1.1-2注意:图中运算放大器的正相输入端已经对地接了100K 的电阻,实验中不需要再接。

以后的实验中用到的运放也如此。

E 理想与实际阶跃响应对照曲线:① 取R0 = 200K ;R1 = 100K 。

② 取R0 = 200K ;R1 = 200K 。

2.积分环节(I)A .方框图:如右图1.1-3所示。

图1.1-3B .传递函数:TSS Ui S Uo 1)()(=C .阶跃响应: )0(1)(≥=t t Tt Uo 其中 C R T 0=D .模拟电路图:如图1.1-4所示。

自动控制原理MATLAB仿真实验报告

自动控制原理MATLAB仿真实验报告

实验一 MATLAB 及仿真实验(控制系统的时域分析)一、实验目的学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点1、 系统的典型响应有哪些2、 如何判断系统稳定性3、 系统的动态性能指标有哪些 三、实验方法(一) 四种典型响应1、 阶跃响应:阶跃响应常用格式:1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。

2、),(Tn sys step ;表示时间范围0---Tn 。

3、),(T sys step ;表示时间范围向量T 指定。

4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。

2、 脉冲响应:脉冲函数在数学上的精确定义:0,0)(1)(0〉==⎰∞t x f dx x f其拉氏变换为:)()()()(1)(s G s f s G s Y s f ===所以脉冲响应即为传函的反拉氏变换。

脉冲响应函数常用格式: ① )(sys impulse ; ②);,();,(T sys impulse Tn sys impulse③ ),(T sys impulse Y =(二) 分析系统稳定性 有以下三种方法:1、 利用pzmap 绘制连续系统的零极点图;2、 利用tf2zp 求出系统零极点;3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.四、实验内容 (一) 稳定性1. 系统传函为()27243645232345234+++++++++=s s s s s s s s s s G ,试判断其稳定性2. 用Matlab 求出253722)(2342++++++=s s s s s s s G 的极点。

%Matlab 计算程序num=[3 2 5 4 6];den=[1 3 4 2 7 2];G=tf(num,den);pzmap(G);p=roots(den)运行结果: p =+ - + -P ole-Zero MapReal AxisI m a g i n a r y A x i s-2-1.5-1-0.500.5-1.5-1-0.50.511.5图1-1 零极点分布图由计算结果可知,该系统的2个极点具有正实部,故系统不稳定。

自动控制原理实验报告根轨迹分析法

自动控制原理实验报告根轨迹分析法

相关根轨迹知识
根轨迹的概念 根轨迹是开环系统某一参数从零变化到无穷大时, 闭环系 统特征根在 s 平面上变化的轨迹。 增设零、极点对根轨迹的影响 (1)增加开环零点对根轨迹的影响 第一,加入开环零点,改变渐近线的条数和渐近线的倾角; 第二,增加开环零点,相当于增加微分作用,使根轨迹向左 移动或弯曲,从而提高了系统的相对稳定性。系统阻尼增加,过 渡过程时间缩短; 第三,增加的开环零点越接近坐标原点,微分作用越强,系 统的相对稳定性越好。 (2)增加开环极点对根轨迹的影响 第一,加入开环极点,改变渐近线的条数和渐近线的倾角; 第二,增加开环极点,相当于增加积分作用,使根轨迹向右 移动或弯曲,从而降低了系统的相对稳定性。系统阻 尼减小,过渡过程时间加长;
-4-
五、实验过程
第一题 Gc=1:
Gc=s+5:
Gc=(s+2)(s+3):
-5-
Gc=1/(s+5):
第二题 第 一 步 : 在 MATLAB 的 命 令 窗 口 中 键 入 “ num=[1 3];den=[1 2 0];rlocus(num,den)” ,得图如下:
第二步: 第三步:
第三题 第一步:由已知条件 ts(△=2%)≤4s,超调量≤40%得
s ( s 2)
1 。作 s5
确定系统具有最大的超调量时的根轨迹增益,并作时域 仿真验证;(2)确定系统阶跃响应无超调时的根轨迹取值 范围,并作时域仿真验证 3、已知一单位反馈系统的开环传递函数为 ss 0.8试加入一 个串联超前校正控制(其中,|z|<|p|) ,使得闭环系统 的 ts(△=2%)≤4s,超调量≤40%。
-7-
本为图标的切线与 K 的横坐标的交点所得的纵坐标再减去延迟时间。 随后按图慢慢调整数值,一定要有耐心。 第二题中,Step 的属性不能忘改,否则横轴(0,1)处恒为 1。 分母出 S 前的系数必须小于 1(阻尼比小于 1) ,之后改改分子,调整 调整 S 前的系数并保持 S^2 前的系数不变 (因为分子分母都可约分) , 曲线即可得出。

实验三 控制系统的根轨迹分析

实验三 控制系统的根轨迹分析

实验三 控制系统的根轨迹分析一、实验目的1.利用MATLAB 完成控制系统的根轨迹作图; 2.了解控制系统根轨迹图的一般规律; 3.利用根轨迹进行系统分析。

二、实验原理与根轨迹相关的MATLAB 函数:1.绘制根轨迹的函数为rlocus ,常用格式为:rlocus(sys) sys 为系统开环传递函数名称;rlocus(num,den,k) num,den 为开环传递函数分子分母多项式,k 为根轨迹增益。

k 的范围可以指定,若k 未给出,则默认k 从0→∞,绘制完整的根轨迹;r= rlocus(num,den) 返回变量格式,不作图,计算所得的闭环根r ;[r,k]= rlocus(num,den) 返回变量格式,不作图,计算所得的闭环根r 和开环增益k 。

2.利用函数rlocfind( )可以显示根轨迹上任意一点的相关数值,以此判断对应根轨迹增益下闭环系统的稳定性。

[k,r]=rlocfind(num,den) 运行后会有一个十字光标提示用户,在根轨迹上选择点,用鼠标单击选择后,在命令窗口就会显示此点的根轨迹增益及此时的所有闭环极点值。

例1 )4)(1()(++=s s s k s G rk在命令窗口输入: k=1; z=[];p=[0,-1,-4];[num,den]=zp2tf(z,p,k); rlocus(num,den); title(’G k 根轨迹’)[k,r]=rlocfind(num,den)3.当开环传递函数不是标准形式,无法直接求出零极点,可用pzmap( )绘制系统的零极点图。

pzmap(num,den) 在s 平面上作零极点图;pzmap(num,den) 返回变量格式,不作图,计算零极点。

三、实验内容给定如下各系统的开环传递函数,作出它们的根轨迹图,并完成给定要求。

1.)2)(1()(1++=s s s k s G rk 要求:(1) 准确记录根轨迹的起点、终点与根轨迹条数;答:起点为0,-1,-2;终点为无穷处;共三条根轨迹。

实验三 利用MATLAB进行根轨迹分析

实验三 利用MATLAB进行根轨迹分析

实验三利用MATLAB进行根轨迹分析
一、【实验目的】
1、利用软件绘制根轨迹曲线;
2、掌握利用根轨迹曲线分析系统的方法。

二、【实验内容】
1、编程绘制已知开环传递函数系统的根轨迹。

2、根据根轨迹曲线,找到临界稳定开环增益,确定与临界阻尼比
相应的开环增益,并在曲线上显示出来。

已知单位负反馈系统的开环传递函数
(1
(2)确定系统的临界稳定开环增益;
(3)确定与系统临界阻尼比相应的开环增益。

三、【实验代码】
h1=tf([1],[1 0]);
h2=tf([1],[0.1 1]);
h3=tf([1],[0.5 1]);
h=h1*h2*h3;
[num,den]=tfdata(h); %tfdata是模型转换函数,将函数h转换为tf格式(即num,den格式)
rlocus(num,den)
v=[-15 15 -10 10]; axis(v);
[k,p]=rlocfind(num,den)
grid on
四、【运行结果】
图3-1系统的根轨迹
图3-2确定系统的临界稳定开环增益k =
0.4517
p =
-10.1102
-0.9449 + 0.0272i
-0.9449 - 0.0272i
k =
12.5795
p = -12.0700
0.0350 + 4.5654i
0.0350 - 4.5654i。

自动控制原理Matlab实验3(系统根轨迹分析)

自动控制原理Matlab实验3(系统根轨迹分析)

《自动控制原理》课程实验报告实验名称系统根轨迹分析专业班级 ********************学号姓名**指导教师李离学院名称电气信息学院2012 年 12 月 15 日一、实验目的1、掌握利用MATLAB 精确绘制闭环系统根轨迹的方法;2、了解系统参数或零极点位置变化对系统根轨迹的影响;二、实验设备1、硬件:个人计算机2、软件:MATLAB 仿真软件(版本6.5或以上)三、实验内容和步骤 1.根轨迹的绘制利用Matlab 绘制跟轨迹的步骤如下:1) 将系统特征方程改成为如下形式:1 + KG ( s ) = 1 + K )()(s q s p =0, 其中,K 为我们所关心的参数。

2) 调用函数 r locus 生成根轨迹。

关于函数 rlocus 的说明见图 3.1。

不使用左边的选项也能画出根轨迹,使用左边的选项时,能 返回分别以矩阵和向量形式表征的特征根的值及与之对应的增益值。

图3.1 函数rlocus 的调用例如,图 3.2 所示系统特征根的根轨迹及其绘制程序见图 3.3。

图3.2 闭环系统一图3.3 闭环系统一的根轨迹及其绘制程序图 3.4 函数 rlocfind 的使用方法注意:在这里,构成系统 s ys 时,K 不包括在其中,且要使分子和分母中 s 最高次幂项的系数为1。

当系统开环传达函数为零、极点形式时,可调用函数 z pk 构成系统 s ys : sys = zpk([zero],[pole],1);当系统开环传达函数无零点时,[zero]写成空集[]。

对于图 3.2 所示系统,G(s)H(s)=)2()1(++s s s K *11+s =)3)(2()1(+++s s s s K . 可如下式调用函数 z pk 构成系统 s ys :sys=zpk([-1],[0 -2 -3],1)若想得到根轨迹上某个特征根及其对应的 K 的值,一种方法是在调用了函数 rlocus 并得到了根 轨迹后调用函数 rlocfind 。

《自动控制原理》实验报告(线性系统的根轨迹)

《自动控制原理》实验报告(线性系统的根轨迹)

实验四 线性系统的根轨迹一、实验目的1. 熟悉MATLAB 用于控制系统中的一些基本编程语句和格式。

2. 利用MATLAB 语句绘制系统的根轨迹。

3. 掌握用根轨迹分析系统性能的图解方法。

4. 掌握系统参数变化对特征根位置的影响。

基础知识及MATLAB 函数根轨迹是指系统的某一参数从零变到无穷大时,特征方程的根在s 平面上的变化轨迹。

这个参数一般选为开环系统的增益K 。

课本中介绍的手工绘制根轨迹的方法,只能绘制根轨迹草图。

而用MATLAB 可以方便地绘制精确的根轨迹图,并可观测参数变化对特征根位置的影响。

假设系统的对象模型可以表示为nn n n m m m m a s b s a s b s b s b s b K s KG s G ++++++++==--+-11111210)()(ΛΛ 系统的闭环特征方程可以写成: 0)(10=+s KG对每一个K 的取值,我们可以得到一组系统的闭环极点。

如果我们改变K 的数值,则可以得到一系列这样的极点集合。

若将这些K 的取值下得出的极点位置按照各个分支连接起来,则可以得到一些描述系统闭环位置的曲线,这些曲线又称为系统的根轨迹。

1)绘制系统的根轨迹rlocus ()MATLAB 中绘制根轨迹的函数调用格式为:rlocus(num,den) 开环增益k 的范围自动设定。

rlocus(num,den,k) 开环增益k 的范围人工设定。

rlocus(p,z) 依据开环零极点绘制根轨迹。

r=rlocus(num,den) 不作图,返回闭环根矩阵。

[r,k]=rlocus(num,den) 不作图,返回闭环根矩阵r 和对应的开环增益向量k 。

其中,num,den 分别为系统开环传递函数的分子、分母多项式系数,按s 的降幂排列。

K 为根轨迹增益,可设定增益范围。

例3-1:已知系统的开环传递函数924)1()(23++++=*ssssKsG,绘制系统的根轨迹的MATLAB的调用语句如下:num=[1 1]; %定义分子多项式den=[1 4 2 9]; %定义分母多项式rlocus (num,den)%绘制系统的根轨迹grid%画网格标度线xlabel(‘Real Axis’),ylabel(‘Imaginary Axis’) %给坐标轴加上说明title(‘Root Locus’) %给图形加上标题名则该系统的根轨迹如图3-1所示:若上例要绘制K在(1,10)的根轨迹图,则此时的MATLAB的调用格式如下,对应的根轨迹如图3-2所示。

自动控制原理 matlab实验报告 3 太原理工大学

自动控制原理 matlab实验报告 3  太原理工大学

课程名称:自动控制原理实验项目:基于MATLAB根轨迹绘制与性能分析实验地点:北区大机房专业班级:学号:学生姓名:指导教师:2014 年12 月18 日1.给定开环传递函数()H (2)(3)()KG s s s s s =++,绘制其闭环根轨迹,熟悉上述命令并分析系统稳定性。

z=[] p=[0,-3,-2] k=1 sys=zpk(z,p,k) rlocus(sys) z1=[];p1=[-5/3,-5/3,-5/3]; k1=3;sys1=zpk(z1,p1,k1); hold on ; rlocus(sys1) [k,poles]=rlocfind(sys)如下图故当k>29.4时系统不稳定Root LocusReal AxisI m a g i n a r y A x i s-10-8-6-4-202-6-4-22462.给定开环传递函数2()H (2)()KG s s s s =+(无零点),绘制其闭环根轨迹;并分别讨论:p=[0,0,-2]; k=1; z=[]; sys=zpk(z,p,k); hold on ; rlocus(sys);-4-3-2-11234Root LocusReal AxisI m a g i n a r y A x i sa):增加不同零点时对应的闭环根轨迹:零点大小分别为0,0.5,3等不同值,分析实验结果,给出你的结论。

p=[0,0,-2] k=1z=[0]; sys=zpk(z,p,k);rlocus(sys) hold on-2-1.8-1.6-1.4-1.2-1-0.8-0.6-0.4-0.20Root LocusReal AxisI m a g i n a r y A x i sp=[0,0,-2] k=1z=[0.5]; sys=zpk(z,p,k);rlocus(sys) hold on-2-1.5-1-0.500.5Root LocusReal AxisI m a g i n a r y A x i sp=[0,0,-2] k=1z=[3]; sys=zpk(z,p,k);rlocus(sys) hold on-3-2-101234-8-6-4-22468Root LocusReal AxisI m a g i n a r y A x i sz=[] p=[0,0,-2] k=1z=[0];;sys=zpk(z,p,k);rlocus(sys) hold onz=[0.5];;sys=zpk(z,p,k);rlocus(sys) hold onz=[3];sys=zpk(z,p,k);rlocus(sys) hold on-3-2-101234-8-6-4-22468Root LocusReal AxisI m a g i n a r y A x i sb):增加不同极点对应时的闭环根轨迹:极点大小分别为0,2,4等不同值,分析实验结果,给出你的结论。

自动控制系统的根轨迹作图实验报告

自动控制系统的根轨迹作图实验报告

实验3 控制系统的根轨迹作图一、实验目的1.利用计算机完成控制系统的根轨迹作图;2.了解控制系统根轨迹图的一般规律3.利用根轨迹进行系统分析及校正。

二、实验步骤1.在Windows 界面上用鼠标双击matlab 图标,即可打开MATLAB 命令平台。

2.练习相关M 函数根轨迹作图函数:rlocus(sys)rlocus(sys,k)r=rlocus(sys)[r,k]=rlocus(sys)函数功能:绘制系统根轨迹图或者计算绘图变量。

格式1:控制系统的结构图如图所示。

输入变量sys 为LTI 模型对象,k 为机器自适应产生的从0→∞的增益向量, 绘制闭环系统的根轨迹图。

格式2:k 为人工给定的增益向量。

格式3:返回变量格式,不作图。

R 为返回的闭环根向量。

格式4:返回变量r 为根向量,k 为增益向量,不作图。

更详细的命令说明,可键入“help rlocus”在线帮助查阅。

例如:系统开环传递函数为)3)(1()(++=s s s k s G g方法一:根轨迹作图程序为k=1; %零极点模型的增益值z=[]; %零点p=[0,-1,-3]; %极点sys=zpk(z,p,k); %零点/极点/增益模型rlocus(sys) %作出的根轨迹图如图所示。

方法二:s=tf('s'); G1=1/(s*(s+1)*(s+3));rlocus(G1);gridK1=12;figure;step(feedback(G1*K1,1)) % 绘制K1=12的闭环单位反馈阶跃响应曲线闭合时域仿真simulink 模型:三、实验内容给定如下各系统的开环传递函数,作出它们的根轨迹图,并完成给定要求。

1. )2)(1()(01++=s s s k s G g要求: (1)准确记录根轨迹的起点.终点与根轨迹的条数(2)确定根轨迹的分离点与相应的根轨迹增益(3)确定临界稳定时的根轨迹增益k gL 。

2. )164)(1()1()(202++-+=s s s s s k s G g要求: 确定根轨迹与虚轴交点并确定系统稳定的根轨迹k g 增益范围。

自动控制原理实验报告--控制系统的根轨迹和频域特性分析

自动控制原理实验报告--控制系统的根轨迹和频域特性分析

本科实验报告课程名称:自动控制原理实验项目:控制系统的根轨迹和频域特性分析实验地点:多学科楼机房专业班级:学号:学生姓名:指导教师:2012 年5 月15 日一、实验目的和要求:1.学会利用MATLAB 绘制系统的根轨迹,并对系统进行分析; 2.学会利用MATLAB 对系统进行频域特性分析。

二、实验内容和原理:1.基于MATLAB 的控制系统根轨迹分析 1)利用MATLAB 绘制系统的根轨迹利用rlocus( )函数可绘制出当根轨迹增益k 由0至+∝变化时,闭环系统的特征根在s 平面变化的轨迹,该函数的调用格式为[r,k]=rlocus(num,den) 或 [r,k]=rlocus(num,den,k)其中,返回值r 为系统的闭环极点,k 为相应的增益。

rlocus( )函数既适用于连续系统,也适用于离散系统。

rlocus(num,den)绘制系统根轨迹时,增益k 是自动选取的,rlocus(num,den, k)可利用指定的增益k 来绘制系统的根轨迹。

在不带输出变量引用函数时,rolcus( )可在当前图形窗口中绘制出系统的根轨迹图。

当带有输出变量引用函数时,可得到根轨迹的位置列向量r 及相应的增益k 列向量,再利用plot(r,‘x’)可绘制出根轨迹。

2)利用MATLAB 获得系统的根轨迹增益 在系统分析中,常常希望确定根轨迹上某一点处的增益值k ,这时可利用MATLAB 中的rlocfind( )函数,在使用此函数前要首先得到系统的根轨迹,然后再执行如下命令[k,poles]=rlocfind(num,den) 或 [k,poles]=rlocfind(num,den,p)其中,num 和den 分别为系统开环传递函数的分子和分母多项式的系数按降幂排列构成的系数向量;poles 为所求系统的闭环极点;k 为相应的根轨迹增益;p 为系统给定的闭环极点。

例3-1 已知某反馈系统的开环传递函数为)2)(1()()(++=s s s ks H s G试绘制该系统根轨迹,并利用根轨迹分析系统稳定的k 值范围。

自动控制原理MATLAB实验报告

自动控制原理MATLAB实验报告

实验一典型环节的MATLAB仿真一、实验目的1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。

2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。

3.定性了解各参数变化对典型环节动态特性的影响。

二、实验原理1.比例环节的传递函数为KRKRRRZZsG200,1002)(211212==-=-=-=其对应的模拟电路及SIMULINK图形如图1所示。

2.惯性环节的传递函数为ufCKRKRsCRRRZZsG1,200,10012.021)(121121212===+-=+-=-=其对应的模拟电路及SIMULINK图形如图2所示。

图1 比例环节的模拟电路及SIMULINK图形图2惯性环节的模拟电路及SIMULINK图形3.积分环节(I)的传递函数为ufCKRssCRZZsG1,1001.011)(111112==-=-=-=其对应的模拟电路及SIMULINK图形如图3所示。

4.微分环节(D)的传递函数为ufCKRssCRZZsG10,100)(111112==-=-=-=ufCC01.012=<<其对应的模拟电路及SIMULINK图形如图4所示。

5.比例+微分环节(PD)的传递函数为)11.0()1()(111212+-=+-=-=ssCRRRZZsGufCCufCKRR01.010,10012121=<<===其对应的模拟电路及SIMULINK图形如图5所示。

图3 积分环节的模拟电路及及SIMULINK图形图4 微分环节的模拟电路及及SIMULINK图形6.比例+积分环节(PI)的传递函数为)11(1)(11212sRsCRZZsG+-=+-=-=ufCKRR10,100121===其对应的模拟电路及SIMULINK图形如图6所示。

三、实验内容按下列各典型环节的传递函数,建立相应的SIMULINK仿真模型,观察并记录其单位阶跃响应波形。

自动控制原理MATLAB仿真实验报告

自动控制原理MATLAB仿真实验报告

实验一 典型环节的MATLAB 仿真 一、实验目的1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。

2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。

3.定性了解各参数变化对典型环节动态特性的影响。

二、实验内容① 比例环节1)(1=s G 和2)(1=s G ;Simulink 图形实现:示波器显示结果:② 惯性环节11)(1+=s s G 和15.01)(2+=s s GSimulink 图形实现:示波器显示结果:③ 积分环节s s G 1)(1Simulink 图形实现:示波器显示结果:④ 微分环节s s G )(1Simulink 图形实现:波器显示结果:⑤ 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G1)、G1(s )=s+2Simulink 图形实现:示波器显示结果:2)、G2(s)=s+1 Simulink图形实现:示波器显示结果:⑥ 比例+积分环节(PI )s s G 11)(1+=和s s G 211)(2+=1)、G1(1)=1+1/sSimulink 图形实现:示波器显示结果:2)G2(s)=1+1/2s Simulink图形实现:示波器显示结果:三、心得体会通过这次实验我学到了很多,对课本内容加深了理解,熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法,加深对各典型环节响应曲线的理解,这为对课程的学习打下了一定基础。

实验二线性系统时域响应分析一、实验目的1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。

2.通过响应曲线观测特征参量ζ和nω对二阶系统性能的影响。

3.熟练掌握系统的稳定性的判断方法。

二、实验内容1.观察函数step( )的调用格式,假设系统的传递函数模型为243237()4641s s G s s s s s ++=++++绘制出系统的阶跃响应曲线?2.对典型二阶系统222()2n n n G s s s ωζωω=++1)分别绘出2(/)n rad s ω=,ζ分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=0.25时的时域性能指标,,,,p r p s ss t t t e σ。

自动控制原理MATLAB仿真实验报告

自动控制原理MATLAB仿真实验报告

实验一 MATLAB 及仿真实验(控制系统的时域分析)一、实验目的学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点1、 系统的典型响应有哪些?2、 如何判断系统稳定性?3、 系统的动态性能指标有哪些? 三、实验方法 (一) 四种典型响应1、 阶跃响应:阶跃响应常用格式:1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。

2、),(Tn sys step ;表示时间范围0---Tn 。

3、),(T sys step ;表示时间范围向量T 指定。

4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。

2、 脉冲响应:脉冲函数在数学上的精确定义:0,0)(1)(0〉==⎰∞t x f dx x f其拉氏变换为:)()()()(1)(s G s f s G s Y s f ===所以脉冲响应即为传函的反拉氏变换。

脉冲响应函数常用格式: ① )(sys impulse ; ②);,();,(T sys impulse Tn sys impulse③ ),(T sys impulse Y =(二) 分析系统稳定性 有以下三种方法:1、 利用pzmap 绘制连续系统的零极点图;2、 利用tf2zp 求出系统零极点;3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.四、实验内容 (一) 稳定性1. 系统传函为()27243645232345234+++++++++=s s s s s s s s s s G ,试判断其稳定性2. 用Matlab 求出253722)(2342++++++=s s s s s s s G 的极点。

MTALAB实验三 控制系统的时域、频域和根轨迹分析

MTALAB实验三    控制系统的时域、频域和根轨迹分析

实验三 控制系统的时域、频域和根轨迹分析一、 实验目的1、掌握如何使用Matlab 进行系统的时域分析2、掌握如何使用Matlab 进行系统的频域分析3、掌握如何使用Matlab 进行系统的根轨迹分析二、 实验内容:1、时域分析1.1、某系统的开环传递函数为43220()83640G s s s s s=+++试编程求系统在单位负反馈下的阶跃响应曲线,并求最大超调量。

>> G=tf([20],[1 8 36 40 0]); G=feedback(G,1); step(G)Step ResponseTime (sec)A m p l i t u d e024681012140.20.40.60.811.21.41.2、典型二阶系统222()2nn nG s s s ωξωω=++ 编程求:当6,n ωξ=分别取值为0.2、0.4、0.6、0.8、1.0、1.5、2.0时的单位阶跃响应曲线。

>>s=tf('s');wn=6;zet=[0.2,0.4,0.6,0.8,1.0,1.5,2.0]; for i=1:7G=wn^2/(s^2+2*wn*zet(:,i)*s+wn^2);step(G),hold on end00.51 1.52 2.53 3.54 4.550.20.40.60.811.21.41.6Step ResponseTime (sec)A m p l i t u d e1.3、典型二阶系统传递函数为:222()2nn nG s s s ωξωω=++ 绘制当:0.7,n ξω=分别取2、4、6、8、10、12时的单位阶跃响应曲线。

>> s=tf('s');zet=0.7;wn=[2:2:12];for i=1:6G=wn(:,i)^2/(s^2+2*wn(:,i)*zet*s+wn(:,i)^2);step(G),hold onend00.51 1.52 2.53 3.54 4.50.20.40.60.811.21.4Step ResponseTime (sec)A m p l i t u d e2、根轨迹分析根据下面负反馈系统的开环传递函数,绘制系统根轨迹,并分析使系统稳定的K 值范围。

自动控制原理Matlab实验3(系统根轨迹分析)教材

自动控制原理Matlab实验3(系统根轨迹分析)教材

《自动控制原理》课程实验报告实验名称系统根轨迹分析专业班级 ********************学号姓名**指导教师李离学院名称电气信息学院2012 年 12 月 15 日一、实验目的1、掌握利用MATLAB 精确绘制闭环系统根轨迹的方法;2、了解系统参数或零极点位置变化对系统根轨迹的影响;二、实验设备1、硬件:个人计算机2、软件:MATLAB 仿真软件(版本6.5或以上)三、实验内容和步骤 1.根轨迹的绘制利用Matlab 绘制跟轨迹的步骤如下:1) 将系统特征方程改成为如下形式:1 + KG ( s ) = 1 + K )()(s q s p =0, 其中,K 为我们所关心的参数。

2) 调用函数 r locus 生成根轨迹。

关于函数 rlocus 的说明见图 3.1。

不使用左边的选项也能画出根轨迹,使用左边的选项时,能 返回分别以矩阵和向量形式表征的特征根的值及与之对应的增益值。

图3.1 函数rlocus 的调用例如,图 3.2 所示系统特征根的根轨迹及其绘制程序见图 3.3。

图3.2 闭环系统一图3.3 闭环系统一的根轨迹及其绘制程序图 3.4 函数 rlocfind 的使用方法注意:在这里,构成系统 s ys 时,K 不包括在其中,且要使分子和分母中 s 最高次幂项的系数为1。

当系统开环传达函数为零、极点形式时,可调用函数 z pk 构成系统 s ys : sys = zpk([zero],[pole],1);当系统开环传达函数无零点时,[zero]写成空集[]。

对于图 3.2 所示系统,G(s)H(s)=)2()1(++s s s K *11+s =)3)(2()1(+++s s s s K .可如下式调用函数 z pk 构成系统 s ys :sys=zpk([-1],[0 -2 -3],1)若想得到根轨迹上某个特征根及其对应的 K 的值,一种方法是在调用了函数 rlocus 并得到了根 轨迹后调用函数 rlocfind 。

实验三 MATLAB用于根轨迹分析

实验三  MATLAB用于根轨迹分析

实验三 MATLAB用于根轨迹分析
一、实验目的
通过使用MATLAB完成根轨迹绘制、部分分式展开以及根轨迹分析等工作。

二、实验原理
绘制根轨迹可用函数rlocus(num,den)或rlocus(num,den,k)。

其中num,den分别对应系统开环传递函数的分子系数和分母系数构成的数组。

如果参数k是指定的,将按照给定的参数绘制根轨迹图,否则k是自动确定的,k的变化范围为0到∞。

三、实验内容
用MATLAB绘制系统的根轨迹图。

四、实验代码
1、
num=[1];
den=[1 3 2 0];
rlocus(num,den)
2、
Gc=tf(1,[1 5]);
Go=tf([1 1],[1 8 0]);
H=tf(1,[1 2]);
rlocus(Gc*Go*H);
v=[-10 10 -10 13];
axis(v);
grid on
五、实验结果
1、
2、
六、实验总结
本次实验通过MATLAB实现了由系统结构图绘制根轨迹图。

七、实验心得
本次实验相对于前两次实验来说比较简单、较为容易实现,但是需要结合其它相关的函数比如说Gain、Pole、Damping等函数来加以理解。

实验3 根轨迹分析

实验3 根轨迹分析

-20
-15
-10 Real Axis (seconds )
-1
-5
0
5
>> p = [-1 -3 -10];
Root Locus 30
20
Imaginary Axis (seconds-1)
10
0
-10
-20
-30 -12
-10
-8
-6
-4
-1
-2
0
2
Real Axis (seconds )
>> p = [-1 -3 -5];
10
0
-10
-20
-30 -14
-12
-10
-8
-6
-4
-2
0
2
Real Axis (seconds -1)
(2)
可知此时增益 K 为 3.38。 [a,pole]=rlocfind(sys) Select a point in the graphics window selected_point = -2.1213 + 0.0000i a = 3.3812 pole = -11.7575 -2.1213 + 0.0000i -2.1213 - 0.0000i (3) >> z = [-5]; >> p = [-1 -3 -40]; >> k = [1]; >> sys1 = zpk(z, p, k) sys1 = (s+5) -----------------(s+1) (s+3) (s+40) Continuous-time zero/pole/gain model. >>rlocus(sys1)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《自动控制原理》课程实验报告实验名称系统根轨迹分析专业班级 ********************学号姓名**指导教师李离学院名称电气信息学院2012 年 12 月 15 日一、实验目的1、掌握利用MATLAB 精确绘制闭环系统根轨迹的方法;2、了解系统参数或零极点位置变化对系统根轨迹的影响;二、实验设备1、硬件:个人计算机2、软件:MATLAB 仿真软件(版本6.5或以上)三、实验内容和步骤 1.根轨迹的绘制利用Matlab 绘制跟轨迹的步骤如下:1) 将系统特征方程改成为如下形式:1 + KG ( s ) = 1 + K )()(s q s p =0, 其中,K 为我们所关心的参数。

2) 调用函数 r locus 生成根轨迹。

关于函数 rlocus 的说明见图 3.1。

不使用左边的选项也能画出根轨迹,使用左边的选项时,能 返回分别以矩阵和向量形式表征的特征根的值及与之对应的增益值。

图3.1 函数rlocus 的调用例如,图 3.2 所示系统特征根的根轨迹及其绘制程序见图 3.3。

图3.2 闭环系统一图3.3 闭环系统一的根轨迹及其绘制程序图 3.4 函数 rlocfind 的使用方法注意:在这里,构成系统 s ys 时,K 不包括在其中,且要使分子和分母中 s 最高次幂项的系数为1。

当系统开环传达函数为零、极点形式时,可调用函数 z pk 构成系统 s ys : sys = zpk([zero],[pole],1);当系统开环传达函数无零点时,[zero]写成空集[]。

对于图 3.2 所示系统,G(s)H(s)=)2()1(++s s s K *11+s =)3)(2()1(+++s s s s K . 可如下式调用函数 z pk 构成系统 s ys :sys=zpk([-1],[0 -2 -3],1)若想得到根轨迹上某个特征根及其对应的 K 的值,一种方法是在调用了函数 rlocus 并得到了根 轨迹后调用函数 rlocfind 。

然后,将鼠标移至根轨迹图上会出现一个可移动的大十字。

将该十字的 中心移至根轨迹上某点,再点击鼠标左键,就可在命令窗口看到该点对应的根值和 K 值了。

另外一种 较为方便的做法是在调用了函数 rlocus 并得到了根轨迹后直接将鼠标移至根轨迹图中根轨迹上某点 并点击鼠标左键,这时图上会出现一个关于该点的信息框,其中包括该系统在此点的特征根的值及其 对应的 K 值、超调量和阻尼比等值。

图 3.4 给出了函数 rlocfind 的用法。

2.实验内容图3.5 闭环系统二1)对于图 3.5 所示系统,编写程序分别绘制当(1) G(s)=)2(+s s K,(2) G(s)=)4)(1(++s s s K,(3) G(s)=)6)(4)(2(+++s s s s K,(4) G(s)=)24)(24)(4)(2(j s j s s s s K-+++++,(5) G(s)=)2()4(++s s s K ,(6) G(s)=)4)(2()6(+++s s s s K ,(7) G(s)=)4)(2()24)(24(++-+++s s s j s j s K时系统的根轨迹,并就结果进行分析。

解析:Lab3_1_1.m 程序:sys=zpk([],[0 -2],1);rlocus(sys)仿真结果:理论分析:系统极点:p=0、-2 ,无零点,故有两条渐近线,且φ=090、-090。

渐近线与实轴的交点:σ=2)2(0-+=-1。

分离点:K=-s(s+2),dK/ds=-2s-2,令其=0,则s=-1,此时K=1。

当K=0时,系统根轨迹从极点0,-2处出发;当K=1时,在实轴的-1处会合,分别沿垂直于-1的直线以090,-090方向延伸,在根轨迹无穷远处,K−→−∞由分析可知,运行结果与理论结果一致。

Lab3_1_2.m程序:sys=zpk([],[0 -2 -4],1);rlocus(sys)仿真结果:理论分析:系统极点:p=0、2、-4,无零点,系统有三条渐近线,且φ=060、-060、0180渐近线与实轴的交点:σ=3420--=-2 。

根轨迹与虚轴的交点:令s=jw,带入特征方程s(s+2)(s+4)+K=0,得:jw(8-2w)+(K-62w)=0,故w=2.83、-2.83 。

带入特征方程验证,K>0,实轴上的根轨迹:[-2,0],(-∞,-4)。

[-2,0]之间的根轨迹:K=0时,分别从-2,0出发;当K=3.08*2*4=24.64时会合,再分别沿渐近线趋于无穷远处,无穷远处,K−→−∞;(-∞,-4)之间的根轨迹:K=0时,从-4出发,沿负实轴趋于无穷,无穷远处,K−→−∞由分析可知,运行结果与理论结果一致。

Lab3_1_3.m程序:sys=zpk([],[0 -2 -4 -6],1);rlocus(sys) 仿真结果:理论分析:系统极点:p=0、-2、-4、-6 ,无零点,系统有四条渐近线,且φ=045、-045、-0135、0135 ,渐近线与实轴的交点:σ=4642---=-3分离点:,解得:,当2s 带入特征方程时,k<0,故舍去。

根轨迹与虚轴的交点:令s=jw,带入特征方程为0484412234=++++K s s s s ,令实部和虚部分别为0,得:w=2或-2,k=160。

实轴上的根轨迹:[-2,0],[-6,-4] 。

[-2,0]之间的根轨迹:当K=0时,分别从-2,0出发,当K=16*2*486=768时,在实轴上会合,再分别沿0045,45-渐近线趋于无穷远处,无穷远处,K −→−∞。

[-6,-4]之间的根轨迹:当K=0时,分别从-6,-4出发,当K=768时,在实轴上会合,再分别沿00135,135-渐近线趋于无穷远处,无穷远处,K −→−∞ 根据分析可知,运行结果与理论结果一致。

Lab3_1_4.m程序:sys=zpk([],[0 -2 -4-2j -4+2j],1);rlocus(sys) 仿真结果:理论分析:系统极点:p=0、-2、-4、-4-j2、-4+j2 ,无零点,系统有五条渐近线,且φ=5180*)12(0+q (q=0,1,2,3,4),即φ=00000180,108,108,36,36--渐近线与实轴的交点:σ=5242442j j +-----=-514。

根轨迹与虚轴的交点:令s=jw,带入特征方程,016018476142345=+++++K s s s s s 解得w=2.15或73.85(舍去,不符合K>0)。

实轴上的根轨迹:[-2,0],(-∞,-4)。

[-2,0]之间的根轨迹:当K=0时,分别从-2,0出发,在s=-0.648[此时K=44.7*2*4*(4+j2)*(4-j2)]处会合,然后沿0036,36-的渐近线趋于无穷远处,无穷远处,K −→−∞;(-∞,-4)之间的根轨迹:当K=0时,从-4出发,沿0180渐近线趋于无穷远处,无穷远处,K −→−∞,同时,当K=0时,系统根轨迹分别从-4-j2,-4+j2出发,沿00108,108-渐近线趋于无穷远处,无穷远处,K −→−∞ 运行结果与理论结果一致。

Lab3_1_5.m 程序:sys=zpk([-4],[0 -2],1);rlocus(sys) 仿真结果:理论分析:系统极点:p=0、-2 ,零点:-4,系统有一条渐近线,φ=0180分离点:211++s s =41+s ,解得:s=-4+22或-4-22 。

根轨迹是一个以-4为圆心,22为半径的圆,根轨迹分别从-2,0出发,在s=-4+22处会合,然后分开,顺着圆的轨迹在s=-4-22处会合,一条终止于s=-4处,另一条终止于s −→−-∞处。

起点处,K=0,终点处,K −→−∞ 由分析可知,实验结果与理论结果一致。

Lab3_1_6.m 程序:sys=zpk([-6],[0 -2 -4],1);rlocus(sys)仿真结果:理论分析:系统极点:p=0、-2、-4 ,零点:-6 ,系统有两条渐近线,且φ= 090、-090。

渐近线与实轴的交点:σ=4)6 (42----=0。

令s=jw,代入s(s+2)(s+4)+K(s+6)=0得:jw(2w+8+K)+6(2w-1)=0,故w=1、-1而此时,K=-9<0,所以根轨迹与虚轴没有交点。

实轴上的根轨迹:[-2,0],[-6,-4] [-2,0]之间的渐近线:当K=0时,根轨迹分别从-2,0出发;当K=0.603时,在实轴上s=0.936处会合,在分别沿着090,-090的渐近线趋于无穷远处,无穷远处,K−→−∞。

[-6,-4]之间的根轨迹:当K=0时,从-4出发,当K−→−∞时,根轨迹终止于零点-6由以上分析可知,运行结果与理论结果一致。

Lab3_1_7.m程序:sys=zpk([-4-2j -4+2j],[0 -2 -4],1);rlocus(sys)仿真结果:理论分析:系统的极点:p=0、-2、-4 ,零点:-4-j2、-4+j2,系统有一条渐近线,且φ= 0180。

渐近线与实轴的交点:σ=4.05)24()24(42=+-------jj令s=jw, 代入s(s+2)(s+4)+K(s+4+j2)(s+4-j2)=0,得jw(8+8K-2w)+(20K-62w-Kw2)=0.令实部和虚部分别为0,得w=-10+j60或-10-j60.而此时K<0,故根轨迹与虚轴无交点。

实轴上的根轨迹:[-2,0],(-4,-∞)。

[-2,0]之间的根轨迹:当K=0时,根轨迹分别从-2,0出发;当K=0.232*4*2)2 4)(24(jj-+=0.58时,在实轴的s=-1.06处会合;在K−→−∞时,终止于零点-4-j2,-4+j2。

(-4,-∞)之间的根轨迹:当K=0时,根轨迹从-4出发,在K−→−∞时,终止于负实轴的无穷远处由以上分析可知,运行结果与理论结果一致。

Lab3_2_1.ma=10时程序:sys=zpk([-1],[0 0 -10],1);rlocus(sys)仿真结果:图1Lab3_2_2.ma=9时程序:sys=zpk([-1],[0 0 -9],1);rlocus(sys)仿真结果:图2 Lab3_2_3.ma=8时程序:sys=zpk([-1],[0 0 -8],1);rlocus(sys) 仿真结果:图3 Lab3_2_4.ma=3时程序:sys=zpk([-1],[0 0 -3],1);rlocus(sys) 仿真结果:图4 Lab3_2_5.ma=1时程序:sys=zpk([-1],[0 0 -1],1);rlocus(sys)仿真结果:图5理论分析:特征方程为:0)1()(2=+++s K a s s ,K=-123++s as s ,令,0=ds dK 得202)3(2=+++a s a s 。

相关文档
最新文档