第3讲 函数的奇偶性与周期性专题
2025高考数学一轮总复习知识梳理第2章函数概念与基本初等函数Ⅰ第3讲函数的奇偶性与周期性(含答案)
高考数学一轮总复习知识梳理:第三讲 函数的奇偶性与周期性知 识 梳 理知识点一 函数的奇偶性 偶函数 奇函数定义 如果对于函数f (x )的定义域内任意一个x 都有 f (-x )=f (x ) ,那么函数f (x )是偶函数 都有 f (-x )=-f (x ) ,那么函数f (x )是奇函数图象特征 关于 y 轴 对称关于 原点 对称 知识点二 函数的周期性1.周期函数对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有 f (x +T )=f (x ) ,那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.2.最小正周期如果在周期函数f (x )的所有周期中存在一个 最小的正数 ,那么这个 最小正数 就叫做f (x )的最小正周期.归 纳 拓 展1.奇(偶)函数定义的等价形式(1)f (-x )=f (x )⇔f (-x )-f (x )=0⇔f -xf x =1(f (x )≠0)⇔f (x )为偶函数;(2)f (-x )=-f (x )⇔f (-x )+f (x )=0⇔f -xf x =-1(f (x )≠0)⇔f (x )为奇函数.2.若y =f (x )为奇函数,y =g (x )为奇函数,在公共定义域内(1)y =f (x )±g (x )为奇函数;(2)y =f (x )g (x )与y =f xg x 为偶函数;(3)y =f [g (x )]与y =g [f (x )]为奇函数.同理若y =f (x )与y =g (x )在公共定义域内均为偶函数,则y =f (x )±g (x ),y =f (x )g (x ),y =f xg x ,y =f [g (x )],y =g [f (x )]均为偶函数.若y =f (x )为奇函数,y =g (x )为偶函数,则在公共定义域内y =f (x )g (x )与y =f xg x 均为奇函数,y =f [g (x )]与y =g [f (x )]为偶函数.3.对f (x )的定义域内任一自变量的值x ,最小正周期为T(1)若f (x +a )=-f (x ),则T =2|a |;(2)若f (x +a )=1f x ,则T =2|a |;(3)若f (x +a )=f (x +b ),则T =|a -b |.4.函数图象的对称关系(1)若函数f (x )满足关系f (a +x )=f (b -x ),则f (x )的图象关于直线x =a +b 2对称;(2)若函数f (x )满足关系f (a +x )=-f (b -x ),则f (x )的图象关于点⎝ ⎛⎭⎪⎫a +b 2,0对称.5.一些重要类型的奇偶函数(1)函数f (x )=a x +a -x 为偶函数,函数f (x )=a x -a -x为奇函数; (2)函数f (x )=a x -a -x a x +a -x =a 2x -1a 2x +1为奇函数;(3)函数f (x )=log a b -xb +x 为奇函数;(4)函数f (x )=log a (x +x 2+1)为奇函数.双 基 自 测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数y =x 2,x ∈(-2,2]是偶函数.( × )(2)若函数f (x )是奇函数,则必有f (0)=0.( × )(3)若函数y =f (x +a )是偶函数,则函数y =f (x )的图象关于直线x =a 对称.( √ )(4)若函数y =f (x +b )是奇函数,则函数y =f (x )的图象关于点(b,0)中心对称.( √ )(5)2π是函数f (x )=sin x ,x ∈(0,+∞)的一个周期.( × )(6)周期为T 的奇函数f (x ),一定有f ⎝ ⎛⎭⎪⎫T 2=0.( × )[解析] (6)举反例.函数f (x )=tan x ,T =π,f (T )=f (π)=0,f ⎝ ⎛⎭⎪⎫T 2=f ⎝ ⎛⎭⎪⎫π2无意义,所以f ⎝ ⎛⎭⎪⎫T 2=0不对.题组二 走进教材2.(多选题)(必修1P 85T2改编)给出下列函数,其中是奇函数的为( BC )A .f (x )=x 4B .f (x )=x 5C .f (x )=x +1xD .f (x )=1x 2[解析] 对于f (x )=x 4,f (x )的定义域为R ,由f (-x )=(-x )4=x 4=f (x ),可知f (x )=x 4是偶函数,同理可知f (x )=x 5,f (x )=x +1x 是奇函数,f (x )=1x 2是偶函数. 3.(必修1P 85T3改编)若函数y =f (x )(x ∈(a ,b ))为奇函数,则a +b = 0 .4.(必修1P 85T1改编)若函数y =f (x )(x ∈R )是奇函数,则下列坐标表示的点一定在函数y =f (x )图象上的是( B )A .(a ,-f (a ))B .(-a ,-f (a ))C .(-a ,-f (-a ))D .(a ,f (-a ))[解析] ∵函数y =f (x )为奇函数,∴f (-a )=-f (a ).即点(-a ,-f (a ))一定在函数y =f (x )的图象上.5. (必修1P 87T12改编)设奇函数f (x )的定义域为[-5,5],若当x ∈[0,5]时,f (x )的图象如图所示,则不等式f (x )<0的解集为_(-2,0)∪(2,5]__.[解析] 由图象可知,当0<x <2时,f (x )>0;当2<x ≤5时,f (x )<0,又f (x )是奇函数,∴当-2<x <0时,f (x )<0,当-5≤x <-2时,f (x )>0.综上,f (x )<0的解集为(-2,0)∪(2,5].6.(必修1P 87T11改编)定义在R 上的奇函数f (x )以2为周期,则f (1)+f (2)+f (3)的值是( A )A .0B .1C .2D .3[解析] 根据函数的周期性和奇偶性得到f (3)=f (-1)=-f (1)、f (2)=f (0)=0,从而可求f (1)+f (2)+f (3).因为函数以2为周期,所以f (3)=f (-1),f (2)=f (0),因为函数是定义在R 上的奇函数,所以f (-1)=-f (1),f (0)=0,所以f (1)+f (2)+f (3)=f (1)+f (0)-f (1)=0,故选A.7.(必修1P 86T3改编)已知f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +m ,则f (-3)= -7 .[解析] 因为f (x )为R 上的奇函数,所以f (0)=0,即f (0)=20+m =0,解得m =-1,故f (x )=2x-1(x ≥0),则f (-3)=-f (3)=-(23-1)=-7.题组三 走向高考8.(2023·新课标Ⅱ,4,5分)若f (x )=(x +a )·ln 2x -12x +1为偶函数,则a =( B )A .-1B .0 C.12 D .1 [解析] f (-x )=(-x +a )ln -2x -1-2x +1=(-x +a )ln 2x +12x -1=(x -a )ln 2x -12x +1,∵f (x )为偶函数,∴f (x )=f (-x ),∴x +a =x -a ,∴a =0.9.(2021·全国乙,4)设函数f (x )=1-x1+x ,则下列函数中为奇函数的是( B )A. f ()x -1-1B . f ()x -1+1 C. f ()x +1-1 D . f ()x +1+1[解析] 思路一:将函数f (x )的解析式分离常数,通过图象变换可得函数图象关于(0,0)对称,此函数即为奇函数;思路二:由函数f (x )的解析式,求出选项中的函数解析式,由函数奇偶性定义来判断.解法一:f (x )=-1+2x +1,其图象的对称中心为(-1,-1),将y =f (x )的图象沿x 轴向右平移1个单位,再沿y 轴向上平移1个单位可得函数f (x -1)+1的图象,关于(0,0)对称,所以函数f (x -1)+1是奇函数,故选B.解法二:选项A ,f (x -1)-1=2x -2,此函数为非奇非偶函数;选项B ,f (x -1)+1=2x ,此函数为奇函数;选项C ,f (x +1)-1=-2x -2x +2,此函数为非奇非偶函数;选项D ,f (x +1)+1=2x +2,此函数为非奇非偶函数,故选B.。
高中数学提升专题第三讲:函数的奇偶性和周期性
高中数学提升专题第三讲:函数的奇偶性和周期性一、知识储备1.函数的奇偶性(1)周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.【知识拓展】1.如果一个奇函数f (x )在原点处有定义,即f (0)有意义,那么一定有f (0)=0.2.如果函数f (x )是偶函数,那么f (x )=f (|x |).3.对f (x )定义域内任一自变量的值x :(1)若f (x +a )=-f (x ),则T =2a ;(2)若f (x +a )=1f (x ),则T =2a . 4.对称性的三个常用结论(1)若函数y =f (x +a )是偶函数,即f (a -x )=f (a +x ),则函数y =f (x )的图象关于直线x =a 对称;(2)若对于R 上的任意x 都有f (2a -x )=f (x )或f (-x )=f (2a +x ),则y =f (x )的图象关于直线x =a 对称;(3)若函数y =f (x +b )是奇函数,即f (-x +b )+f (x +b )=0,则函数y =f (x )关于点(b,0)中心对称.二、知识导学题型一 判断函数的奇偶性例1 判断下列函数的奇偶性:(1)f (x )=x 3-x ;(2)f (x )=(x +1)1-x 1+x ; (3)f (x )=⎩⎪⎨⎪⎧ x 2+x , x <0,-x 2+x , x >0.例2(1)设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数(2)函数f (x )=log a (2+x ),g (x )=log a (2-x )(a >0且a ≠1),则函数F (x )=f (x )+g (x ),G (x )=f (x )-g (x )的奇偶性是( )A .F (x )是奇函数,G (x )是奇函数B .F (x )是偶函数,G (x )是奇函数C .F (x )是偶函数,G (x )是偶函数D .F (x )是奇函数,G (x )是偶函数题型二 函数的周期性例2 (1)定义在R 上的函数f (x )满足f (x +6)=f (x ),当-3≤x <-1时,f (x )=-(x +2)2;当-1≤x <3时,f (x )=x .则f (1)+f (2)+f (3)+…+f (2 017)=________.(2)已知f (x )是定义在R 上的偶函数,并且f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f (105.5)=______.题型三 函数性质的综合应用例3 (1)已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)等于( )A .-3B .-1C .1D .3(2)(2015·课标全国Ⅰ)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________.例4 (1)(2015·石家庄一模)已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a 的取值范围为( ) A .(-1,4) B .(-2,0)C .(-1,0)D .(-1,2)(2)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)[方法与技巧]1.判断函数的奇偶性,首先应该判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件.2.利用函数奇偶性可以解决以下问题①求函数值;②求解析式;③求函数解析式中参数的值;④画函数图象,确定函数单调性.3.在解决具体问题时,要注意结论“若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期”的应用.[失误与防范]1.f (0)=0既不是f (x )是奇函数的充分条件,也不是必要条件.应用时要注意函数的定义域并进行检验.2.判断分段函数的奇偶性时,要以整体的观点进行判断,不可以利用函数在定义域某一区间上不是奇偶函数而否定函数在整个定义域的奇偶性.三、练出高分1.下列函数中,既是偶函数又在区间(1,2)上单调递增的是( )A .y =log 2|x |B .y =cos 2xC .y =2x -2-x 2D .y =log 22-x 2+x2.已知函数f (x )=ln(1+9x 2-3x )+1,则f (lg 2)+f ⎝ ⎛⎭⎪⎫lg 12等于( ) A .-1 B .0 C .1 D .23.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (2 019)等于( )A .-2B .2C .-98D .984.定义在R 上的偶函数f (x ),对任意x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,则( ) A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2)5.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2+2x ,若f (2-a 2)>f (a ),则实数a 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞)6.函数f (x )在R 上为奇函数,且当x >0时,f (x )=x +1,则当x <0时,f (x )=________.7.已知定义在R 上的偶函数f (x )在[0,+∞)上单调递增,且f (1)=0,则不等式f (x -2)≥0的解集是____________________.8.设定义在R 上的函数f (x )同时满足以下条件:①f (x )+f (-x )=0;②f (x )=f (x +2);③当0≤x ≤1时,f (x )=2x -1,则f ⎝ ⎛⎭⎪⎫12+f (1)+f ⎝ ⎛⎭⎪⎫32+f (2)+f ⎝ ⎛⎭⎪⎫52=________. 9.已知函数f (x )=⎩⎪⎨⎪⎧ -x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.10.设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ),当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式;(3)计算f (0)+f (1)+f (2)+…+f (2 016).11.函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论;(3)如果f (4)=1,f (x -1)<2,且f (x )在(0,+∞)上是增函数,求x 的取值范围.。
函数的奇偶性和周期性
最小正周期
最小正周期的定义
如果存在一个正数T,使得对于函数 f(x)的定义域内的每一个x,都有 f(x+T)=f(x),则称T为函数f(x)的一个 周期。所有周期中最小的一个称为最 小正周期。
最小正周期的意义
最小正周期是描述函数重复性特征的 重要参数,它可以帮助我们更好地理 解函数的性质和行为。在数学和物理 中,最小正周期常常被用来研究函数 的变化规律和行为特征。
02 函数的周期性
周期函数的定义
周期函数的定义
如果存在一个非零常数T,使得对于函 数f(x)的定义域内的每一个x,都有 f(x+T)=f(x),则称f(x)为周期函数,T 称为这个函数的周期。
周期函数的性质
周期函数在其周期内的图像是重复的 。周期函数的图像是连续不断的,且 可以由一个周期内的图像平移得到整 个定义域上的图像。
偶函数的周期性
偶函数并不一定具有周期性,但如果一个偶函数具有周期性,那么它的周期一定是 $T=npi$($n$为整数)。
04 奇偶性和周期性的应用
在数学领域的应用
奇偶性
在数学分析中,函数的奇偶性可以帮助我们研究函数的对称性质,进而简化函数的性质和图像。例如,偶函数关 于y轴对称,奇函数关于原点对称。
实例
$f(x)=x^3$是奇函数,因 为$f(-x)=-x^3=-f(x)$。
偶函数
定义
如果对于函数$f(x)$,对于所有 $x$,都有$f(-x)=f(x)$,则称 $f(x)$为偶函数。
图像特性
偶函数的图像关于y轴对称。
实例
$f(x)=x^2$是偶函数,因为$f(x)=(-x)^2=x^2=f(x)$。
常见周期函数类型
正弦函数和余弦函数: y=sin(x)和y=cos(x)的最 小正周期为2π。
第03讲函数的奇偶性、对称性与周期性(含新定义解答题) (分层精练)(解析)-25年高考数学一轮复习
分层精练)数周期性转化求值即可.【详解】因为()()110f x f x -++=,所以()()110f f -+=,且()()21log 111f =+=,则()11f -=-,又可得()()20f x f x ++=,()()240f x f x +++=,故()()4f x f x +=,所以函数()f x 是周期4T =的周期函数,()()()47412111f f f =⨯-=-=-.故选:D .4.(2023·内蒙古赤峰·统考模拟预测)函数()y f x =是定义在R 上奇函数,且(4)()f x f x -=,(3)1f -=-,则(15)f =()A .0B .1-C .2D .1【答案】B【分析】通过已知计算得出函数是周期为8的周期函数,则()()157f f =,根据已知得出(7)(3)1f f =-=-,即可得出答案.【详解】 函数()y f x =是定义在R 上奇函数,且(4)()f x f x -=,()()()4f x f x f x ∴+=-=-,()()()()4484f x f x f x f x ∴++=+=-+=,则函数()y f x =是周期为8的周期函数,则()()()151587f f f =-=,令3x =-,则(43)(3)1f f +=-=-,(15)1f ∴=-,故选:B.5.(2023上·山东烟台·高一校考期末)函数e x y =-与e x y -=的图象()A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .关于直线y x =对称【答案】C【分析】画出函数图像即可判断.【详解】根据如下图像即可判断出函数图像关于原点对称.故选:C10,10由上图知:增区间为[2,1),[0,1)--,减区间为零点为2,0,2x =-共3个;最大值为1,最小值为(2)由题设()7.5(80.5)(0.5)f f f =-=-=(3)令[]21,22[1,1]1n n x x n ∈⇒-∈--+且,且存在常数若()()20h x t h x t -⋅+=有8个不同的实数解,令则20n tn t -+=有两个不等的实数根2Δ400t t t ⎧=->⎪>⎪。
数学函数的奇偶性与周期性课件
数学知识点:函数的奇偶性与周期性一、考纲目标1.结合具体函数,了解函数奇偶性的含义;2.运用函数图像,理解和研究函数的奇偶性;3.了解函数的奇偶性、最小正周期的含义,会判断、应用简单函数的周期性;二、知识梳理(一)函数的奇偶性1.定义:如果对于函数 f (x)的定义域内的任意一个x,都有f(x)=f(-x)(f(-x)=f(x)),那么这个函数就是偶(奇)函数;2.性质及一些结论:(1)定义域关于原点对称;(2)偶函数的图象关于轴对称,奇函数的图象关于原点对称;(3)为偶函数(4)若奇函数的定义域包含,则因此,“f(x)为奇函数”是"f(0)=0"的非充分非必要条件;(5)判断函数的奇偶性,首先要研究函数的定义域,有时还要对函数式化简整理,但必须注意使定义域不受影响;(6)断函数的奇偶性有时可以用定义的等价形式:,(7)设,的定义域分别是,那么在它们的公共定义域上:奇+奇=奇,奇奇=偶,偶+偶=偶,偶偶=偶,奇偶=奇(8)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反(二)函数的周期性1.定义:若T为非零常数,对于定义域内的任一x,使恒成立,则f(x)叫做周期函数,T叫做这个函数的一个周期2.简单理解:一般所说的周期是指函数的最小正周期,周期函数的定义域一定是无限集,但是我们可能只研究定义域的某个子集三、考点逐个突破1.奇偶性辨析例1.下面四个结论:①偶函数的图象一定与y轴相交;②奇函数的图象一定通过原点;③偶函数的图象关于y轴对称;④既是奇函数又是偶函数的函数一定是f(x)=0(x∈R),其中正确命题的个数是A.1 B.2 C.3 D.4分析:偶函数的图象关于y轴对称,但不一定相交,因此③正确,①错误奇函数的图象关于原点对称,但不一定经过原点,因此②不正确若y=f(x)既是奇函数,又是偶函数,由定义可得f(x)=0,但不一定x∈R,如例1中的(3),故④错误,选A说明:既奇又偶函数的充要条件是定义域关于原点对称且函数值恒为零例2.判断下列函数的奇偶性:(1)f(x)=|x|(x2+1);(2)f(x)=x+1 x ;(3)f(x)=x-2+2-x;(4)f(x)=1-x2+x2-1;(5)f(x)=(x-1)1+x1-x.解析 (1)此函数的定义域为R.∵f(-x)=|-x|[(-x)2+1]=|x|(x2+1)=f(x),∴f(-x)=f (x),即f(x)是偶函数.(2)此函数的定义域为x>0,由于定义域关于原点不对称,故f(x)既不是奇函数也不是偶函数.(3)此函数的定义域为{2},由于定义域关于原点不对称,故f(x)既不是奇函数也不是偶函数.(4)此函数的定义域为{1,- 1},且f(x)=0,可知图像既关于原点对称,又关于y 轴对称,故此函数既是奇函数又是偶函数.(5)定义域:⎩⎨⎧1-x≠01+x1-x ≥0⇒-1≤x<1是关于原点不对称区间,故此函数为非奇非偶函数. 2.奇偶性的应用 例3.已知函数对一切,都有,(1)求证:是奇函数;(2)若,用表示解:(1)显然的定义域是,它关于原点对称.在中,令,得,令,得,∴,∴,即, ∴是奇函数(2)由,及是奇函数,得例4.(1)已知是上的奇函数,且当时,,则的解析式为(2)已知是偶函数,,当时,为增函数,若,且,则 ()例5设为实数,函数,(1)讨论的奇偶性; (2)求 的最小值解:(1)当时,,此时为偶函数;当时,,,∴此时函数既不是奇函数也不是偶函数(2)①当时,函数,若,则函数在上单调递减,∴函数在上的最小值为;若,函数在上的最小值为,且②当时,函数,若,则函数在上的最小值为,且;若,则函数在上单调递增,∴函数在上的最小值综上,当时,函数的最小值是,当时,函数的最小值是,当,函数的最小值是3.函数周期性的应用例6.设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x-x2.(1)求证:f(x)是周期函数;(2)当x∈[2,4]时,求f(x)的解析式;(3)计算f(0)+f(1)+f(2)+…+f(2 011).解 (1)证明:∵f(x+2)=-f(x),∴f(x+4)=-f(x+2)=f(x).∴f(x)是周期为4的周期函数.(2)当x∈[-2,0]时,-x∈[0,2],由已知得f(-x)=2(-x)-(-x)2=-2x-x2,又f(x)是奇函数,∴f(-x)=-f(x)=-2x -x 2, ∴f(x)=x 2+2x.又当x ∈[2,4]时,x -4∈[-2,0], ∴f(x -4)=(x -4)2+2(x -4). 又f(x)是周期为4的周期函数,∴f(x)=f(x -4)=(x -4)2+2(x -4)=x 2-6x +8. 从而求得x ∈[2,4]时,f(x)=x 2-6x +8. (3)f(0)=0,f(2)=0,f(1)=1,f(3)=-1. 又f(x)是周期为4的周期函数,∴f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)=…=f(2 008)+f(2 009)+f(2 010)+f(2 011)=0. ∴f(0)+f(1)+f(2)+…+f(2 011)=0. 4.单调性与奇偶性的交叉应用例7.已知定义域为R 的函数f(x)=-2x +b2x +1+a 是奇函数.①求a 、b 的值;②若对任意的t ∈R ,不等式f(t 2-2t)+f(2t 2-k)<0恒成立,求k 的取值范围. 解:①∵f(x)是定义在R 上的奇函数,∴f(0)=0, 即b -1a +2=0,∴b =1,∴f(x)=1-2x a +2x +1, 又由f(1)=-f(-1)知1-2a +4=-1-12a +1,解得a =2.②由①知f(x)=1-2x 2+2x +1=-12+12x +1,易知f(x)在(-∞,+∞)上为减函数.又∵f(x)是奇函数,从而不等式f(t 2-2t)+f(2t 2-k)<0等价于f(t 2-2t)<-f(2t 2-k)=f(k -2t 2),∵f(x)为减函数,∴由上式得t 2-2t>k -2t 2,即对任意的t ∈R 恒有:3t 2-2t -k>0,从而Δ=4+12k<0,∴k<-13.一、选择题1.(2012·高考陕西卷)下列函数中,既是奇函数又是增函数的为( ) A .y =x +1 B .y =-x 3C .y =1xD .y =x |x |解析:选D.由函数的奇偶性排除A ,由函数的单调性排除B 、C ,由y =x |x |的图象可知当x >0时此函数为增函数,又该函数为奇函数,故选D.2.已知y =f (x +1)是偶函数,则函数y =f (x )的图象的对称轴是( ) A .x =1 B .x =-1C .x =12D .x =-12解析:选A.∵y =f (x +1)是偶函数,∴f (1+x )=f (1-x ),故f (x )关于直线x =1对称.3.函数f (x )=x 3+sin x +1(x ∈R ),若f (a )=2,则f (-a )的值为( ) A .3 B .0 C .-1 D .-2 解析:选B.f (a )=a 3+sin a +1,①f (-a )=(-a )3+sin(-a )+1=-a 3-sin a +1,② ①+②得f (a )+f (-a )=2, ∴f (-a )=2-f (a )=2-2=0.4.函数f (x )=1-21+2x(x ∈R )( )A .既不是奇函数又不是偶函数B .既是奇函数又是偶函数C .是偶函数但不是奇函数D .是奇函数但不是偶函数解析:选D.∵f (x )=1-21+2x =2x -12x +1,∴f (-x )=2-x -12-x +1=1-2x 1+2x =-2x -12x +1=-f (x ).又其定义域为R ,∴f (x )是奇函数.5.定义在R 上的偶函数y =f (x )满足f (x +2)=f (x ),且当x ∈(0,1]时单调递增,则( )A .f ⎝ ⎛⎭⎪⎫13<f (-5)<f ⎝ ⎛⎭⎪⎫52B .f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫52<f (-5)C .f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫13<f (-5)D .f (-5)<f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫52解析:选B.∵f (x +2)=f (x ),∴f (x )是以2为周期的函数,又f (x )是偶函数,∴f ⎝ ⎛⎭⎪⎫52=f ⎝ ⎛⎭⎪⎫12+2=f ⎝ ⎛⎭⎪⎫12,f (-5)=f (5)=f (4+1)=f (1), ∵函数f (x )在(0,1]上单调递增,∴f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫12<f (1),即f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫52<f (-5).二、填空题6.设函数f (x )=x (e x +a e -x )(x ∈R )是偶函数,则实数a 的值为________.解析:因为f (x )是偶函数,所以恒有f (-x )=f (x ),即-x (e -x +a e x )=x (e x+a e -x ),化简得x (e -x +e x )(a +1)=0.因为上式对任意实数x 都成立,所以a =-1.答案:-17.函数f (x )在R 上为奇函数,且x >0时,f (x )=x +1,则当x <0时,f (x )=________.解析:∵f (x )为奇函数,x >0时,f (x )=x +1, ∴当x <0时,-x >0,f (x )=-f (-x )=-(-x +1),即x <0时,f (x )=-(-x +1)=--x -1. 答案:--x -18.(2013·大连质检)设f (x )是定义在(-∞,0)∪(0,+∞)上的奇函数,且f (x +3)·f (x )=-1,f (-4)=2,则f (2014)=________.解析:由已知f (x +3)=-1f x,∴f (x +6)=-1f x +3=f (x ),∴f (x )的周期为6.∴f (2014)=f (335×6+4)=f (4)=-f (-4)=-2. 答案:-2 三、解答题9.判断下列函数的奇偶性: (1)f (x )=x 2-1+1-x 2; (2)f (x )=⎩⎨⎧x 2-2x +3 x >0,0 x =0,-x 2-2x -3x <0.解:(1)f (x )的定义域为{-1,1},关于原点对称. 又f (-1)=f (1)=0.∴f (-1)=f (1)且f (-1)=-f (1), ∴f (x )既是奇函数又是偶函数. (2)①当x =0时,-x =0,f (x )=f (0)=0,f (-x )=f (0)=0, ∴f (-x )=-f (x ). ②当x >0时,-x <0,∴f (-x )=-(-x )2-2(-x )-3 =-(x 2-2x +3)=-f (x ). ③当x <0时,-x >0,∴f (-x )=(-x )2-2(-x )+3 =-(-x 2-2x -3)=-f (x ).由①②③可知,当x ∈R 时,都有f (-x )=-f (x ), ∴f (x )为奇函数.10.已知奇函数f (x )的定义域为[-2,2],且在区间[-2,0]内递减,求满足:f (1-m )+f (1-m 2)<0的实数m 的取值范围.解:∵f (x )的定义域为[-2,2],∴有⎩⎨⎧-2≤1-m ≤2-2≤1-m 2≤2,解得-1≤m ≤3.①又f (x )为奇函数,且在[-2,0]上递减, ∴在[-2,2]上递减,∴f (1-m )<-f (1-m 2)=f (m 2-1)⇒1-m >m 2-1, 即-2<m <1.②综合①②可知,-1≤m <1.一、选择题1.(2012·高考天津卷)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( )A .y =cos 2x ,x ∈RB .y =log 2|x |,x ∈R 且x ≠0C .y =e x -e -x2,x ∈R D .y =x 3+1,x ∈R解析:选B.由函数是偶函数可以排除C 和D ,又函数在区间(1,2)内为增函数,而此时y =log 2|x |=log 2x 为增函数,所以选择B.2.(2011·高考山东卷)已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图象在区间[0,6]上与x 轴的交点的个数为( )A .6B .7C .8D .9 解析:选B.令f (x )=x 3-x =0, 即x (x +1)(x -1)=0, 所以x =0,1,-1,因为0≤x <2,所以此时函数的零点有两个,即与x 轴的交点个数为2. 因为f (x )是R 上最小正周期为2的周期函数, 所以2≤x <4,4≤x <6上也分别有两个零点, 由f (6)=f (4)=f (2)=f (0)=0, 知x =6也是函数的零点,所以函数y =f (x )的图象在区间[0,6]上与x 轴的交点个数为7. 二、填空题3.若f (x )=12x -1+a 是奇函数,则a =________.解析:∵f (x )为奇函数,∴f (-x )=-f (x ),即12-x -1+a =-12x -1-a ,得:2a =1,a =12.答案:124.(2013·长春质检)设f (x )是(-∞,+∞)上的奇函数,且f (x +2)=-f (x ),下面关于f (x )的判定:其中正确命题的序号为________.①f (4)=0;②f (x )是以4为周期的函数; ③f (x )的图象关于x =1对称; ④f (x )的图象关于x =2对称. 解析:∵f (x +2)=-f (x ),∴f (x )=-f (x +2)=-(-f (x +2+2))=f (x +4), 即f (x )的周期为4,②正确.∵f (x )为奇函数,∴f (4)=f (0)=0,即①正确. 又∵f (x +2)=-f (x )=f (-x ),∴f (x )的图象关于x =1对称,∴③正确, 又∵f (1)=-f (3),当f (1)≠0时,显然f (x )的图象不关于x =2对称,∴④错误.答案:①②③ 三、解答题5.已知函数f (x )=x 2+|x -a |+1,a ∈R . (1)试判断f (x )的奇偶性;(2)若-12≤a ≤12,求f (x )的最小值.解:(1)当a =0时,函数f (-x )=(-x )2+|-x |+1=f (x ), 此时,f (x )为偶函数.当a ≠0时,f (a )=a 2+1,f (-a )=a 2+2|a |+1, f (a )≠f (-a ),f (a )≠-f (-a ),此时,f (x )既不是奇函数,也不是偶函数.(2)当x ≤a 时,f (x )=x 2-x +a +1=⎝⎛⎭⎪⎫x -122+a +34,∵a ≤12,故函数f (x )在(-∞,a ]上单调递减,从而函数f (x )在(-∞,a ]上的最小值为f (a )=a 2+1.当x ≥a 时,函数f (x )=x 2+x -a +1=⎝⎛⎭⎪⎫x +122-a +34,∵a≥-12,故函数f(x)在[a,+∞)上单调递增,从而函数f(x)在[a,+∞)上的最小值为f(a)=a2+1.综上得,当-12≤a≤12时,函数f(x)的最小值为a2+1.。
高考数学(人教a版,理科)题库:函数的奇偶性与周期性(含答案)
第3讲 函数的奇偶性与周期性一、选择题1.设f (x )为定义在R 上的奇函数.当x ≥0时,f (x )=2x +2x +b (b 为常数),则f (-1)等于( ).A .3B .1C .-1D .-3 解析 由f (-0)=-f (0),即f (0)=0.则b =-1,f (x )=2x +2x -1,f (-1)=-f (1)=-3. 答案 D2.已知定义在R 上的奇函数,f (x )满足f (x +2)=-f (x ),则f (6)的值为 ( ). A .-1 B .0 C .1 D .2 解析 (构造法)构造函数f (x )=sin π2x ,则有f (x +2)=sin ⎣⎢⎡⎦⎥⎤π2x +2=-sin π2x =-f (x ),所以f (x )=sin π2x 是一个满足条件的函数,所以f (6)=sin 3π=0,故选B. 答案 B3.定义在R 上的函数f (x )满足f (x )=f (x +2),当x ∈[3,5]时,f (x )=2-|x -4|,则下列不等式一定成立的是( ).A .f ⎝ ⎛⎭⎪⎫cos 2π3>f ⎝ ⎛⎭⎪⎫sin 2π3B .f (sin 1)<f (cos 1)C .f ⎝ ⎛⎭⎪⎫sin π6<f ⎝ ⎛⎭⎪⎫cos π6D .f (cos 2)>f (sin 2)解析 当x ∈[-1,1]时,x +4∈[3,5],由f (x )=f (x +2)=f (x +4)=2-|x +4-4|=2-|x |,显然当x ∈[-1,0]时,f (x )为增函数;当x ∈[0,1]时,f (x )为减函数,cos 2π3=-12,sin 2π3=32>12,又f⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫12>f ⎝ ⎛⎭⎪⎫32,所以f ⎝ ⎛⎭⎪⎫cos 2π3>f ⎝ ⎛⎭⎪⎫sin 2π3. 答案 A4.已知函数f (x )=⎩⎨⎧1-2-x,x ≥0,2x -1,x <0,则该函数是( ).A .偶函数,且单调递增B .偶函数,且单调递减C .奇函数,且单调递增D .奇函数,且单调递减解析 当x >0时,f (-x )=2-x -1=-f (x );当x <0时,f (-x )=1-2-(-x )=1-2x =-f (x ).当x =0时,f (0)=0,故f (x )为奇函数,且f (x )=1-2-x 在[0,+∞)上为增函数,f (x )=2x -1在(-∞,0)上为增函数,又x ≥0时1-2-x ≥0,x <0时2x -1<0,故f (x )为R 上的增函数. 答案 C5.已知f (x )是定义在R 上的周期为2的周期函数,当x ∈[0,1)时,f (x )=4x-1,则f (-5.5)的值为( )A .2B .-1C .-12 D .1解析 f (-5.5)=f (-5.5+6)=f (0.5)=40.5-1=1. 答案 D6.设函数D (x )=⎩⎨⎧1,x 为有理数,0,x 为无理数,则下列结论错误的是( ).A .D (x )的值域为{0,1}B .D (x )是偶函数C .D (x )不是周期函数D .D (x )不是单调函数解析 显然D (x )不单调,且D (x )的值域为{0,1},因此选项A 、D 正确.若x 是无理数,-x ,x +1是无理数;若x 是有理数,-x ,x +1也是有理数.∴D (-x )=D (x ),D (x +1)=D (x ).则D (x )是偶函数,D (x )为周期函数,B 正确,C 错误. 答案 C 二、填空题7.若函数f (x )=x 2-|x +a |为偶函数,则实数a =________.解析 由题意知,函数f (x )=x 2-|x +a |为偶函数,则f (1)=f (-1),∴1-|1+a |=1-|-1+a |,∴a =0. 答案 08.已知y =f (x )+x 2是奇函数,且f (1)=1.若g (x )=f (x )+2,则g (-1)=________.解析 因为y =f (x )+x 2是奇函数,且x =1时,y =2,所以当x =-1时,y =-2,即f (-1)+(-1)2=-2,得f (-1)=-3,所以g (-1)=f (-1)+2=-1. 答案 -19.设奇函数f (x )的定义域为[-5,5],当x ∈[0,5]时,函数y =f (x )的图象如图所示,则使函数值y <0的x 的取值集合为________.解析 由原函数是奇函数,所以y =f (x )在[-5,5]上的图象关于坐标原点对称,由y =f (x )在[0,5]上的图象,得它在[-5,0]上的图象,如图所示.由图象知,使函数值y <0的x 的取值集合为(-2,0)∪(2,5).答案 (-2,0)∪(2,5)10. 设f (x )是偶函数,且当x >0时是单调函数,则满足f (2x )=f ⎝⎛⎭⎪⎫x +1x +4的所有x 之和为________.解析 ∵f (x )是偶函数,f (2x )=f ⎝⎛⎭⎪⎫x +1x +4, ∴f (|2x |)=f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪x +1x +4, 又∵f (x )在(0,+∞)上为单调函数, ∴|2x |=⎪⎪⎪⎪⎪⎪x +1x +4, 即2x =x +1x +4或2x =-x +1x +4, 整理得2x 2+7x -1=0或2x 2+9x +1=0,设方程2x 2+7x -1=0的两根为x 1,x 2,方程2x 2+9x +1=0的两根为x 3,x 4.则(x1+x2)+(x3+x4)=-72+⎝⎛⎭⎪⎫-92=-8.答案-8三、解答题11.已知f(x)是定义在R上的不恒为零的函数,且对任意x,y,f(x)都满足f(xy)=yf(x)+xf(y).(1)求f(1),f(-1)的值;(2)判断函数f(x)的奇偶性.解(1)因为对定义域内任意x,y,f(x)满足f(xy)=yf(x)+xf(y),所以令x=y =1,得f(1)=0,令x=y=-1,得f(-1)=0.(2)令y=-1,有f(-x)=-f(x)+xf(-1),代入f(-1)=0得f(-x)=-f(x),所以f(x)是(-∞,+∞)上的奇函数.12.已知函数f(x)对任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时,f(x)<0,f(1)=-2.(1)求证f(x)是奇函数;(2)求f(x)在[-3,3]上的最大值和最小值.(1)证明令x=y=0,知f(0)=0;再令y=-x,则f(0)=f(x)+f(-x)=0,所以f(x)为奇函数.(2)解任取x1<x2,则x2-x1>0,所以f(x2-x1)=f[x2+(-x1)]=f(x2)+f(-x1)=f(x2)-f(x1)<0,所以f(x)为减函数.而f(3)=f(2+1)=f(2)+f(1)=3f(1)=-6,f(-3)=-f(3)=6.所以f(x)max=f(-3)=6,f(x)min=f(3)=-6.13.已知函数f(x)是(-∞,+∞)上的奇函数,且f(x)的图象关于x=1对称,当x∈[0,1]时,f(x)=2x-1,(1)求证:f(x)是周期函数;(2)当x∈[1,2]时,求f(x)的解析式;(3)计算f(0)+f(1)+f(2)+…+f(2013)的值.解析(1)证明函数f(x)为奇函数,则f(-x)=-f(x),函数f(x)的图象关于x=1对称,则f(2+x)=f(-x)=-f(x),所以f(4+x)=f[(2+x)+2]=-f(2+x)=f(x),所以f(x)是以4为周期的周期函数.(2) 当x∈[1,2]时,2-x∈[0,1],又f(x)的图象关于x=1对称,则f(x)=f(2-x)=22-x-1,x∈[1,2].(3) ∵f(0)=0,f(1)=1,f(2)=0,f(3)=f(-1)=-f(1)=-1又f(x)是以4为周期的周期函数.∴f(0)+f(1)+f(2)+…+f(2013)=f(2 012)+f(2 013)=f(0)+f(1)=1.14.已知函数f(x)的定义域为R,且满足f(x+2)=-f(x).(1)求证:f(x)是周期函数;(2)若f(x)为奇函数,且当0≤x≤1时,f(x)=12x,求使f(x)=-12在[0,2 014]上的所有x的个数.(1)证明∵f(x+2)=-f(x),∴f(x+4)=-f(x+2)=-[-f(x)]=f(x),∴f(x)是以4为周期的周期函数.(2)解当0≤x≤1时,f(x)=12x,设-1≤x≤0,则0≤-x≤1,∴f(-x)=12(-x)=-12x.∵f(x)是奇函数,∴f(-x)=-f(x),∴-f(x)=-12x,即f(x)=12x.故f(x)=12x(-1≤x≤1).又设1<x<3,则-1<x-2<1,∴f(x-2)=12(x-2).又∵f(x)是以4为周期的周期函数∴f(x-2)=f(x+2)=-f(x),∴-f(x)=12(x-2),∴f (x )=-12(x -2)(1<x <3). ∴f (x )=⎩⎪⎨⎪⎧12x ,-1≤x ≤1,-12(x -2),1<x <3.由f (x )=-12,解得x =-1. ∵f (x )是以4为周期的周期函数, ∴f (x )=-12的所有x =4n -1(n ∈Z ).令0≤4n -1≤2 014,则14≤n ≤2 0154. 又∵n ∈Z ,∴1≤n ≤503(n ∈Z ), ∴在[0,2 014]上共有503个x 使f (x )=-12.。
人教版高一数学必修第三节 函数的奇偶性与周期性
第三节 函数的奇偶性与周期性一、基础知1.函数的奇偶性函数的定义域关于原点对称是函数具有奇偶性的前提条件.若f (x )≠0,则奇(偶)函数定义的等价形式如下:(1)f (-x )=f (x )⇔f (-x )-f (x )=0⇔f (-x )f (x )=1⇔f (x )为偶函数;(2)f (-x )=-f (x )⇔f (-x )+f (x )=0⇔f (-x )f (x )=-1⇔f (x )为奇函数.2.函数的周期性 (1)周期函数对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数f (x )为周期函数,称T 为这个函数的周期.周期函数定义的实质存在一个非零常数T ,使f (x +T )=f (x )为恒等式,即自变量x 每增加一个T 后,函数值就会重复出现一次.(2)最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.二、常用结论1.函数奇偶性常用结论(1)如果函数f (x )是奇函数且在x =0处有定义,则一定有f (0)=0;如果函数f (x )是偶函数,那么f (x )=f (|x |).(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.2.函数周期性常用结论 对f (x )定义域内任一自变量x : (1)若f (x +a )=-f (x ),则T =2a (a >0). (2)若f (x +a )=1f (x ),则T =2a (a >0). (3)若f (x +a )=-1f (x ),则T =2a (a >0).3.函数图象的对称性(1)若函数y =f (x +a )是偶函数,即f (a -x )=f (a +x ),则函数y =f (x )的图象关于直线x =a 对称.(2)若对于R 上的任意x 都有f (2a -x )=f (x )或f (-x )=f (2a +x ),则y =f (x )的图象关于直线x =a 对称.(3)若函数y =f (x +b )是奇函数,即f (-x +b )+f (x +b )=0,则函数y =f (x )关于点(b,0)中心对称.考点一 函数奇偶性的判断[典例] 判断下列函数的奇偶性: (1)f (x )=36-x 2|x +3|-3;(2)f (x )=1-x 2+x 2-1; (3)f (x )=log 2(1-x 2)|x -2|-2;(4)f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,x 2-x ,x >0.[解] (1)由f (x )=36-x 2|x +3|-3,可知⎩⎪⎨⎪⎧ 36-x 2≥0,|x +3|-3≠0⇒⎩⎪⎨⎪⎧-6≤x ≤6,x ≠0且x ≠-6,故函数f (x )的定义域为(-6,0)∪(0,6],定义域不关于原点对称,故f (x )为非奇非偶函数.(2)由⎩⎪⎨⎪⎧1-x 2≥0,x 2-1≥0⇒x 2=1⇒x =±1,故函数f (x )的定义域为{-1,1},关于原点对称,且f (x )=0,所以f (-x )=f (x )=-f (x ),所以函数f (x )既是奇函数又是偶函数.(3)由⎩⎪⎨⎪⎧1-x 2>0,|x -2|-2≠0⇒-1<x <0或0<x <1,定义域关于原点对称.此时f (x )=log 2(1-x 2)|x -2|-2=log 2(1-x 2)2-x -2=-log 2(1-x 2)x ,故有f (-x )=-log 2[1-(-x )2]-x =log 2(1-x 2)x =-f (x ),所以函数f (x )为奇函数. (4)法一:图象法画出函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,x 2-x ,x >0的图象如图所示,图象关于y 轴对称,故f (x )为偶函数.法二:定义法易知函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称,当x >0时,f (x )=x 2-x ,则当x <0时,-x >0,故f (-x )=x 2+x =f (x );当x <0时,f (x )=x 2+x ,则当x >0时,-x <0,故f (-x )=x 2-x =f (x ),故原函数是偶函数.法三:f (x )还可以写成f (x )=x 2-|x |(x ≠0),故f (x )为偶函数.[题组训练]1.(2018·福建期末)下列函数为偶函数的是( ) A .y =tan ⎝⎛⎭⎫x +π4 B .y =x 2+e |x | C .y =x cos xD .y =ln|x |-sin x解析:选B 对于选项A ,易知y =tan ⎝⎛⎭⎫x +π4为非奇非偶函数;对于选项B ,设f (x )=x 2+e |x |,则f (-x )=(-x )2+e |-x |=x 2+e |x |=f (x ),所以y =x 2+e |x |为偶函数;对于选项C ,设f (x )=x cos x ,则f (-x )=-x cos(-x )=-x cos x =-f (x ),所以y =x cos x 为奇函数;对于选项D ,设f (x )=ln|x |-sin x ,则f (2)=ln 2-sin 2,f (-2)=ln 2-sin(-2)=ln 2+sin 2≠f (2),所以y =ln|x |-sin x 为非奇非偶函数,故选B.2.设函数f (x )=e x -e -x2,则下列结论错误的是( )A .|f (x )|是偶函数B .-f (x )是奇函数C .f (x )|f (x )|是奇函数D .f (|x |)f (x )是偶函数解析:选D ∵f (x )=e x -e -x2,则f (-x )=e -x -e x2=-f (x ).∴f (x )是奇函数. ∵f (|-x |)=f (|x |),∴f (|x |)是偶函数,∴f (|x |)f (x )是奇函数.考点二 函数奇偶性的应用[典例] (1)(2019·福建三明模拟)函数y =f (x )是R 上的奇函数,当x <0时,f (x )=2x ,则当x >0时,f (x )=( )A .-2xB .2-xC .-2-xD .2x(2)(2018·贵阳摸底考试)已知函数f (x )=a -2e x +1(a ∈R)是奇函数,则函数f (x )的值域为( )A .(-1,1)B .(-2,2)C .(-3,3)D .(-4,4)[解析] (1)当x >0时,-x <0,∵x <0时,f (x )=2x ,∴当x >0时,f (-x )=2-x .∵f (x )是R 上的奇函数,∴当x >0时,f (x )=-f (-x )=-2-x .(2)法一:由f (x )是奇函数知f (-x )=-f (x ),所以a -2e -x+1=-a +2e x +1,得2a =2e x+1+2e -x +1,所以a =1e x +1+e x e x +1=1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).法二:函数f (x )的定义域为R ,且函数f (x )是奇函数,所以f (0)=a -1=0,即a =1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).[答案] (1)C (2)A[解题技法]应用函数奇偶性可解决的四类问题及解题方法(1)求函数值将待求值利用奇偶性转化为已知区间上的函数值求解.(2)求解析式先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.(3)求函数解析式中参数的值利用待定系数法求解,根据f (x )±f (-x )=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值.(4)画函数图象和判断单调性利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.[题组训练]1.(2019·贵阳检测)若函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=log 2(x +2)-1,则f (-6)=( )A .2B .4C .-2D .-4解析:选C 根据题意得f (-6)=-f (6)=1-log 2(6+2)=1-3=-2.2.已知函数f (x )为奇函数,当x >0时,f (x )=x 2-x ,则当x <0时,函数f (x )的最大值为________.解析:法一:当x <0时,-x >0,所以f (-x )=x 2+x .又因为函数f (x )为奇函数,所以f (x )=-f (-x )=-x 2-x =-⎝⎛⎭⎫x +122+14,所以当x <0时,函数f (x )的最大值为14. 法二:当x >0时,f (x )=x 2-x =⎝⎛⎭⎫x -122-14,最小值为-14,因为函数f (x )为奇函数,所以当x <0时,函数f (x )的最大值为14.答案:143.(2018·合肥八中模拟)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 解析:∵f (x )=x ln(x +a +x 2)为偶函数,∴f (-x )=f (x ),即-x ln(a +x 2-x )=x ln(x +a +x 2),从而ln[(a +x 2)2-x 2]=0,即ln a =0,故a =1.答案:1考点三 函数的周期性[典例] (1)(2018·开封期末)已知定义在R 上的函数f (x )满足f (x )=-f (x +2),当x ∈(0,2]时,f (x )=2x +log 2x ,则f (2 019)=( )A .5 B.12C .2D .-2(2)(2018·江苏高考)函数f (x )满足f (x +4)=f (x )(x ∈R),且在区间(-2,2]上,f (x )=⎩⎨⎧cos πx2,0<x ≤2,⎪⎪⎪⎪x +12,-2<x ≤0,则f (f (15))的值为________.[解析] (1)由f (x )=-f (x +2),得f (x +4)=f (x ),所以函数f (x )是周期为4的周期函数,所以f (2 019)=f (504×4+3)=f (3)=f (1+2)=-f (1)=-(2+0)=-2.(2)由函数f (x )满足f (x +4)=f (x )(x ∈R), 可知函数f (x )的周期是4, 所以f (15)=f (-1)=⎪⎪⎪⎪-1+12=12, 所以f (f (15))=f ⎝⎛⎭⎫12=cos π4=22. [答案] (1)D (2)22[题组训练]1.(2019·山西八校联考)已知f (x )是定义在R 上的函数,且满足f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f ⎝⎛⎭⎫-112=________. 解析:∵f (x +2)=-1f (x ),∴f (x +4)=f (x ), ∴f ⎝⎛⎭⎫-112=f ⎝⎛⎭⎫52,又2≤x ≤3时,f (x )=x , ∴f ⎝⎛⎭⎫52=52,∴f ⎝⎛⎭⎫-112=52. 答案:522.(2019·哈尔滨六中期中)设f (x )是定义在R 上的周期为3的函数,当x ∈[-2,1)时,f (x )=⎩⎪⎨⎪⎧4x 2-2,-2≤x ≤0,x ,0<x <1,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫214=________. 解析:由题意可得f ⎝⎛⎭⎫214=f ⎝⎛⎭⎫6-34=f ⎝⎛⎭⎫-34=4×⎝⎛⎭⎫-342-2=14,f ⎝⎛⎭⎫14=14.答案:14[课时跟踪检测]A 级1.下列函数为奇函数的是( ) A .f (x )=x 3+1 B .f (x )=ln 1-x1+xC .f (x )=e xD .f (x )=x sin x解析:选B 对于A ,f (-x )=-x 3+1≠-f (x ),所以其不是奇函数;对于B ,f (-x )=ln 1+x 1-x=-ln1-x 1+x=-f (x ),所以其是奇函数;对于C ,f (-x )=e -x ≠-f (x ),所以其不是奇函数;对于D ,f (-x )=-x sin(-x )=x sin x =f (x ),所以其不是奇函数.故选B.2.(2019·南昌联考)函数f (x )=9x +13x 的图象( )A .关于x 轴对称B .关于y 轴对称C .关于坐标原点对称D .关于直线y =x 对称解析:选B 因为f (x )=9x +13x =3x +3-x ,易知f (x )为偶函数,所以函数f (x )的图象关于y轴对称.3.设函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 2(x +1),x ≥0,g (x ),x <0,则f (-7)=( )A .3B .-3C .2D .-2解析:选B 因为函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 2(x +1),x ≥0,g (x ),x <0,所以f (-7)=-f (7)=-log 2(7+1)=-3.4.若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=( ) A .e x -e -xB.12(e x +e -x )C.12(e -x -e x ) D.12(e x -e -x )解析:选D 因为f (x )+g (x )=e x ,所以f (-x )+g (-x )=f (x )-g (x )=e -x ,所以g (x )=12(e x -e -x ).5.设f (x )是定义在R 上周期为2的奇函数,当0≤x ≤1时,f (x )=x 2-x ,则f ⎝⎛⎭⎫-52=( ) A .-14B .-12C.14D.12解析:选C 因为f (x )是定义在R 上周期为2的奇函数,所以f ⎝⎛⎭⎫-52=-f ⎝⎛⎭⎫52=-f ⎝⎛⎭⎫12.又当0≤x ≤1时,f (x )=x 2-x ,所以f ⎝⎛⎭⎫12=⎝⎛⎭⎫122-12=-14,则f ⎝⎛⎭⎫-52=14. 6.(2019·益阳、湘潭调研)定义在R 上的函数f (x ),满足f (x +5)=f (x ),当x ∈(-3,0]时,f (x )=-x -1,当x ∈(0,2]时,f (x )=log 2x ,则f (1)+f (2)+f (3)+…+f (2 019)的值等于( )A .403B .405C .806D .809解析:选B 定义在R 上的函数f (x ),满足f (x +5)=f (x ),即函数f (x )的周期为5.又当x ∈(0,2]时,f (x )=log 2x ,所以f (1)=log 21=0,f (2)=log 22=1.当x ∈(-3,0]时,f (x )=-x -1,所以f (3)=f (-2)=1,f (4)=f (-1)=0,f (5)=f (0)=-1.故f (1)+f (2)+f (3)+…+f (2 019)=403×[f (1)+f (2)+f (3)+f (4)+f (5)]+f (2 016)+f (2 017)+f (2 018)+f (2 019)=403×1+f (1)+f (2)+f (3)+f (4)=403+0+1+1+0=405.7.已知函数f (x )是偶函数,当x >0时,f (x )=ln x ,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫1e 2的值为________. 解析:由已知可得f ⎝⎛⎭⎫1e 2=ln 1e2=-2, 所以f ⎝⎛⎭⎫f ⎝⎛⎭⎫1e 2=f (-2). 又因为f (x )是偶函数,所以f ⎝⎛⎭⎫f ⎝⎛⎭⎫1e 2=f (-2)=f (2)=ln 2. 答案:ln 28.(2019·惠州调研)已知函数f (x )=x +1x -1,f (a )=2,则f (-a )=________.解析:法一:因为f (x )+1=x +1x ,设g (x )=f (x )+1=x +1x ,易判断g (x )=x +1x 为奇函数,故g (x )+g (-x )=x +1x -x -1x=0,即f (x )+1+f (-x )+1=0,故f (x )+f (-x )=-2. 所以f (a )+f (-a )=-2,故f (-a )=-4. 法二:由已知得f (a )=a +1a-1=2,即a +1a =3,所以f (-a )=-a -1a -1=-⎝⎛⎭⎫a +1a -1=-3-1=-4. 答案:-49.(2019·陕西一测)若函数f (x )=ax +b ,x ∈[a -4,a ]的图象关于原点对称,则函数g (x )=bx +ax,x ∈[-4,-1]的值域为________.解析:由函数f (x )的图象关于原点对称,可得a -4+a =0,即a =2,则函数f (x )=2x +b ,其定义域为[-2,2],所以f (0)=0,所以b =0,所以g (x )=2x ,易知g (x )在[-4,-1]上单调递减,故值域为[g (-1),g (-4)],即⎣⎡⎦⎤-2,-12. 答案:⎣⎡⎦⎤-2,-12 10.设函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围是____________.解析:当x >0时,lg x >0,所以x >1, 当x <0时,由奇函数的对称性得-1<x <0, 故填(-1,0)∪(1,+∞). 答案:(-1,0)∪(1,+∞)11.f (x )为R 上的奇函数,当x >0时,f (x )=-2x 2+3x +1,求f (x )的解析式. 解:当x <0时,-x >0,则f (-x )=-2(-x )2+3(-x )+1=-2x 2-3x +1. 由于f (x )是奇函数,故f (x )=-f (-x ), 所以当x <0时,f (x )=2x 2+3x -1. 因为f (x )为R 上的奇函数,故f (0)=0.综上可得f (x )的解析式为f (x )=⎩⎪⎨⎪⎧-2x 2+3x +1,x >0,0,x =0,2x 2+3x -1,x <0.12.设函数f (x )是定义在R 上的奇函数,对任意实数x 有f ⎝⎛⎭⎫32+x =-f ⎝⎛⎭⎫32-x 成立. (1)证明y =f (x )是周期函数,并指出其周期; (2)若f (1)=2,求f (2)+f (3)的值. 解:(1)证明:由f ⎝⎛⎭⎫32+x =-f ⎝⎛⎭⎫32-x ,且f (-x )=-f (x ),知f (3+x )=f ⎣⎡⎦⎤32+⎝⎛⎭⎫32+x =-f ⎣⎡⎦⎤32-⎝⎛⎭⎫32+x =-f (-x )=f (x ), 所以y =f (x )是周期函数,且T =3是其一个周期. (2)因为f (x )为定义在R 上的奇函数,所以f (0)=0,且f (-1)=-f (1)=-2,又T =3是y =f (x )的一个周期,所以f (2)+f (3)=f (-1)+f (0)=-2+0=-2.B 级1.已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图象在区间[0,6]上与x 轴的交点的个数为( )A .6B .7C .8D .9解析:选B 因为f (x )是最小正周期为2的周期函数,且0≤x <2时,f (x )=x 3-x =x (x -1)(x +1),所以当0≤x <2时,f (x )=0有两个根,即x 1=0,x 2=1.由周期函数的性质知,当2≤x <4时,f (x )=0有两个根,即x 3=2,x 4=3;当4≤x ≤6时,f (x )=0有三个根,即x 5=4,x 6=5,x 7=6,故f (x )的图象在区间[0,6]上与x 轴的交点个数为7.2.(2019·洛阳统考)若函数f (x )=ln(e x +1)+ax 为偶函数,则实数a =________. 解析:法一:(定义法)∵函数f (x )=ln(e x +1)+ax 为偶函数,∴f (-x )=f (x ), 即ln(e -x +1)-ax =ln(e x +1)+ax ,∴2ax =ln(e -x+1)-ln(e x+1)=ln e -x +1e x +1=ln 1e x =-x ,∴2a =-1,解得a =-12.法二:(特殊值法)由题意知函数f (x )的定义域为R ,由f (x )为偶函数得f (-1)=f (1), ∴ln(e -1+1)-a =ln(e 1+1)+a ,∴2a =ln(e -1+1)-ln(e 1+1)=ln e -1+1e +1=ln 1e =-1,∴a =-12.答案:-123.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. 解:(1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x .又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象(如图所示)知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3, 故实数a 的取值范围是(1,3].。
高考数学一轮复习-2-3函数的奇偶性与周期性课件-理
•f(x)在R上是奇函数, •∴f(x)在区间[-2,2]上是增函数, •∴f(-1)<f(0)<f(1),即f(-25)<f(80)<f(11).
基础诊断
考点突破
课堂总结
考点二 函数周期性的应用 【例 2】(1)(2014·安徽卷)若函数 f(x)(x∈R)是周期为 4 的奇函
数,且在[0,2]上的解析式为 f(x)=xsin1-πxx,,1<0≤x≤x≤2,1, 则 f 249+f 461=________. (2)已知 f(x)是定义在 R 上的偶函数,且 f(x+2)=-f(x),当 2≤x≤3 时,f(x)=x,则 f(105.5)=________.
• 第3讲 函数的奇偶性与周期性
基础诊断
考点突破
课堂总结
• 考试要求 1.函数奇偶性的含义及判断,B级 要求;2.运用函数的图象理解、研究函数的奇 偶性,A级要求;3.函数的周期性、最小正周 期的含义,周期性的判断及应用,B级要求.
基础诊断
考点突破
课堂总结
• 知识梳理 • 1.函数的奇偶性
奇偶 性
基础诊断
考点突破
课堂总结
【训练 2】 (2014·南通模拟)已知函数 f(x)是定义在 R 上的奇函数, 且是以 2 为周期的周期函数.若当 x∈[0,1)时,f(x)=2x-1,则
f(log16)的值为________.
2
解析 ∵f(x)是周期为 2 的奇函数.
∴f(log16)=f
2
log1
2
法二 易知 f(x)的定义域为 R. ∵f(-x)+f(x)=log2[-x+ -x2+1]+ log2(x+ x2+1)=log21=0,即 f(-x)=-f(x), ∴f(x)为奇函数. 对于 g(x),由|x-2|>0,得 x≠2. ∴g(x)的定义域为{x|x≠2}. ∵g(x)的定义域关于原点不对称, ∴g(x)为非奇非偶函数. 答案 (1)① (2)奇 非奇非偶
高考数学第2章函数、导数及其应用第3讲函数的奇偶性与周期性创高三全册数学
12/8/2021
第十九页,共七十四页。
解析 答案
4.设函数 f(x)=cosπ2-xπ2+x+e2x+e2的最大值为 M,最小值为 N,则(M
+N-1)2020 的值为( )
A.1
B.2
C.22020
D.32020
解析 由已知 x∈R,f(x)=cosπ2-xπ2+x+e2x+e2=sinπx+xx2+2+ee22+2ex=
12/8/2021
第二页,共七十四页。
1
PART ONE
基础知识过关(guò〃guān)
12/8/2021
第三页,共七十四页。
1.函数的奇偶性
奇偶性
定义
图象特点
一般地,如果对于函数f(x)的定义域内 偶函数 任意一个x,都有 01 f(-x)=f(x) ,那 关于 02 y轴对称
么函数f(x)就叫做偶函数
第二章 函数(hánshù)、导数及其应用 第3讲 函数(hánshù)的奇偶性与周期性
12/8/2021
第一页,共七十四页。
[考纲解读] 1.了解函数奇偶性的含义. 2.会运用基本初等函数的图象分析函数的奇偶性.(重点) 3.了解函数周期性、最小正周期的含义,会判断、应用简单 函数的周期性.(重点) [考向预测] 从近三年高考情况来看,函数的奇偶性与周期性 是高考的一个热点.预测2021年高考会侧重以下三点:①函数 奇偶性的判断及应用;②函数周期性的判断及应用;③综合利 用函数奇偶性、周期性和单调性求参数的值或解不等式.
3.(2019·衡水模拟)已知 f(x)是定义在 R 上的奇函数,若 x>0 时,f(x)
=xln x,则 x<0 时,f(x)=( )
A.xln x
B.xln (-x)
函数的奇偶性与周期性课件
∴函∴数函数f(xf)(在x)在[a,[a,++∞∞)上)上的的最最小小值值f(af()a=)=a2a+2+1.1.
综综上上,,当当 aa≤≤--1212时时,,函函数数f(fx(x)的)的最最小小值值是是34-34-a,a,当当--21<21a<≤a≤21时21时,,函函数数 ff((xx))的的最最小小值值是是aa22++11,,当当aa>>1212,,函函数数f(fx()x的)的最最小小值值是是a+a+34 34
C
0, 1 2,
2
D
0, 1 1 ,2 8 2
例:设 f x 、 gx分别是定义在 R 上的奇函数
和偶函数,当 x 0 时, f xg(x) f (x)g(x) 0
且 g(3) 0 ,则不等式 f (x)g(x) 0 的解集是
( D)
A (3,0) (3,) B (3,0) (0,3)
是奇函数,则a=________
解⇒析1-2:x2解 ⇒fx(+-析 1-2a: xx=2)=fx(+ --2a-x=2)x1= -x- -121- 1+2x+1- x- 1aa=11+⇒+1a-a22=xa2⇒=1x- +221xa2-a=x1,+21x- af-(1,-21xfx- (-- 2)=x12x-2x)-== x2xf- 1= (x. f)1(x. )
3.(2008年上海卷)设函数f(x)是定义在R上的
奇函数,若当x∈(0,+∞)时,f(x)=lg x,则 满足f(x)>0的x的取值范围(-1是,0_)_∪__(_1__,+∞)
函数奇偶性的判断
第二章 第3讲 函数的奇偶性、周期性与对称性-2025年高考数学备考
第二章函数第3讲函数的奇偶性、周期性与对称性课标要求命题点五年考情命题分析预测1.了解奇偶性的概念和几何意义.2.了解周期性的概念和几何意义.函数的奇偶性2023新高考卷ⅠT11;2023新高考卷ⅡT4;2023全国卷乙T4;2023全国卷甲T13;2022新高考卷ⅠT12;2022全国卷乙T16;2021全国卷乙T4;2021全国卷甲T12;2021新高考卷ⅠT13;2021新高考卷ⅡT8;2021新高考卷ⅡT14;2020全国卷ⅡT9;2020新高考卷ⅠT8;2019全国卷ⅡT14;2019全国卷ⅢT11本讲为高考命题重点,命题热点有函数奇偶性的判断,利用函数的奇偶性求解析式、求函数值、解不等式等,函数周期性的判断及应用.题型以选择题、填空题为主,函数性质综合命题时难度中等偏大.预计2025年高考命题稳定,备考时注重常规题型训练的同时,关注命题角度创新试题及抽象函数性质的灵活运用.函数的周期性2022新高考卷ⅠT12;2022新高考卷ⅡT8;2022全国卷乙T12函数图象的对称性2022全国卷乙T12函数性质的综合应用2022新高考卷ⅠT12;2022全国卷乙T12;2021新高考卷ⅡT8;2021全国卷甲T12;2020新高考卷ⅠT8;2019全国卷ⅢT11学生用书P0241.函数的奇偶性奇偶性定义图象特征特性单调性奇函数一般地,设函数f (x )的定义域为D ,如果∀x ∈D ,都有-x ∈D ,且①f (-x )=关于②原点对称.(1)如果定义域中包含0,那么f (0)=③0.(2)若函数在关于原在关于原点对称的区间上单调性⑤相同.-f(x),那么函数f(x)就叫做奇函数.点对称的区间上有最值,则f(x)max+f(x)min=④0.偶函数一般地,设函数f(x)的定义域为D,如果∀x∈D,都有-x∈D,且⑥f(-x)=f(x),那么函数f(x)就叫做偶函数.关于⑦y轴对称.f(x)=f(|x|).在关于原点对称的区间上单调性⑧相反.注意(1)只有函数在x=0处有定义时,f(0)=0才是f(x)为奇函数的必要不充分条件;(2)既是奇函数又是偶函数的函数只有一种类型,即f(x)=0,x∈D,其中定义域D是关于原点对称的非空数集.规律总结1.常见的奇(偶)函数(1)函数f(x)=a x+a-x为偶函数,函数g(x)=a x-a-x为奇函数;(2)函数f(x)=--+-=2-12+1为奇函数,函数g(x)=log a-+为奇函数;(3)函数f(x)=log a(x+2+1)为奇函数,函数g(x)=log a(2+1-x)也为奇函数.2.函数奇偶性的拓展结论(1)若函数y=f(x+a)是偶函数,则f(x+a)=f(-x+a),函数y=f(x)的图象关于直线x=a对称.(2)若函数y=f(x+b)是奇函数,则f(x+b)+f(-x+b)=0,函数y=f(x)的图象关于点(b,0)中心对称.2.函数的周期性(1)周期函数一般地,设函数f(x)的定义域为D,如果存在一个非零常数T,使得对每一个x∈D都有x+T∈D,且⑨f(x+T)=f(x),那么函数f(x)就叫做周期函数.非零常数T叫做这个函数的周期.(2)最小正周期如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小的正数就叫做f(x)的⑩最小正周期.注意并不是所有的周期函数都有最小正周期,如f(x)=5.常用结论函数周期性的常用结论设函数y=f(x),x∈R,a>0,a≠b.(1)若f(x+a)=-f(x),则2a是函数f(x)的周期;(2)若f(x+a)=±1(),则2a是函数f(x)的周期;(3)若f(x+a)=f(x+b),则|a-b|是函数f(x)的周期.3.函数图象的对称性已知函数f(x)是定义在R上的函数,(1)若f(a+x)=f(b-x)恒成立,则y=f(x)的图象关于直线⑪x=+2对称.(2)若f(a+x)+f(b-x)=c,则y=f(x)的图象关于点⑫(+2,2)对称.注意(1)奇、偶函数的图象平移之后对应的函数不一定有奇偶性,但其图象一定有对称性.(2)注意区分抽象函数的周期性与对称性的表示,周期性的表示中,括号内x的符号相同,对称性的表示中,括号内x的符号相反.常用结论函数f(x)图象的对称性与周期的关系(1)若函数f(x)的图象关于直线x=a与直线x=b对称,则函数f(x)的周期为2|b-a|;(2)若函数f(x)的图象既关于点(a,0)对称,又关于点(b,0)对称,则函数f(x)的周期为2|b-a|;(3)若函数f(x)的图象既关于直线x=a对称,又关于点(b,0)对称,则函数f(x)的周期为4|b-a|.1.已知函数f(x)为奇函数,当x>0时,f(x)=x2+1,则f(-1)=(A)A.-2B.0C.1D.22.函数f(x)=r1图象的对称中心为(B)A.(0,0)B.(0,1)C.(1,0)D.(1,1)解析由题知f(x)=r1=1+1,其图象可由y=1的图象向上平移一个单位长度得到,又y=1的图象关于(0,0)对称,所以f(x)=1+1的图象关于(0,1)对称.3.[多选]以下函数为偶函数的是(AC)A.f(x)=x2-1B.f(x)=x3C.f(x)=x2+cos xD.f(x)=1+|x|4.已知函数f(x)为R上的偶函数,且当x<0时,f(x)=x(x-1),则当x>0时,f(x)=x(x+1).5.已知定义在R上的函数f(x)满足f(x)=f(x-2),当x∈[0,2)时,f(x)=x2-4x,则当x∈[4,6)时,f(x)=x2-12x+32.解析设x∈[4,6),则x-4∈[0,2),则f(x-4)=(x-4)2-4(x-4)=x2-12x +32.又f(x)=f(x-2),所以函数f(x)的周期为2,所以f(x-4)=f(x),所以当x∈[4,6)时,f(x)=x2-12x+32.6.[2024北京市海淀区中国农业大学附属中学模拟]若f(x)=+,<0,B-1,>0是奇函数,则a=1,b=1.解析由f(x)为奇函数,知f(-x)=-f(x),当x>0时,可得-x+a=-bx+1,所以b=1,a=1.学生用书P026命题点1函数的奇偶性角度1判断函数的奇偶性例1(1)[全国卷Ⅰ]设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是(B)A.f(x)g(x)是偶函数B.f(x)|g(x)|是奇函数C.|f(x)|g(x)是奇函数D.|f(x)g(x)|是奇函数解析因为f(x)为奇函数,g(x)为偶函数,所以f(x)g(x)为奇函数,f(x)·|g(x)|为奇函数,|f(x)|g(x)为偶函数,|f(x)g(x)|为偶函数,故选B.(2)[2021全国卷乙]设函数f (x )=1-1+,则下列函数中为奇函数的是(B )A.f (x -1)-1B.f (x -1)+1C.f (x +1)-1D.f (x +1)+1解析解法一因为f (x )=1-1+,所以f (x -1)=1-(-1)1+(-1)=2-,f (x +1)=1-(r1)1+(r1)=-r2.对于A ,F (x )=f (x -1)-1=2--1=2-2,定义域关于原点对称,但不满足F (x )=-F (-x );对于B ,G (x )=f (x -1)+1=2-+1=2,定义域关于原点对称,且满足G (x )=-G (-x );对于C ,f (x +1)-1=-r2-1,定义域不关于原点对称;对于D ,f (x +1)+1=-r2+1,定义域不关于原点对称.故选B.解法二f (x )=1-1+=2-(r1)1+=21+-1,为保证函数变换之后为奇函数,需将函数y =f (x )的图象向右平移一个单位长度,再向上平移一个单位长度,得到的图象对应的函数为y =f (x -1)+1,故选B.方法技巧1.(1)函数定义域关于原点对称是函数有奇偶性的前提条件;(2)若定义域关于原点对称,则判断f (x )与f (-x )是否具有等量关系,具体运算中,可转化为判断f (x )+f (-x )=0(奇函数)或f (x )-f (-x )=0(偶函数)是否成立.2.在公共定义域内有:奇函数±奇函数=奇函数,偶函数±偶函数=偶函数,奇函数×奇函数=偶函数,偶函数×偶函数=偶函数,奇函数×偶函数=奇函数.注意对于分段函数奇偶性的判断,要分段判断f (-x )=f (x )或f (-x )=-f (x )是否成立,只有当所有区间都满足相同关系时,才能判断该分段函数的奇偶性.角度2函数奇偶性的应用例2(1)[2023新高考卷Ⅱ]若f (x )=(x +a )·ln 2-12r1为偶函数,则a =(B )A.-1B.0C.12D.1解析解法一设g(x)=ln2-12r1,易知g(x)的定义域为(-∞,-12)∪(12,+∞),且g(-x)=ln-2-1=ln2r12-1=-ln2-12r1=-g(x),所以g(x)为奇函数.若-2r1f(x)=(x+a)ln2-12r1为偶函数,则y=x+a应为奇函数,所以a=0,故选B.解法二因为f(x)=(x+a)ln2-12r1为偶函数,f(-1)=(a-1)ln3,f(1)=(a+1)ln13=-(a+1)ln3,所以(a-1)ln3=-(a+1)ln3,解得a=0,经检验,满足题意,故选B.(2)[2024江苏南通模拟]已知定义在R上的函数f(x),g(x)分别是奇函数和偶函数,且f(x)+g(x)=x2-2x,则f(2)+g(1)=-3.解析由f(x)是奇函数,g(x)是偶函数,得f(-x)=-f(x),g(-x)=g(x),∵f(x)+g(x)=x2-2x,∴f(-x)+g(-x)=(-x)2-2(-x)=x2+2x,即-f(x)+g(x)=x2+2x,则有f(x)=-2x,g(x)=x2,则f(2)+g(1)=-4+1=-3.方法技巧函数奇偶性的应用类型及解题策略(1)求函数解析式或函数值:借助奇偶性转化为求已知区间上的函数解析式或函数值,或利用奇偶性构造关于f(x)的方程(组)求解析式.(2)求参数值:利用定义域关于原点对称或f(x)±f(-x)=0列方程(组)求解,对于在x=0处有定义的奇函数f(x),可考虑列等式f(0)=0求解.注意利用特殊值法求参数时要检验.训练1(1)[2024辽宁鞍山一中模拟]下列函数中,既是偶函数又在(0,+∞)上单调递增的是(C)A.f(x)=x ln xB.f(x)=ln(-x+2+1)C.f(x)=e x+e-xD.f(x)=e x-e-x解析对于A,因为f(x)=x ln x的定义域为(0,+∞),不关于原点对称,所以f(x)=x ln x不是偶函数,故A选项不符合题意;对于B,因为f(x)=ln(-x+2+1)的定义域为R,关于原点对称,f(x)+f(-x)=ln(-x+2+1)+ln(x+2+1)=ln 1=0,所以f (x )=ln (-x +2+1)是奇函数,故B 选项不符合题意;对于C ,因为f (x )=e x +e -x 的定义域为R ,关于原点对称,且f (-x )=e -x +e x =f (x ),所以f (x )=e x +e -x 是偶函数.f '(x )=e x -e -x ,当x ∈(0,+∞)时,有e >e 0=1>e -,则f '(x )=e x -e -x >0,所以f (x )=e x +e -x 在(0,+∞)上单调递增,故C 选项符合题意;对于D ,因为f (x )=e x -e -x 的定义域为R ,关于原点对称,但f (-x )=e -x -e x =-(e x -e -x )=-f (x ),所以f (x )=e x -e -x 是奇函数,故D 选项不符合题意.故选C.(2)[2024江苏省扬州中学模拟]定义在R 上的奇函数f (x ),当x ≥0时,f (x )=2x -a ·3-x ,当x <0时,f (x )=3x -2-x.解析因为函数f (x )为奇函数,定义域为R ,所以f (0)=20-a ×30=0,解得a =1.若x <0,则-x >0,所以f (-x )=2-x -3x ,又f (x )为奇函数,所以当x <0时,f (x )=-f (-x )=3x -2-x ,即当x <0时,f (x )=3x -2-x .命题点2函数的周期性例3(1)已知f (x +1)是定义在R 上且周期为2的函数,当x ∈[-1,1)时,f (x )=-22+4,-1≤<0,sin π,0≤<1,则f (3)·f (-103)=(A)A.3B.-3C.解析因为f (x +1)是定义在R 上且周期为2的函数,所以f (x )也是周期为2的函数,(解题关键:由f (x +1)的周期得到f (x )的周期)则f (3)=f (-1)=-2+4=2,f (-103)=f (23)=sin 2π3=f (3)·f (-103)=2=3,故选A.(2)[2022新高考卷Ⅱ]已知函数f (x )的定义域为R ,且f (x +y )+f (x -y )=f (x )·f (y ),f (1)=1,则∑J122f (k )=(A )A.-3B.-2C.0D.1解析因为f (1)=1,所以在f (x +y )+f (x -y )=f (x )f (y )中,令y =1,得f (x +1)+f (x -1)=f (x )f (1),所以f (x +1)+f (x -1)=f (x )①,所以f (x+2)+f (x )=f (x +1)②.由①②相加,得f (x +2)+f (x -1)=0,故f (x +3)+f (x )=0,所以f (x +3)=-f (x ),所以f (x +6)=-f (x +3)=f (x ),所以函数f (x )的一个周期为6.在f (x +y )+f (x -y )=f (x )f (y )中,令x =1,y =0,得f (1)+f (1)=f (1)f (0),所以f (0)=2,再令x =0,代入f (x +3)+f (x )=0,得f (3)=-2.令x =1,y =1,得f (2)+f (0)=f (1)f (1),所以f (2)=-1.由f (x +3)+f (x )=0,得f (1)+f (4)=0,f (2)+f (5)=0,f (3)+f (6)=0,所以f (1)+f (2)+…+f (6)=0,根据函数的周期性知,∑J122f (k )=f (1)+f (2)+f (3)+f (4)=f (2)+f (3)=-1-2=-3,故选A.方法技巧(1)利用函数的周期性可以将局部的函数性质扩展到整体.(2)判断抽象函数的周期一般需要对变量进行赋值.训练2(1)[2024广东梅州模拟]已知函数f (x )=e r1,≤1,-(-1),>1,则f (2024-ln 2)=(A )A.-22B.-2C.2D.22解析当x >1时,f (x )=-f (x -1),则f (x +2)=-f (x +1)=f (x ),所以x >1时,f (x )是周期为2的函数.因为2024-ln 2=2022+2-ln 2,且2>2-ln 2>2-ln e =1,所以f (2024-ln 2)=f (2-ln 2)=-f (1-ln 2)=-e1-ln 2+1=-e 2e ln2=-e 22.故选A.(2)[2024云南部分名校联考]已知f (x )是定义在R 上的偶函数,且f (x )+f (4-x )=0,当0≤x ≤2时,f (x )=a ·2x +x 2,则f (2024)=-1.解析因为f (x )是定义在R 上的偶函数,且f (x )+f (4-x )=0,所以f (x )=-f (4-x )=-f (x -4),f (x -4)=-f (x -8),所以f (x )=f (x -8),故f (x )是以8为周期的函数,则f (2024)=f (0).令x =2,则f (2)+f (4-2)=2f (2)=8a +8=0,则a =-1,所以f (0)=-20=-1,即f (2024)=-1.命题点3函数图象的对称性例4(1)已知函数f (x )(x ∈R )满足f (-x )=2-f (x ),若函数y =r1与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i=1(x i +y i )=(B)A.0B.mC.2mD.4m解析由f (-x )=2-f (x )知f (x )的图象关于点(0,1)对称,而y =r1=1+1的图象也关于点(0,1)对称,因此两个函数图象的交点也关于点(0,1)对称,且成对出现,则x1+x m=x2+x m-1=…=0,y1+y m=y2+y m-1=…=2,所以∑i=1(x i+y i)=0×2+2×2=m.(2)函数f(x)=(x2-1)(e x-e-x)+x+1在区间[-2,2]上的最大值与最小值分别为M,N,则M+N的值为2.解析设g(x)=(x2-1)(e x-e-x)+x,则f(x)=g(x)+1.因为g(-x)=(x2-1)(e-x-e x)-x=-g(x),且g(x)的定义域关于原点对称,所以g(x)是奇函数.由奇函数图象的对称性知g(x)max+g(x)min=0,故M+N=[g(x)+1]max+[g(x)+1]min=2+g(x)max+g(x)min=2.方法技巧1.解决与函数图象的对称性有关的问题,应结合题设条件的结构特征及对称性的定义,求出函数图象的对称轴或对称中心,进而利用对称性解决求值或参数问题.2.常用结论:三次函数f(x)=ax3+bx2+cx+d(a≠0)的图象的对称中心为(-3,f(-3)).训练3(1)[多选]关于函数f(x)=sin x+1sin,下列结论正确的是(BC)A.f(x)的图象关于y轴对称B.f(x)的图象关于原点对称C.f(x)的图象关于直线x=π2对称D.f(x)的最小值为2解析由题意知f(x)的定义域为{x|x≠kπ,k∈Z},且关于原点对称.又f(-x)=sin(-x)+1sin(-)=-(sin x+1sin)=-f(x),所以函数f(x)为奇函数,其图象关于原点对称,所以A错误,B正确.因为f(π-x)=sin(π-x)+1sin(π-)=sin x+1sin=f(x),所以函数f(x)的图象关于直线x=π2对称,C正确.当sin x<0时,f(x)<0,所以D错误.故选BC.(2)已知函数f(x)=x3-3x2+x+1+sin(x-1),则函数f(x)在(0,2)上的最大值与最小值的和为0.解析由三次函数图象的对称性可得,y=x3-3x2+x+1的图象的对称中心为(1,0),因为y=sin(x-1)的图象也关于(1,0)对称,所以函数f(x)在(0,2)上的图象关于(1,0)对称,所以f(x)在(0,2)上的最大值与最小值的和为0.命题点4函数性质的综合应用例5(1)[2021全国卷甲]设函数f(x)的定义域为R,f(x+1)为奇函数,f(x+2)为偶函数,当x∈[1,2]时,f(x)=ax2+b.若f(0)+f(3)=6,则f(92)=(D)A.-94 B.-32 C.74 D.52解析因为f(x+1)为奇函数,所以函数f(x)的图象关于点(1,0)对称,即有f(x)+f(2-x)=0,令x=1,得f(1)=0,即a+b=0①,令x=0,得f(0)=-f(2).因为f(x+2)为偶函数,所以函数f(x)的图象关于直线x=2对称,即有f(x)-f(4-x)=0,令x=1,得f(3)=f(1),所以f(0)+f(3)=-f(2)+f(1)=-4a-b+a+b=-3a=6②.根据①②可得a=-2,b=2,所以当x∈[1,2]时,f(x)=-2x2+2.根据函数f(x)的图象关于直线x=2对称,且关于点(1,0)对称,可得函数f(x)的周期为4,所以f(92)=f(12)=-f(32)=2×(32)2-2=52.(2)[2024平许济洛第一次质检]定义在R上的偶函数f(x)满足f(2-x)+f(x)=0,且f(x)在[-2,0]上单调递增.若a=f(tan5π18),b=f(3),c=f(log43),则(A)A.a<b<cB.a<c<bC.c<b<aD.c<a<b解析由f(2-x)+f(x)=0可得f(x)的图象关于点(1,0)中心对称,由f(x)为偶函数可得f(x)的图象关于y轴对称,根据函数周期性结论可得函数f(x)的周期为4,所以f(3)=f(3-4)=f(-1)=f(1),因为0<log43<1,1=tanπ4<tan5π18<tanπ3=3<2,所以0<log43<1<tan5π18<2,因为偶函数f(x)在[-2,0]上单调递增,所以函数f(x)在(0,2]上单调递减,所以f(tan5π18)<f(1)=f(3)<f(log43),即a<b<c.故选A.方法技巧1.对于函数单调性与奇偶性的综合问题,常利用奇、偶函数的图象的对称性,以及奇、偶函数在关于原点对称的区间上的单调性求解.2.对于函数周期性与奇偶性的综合问题,常利用奇偶性及周期性将所求函数值的自变量转换到已知函数解析式的自变量的取值范围内求解.3.函数的奇偶性、周期性及单调性是函数的三大性质,在高考中常常将它们综合在一起命题,在解题时,往往需要先借助函数的奇偶性和周期性来确定另一区间上的单调性,即实现区间的转换,再利用单调性解决相关问题.训练4(1)已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=e x+x2+x,则不等式f(2-a)+f(2a-3)>0的解集为(B)A.(-1,+∞)B.(1,+∞)C.(-∞,-1)D.(-∞,1)解析易知f(x)在(0,+∞)上单调递增,且在(0,+∞)上,f(x)>1.因为f(x)为R上的奇函数,所以f(0)=0,f(x)在(-∞,0)上单调递增,且在(-∞,0)上f(x)<-1,故f(x)在R上单调递增.原不等式可化为f(2-a)>-f(2a-3),即f(2-a)>f(3-2a),所以2-a>3-2a,故a>1,选B.(2)[2024湖北部分重点中学联考]已知函数y=f(x)是R上的奇函数,∀x∈R,都有f(2-x)=f(x)+f(2)成立,则f(1)+f(2)+f(3)+…+f(2024)=0.解析因为函数f(x)是R上的奇函数,所以f(0)=0.因为∀x∈R,都有f(2-x)=f(x)+f(2),所以令x=2,得f(0)=2f(2),得f(2)=0,所以f(2-x)=f(x),则函数f(x)的图象关于直线x=1对称.因为函数f(x)的图象关于原点对称,所以函数f(x)是以4为周期的周期函数,且函数f(x)的图象关于点(2,0)中心对称,则f(1)+f(3)=0,又f(2)=0,f(4)=f(0)=0,所以f(1)+f(2)+f(3)+f(4)=0,所以f(1)+f(2)+f(3)+…+f(2024)=506[f(1)+f(2)+f(3)+f(4)]=0.学生用书P028抽象函数问题的解题策略策略1赋值法例6[多选/2023新高考卷Ⅰ]已知函数f(x)的定义域为R,f(xy)=y2f(x)+x2f(y),则(ABC)A.f(0)=0B.f(1)=0C.f(x)是偶函数D.x=0为f(x)的极小值点解析解法一令x=y,则有f(x2)=2x2f(x).当x=0时,可得f(0)=0,A正确.当x =1时,可得f(1)=2f(1),所以f(1)=0,B正确.因为f((-x)2)=2(-x)2·f(-x),即f(x2)=2x2f(-x),所以f(-x)=f(x),所以函数f(x)为偶函数,C 正确.因为无法判断函数f(x)的单调性,所以无法确定f(x)的极值点,故D不正确,故选ABC.解法二取x=y=0,则f(0)=0,故A正确;取x=y=1,则f(1)=f(1)+f(1),所以f(1)=0,故B正确;取x=y=-1,则f(1)=f(-1)+f(-1),所以f(-1)=0,取y=-1,则f(-x)=f(x)+x2f(-1),所以f(-x)=f(x),所以函数f(x)为偶函数,故C正确;因为f(0)=0,且函数f(x)为偶函数,所以函数f(x)的图象关于y轴对称,所以x=0可能为函数f(x)的极小值点,也可能为函数f(x)的极大值点,也可能不是函数f(x)的极值点,故D不正确.综上,选ABC.方法技巧赋值法是指利用已知条件,对变量赋值,从而得出抽象函数在某点处的函数值或抽象函数的性质.策略2性质转化法例7(1)[2022全国卷乙]已知函数f(x),g(x)的定义域均为R,且f(x)+g(2-x)=5,g(x)-f(x-4)=7.若y=g(x)的图象关于直线x=2对称,g(2)=4,则∑22J1f(k)=(D)A.-21B.-22C.-23D.-24解析由y=g(x)的图象关于直线x=2对称,可得g(2+x)=g(2-x).在f(x)+g(2-x)=5中,用-x替换x,可得f(-x)+g(2+x)=5,可得f(-x)=f(x)①,所以y=f(x)为偶函数.在g(x)-f(x-4)=7中,用2-x替换x,得g(2-x)=f(-x-2)+7,代入f(x)+g(2-x)=5中,得f(x)+f(-x-2)=-2②,所以y=f(x)的图象关于点(-1,-1)中心对称,所以f(1)=f(-1)=-1.由①②可得f (x )+f (x +2)=-2,所以f (x +2)+f (x +4)=-2,所以f (x +4)=f (x ),所以函数f (x )是以4为周期的周期函数.由f (x )+g (2-x )=5可得f (0)+g (2)=5,又g (2)=4,所以可得f (0)=1,又f (x )+f (x +2)=-2,所以f (0)+f (2)=-2,得f (2)=-3,又f (3)=f (-1)=-1,f (4)=f (0)=1,所以∑J122f (k )=5(f (1)+f (2)+f (3)+f (4))+f (1)+f (2)=-24.故选D.(2)[多选/2022新高考卷Ⅰ]已知函数f (x )及其导函数f '(x )的定义域均为R ,记g (x )=f '(x ).若f (32-2x ),g (2+x )均为偶函数,则(BC )A.f (0)=0B.g (-12)=0C.f (-1)=f (4)D.g (-1)=g (2)解析解法一(转化法)因为f (32-2x )为偶函数,所以f (32-2x )=f (32+2x ),函数f (x )的图象关于直线x =32对称,则f (-1)=f (4),所以C 正确;因为g (2+x )为偶函数,所以g (2+x )=g (2-x ),函数g (x )的图象关于直线x =2对称,因为g (x )=f'(x ),所以函数g (x )的图象关于点(32,0)对称,(二级结论:若函数h (x )为偶函数,则其图象上在关于y 轴对称的点处的切线的斜率互为相反数,即其导函数的图象关于原点对称.本题函数f (x )的图象关于直线x =32对称,则其导函数g (x )的图象关于点(32,0)对称)因为g (x )的定义域为R ,所以g (32)=0.由g (x )的图象既关于直线x =2对称,又关于点(32,0)对称,知g (x )的周期T =4×(2-32)=2,所以g (-12)=g (32)=0,g (-1)=g (1)=-g (2),所以B 正确,D 错误;不妨取f (x )=1(x ∈R ),经验证满足题意,则f (0)=1,所以选项A 不正确.综上,选BC.解法二(特例法)因为f (32-2x ),g (2+x )均为偶函数,所以函数f (x )的图象关于直线x =32对称,函数g (x )的图象关于直线x =2对称.取符合题意的一个函数f (x )=1(x ∈R ),则f (0)=1,排除A ;取符合题意的一个函数f (x )=sin πx ,则f'(x )=πcos πx ,即g (x )=πcos πx ,所以g (-1)=πcos (-π)=-π,g (2)=πcos 2π=π,所以g (-1)≠g (2),排除D.又该题为多选题,选BC.方法技巧1.思路:利用题设中的条件等式,将其变形为满足函数某些性质的定义表达式,从而利用这些性质转化求解.2.设函数f(x)及其导函数f'(x)的定义域均为R.(1)若f(x)的图象关于x=a对称,则f'(x)的图象关于(a,0)对称;(2)若f(x)的图象关于(a,b)对称,则f'(x)的图象关于x=a对称;(3)若f(x)是以T为周期的函数,则f'(x)也是以T为周期的函数.注意利用函数图象的平移变换解决抽象函数性质问题时,注意在进行图象变换的同时,函数图象的对称轴或者对称中心也进行了相应的变换.策略3特殊函数模型法例8定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y∈R),f(1)=2,则f(-3)=(C)A.2B.3C.6D.9解析解法一由函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y∈R),联想到函数模型f(x)=x2+bx,由f(1)=2,可得b=1,则f(x)=x2+x,所以f(-3)=(-3)2+(-3)=6.解法二f(1)=f(1+0)=f(1)+f(0)+2×1×0=f(1)+f(0),得f(0)=0;f(0)=f(-1+1)=f(-1)+f(1)+2×(-1)×1=f(-1)+2-2=f(-1),得f(-1)=0;f(-2)=f(-1-1)=f(-1)+f(-1)+2×(-1)×(-1)=2f(-1)+2=2;f(-3)=f(-2-1)=f(-2)+f(-1)+2×(-2)×(-1)=2+0+4=6.故选C.方法技巧常用函数模型抽象函数性质基本函数模型f(x±y)=f(x)±f(y)∓b一次函数f(x)=kx+b(k≠0)f(x+y)=f(x)+f(y)+2xy二次函数f(x)=x2+bxf(xy)=f(x)f(y)或f()=()()幂函数f(x)=xαf(x+y)=f(x)f(y)或f(x-y)=()()指数函数f(x)=a x(a>0,且a≠1)f(xy)=f(x)+f(y)或f()=f(x)-对数函数f(x)=log a x(a>0,且a≠1)f(y)f(x+y)+f(x-y)=2f(x)f(y)余弦函数f(x)=cosωx(ω一般取满足要求的最小正数)注意应用特殊函数模型法解题时,要注意检验所选模型是否满足已知条件.训练5(1)[新高考卷Ⅰ]若定义在R上的奇函数f(x)在(-∞,0)上单调递减,且f(2)=0,则满足xf(x-1)≥0的x的取值范围是(D)A.[-1,1]∪[3,+∞)B.[-3,-1]∪[0,1]C.[-1,0]∪[1,+∞)D.[-1,0]∪[1,3]解析由题意知f(x)在(-∞,0),(0,+∞)上单调递减,且f(-2)=f(2)=f(0)=0.当x>0时,令f(x-1)≥0,得0≤x-1≤2,∴1≤x≤3;当x<0时,令f(x-1)≤0,得-2≤x-1≤0,∴-1≤x≤1,又x<0,∴-1≤x<0;当x=0时,显然符合题意.综上,原不等式的解集为[-1,0]∪[1,3],故选D.(2)[多选/2024安徽省阜阳市模拟]已知函数f(x)的定义域为R,对任意实数x,y满足f(x-y)=f(x)-f(y)+1,且f(1)=0,当x>0时,f(x)<1.则下列选项正确的是(ACD)A.f(0)=1B.f(2)=-2C.f(x)-1为奇函数D.f(x)为R上的减函数解析解法一设f(x)=kx+1,因为f(1)=0,所以k=-1,所以f(x)=-x+1,满足x>0时,f(x)<1,则易得A,C,D均正确,故选ACD.解法二对于A,取x=y=0,则f(0)=f(0)-f(0)+1,故f(0)=1,A正确;对于B,取x=0,y=1,则f(-1)=f(0)-f(1)+1=2,取x=1,y=-1,则f(2)=f(1)-f(-1)+1=-1,B错误﹔对于C,取x=0,则f(-y)=f(0)-f(y)+1=2-f(y),f(-y)-1=-[f(y)-1],则f(y)-1为奇函数,所以f(x)-1为奇函数,C正确;对于D,当x1>x2时,x1-x2>0,f(x1-x2)<1,则f(x1)-f(x2)=f(x1-x2)-1<0,故f(x)是R上的减函数,D正确,故选ACD.(3)已知函数f(x)满足f(1)=14,且4f(x)f(y)=f(x+y)+f(x-y)(x,y∈R),则f(2024)=-14.解析解法一令y=1,得4f(x)f(1)=f(x+1)+f(x-1),即f(x+1)=f(x)-f(x-1),f(x+2)=f(x+1)-f(x)=-f(x-1),即f(x+3)=-f(x),所以函数f(x)的周期为6,则f(2024)=f(2).令x=1,y=0,得f(0)=12,由f(x+1)=f(x)-f(x-1),可得f(2)=f(1)-f(0)=-14,所以f(2024)=-14.解法二因为f(x+y)+f(x-y)=4f(x)f(y),x,y∈R,联想到余弦函数模型cos(x+y)+cos(x-y)=2cos x cos y,两边同除以2,得12cos(x+y)+12cos(x-y)=cos x cos y=4·12cos x12cos y,故猜想f(x)=12cos(ωx),又f(1)=14,则f(1)=12cosω=14,当ω∈(0,π)时,可得ω=π3,即f(x)=12cos(π3x),故f(x)的周期为T=6,所以f(2024)=f(2)=12cos2π3=-14.1.[命题点1角度2/全国卷Ⅱ]设f(x)为奇函数,且当x≥0时,f(x)=e x-1,则当x<0时,f(x)=(D)A.e-x-1B.e-x+1C.-e-x-1D.-e-x+1解析依题意得,当x<0时,f(x)=-f(-x)=-(e-x-1)=-e-x+1,故选D.2.[命题点1角度2/2023全国卷乙]已知f(x)=x e B-1是偶函数,则a=(D)A.-2B.-1C.1D.2解析解法一f(x)的定义域为{x|x≠0},因为f(x)是偶函数,所以f(x)=f(-x),即x e B-1=-x-e-B-1,即e(1-a)x-e x=-e(a-1)x+e-x,即e(1-a)x+e(a-1)x=e x+e-x,所以a-1=±1,解得a=0(舍去)或a=2,故选D.解法二f(x)=x e B-1=e(-1)-e-,f(x)是偶函数,又y=x是奇函数,所以y=e(a-1)x-e-x是奇函数,故a-1=1,即a=2,故选D.3.[命题点2,3/多选/2024江苏省兴化市名校联考]已知函数f(x)为R上的奇函数,g(x)=f(x+1)为偶函数,下列说法正确的有(ABD)A.f(x)图象关于直线x=-1对称B.g(2023)=0C.g(x)的周期为2D.对任意x∈R都有f(2-x)=f(x)解析因为函数f (x )为R 上的奇函数,所以函数f (x )的图象关于点(0,0)中心对称,因为g (x )=f (x +1)为偶函数,所以f (-x +1)=f (x +1),即函数f (x )的图象关于x =1对称,所以f (-x +1)=-f (-x -1),所以f (x -1)=f (-x -1),所以函数f (x )的图象关于x =-1对称,故A 正确;由f (-x +1)=f (x +1)可得f (2-x )=f (x ),故D 正确;由f (2-x )=f (x )可得f (2+x )=f (-x )=-f (x ),所以f (4+x )=f (x ),即函数f (x )的周期为4,故C 错误;因为f (x )的周期为4,所以g (2023)=f (2024)=f (0)=0,故B 正确.故选ABD.4.[命题点3/2023大同学情调研]函数f (x )=6e +1+B ||+1在[-5,5]上的最大值为M ,最小值为N ,则M +N =(C )A.3B.4C.6D.与m 的值有关解析由题意可知,f (x )=6e +1+B ||+1=3-3(e -1)e +1+B ||+1,设g (x )=-3(e -1)e +1+B ||+1,则g (x )的定义域为(-∞,+∞),g (-x )=-3(e --1)e -+1+(-)|-|+1=-[-3(e -1)e +1+B ||+1]=-g (x ),所以g (x )为奇函数,所以当x ∈[-5,5]时,g (x )max +g (x )min =0,所以当x ∈[-5,5]时,f (x )max +f (x )min =M +N =g (x )max +3+g (x )min +3=6,故选C.5.[思维帮角度1,2/2021新高考卷Ⅱ]设函数f (x )的定义域为R ,且f (x +2)为偶函数,f (2x +1)为奇函数,则(B )A.f (-12)=0B.f (-1)=0C.f (2)=0D.f (4)=0解析因为函数f (2x +1)是奇函数,所以f (-2x +1)=-f (2x +1),所以f (1)=0,f (-1)=-f (3).因为函数f (x +2)是偶函数,所以f (x +2)=f (-x +2),所以f (3)=f (1),所以f (-1)=-f (1)=0.故选B.6.[思维帮角度2/多选/2023四省联考]已知f (x )是定义在R 上的偶函数,g (x )是定义在R 上的奇函数,且f (x ),g (x )在(-∞,0]上均单调递减,则(BD )A.f (f (1))<f (f (2))B.f (g (1))<f (g (2))C.g(f(1))<g(f(2))D.g(g(1))<g(g(2))解析因为f(x)与g(x)分别是定义在R上的偶函数与奇函数,且两函数在(-∞,0]上均单调递减,所以f(x)在[0,+∞)上单调递增,g(x)在[0,+∞)上单调递减,即g(x)在R上单调递减,所以f(1)<f(2),g(2)<g(1)<g(0)=0,(提示:定义在R上的奇函数的图象必过原点)所以f(g(1))<f(g(2)),g(f(1))>g(f(2)),g(g(1))<g(g(2)),故B,D正确,C不正确.若f(1)<f(2)<0,则f(f(1))>f(f(2)),故A不正确.综上所述,选BD.学生用书·练习帮P2661.[2024黑龙江省鸡西市第一中学模拟]下列函数中,是奇函数且在定义域内单调递减的是(C)A.f(x)=tan(-x)B.f(x)=2-xC.f(x)=e-x-e xD.f(x)=2解析f(x)=tan(-x)=-tan x的定义域是{x|x≠kπ+π2,k∈Z},f(x)是奇函数,在定义域上不具有单调性,故A错误;f(x)=2-x=(12)x既不是奇函数也不是偶函数,在R上单调递减,故B错误;f(x)=e-x-e x的定义域为R,∵f(-x)=e x-e-x=-f(x),∴f(x)是奇函数,∵y=e-x,y=-e x均为R上的减函数,∴f(x)在R上单调递减,故C正确;f(x)=2的定义域为{x|x≠0},f(x)是奇函数,在定义域上不具有单调性,故D错误.故选C.2.若定义在R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=e x,则g(x)=(D)A.e x-e-xB.12(e x+e-x)C.12(e-x-e x)D.12(e x-e-x)解析因为f(x)+g(x)=e x,f(x)为偶函数,g(x)为奇函数,所以f(-x)+g(-x)=f(x)-g(x)=e-x,所以g(x)=12(e x-e-x).故选D.3.已知函数f(x)=2+2,≥0,2-2,<0,若f(-a)+f(a)≤2f(1),则实数a的取值范围是(C)A.[-1,0)B.[0,1]C.[-1,1]D.[-2,2]解析若x<0,则-x>0,f(-x)=x2-2x=f(x),若x>0,则-x<0,f(-x)=x2+2x=f(x),故函数f(x)为偶函数,且当x≥0时,函数f(x)单调递增,由f(-a)+f(a)≤2f(1),得2f(a)≤2f(1),即f(a)≤f(1),所以|a|≤1,所以-1≤a≤1.故选C.4.[2024青岛市检测]若函数f(x)=cos x·lg(2+-x)为奇函数,则m=(C)A.-1B.0C.1D.±1解析解法一因为函数f(x)=cos x·lg(2+-x)为奇函数,又y=cos x为偶函数,所以g(x)=lg(2+-x)为奇函数,则g(x)+g(-x)=0,即lg(2+-x)+lg(2++x)=0,即lg[(2+-x)(2++x)]=lg(x2+m-x2)=lg m=0,解得m=1,故选C.解法二因为函数f(x)=cos x·lg(2+-x)为奇函数,又y=cos x为偶函数,所以g(x)=lg(2+-x)为奇函数,所以g(0)=0,即lg=0,解得m=1.经检验,符合题意.故选C.5.[2024安徽月考]已知函数f(x)=2sin x+x+2,x∈[-2π,2π],f(x)的最大值为M,最小值为m,则M+m=(A)A.4 D.2π+3-1解析因为y=2sin x+x的图象关于原点对称,所以f(x)=2sin x+x+2的图象关于点(0,2)对称,所以f(x)在[-2π,2π]上的最大值与最小值的和M+m=4.故选A.6.[2023南京市、盐城市一模]若函数f(x)=x3+bx2+cx+d满足f(1-x)+f(1+x)=0对一切实数x恒成立,则不等式f'(2x+3)<f'(x-1)的解集为(C)A.(0,+∞)B.(-∞,-4)C.(-4,0)D.(-∞,-4)∪(0,+∞)解析由f(1-x)+f(1+x)=0可知,函数f(x)的图象关于点(1,0)中心对称.解法一易得f'(x)=3x2+2bx+c的图象的对称轴为直线x=1,所以函数f'(x)在(-∞,1)上单调递减,在(1,+∞)上单调递增,则由f'(2x+3)<f'(x-1),得|2x+3-1|<|x-1-1|,解得-4<x<0,故选C.解法二函数f(x)=ax3+bx2+cx+d的图象的对称中心为点(-3,f(-3)),由-3=1,a=1,得b=-3,所以f'(x)=3x2-6x+c,由f'(2x+3)<f'(x-1),得3(2x+3)2-6(2x+3)+c﹤3(x-1)2-6(x-1)+c,解得-4<x<0,故选C. 7.[2024福州市一检]已知定义域为R的函数f(x)同时具有下列三个性质,则f(x)=-x(答案不唯一).(写出一个满足条件的函数即可)①f(x+y)=f(x)+f(y);②f(x)是奇函数;③当x+y>0时,f(x)+f(y)<0.解析因为f(x)是奇函数,且当x+y>0时,f(x)+f(y)<0,即x>-y时,f(x)<-f(y)=f(-y),所以f(x)是单调递减函数,再考虑到f(x+y)=f(x)+f(y),所以f(x)=kx(k<0)都符合题意.8.已知f(x)为R上的奇函数,当x>0时,f(x)=-2x2+3x+1,则f(x)的解析式为f(x解析当x<0时,-x>0,则f(-x)=-2(-x)2+3(-x)+1=-2x2-3x+1.由于f(x)是R上的奇函数,故f(x)=-f(-x),所以当x<0时,f(x)=2x2+3x-1.因为f(x)为R上的奇函数,所以f(0)=0.综上,f(x)的解析式为f(x)=-22+3+1,>0,0,=0,22+3-1,<0.9.[2024安徽六校联考]已知函数f(x)=ln(2+1+x)-2+1,则不等式f(x)+f(2x-1)>-2的解集是(A)A.(13,+∞)B.(1,+∞)C.(-∞,13)D.(-∞,1)解析因为2+1>|x|≥-x,所以2+1+x>0在R上恒成立,所以函数f(x)的定义域为R,f(x)=ln(2+1+x)+(e-1)-(e+1)e+1=ln(2+1+x)+e-1e+1-1,令h(x)=f(x)+1=ln(2+1+x)+e-1e+1,则h(x)+h(-x)=[ln(2+1+x)+e-1e+1]+[ln(2+1-x)+e--1e-+1]=ln(2+1+x)+ln(2+1-x)+e-1e+1+1-e1+e=ln1+0=0,所以h(x)是奇函数.设g(x)=ln(2+1+x),则g(x)为奇函数.当x≥0时,y=2+1,y=x均单调递增,则y=2+1+x在[0,+∞)上单调递增.所以g(x)=ln(2+1+x)在[0,+∞)上单调递增.又g(x)为奇函数且g(0)=0,所以g(x)在R上单调递增.又y=e x+1在R上单调递增,所以y=2e+1在R上单调递减,所以y=-2e+1在R上单调递增,所以h(x)=g(x)-2e+1+1在R上单调递增.不等式f(x)+f(2x-1)>-2,即f(x)+1>-[f(2x-1)+1],也即h(x)>-h(2x-1)=h(1-2x),所以x>1-2x,解得x>13.故选A.10.[2024黄冈模拟]已知函数f(x)及其导函数f'(x)的定义域均为R,记g(x)=f'(x+1),且f(2+x)-f(2-x)=4x,g(3+x)为偶函数,则g'(7)+g(17)=(C)A.0B.1C.2D.3解析因为g(3+x)为偶函数,g(x)=f'(x+1),所以f'(x+4)=f'(-x+4),对f(2+x)-f(2-x)=4x两边同时求导,得f'(2+x)+f'(2-x)=4,所以有f'(4+x)+f'(-x)=4⇒f'(4-x)+f'(-x)=4⇒f'(4+x)+f'(x)=4⇒f'(8+x)=f'(x),所以函数f'(x)的周期为8,在f'(2+x)+f'(2-x)=4中,令x=0,得f'(2)=2,因此g(17)=f'(18)=f'(2)=2.因为g(3+x)为偶函数,所以有g(3+x)=g(3-x)⇒g'(3+x)=-g'(3-x)⇒g'(7)=-g'(-1)①,f'(8+x)=f'(x)⇒g(7+x)=g(x-1)⇒g'(7+x)=g'(x-1)⇒g'(7)=g'(-1)②,由①②可得:g'(7)=0,所以g'(7)+g(17)=2,故选C.11.[多选/2024辽宁开学考试]已知函数y =xf (x )是R 上的偶函数,f (x -1)+f (x +3)=0,当x ∈[-2,0]时,f (x )=2x -2-x +x ,则(ACD )A.f (x )的图象关于直线x =2对称B.4是f (x )的一个周期C.f (x )在(0,2]上单调递增D.f (2024)<f (12)<f (0.50.2)解析由函数y =xf (x )是R 上的偶函数可知,f (x )为奇函数,则f (-x )=-f (x ).又f (x -1)+f (x +3)=0,得f (x )+f (x +4)=0,则f (x +4)=-f (x )=f (-x ),所以f (x +2)=f (2-x ),则f (x )的图象关于直线x =2对称,A 项正确.由f (8+x )=-f (4+x )=f (x )可知,8是f (x )的一个周期,由f (x )=-f (x +4)可知,4不是f (x )的一个周期,B 项错误.当x ∈[-2,0]时,易知f (x )=2x -2-x +x 为增函数,又f (x )为奇函数,所以f (x )在(0,2]上单调递增,C 项正确;又f (2024)=f (8×253)=f (0),0<0.5<0.50.2,且f (x )在[-2,2]上单调递增,所以f (0)<f (12)<f (0.50.2),即f (2024)<f (12)<f (0.50.2),D 项正确.故选ACD.12.[多选/2024江西分宜中学、临川一中等校联考]已知函数y =f (x )对任意实数x ,y 都满足2f (x )f (y )=f (x +y )+f (x -y ),且f (1)=-1,则(AC )A.f (x )是偶函数B.f (x )是奇函数C.f (x )+f (1-x )=0D.∑J12025f (k )=1解析在2f (x )f (y )=f (x +y )+f (x -y )中,令x =1,y =0,可得2f (1)f (0)=2f (1),即-2f (0)=-2,解得f (0)=1≠0,故f (x )不是奇函数,B 错误;令x =0可得2f (0)f (y )=f (y )+f (-y ),即f (y )=f (-y ),故函数f (y )是偶函数,即f (x )是偶函数,故A 正确;令x =y =12,则2f 2(12)=f (1)+f (0)=0,故f (12)=0,令x =12,可得2f (12)f (y )=f (12+y )+f (12-y )=0,故f (x )+f (1-x )=0,故C 正确;因为f (x )是偶函数,所以f (x )=f (-x ),故f (-x )+f (1-x )=0,即f (x )+f (1+x )=0,所以f (x +1)+f (2+x )=0,所以f (x +2)=f (x ),故函数f (x )的周期为2,因为f (1)+f (0)=0,f (1)=-1,所以f (1)+f (2)=f (1)+f (0)=0,f (2025)=f (1)=-1,所以∑J12025f (k )=f (1)+f (2)+…+f (2025)=f (2025)=f (1)=-1,故D 错误.故选AC.13.[多选/2024南昌市模拟]f (x )是定义在R 上的连续可导函数,其导函数为f'(x ),下列说法中正确的是(ACD )A.若f (x )=f (-x ),则f'(x )=-f'(-x )B.若f'(x )=f'(x +T )(T ≠0),则f (x )=f (x +T )C.若f (x )的图象关于点(a ,b )中心对称,则f'(x )的图象关于直线x =a 轴对称D.若f (-1+x )+f (-1-x )=2,f'(x +2)的图象关于原点对称,则f (-1)+f'(2)=1解析对于A :f (x )=f (-x )两边对x 求导,得f'(x )=-f'(-x ),故A 正确.对于B :f (x )=f (x +T )+C (C 为常数)⇔f'(x )=f'(x +T ),则C ≠0时,B 错误.对于C :f (x )的图象有对称中心(a ,b )⇒f (a -x )+f (a +x )=2b ,两边对x 求导,得-f'(a -x )+f'(a +x )=0,即f'(a -x )=f'(a +x )⇒f'(x )的图象关于直线x =a 对称,C 正确.对于D :f (-1+x )+f (-1-x )=2⇒f (x )的图象有对称中心(-1,1),则f (-1)=1.f'(x +2)的图象向右平移2个单位长度 f'(x )的图象⇒f'(x )的图象有对称中心(2,0),则f'(2)=0.所以f (-1)+f'(2)=1+0=1,故D 正确.故选ACD.14.[2022全国卷乙]若f (x )=ln |a +11-|+b 是奇函数,则a =-12,b =ln2.解析解法一f (x )=ln |a +11-|+b =ln |a +11-|+ln e b =ln |(r1)e -x 1-|.∵f (x )为奇函数,∴f (-x )+f (x )=ln |(r1)2e 2-2e 221-2|=0,∴|(a +1)2e 2b -a 2e 2b x 2|=|1-x 2|.当(a +1)2e 2b -a 2e 2b x 2=1-x 2时,(+1)2e 2=1,2e 2=1,解得=-12,=ln2.当(a +1)2e 2b -a 2e 2b x 2=-1+x 2时,(+1)2e 2=-1,2e 2=-1,无解.综上,a =-12,b =ln 2.解法二易知x≠1.∵函数f(x)为奇函数,∴由奇函数定义域关于原点对称可得x≠-1,∴当x=-1时,|a+11-|≤0.又∵|a+11-|≥0恒成立,∴当x=-1时,|a+11-|=0,∴a=-12.又由f(0)=0可得b=ln2.经检验符合题意,∴a=-12,b=ln2.15.[探索创新/2023广西联考]若定义在D上的函数f(x)满足下列条件:①∀x∈D,f(x-2)+f(2-x)=0恒成立;②∀x1,x2∈D,当x1≠x2时,x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1)恒成立;③∀x1∈R,∃x2∈D,使得f(x2)·21=1成立.则称该函数为“χ函数”,下列函数可以称为“χ函数”的是(D)A.f(x)=1-33r1+3B.f(x)=2+sin xC.f(x)=x4-x2+1D.f(x)=ln(2+1+x)解析由①∀x∈D,f(x-2)+f(2-x)=0恒成立可知,y=f(x)的图象关于原点对称,“χ函数”为奇函数.②∀x1,x2∈D,当x1≠x2时,x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1)恒成立,整理可得(x1-x2)[f(x1)-f(x2)]>0,所以函数y=f(x)在D上单调递增.③∀x1∈R,∃x2∈D,使得f(x2)·21=1成立,整理可得f(x2)=(12)1,因为∀x1∈R,y=(12)1>0,所以(0,+∞)是f(x)的值域的子集.对于选项B,C,均不满足①,对于选项A,f(x)=1-33r1+3=2-(3+1)3(3+1)=23(3+1)-13,在定义域内单调递减,不满足②,f(x)=ln(2+1+x)满足①②③,故选D.。
函数的奇偶性与周期性知识点与经典例题
函数的奇偶性与周期性知识点和经典试题本节知识点详解:1.函数的奇偶性2.函数的周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y =f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.重要结论:1.函数奇偶性的四个重要结论(1)如果一个奇函数f(x)在原点处有定义,即f(0)有意义,那么一定有f(0)=0.(2)如果函数f(x)是偶函数,那么f(x)=f(|x|).(3)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.(4)奇函数的图像在对称的区间上单调性相同,偶函数在对称的区间上单调性相反。
(5)运算性质①“奇+奇”是奇,“奇-奇”是奇,“奇·奇”是偶,“奇÷奇”是偶;②“偶+偶”是偶,“偶-偶”是偶,“偶·偶”是偶,“偶÷偶”是偶;③“奇·偶”是奇,“奇÷偶”是奇.2.函数周期性的三个常用结论对f(x)定义域内任一自变量的值x:(1)若f(x+a)=-f(x),则T=2a;(2)若f(x+a)=1f(x),则T=2a;(3)若f(x+a)=-1f(x),则T=2a.(a>0)3.函数对称性的三个常用结论(1)若函数y=f(x+a)是偶函数,即f(a-x)=f(a+x),则函数y=f(x)的图象关于直线x=a对称;(2)若对于R上的任意x都有f(2a-x)=f(x)或f(-x)=f(2a+x),则y=f(x)的图象关于直线x=a对称;(3)若函数y=f(x+b)是奇函数,即f(-x+b)+f(x+b)=0,则函数y =f(x)关于点(b,0)中心对称.经典选题一、判断题:判断下列说法是否正确,正确的在它后面的括号里打“√”,错误的打“×”.(1)函数y=x2,x∈(0,+∞)是偶函数.()(2)偶函数图象不一定过原点,奇函数的图象一定过原点.()(3)如果函数f(x),g(x)为定义域相同的偶函数,则F(x)=f(x)+g(x)是偶函数.()(4)若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称.()(5)若函数y=f(x+b)是奇函数,则函数y=f(x)关于点(b,0)中心对称.答案:(1)×(2)×(3)√(4)√(5)√二、选择题:1.已知f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,那么a+b 的值是()A.-13 B.13 C.12D.-12答案:B2.下列函数为奇函数的是()A.y=2x-12x B.y=x3sin xC.y=2cos x+1 D.y=x2+2x答案:A3.下列函数为奇函数的是()A.y=x B.y=|sin x|C.y=cos x D.y=e x-e-x答案:D4.下列函数中,在(0,+∞)上单调递减,并且是偶函数的是( )A .y =x 2B .y =-x 3C .y =-ln|x |D .y =2x答案:C5.(高考全国Ⅰ卷)设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数答案:C6.已知定义在R 上的奇函数f (x )满足f (x +1)=f (x ),当0<x <12时,f (x )=4x,则f ⎝ ⎛⎭⎪⎫-54=( )A .- 2B .-22C .-1 D.22 答案:A7. 已知f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +m ,则f (-2)=( )A .-3B .-54 C.54 D .3 答案:A8.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2+2x ,若f (2-a 2)>f (a ),则实数a 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞) 答案:C9.定义在R 上的奇函数f (x )满足f (x +2)=-1f (x ),且在(0,1)上f (x )=3x ,则f (log 354)=( )A.32B.23 C .-32 D .-23 答案:C10.已知f (x )是定义在实数集R 上的奇函数,对任意的实数x ,f (x -2)=f (x +2),当x ∈(0,2)时,f (x )=-x 2,则f ⎝ ⎛⎭⎪⎫132=( )A .-94B .-14 C.14 D.94 答案:D11. (理科)(2015·高考新课标卷Ⅱ)设函数f (x )=ln(1+|x |)-11+x 2,则使得f (x )>f (2x -1)成立的x 的取值范围是( ) A.⎝ ⎛⎭⎪⎫13,1 B.⎝ ⎛⎭⎪⎫-∞,13∪(1,+∞) C.⎝ ⎛⎭⎪⎫-13,13 D.⎝ ⎛⎭⎪⎫-∞,-13∪⎝ ⎛⎭⎪⎫13,+∞ 答案:A12.已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a 的取值范围为( )A .(-1,4)B .(-2,0)C .(-1,0)D .(-1,2) 答案:A13.已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图象在区间[0,6]上与x 轴的交点的个数为( )A .6B .7C .8D .9 答案:B14.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11) 答案:D三、填空题1. (2017·高考全国Ⅱ卷)已知函数f (x )是定义在R 上的奇函数,当x ∈(-∞,0)时,f (x )=2x 3+x 2,则f (2)= ________ . 答案:122.设函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围是 ________ .答案:(-1,0)∪(1,+∞)3. (2015·高考全国Ⅰ卷)若函数f (x )=x ln (x +a +x 2)为偶函数,则a = ________ .答案:14.已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则f (x )= ________ .答案:⎩⎪⎨⎪⎧x 2-4x ,x >0,0,x =0,-x 2-4x ,x <05.已知函数y =f (x )是R 上的偶函数,且在[0,+∞)上是增函数,若f (a )≥f (2),则实数a 的取值范围是 __________ .答案: {a |a ≥2或a ≤-2}。
函数的奇偶性与周期性专题题型讲解与例题突破
考纲解读 1.根据函数奇偶性定义和图象判断简单函数的奇偶性;2.根据函数奇偶性求函数值、求参数、解与函数有关的不等式;3.综合应用函数的周期性、奇偶性、单调性、求解抽象函数问题.[基础梳理]1.函数的奇偶性2.(1)周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫作f (x )的最小正周期.[三基自测]1.已知函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=x 2+1x ,则f (-1)等于( )A .-2B .0C .1D .2答案:A2.函数f (x )=1-x1+x 是( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .非奇非偶函数 答案:D3.下列函数中,既是奇函数又是增函数的为( ) A .y =x +1 B .y =-x 3 C .y =1xD .y =x |x | 答案:D4.(2017·高考全国卷Ⅱ改编)已知函数f (x )是定义在R 上的奇函数,则f (0)=__________. 答案:05.(必修1·第一章复习参考题改编)函数f (x )=4x 2-kx -8为偶函数,则k 为________.[考点例题]考点一 函数奇偶性的判断|易错突破[例1] (1)(2018·肇庆模拟)在函数y =x cos x ,y =e x +x 2,y =lg x 2-2,y =x sin x 中,偶函数的个数是( )A .3B .2C .1D .0(2)定义两种运算:a ⊕b =a 2-b 2,a ⊗b =(a -b )2,则f (x )=2⊕x2-(x ⊗2)是( )A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数[解析] (1)y =x cos x 是奇函数,y =lg x 2-2和y =x sin x 是偶函数,y =e x +x 2是非奇非偶函数,故选B.(2)因为2⊕x =4-x 2,x ⊗2=(x -2)2, 所以f (x )=4-x 22-(x -2)2=4-x 22-|2-x |,该函数的定义域是[-2,0)∪(0,2], ∴f (x )=4-x 2x ,且满足f (-x )=-f (x ).故函数f (x )是奇函数. [答案] (1)B (2)A [易错提醒]1.函数f (x )=lg(x +1)+lg(x -1)的奇偶性是( ) A .奇函数 B .偶函数 C .非奇非偶函数D .既奇又偶函数解析:由⎩⎪⎨⎪⎧x +1>0x -1>0,知x >1,定义域不关于原点对称,故f (x )为非奇非偶函数.答案:C2.函数f (x )=x 2-1+1-x 2,则f (x )为( ) A .奇函数C .既是奇函数,又是偶函数D .非奇非偶函数解析:由⎩⎪⎨⎪⎧x 2-1≥0,1-x 2≥0,得x =±1,∴f (x )的定义域为{-1,1}.又f (1)+f (-1)=0,f (1)-f (-1)=0,即f (x )=±f (-x ).∴f (x )既是奇函数又是偶函数. 答案:C考点二 函数的周期性|方法突破[例2] (1)函数f (x )=lg|sin x |是( ) A .最小正周期为π的奇函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数 D .最小正周期为2π的偶函数(2)已知定义在R 上的奇函数f (x )满足f (x )=-f ⎝⎛⎭⎫x +32,且f (1)=2,则f (2 018)=__________.(3)函数y =f (x )满足对任意x ∈R 都有f (x +2)=f (-x )成立,且函数y =f (x -1)的图象关于点(1,0)对称,f (1)=4,则f (2 016)+f (2 017)+f (2 018)的值为__________.[解析] (1)∵f (-x )=lg|sin(-x )|=lg|sin x |, ∴函数f (x )为偶函数.∵f (x +π)=lg|sin(x +π)|=lg|sin x |, ∴函数f (x )的周期为π.故选C. (2)∵f (x )=-f ⎝⎛⎭⎫x +32, ∴f (x +3)=f ⎣⎡⎦⎤⎝⎛⎭⎫x +32+32=-f ⎝⎛⎭⎫x +32=f (x ). ∴f (x )是以3为周期的周期函数.则f (2 018)=f (672×3+2)=f (2)=f (-1)=-f (1)=-2. (3)∵函数y =f (x -1)的图象关于点(1,0)对称, ∴f (x )是R 上的奇函数,f (x +2)=-f (x ), ∴f (x +4)=-f (x +2)=f (x ), 故f (x )的周期为4,∴f (2 017)=f (504×4+1)=f (1)=4,∴f (2 016)+f (2 018)=f (2 016)+f (2 016+2)=f (2 016)-f (2 016)=0, ∴f (2 016)+f (2 017)+f (2 018)=4. [答案] (1)C (2)-2 (3)4 1.求函数周期的方法 [方法提升](1)函数f (x )满足f (a +x )=-f (x ),则f (x )是周期为2a 的函数; (2)若f (x +a )=±1f (x )(a ≠0)恒成立,则T =2a ;(3)若f (x +a )=f (x -a ),则T =2a ; (4)若f (x +a )=1-f (x )1+f (x ),则T =4a .[母题变式]将本例(3)改为已知f (x )是定义在R 上的偶函数,并且f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f (105.5)=________.解析:由已知,可得f (x +4)=f [(x +2)+2] =-1f (x +2)=-1-1f (x )=f (x ).故函数的周期为4.∴f (105.5)=f (4×27-2.5)=f (-2.5)=f (2.5). ∵2<2.5<3,由题意,得f (2.5)=2.5. ∴f (105.5)=2.5. [答案] 2.5考点三 函数奇偶性、周期性应用|模型突破角度1 求函数解析式[例3] (1)函数f (x )在R 上为奇函数,且x >0时,f (x )=x +1,则当x <0时,f (x )=________.[解析] ∵f (x )为奇函数,x >0时,f (x )=x +1, ∴当x <0时,-x >0, f (x )=-f (-x )=-(-x +1), ∴f (x )=--x -1. [答案] --x -1(2)f (x )、g (x )分别为R 上的奇函数和偶函数,且f (x )+g (x )=e x ,求f (x )和g (x )的解析式. [解析] ∵f (x )是R 上的奇函数,g (x )是偶函数, ∴由f (x )+g (x )=e x ,① 得f (-x )+g (-x )=e -x , 即-f (x )+g (x )=e -x .②由①+②得g (x )=e x +e -x 2,①-②得f (x )=e x -e -x 2.[模型解法]角度2 求参数值[例4] 若函数f (x )=k -2x1+k ·2x 在定义域上为奇函数,则实数k =________.[解析] 法一:∵f (-x )=k -2-x 1+k ·2-x =k ·2x -12x +k , ∴f (-x )+f (x )=(k -2x )(2x +k )+(k ·2x -1)·(1+k ·2x )(1+k ·2x )(2x +k )=(k 2-1)(22x +1)(1+k ·2x )(2x +k ). 由f (-x )+f (x )=0可得k 2=1,∴k =±1. 法二:f (x )为奇函数,∴f (-1)+f (1)=0, ∴k -21+2k+k -121+k 2=0,即k 2=1,∴k =±1.[答案] ±1 [模型解法]角度3 求函数值[例5] 已知f (x )=22x+1+sin x ,则f (-4)+f (-3)+f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)+f (4)的值是__________.[解析] 因为f (x )-1=1-2x1+2x +sin x 是奇函数,所以f (-x )-1=-[f (x )-1]=1-f (x ),故f (-x )+f (x )=2,且f (0)=1,所以f (-4)+f (-3)+f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)+f (4)=[f (-4)+f (4)]+[f (-3)+f (3)]+[f (-2)+f (2)]+[f (-1)+f (1)]+f (0)=2×4+1=9.[答案] 9[模型解法][高考类题]1.(2017·高考全国卷Ⅱ)已知函数f (x )是定义在R 上的奇函数,当x ∈(-∞,0)时,f (x )=2x 3+x 2,则f (2)=__________.解析:依题意得,f (-2)=2×(-2)3+(-2)2=-12,由函数f (x )是奇函数,得f (2)=-f (-2)=12.答案:122.(2015·高考全国卷Ⅰ)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =__________. 解析:由题意得f (x )=x ln(x +a +x 2)=f (-x )=-x ln(a +x 2-x ),所以a +x 2+x =1a +x 2-x ,解得a =1.答案:1[真题感悟]1.[考点一](2017·高考北京卷)已知函数f (x )=3x -⎝⎛⎭⎫13x,则f (x )( ) A .是偶函数,且在R 上是增函数 B .是奇函数,且在R 上是增函数 C .是偶函数,且在R 上是减函数 D .是奇函数,且在R 上是减函数解析:由f (-x )=⎝⎛⎭⎫13x-3x=-f (x ),知f (x )为奇函数,因为y =⎝⎛⎭⎫13x 在R 上是减函数,所以y =-⎝⎛⎭⎫13x 在R 上是增函数,又y =3x 在R 上是增函数,所以函数f (x )=3x -⎝⎛⎭⎫13x在R 上是增函数,故选B.答案:B2.[考点二、三](2016·高考山东卷)已知函数f (x )的定义域为R .当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝⎛⎭⎫x +12=f ⎝⎛⎭⎫x -12.则f (6)=( ) A .-2 B .-1 C .0D .2解析:由题意可知,当-1≤x ≤1时,f (x )为奇函数,且当x >12时,f (x +1)=f (x ),所以f (6)=f (5×1+1)=f (1).而f (1)=-f (-1)=-[(-1)3-1]=2,所以f (6)=2.故选D.答案:D3.[考点一](2014·高考新课标全国卷Ⅰ)设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数解析:f (x )为奇函数,g (x )为偶函数,故f (x )g (x )为奇函数,f (x )|g (x )|为奇函数,|f (x )|g (x )为偶函数,|f (x )g (x )|为偶函数,故选C.答案:C4.[考点三](2015·高考山东卷)若函数f (x )=2x +12x -a 是奇函数,则使f (x )>3成立的x 的取值范围为( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,+∞)解析:f (-x )=2-x +12-x -a =2x +11-a ·2x ,由f (-x )=-f (x )得2x +11-a ·2x =-2x +12x-a ,即1-a ·2x =-2x+a ,化简得a ·(1+2x)=1+2x,所以a =1,f (x )=2x +12x -1.由f (x )>3得0<x <1.故选C.答案:C5.[考点二、三](2017·高考山东卷)已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x ,则f (919)=__________.解析:∵f (x +4)=f (x -2),∴f (x )的周期为6,∵919=153×6+1,∴f (919)=f (1).又f (x )为偶函数,∴f (919)=f (1)=f (-1)=6.答案:6。
专题三函数的奇偶性及周期性(2021年高考数学一轮复习专题)
专题三 函数的奇偶性及周期性一、题型全归纳题型一 函数奇偶性的判断【题型要点】判断函数奇偶性的方法(1)根据定义判断,首先看函数的定义域是否关于原点对称,在定义域关于原点对称的条件下,再化简解析式,根据f (-x )与f (x )的关系作出判断. (2)利用函数图象特征判断.(3)分段函数奇偶性的判断,要分别从x >0或x <0来寻找等式f (-x )=f (x )或f (-x )=-f (x )成立,只有当对称的两个区间上满足相同关系时,分段函数才具有确定的奇偶性.【例1】判断函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,x 2-x ,x >0.的奇偶性。
【解析】法一:图象法画出函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,x 2-x ,x >0的图象如图所示,图象关于y 轴对称,故f (x )为偶函数.法二:定义法易知函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称,当x >0时,f (x )=x 2-x ,则当x <0时,-x >0,故f (-x )=x 2+x =f (x );当x <0时,f (x )=x 2+x ,则当x >0时,-x <0,故f (-x )=x 2-x =f (x ),故原函数是偶函数. 法三:f (x )还可以写成f (x )=x 2-|x |(x ≠0),故f (x )为偶函数【例2】已知函数f (x )=x 2x -1,g (x )=x2,则下列结论正确的是( )A .h (x )=f (x )+g (x )是偶函数B .h (x )=f (x )+g (x )是奇函数C .h (x )=f (x )g (x )是奇函数D .h (x )=f (x )g (x )是偶函数 【答案】A.【解析】:易知h (x )=f (x )+g (x )的定义域为{x |x ≠0},关于原点对称.因为f (-x )+g (-x )=-x 2-x -1+-x2=-x ·2x 1-2x -x 2=x (1-2x )-x 1-2x -x 2=x 2x -1+x2=f (x )+g (x ),所以h (x )=f (x )+g (x )是偶函数.故选A. 题型二 函数奇偶性的应用【题型要点】与函数奇偶性有关的问题及解决方法(1)已知函数的奇偶性求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解.(2)已知函数的奇偶性求解析式:将待求区间上的自变量转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.(3)已知函数的奇偶性求函数解析式中参数的值:常常利用待定系数法,由f (x )±f (-x )=0得到关于待求参数的恒等式,由系数的对等性得参数的值或对方程求解.(4)应用奇偶性画图象和判断单调性:利用奇偶性可画出另一对称区间上的图象并判断另一区间上的单调性. 【例1】(2019·高考全国卷Ⅱ)设f (x )为奇函数,且当x ≥0时,f (x )=e x -1,则当x <0时,f (x )=( ) A .e -x -1 B .e -x +1 C .-e -x -1D .-e -x +1【解析】解法一:依题意得,当x <0时,f (x )=-f (-x )=-(e -x -1)=-e -x +1,选D. 解法二:依题意得,f (-1)=-f (1)=-(e 1-1)=1-e ,结合选项知,选D.【例2】已知函数f (x )为奇函数,当x >0时,f (x )=x 2-x ,则当x <0时,函数f (x )的最大值为 . 【解析】:解法一:当x <0时,-x >0,所以f (-x )=x 2+x .又因为函数f (x )为奇函数,所以f (x )=-f (-x )=-x 2-x =-221⎪⎭⎫ ⎝⎛+x +14,所以当x <0时,函数f (x )的最大值为14.解法二:当x >0时,f (x )=x 2-x =221⎪⎭⎫ ⎝⎛+x -14,最小值为-14,因为函数f (x )为奇函数,所以当x <0时,函数f (x )的最大值为14.题型三 函数的周期性【题型要点】函数周期性的判断与应用(1)判断函数的周期性只需证明f (x +T )=f (x )(T ≠0)便可证明函数是周期函数,且周期为T ,函数的周期性常与函数的其他性质综合命题.(2)根据函数的周期性,可以由函数局部的性质得到函数的整体性质,在解决具体问题时,要注意结论:若T 是函数的周期,则kT (k ∈Z ,且k ≠0)也是函数的周期.【例1】(2020·广东六校第一次联考)在R 上函数f (x )满足f (x +1)=f (x -1),且f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0|2-x |,0≤x <1,其中a∈R ,若f (-5)=f (4.5),则a =( ) A .0.5 B .1.5 C .2.5D .3.5【解析】由f (x +1)=f (x -1),得f (x )是周期为2的函数,又f (-5)=f (4.5),所以f (-1)=f (0.5),即-1+a =1.5,所以a =2.5.故选C.【例2】已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图象在区间[0,4]上与x 轴的交点的个数为( ) A .2 B .3 C .4D .5【解析】当0≤x <2时,令f (x )=x 3-x =x (x 2-1)=0,所以y =f (x )的图象与x 轴交点的横坐标分别为x 1=0,x 2=1.当2≤x <4时,0≤x -2<2,又f (x )的最小正周期为2,所以f (x -2)=f (x ),所以f (x )=(x -2)(x -1)(x -3),所以当2≤x <4时,y =f (x )的图象与x 轴交点的横坐标分别为x 3=2,x 4=3.又f (4)=f (2)=f (0)=0,综上可知,共有5个交点.题型四 函数性质的综合应用【题型要点】函数性质综合应用问题的常见类型及解题策略(1)单调性与奇偶性的综合:注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性的综合:此类问题多考查求值问题,常用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)单调性、奇偶性与周期性的综合:解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.【例1】已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ).若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)=( ) A .-50 B .0 C .2 D .50【答案】C【解析】因为f (x +2)=f [1+(1+x )]=f [1-(1+x )]=f (-x )=-f (x ),所以f (x +4)=-f (x +2)=f (x ),即f (x )是周期为4的周期函数.又f (x )为奇函数,且x ∈R ,所以f (0)=0,f (1)=2,f (2)=f (1+1)=f (0)=0,f (3)=f (1+2)=f (1-2)=f (-1)=-f (1)=-2,f (4)=f (0)=0,所以f (1)+f (2)+f (3)+f (4)=0,而50=4×12+2,所以f (1)+f (2)+f (3)+…+f (50)=f (1)+f (2)=2.【例2】(2020池州联考)已知函数f (x )的定义域为R ,且满足下列三个条件:①∀x 1,x 2∈[4,8],当x 1<x 2时,都有f (x 1)-f (x 2)x 1-x 2>0;②f (x +4)=-f (x );③y =f (x +4)是偶函数.若a =f (6),b =f (11),c =f (2 025),则a ,b ,c 的大小关系正确的是( ) A .a <b <c B .b <a <c C .a <c <b D .c <b <a 【答案】B【解析】由条件①知,当x ∈[4,8]时,f (x )为增函数;由条件②知,f (x +8)=-f (x +4)=f (x ),f (x )是周期为8的周期函数;由条件③知,y =f (x )关于直线x =4对称,所以f (11)=f (3)=f (5),f (2025)=f (1)=f (7),故f (5)<f (6)<f (7),即b <a <c .故选B.二、高效训练突破 一、选择题1.(2020·洛阳一中月考)下列函数中,与函数y =-3|x |的奇偶性相同,且在(-∞,0)上单调性也相同的是( ) A .y =-1xB .y =log 2|x |C .y =1-x 2D .y =x 3-1【答案】C.【解析】:函数y =-3|x |为偶函数,在(-∞,0)上为增函数,选项A 的函数为奇函数,不符合要求;选项B 的函数是偶函数,但其单调性不符合要求;选项D 的函数为非奇非偶函数,不符合要求;只有选项C 符合要求.2.已知f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +m ,则f (-2)=( ) A .-3 B .-54C.54 D .3 【答案】A【解析】:.由f (x )为R 上的奇函数,知f (0)=0,即f (0)=20+m =0,解得m =-1,则f (-2)=-f (2)=-(22-1)=-3.3.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=3x +m (m 为常数),则f (-log 35)=( ) A .-6 B .6 C .4 D .-4 【答案】D【解析】 因为f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=3x +m ,所以f (0)=1+m =0⇒m =-1,则f (-log 35)=-f (log 35)=-(3log 35-1)=-4.4.已知定义在R 上的奇函数f (x )满足:当x >0时,f (x )=2x -2x ,则f (x )x>0的解集为( )A .(-1,0)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(0,1)D .(-∞,-1)∪(1,+∞)【解析】因为当x >0时,函数f (x )单调递增,又f (1)=0,所以f (x )=2x -2x >0的解集为(1,+∞),所以f (x )x >0在(0,+∞)上的解集为(1,+∞).因为f (x )是奇函数,所以f (x )x 是偶函数,则f (x )x >0在R 上的解集为(-∞,-1)∪(1,+∞).5.已知定义域为R 的奇函数f (x )满足⎪⎭⎫⎝⎛+x f 23=⎪⎭⎫⎝⎛x f -21,且当0≤x ≤1时,f (x )=x 3,则⎪⎭⎫⎝⎛25f =( ) A .-278B .-18C.18D.278【解析】:因为⎪⎭⎫⎝⎛+x f 23=⎪⎭⎫⎝⎛x f -21,所以⎪⎭⎫ ⎝⎛25f =⎪⎭⎫ ⎝⎛+123f =⎪⎭⎫ ⎝⎛1-21f =⎪⎭⎫⎝⎛21-f ,又因为函数为奇函数,所以⎪⎭⎫ ⎝⎛21-f =⎪⎭⎫ ⎝⎛21-f =321-⎪⎭⎫⎝⎛=-18.6.已知函数f (x )=2|x |+x 3+12|x |+1的最大值为M ,最小值为m ,则M +m 等于( )A .0B .2C .4D .8【解析】:f (x )=2|x |+x 3+12|x |+1=1+x 32|x |+1.设g (x )=x 32|x |+1,因为g (x )定义域为R ,关于原点对称,且g (-x )=-g (x ),所以g (x )为奇函数,所以g (x )max +g (x )min =0.因为M =f (x )max =1+g (x )max ,m =f (x )min =1+g (x )min ,所以M +m =1+g (x )max +1+g (x )min =2.7.(2019·沈阳测试)设函数f (x )=ln(1+x )+m ln(1-x )是偶函数,则( )A .m =1,且f (x )在(0,1)上是增函数B .m =1,且f (x )在(0,1)上是减函数C .m =-1,且f (x )在(0,1)上是增函数D .m =-1,且f (x )在(0,1)上是减函数 【答案】B【解析】因为函数f (x )=ln(1+x )+m ln(1-x )是偶函数,所以⎪⎭⎫ ⎝⎛21f =⎪⎭⎫⎝⎛21-f ,则(m -1)ln 3=0,即m =1,则f (x )=ln(1+x )+ln(1-x )=ln(1-x 2),因为当x ∈(0,1)时,y =1-x 2是减函数,故f (x )在(0,1)上是减函数.故选B.8.(2019·广州模拟)定义在R 上的函数f (x )满足f (-x )=-f (x ),f (x )=f (x +4),且当x ∈(-1,0)时,f (x )=2x +15,则f (log 220)=( ) A .1B.45 C .-1D .-45【解析】 因为x ∈R ,且f (-x )=-f (x ),所以函数为奇函数.因为f (x )=f (x +4),所以函数的周期为4.故f (log 220)=f (log 220-4)=⎪⎭⎫ ⎝⎛45log 2f =⎪⎭⎫ ⎝⎛45log --2f =⎪⎭⎫ ⎝⎛54log --2f =⎪⎭⎫ ⎝⎛+-5154log 22=⎪⎭⎫⎝⎛+-5154=-1.故选C.9.(2020·成都八中月考)设函数f (x )=ln(1+|x |)-11+x 2,则使f (x )>f (2x -1)成立的x 的取值范围是( ) A.⎪⎭⎫⎝⎛131,B.⎪⎭⎫ ⎝⎛∞31-,∪(1,+∞)C.⎪⎭⎫ ⎝⎛3131,D.⎪⎭⎫ ⎝⎛∞31-,∪⎪⎭⎫ ⎝⎛∞+,31 【解析】 由题意知f (-x )=f (x ),所以函数f (x )是偶函数,当x ≥0时,易得函数f (x )=ln(1+x )-11+x 2是增函数,所以不等式f (x )>f (2x -1)等价于|2x -1|<|x |,解得13<x <1,则x 的取值范围是⎪⎭⎫⎝⎛131, 10.(2020·福建龙岩期末)设函数f (x )是定义在R 上的奇函数,满足f (x +1)=-f (x -1),若f (-1)>1,f (5)=a 2-2a -4,则实数a 的取值范围是( ) A .(-1,3) B .(-∞,-1)∪(3,+∞) C .(-3,1)D .(-∞,-3)∪(1,+∞)【解析】:由f (x +1)=-f (x -1),可得f (x +2)=-f (x ),则f (x +4)=f (x ),故函数f (x )的周期为4,则f (5)=f (1)=a 2-2a -4,又因为f (x )是定义在R 上的奇函数,f (-1)>1,所以f (1)<-1,所以a 2-2a -4<-1,解得-1<a <3,故答案为A.二、填空题1.已知定义在R 上的函数满足f (x +2)=-1f (x ),当x ∈(0,2]时,f (x )=2x -1.则f (17)= ,f (20)= . 【答案】:1 -13【解析】: 因为f (x +2)=-1f (x ), 所以f (x +4)=-1f (x +2)=f (x ),所以函数y =f (x )的周期T =4. f (17)=f (4×4+1)=f (1)=1.f (20)=f (4×4+4)=f (4)=f (2+2)=-1f (2)=-12×2-1=-13.2.(2020·晋中模拟)已知f (x )是R 上的奇函数,f (1)=2,且对任意x ∈R 都有f (x +6)=f (x )+f (3)成立,则f (2 023)=__________. 【答案】 2【解析】因为f (x +6)=f (x )+f (3),令x =-3,f (3)=f (-3)+f (3)=-f (3)+f (3)=0,所以f (x +6)=f (x )+0=f (x ),所以T =6,f (2 023)=f (337×6+1)=f (1)=2.3.已知f (x )是奇函数,g (x )是偶函数,且f (-1)+g (1)=2,f (1)+g (-1)=4,则g (1)等于 . 【答案】:3【解析】:f (-1)+g (1)=2,即-f (1)+g (1)=2①, f (1)+g (-1)=4,即f (1)+g (1)=4②, 由①②得,2g (1)=6,即g (1)=3.4.设函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 3(x +1),x ≥0,g (x ),x <0,则g (f (-8))= .【答案】:-1【解析】:因为f (x )是定义在R 上的奇函数, 所以f (-8)=-f (8)=-log 39=-2,所以g (f (-8))=g (-2)=f (-2)=-f (2)=-log 33=-1.5.设函数f (x )是定义在R 上周期为2的偶函数,当x ∈[0,1]时,f (x )=x +1,则⎪⎭⎫⎝⎛23f = .【答案】:32【解析】:依题意得,f (2+x )=f (x ),f (-x )=f (x ),则⎪⎭⎫⎝⎛23f =⎪⎭⎫ ⎝⎛21-f =⎪⎭⎫ ⎝⎛21f =12+1=32.6.已知f (x ),g (x )分别是定义在R 上的奇函数和偶函数,且f (x )-g (x )=x⎪⎭⎫⎝⎛21,则f (1),g (0),g (-1)之间的大小关系是 . 【答案】:f (1)>g (0)>g (-1)【解析】:在f (x )-g (x )=x⎪⎭⎫ ⎝⎛21中,用-x 替换x ,得f (-x )-g (-x )=2x ,由于f (x ),g (x )分别是定义在R 上的奇函数和偶函数,所以f (-x )=-f (x ),g (-x )=g (x ),因此得-f (x )-g (x )=2x.联立方程组解得f (x )=2-x -2x2,g (x )=-2-x +2x 2,于是f (1)=-34,g (0)=-1,g (-1)=-54,故f (1)>g (0)>g (-1).7.(2019·常德模拟)设f (x )是偶函数,且当x >0时,f (x )是单调函数,则满足f (2x )=⎪⎭⎫⎝⎛++41x x f 的所有x 之和为______。
数学(文)一轮教学案:第二章第3讲 函数的奇偶性与周期性 Word版含解析
第3讲函数的奇偶性与周期性考纲展示命题探究奇偶性的定义及图象特点奇函数偶函数定义如果对于函数f(x)的定义域内的任意一个x都有f(-x)=-f(x),那么函数f(x)是奇函数都有f(-x)=f(x),那么函数f(x)是偶函数图象特点关于原点对称关于y轴对称注意点判断函数的奇偶性时需注意两点(1)对于较复杂的解析式,可先对其进行化简,再利用定义进行判断,同时应注意化简前后的等价性.(2)所给函数的定义域若不关于原点对称,则这个函数一定不具有奇偶性.1.思维辨析(1)函数具备奇偶性的必要条件是函数的定义域在x轴上是关于坐标原点对称的.()(2)若函数f(x)为奇函数,则一定有f(0)=0.()(3)若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称.()(4)若函数y=f(x+b)是奇函数,则函数y=f(x)关于点(b,0)中心对称.()(5)函数f(x)=0,x∈(0,+∞)既是奇函数又是偶函数.()(6)若函数f(x)=x(x-2)(x+a)为奇函数,则a=2.() 答案(1)√(2)×(3)√(4)√(5)×(6)√2.已知f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,那么a+b 的值是()A.-13 B.13C.12 D .-12答案 B解析 由已知得a -1+2a =0,得a =13,又f (x )为偶函数,f (-x )=f (x ),∴b =0,所以a +b =13.3.下列函数为奇函数的是( ) A .y =2x-12xB .y =x 3sin xC .y =2cos x +1D .y =x 2+2x答案 A解析 由函数奇偶性的定义知,B 、C 中的函数为偶函数,D 中的函数为非奇非偶函数,只有A 中的函数为奇函数,故选A.[考法综述] 判断函数的奇偶性是比较基础的问题,难度不大,常与函数单调性相结合解决求值和求参数问题,也与函数的周期性、图象对称性在同一个题目中出现.主要以选择题和填空题形式出现,属于基础或中档题目.命题法 判断函数的奇偶性及奇偶性的应用 典例 (1)下列函数为奇函数的是( ) A .y =x B .y =|sin x | C .y =cos xD .y =e x -e -x(2)设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数 [解析] (1)因为函数y =x 的定义域为[0,+∞),不关于原点对称,所以函数y =x 为非奇非偶函数,排除A ;因为y =|sin x |为偶函数,所以排除B ;因为y =cos x 为偶函数,所以排除C ;因为y =f (x )=e x -e -x ,f (-x )=e -x -e x =-(e x -e -x )=-f (x ),所以函数y =e x -e -x为奇函数,故选D.(2)由题意可知f (-x )=-f (x ),g (-x )=g (x ),对于选项A ,f (-x )·g (-x )=-f (x )·g (x ),所以f (x )g (x )是奇函数,故A 项错误;对于选项B ,|f (-x )|g (-x )=|-f (x )|g (x )=|f (x )|g (x ),所以|f (x )|g (x )是偶函数,故B 项错误;对于选项C ,f (-x )|g (-x )|=-f (x )|g (x )|,所以f (x )|g (x )|是奇函数,故C 项正确;对于选项D ,|f (-x )g (-x )|=|-f (x )g (x )|=|f (x )g (x )|,所以|f (x )g (x )|是偶函数,故D 项错误,选C.[答案] (1)D (2)C【解题法】 判断函数奇偶性的方法 (1)定义法 (2)图象法1.下列函数中,既是偶函数又存在零点的是( ) A .y =cos x B .y =sin x C .y =ln x D .y =x 2+1答案 A解析 y =cos x 是偶函数且有无数多个零点,y =sin x 为奇函数,y =ln x 既不是奇函数也不是偶函数,y =x 2+1是偶函数但没有零点,故选A.2.若函数f (x )=2x +12x -a 是奇函数,则使f (x )>3成立的x 的取值范围为( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,+∞) 答案 C解析 f (-x )=2-x +12-x -a =2x +11-a ·2x ,由f (-x )=-f (x )得2x +11-a ·2x=-2x +12x-a,即1-a ·2x =-2x +a ,化简得a ·(1+2x )=1+2x ,所以a =1,f (x )=2x +12x -1.由f (x )>3得0<x <1.故选C.3.已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=( )A .-3B .-1C .1D .3答案 C解析 令x =-1得,f (-1)-g (-1)=(-1)3+(-1)2+1=1.∵f (x ),g (x )分别是偶函数和奇函数,∴f (-1)=f (1),g (-1)=-g (1), 即f (1)+g (1)=1.故选C.4.已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=12(|x -a 2|+|x -2a 2|-3a 2).若∀x ∈R ,f (x -1)≤f (x ),则实数a 的取值范围为( )A.⎣⎢⎡⎦⎥⎤-16,16B.⎣⎢⎡⎦⎥⎤-66,66C.⎣⎢⎡⎦⎥⎤-13,13 D.⎣⎢⎡⎦⎥⎤-33,33答案 B解析 当x ≥0时,f (x )=⎩⎪⎨⎪⎧x -3a 2,x ≥2a 2,-a 2,a 2<x <2a 2,-x ,0≤x ≤a 2,画出图象,再根据f (x )是奇函数补全图象.∵满足∀x ∈R ,f (x -1)≤f (x ),则只需3a 2-(-3a 2)≤1, ∴6a 2≤1,即-66≤a ≤66,故选B.5.若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=( )A .e x-e -xB.12(e x +e -x )C.12(e -x -e x )D.12(e x -e -x )答案 D解析 因为f (x )+g (x )=e x ①,则f (-x )+g (-x )=e -x ,即f (x )-g (x )=e -x②,故由①-②可得g (x )=12(e x -e -x),所以选D.6.若函数f (x )=x ln (x +a +x 2)为偶函数,则a =________. 答案 1解析 解法一:由题意得f (x )=x ln (x +a +x 2)=f (-x )=-x ln (a +x 2-x ),所以a +x 2+x =1a +x 2-x,解得a =1. 解法二:由f (x )为偶函数有y =ln (x +a +x 2)为奇函数,令g (x )=ln (x +a +x 2),有g (-x )=-g (x ),以下同解法一.7.已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为________.答案 (-5,0)∪(5,+∞)解析 ∵f (x )是定义在R 上的奇函数,∴f (0)=0. 又当x <0时,-x >0,∴f (-x )=x 2+4x . 又f (x )为奇函数,∴f (-x )=-f (x ), ∴f (x )=-x 2-4x (x <0),∴f (x )=⎩⎪⎨⎪⎧x 2-4x , x >0,0, x =0,-x 2-4x , x <0.①当x >0时,由f (x )>x 得x 2-4x >x ,解得x >5; ②当x =0时,f (x )>x 无解;③当x <0时,由f (x )>x 得-x 2-4x >x ,解得-5<x <0.综上得不等式f (x )>x 的解集用区间表示为(-5,0)∪(5,+∞). 8.已知函数f (x )=e x +e -x ,其中e 是自然对数的底数. (1)证明:f (x )是R 上的偶函数;(2)若关于x 的不等式mf (x )≤e -x +m -1在(0,+∞)上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在x 0∈[1,+∞),使得f (x 0)<a (-x 30+3x 0)成立.试比较e a -1与a e -1的大小,并证明你的结论.解 (1)证明:因为对任意x ∈R ,都有f (-x )=e -x +e -(-x )=e -x+e x =f (x ),所以f (x )是R 上的偶函数.(2)由条件知m (e x +e -x -1)≤e -x -1在(0,+∞)上恒成立, 令t =e x (x >0),则t >1,所以m ≤-t -1t 2-t +1=-1t -1+1t -1+1对任意t >1成立. 因为t -1+1t -1+1≥2(t -1)·1t -1+1=3,所以-1t -1+1t -1+1≥-13,当且仅当t =2,即x =ln 2时等号成立. 因此实数m 的取值范围是⎝⎛⎦⎥⎤-∞,-13.(3)令函数g (x )=e x+1e x -a (-x 3+3x ),则g ′(x )=e x -1e x +3a (x 2-1).当x ≥1时,e x-1e x >0,x 2-1≥0,又a >0,故g ′(x )>0,所以g (x )是[1,+∞)上的单调增函数,因此g (x )在[1,+∞)上的最小值是g (1)=e +e -1-2a .由于存在x 0∈[1,+∞),使e x 0+e -x 0-a (-x 30+3x 0)<0成立,当且仅当最小值g (1)<0,故e +e -1-2a <0,即a >e +e-12.令函数h (x )=x -(e -1)ln x -1,则h ′(x )=1-e -1x . 令h ′(x )=0,得x =e -1.当x ∈(0,e -1)时,h ′(x )<0,故h (x )是(0,e -1)上的单调减函数;当x ∈(e -1,+∞)时,h ′(x )>0,故h (x )是(e -1,+∞)上的单调增函数.所以h (x )在(0,+∞)上的最小值是h (e -1).注意到h (1)=h (e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时,h (e -1)≤h (x )<h (1)=0;当x ∈(e -1,e)⊆(e -1,+∞)时,h (x )<h (e)=0.所以h (x )<0对任意的x ∈(1,e)成立.①当a ∈⎝ ⎛⎭⎪⎫e +e -12,e ⊆(1,e)时,h (a )<0,即a -1<(e -1)ln a ,从而e a -1<a e -1;②当a =e 时,e a -1=a e -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0,即a -1>(e -1)ln a ,故e a -1>a e -1.综上所述,当a ∈⎝ ⎛⎭⎪⎫e +e -12,e时,e a -1<a e -1; 当a =e 时,e a -1=a e -1; 当a ∈(e ,+∞)时,e a -1>a e -1. 1 周期函数对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.2 最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.注意点 常见的有关周期的结论 周期函数y =f (x )满足:(1)若f (x +a )=f (x -a ),则函数的周期为2a . (2)若f (x +a )=-f (x ),则函数的周期为2a .(3)若f (x +a )=-1f (x ),则函数的周期为2a .1.思维辨析(1)若函数f (x )满足f (0)=f (5)=f (10),则它的周期T =5.( ) (2)若函数f (x )的周期T =5,则f (-5)=f (0)=f (5).( ) (3)若函数f (x )关于x =a 对称,也关于x =b 对称,则函数f (x )的周期为2|b -a |.( )(4)函数f (x )在定义域上满足f (x +a )=-f (x )(a >0),则f (x )是周期为a 的周期函数.( )(5)函数f (x )为R 上的奇函数,且f (x +2)=f (x ),则f (2016)=0.( ) 答案 (1)× (2)√ (3)√ (4)× (5)√2.已知f (x )是定义在R 上的偶函数,且对任意x ∈R 都有f (x +4)=f (x )+f (2),则f (2014)等于( )A .0B .3C .4D .6答案 A解析 ∵f (x )是定义在R 上的偶函数, ∴f (-2)=f (2),∴f (-2+4)=f (2)=f (-2)+f (2)=2f (2), ∴f (2)=0,f (2014)=f (4×503+2)=f (2)+503×f (2)=f (2)=0,故选A. 3.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝ ⎛⎭⎪⎫-52=________.答案 -12解析 ∵f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),∴f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-12. [考法综述] 函数周期性的考查在高考中主要以选择题、填空题形式出现.常与函数的奇偶性、图象对称性结合考查,难度中档.命题法 判断函数的周期性,利用周期性求值典例 (1)若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (8)-f (4)的值为( )A .-1B .1C .-2D .2(2)设函数f (x )(x ∈R )满足f (x +π)=f (x )+sin x .当0≤x ≤π时,f (x )=0,则f ⎝ ⎛⎭⎪⎫23π6=( )A.12B.32 C .0D .-12[解析] (1)由于f (x )周期为5,且为奇函数,∴f (8)=f (5+3)=f (3)=f (5-2)=f (-2)=-f (2)=-2,f (4)=f (5-1)=f (-1)=-f (1)=-1,∴f (8)-f (4)=-2-(-1)=-1.(2)因为f (x +2π)=f (x +π)+sin(x +π)=f (x )+sin x -sin x =f (x ),所以f (x )的周期T =2π.又因为当0≤x ≤π时,f (x )=0,所以f ⎝⎛⎭⎪⎫5π6=0,即f ⎝ ⎛⎭⎪⎫-π6+π=f ⎝ ⎛⎭⎪⎫-π6+sin ⎝ ⎛⎭⎪⎫-π6=0, 所以f ⎝⎛⎭⎪⎫-π6=12,所以f ⎝ ⎛⎭⎪⎫23π6=f ⎝ ⎛⎭⎪⎫4π-π6=f ⎝ ⎛⎭⎪⎫-π6=12.[答案] (1)A (2)A【解题法】 函数周期性的判定与应用(1)判定:判断函数的周期性只需证明f (x +T )=f (x )(T ≠0)便可证明函数是周期函数,且周期为T .(2)应用:根据函数的周期性,可以由函数局部的性质得到函数的整体性质,在解决具体问题时,要注意结论:若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期.1.定义在R 上的函数f (x )满足f (-x )=-f (x ),f (x -2)=f (x +2),且x ∈(-1,0)时,f (x )=2x+15,则f (log 220)=( )A .-1 B.45 C .1 D .-45答案 A解析 由f (x -2)=f (x +2),得f (x +4)=f (x ),∴f (x )的周期T =4,结合f (-x )=-f (x ),有f (log 220)=f (1+log 210)=f (log 210-3)=-f (3-log 210),∵3-log 210∈(-1,0),∴f (log 220)=-23-log 210-15=-45-15=-1.故选A.2.函数f (x )=lg |sin x |是( ) A .最小正周期为π的奇函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数 D .最小正周期为2π的偶函数 答案 C解析 易知函数的定义域为{x |x ≠k π,k ∈Z },关于原点对称,又f (-x )=lg |sin(-x )|=lg |-sin x |=lg |sin x |=f (x ),所以f (x )是偶函数,又函数y =|sin x |的最小正周期为π,所以函数f (x )=lg |sin x |是最小正周期为π的偶函数.故选C.3.已知函数f (x )是(-∞,+∞)上的奇函数,且f (x )的图象关于x =1对称,当x ∈[0,1]时,f (x )=2x -1,则f (2013)+f (2014)的值为( )A .-2B .-1C .0D .1答案 D解析 ∵函数f (x )为奇函数,则f (-x )=-f (x ),又函数的图象关于x =1对称,则f (2+x )=f (-x )=-f (x ),∴f (4+x )=f [(2+x )+2]=-f (x +2)=f (x ).∴f (x )的周期为4.又函数的图象关于x =1对称,∴f (0)=f (2),∴f (2013)+f (2014)=f (1)+f (2)=f (1)+f (0)=21-1+20-1=1.故选D.4.已知定义在R 上的奇函数f (x )满足f (x +1)=-f (x ),且在[0,1)上单调递增,记a =f ⎝ ⎛⎭⎪⎫12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( )A .a >b =cB .b >a =cC .b >c >aD .a >c >b答案 A解析 由题意得,f (x +2)=-f (x +1)=f (x ),即函数f (x )是以2为周期的奇函数,所以f (2)=f (0)=0.因为f (x +1)=-f (x ),所以f (3)=-f (2)=0.又f (x )在[0,1)上是增函数,于是有f ⎝ ⎛⎭⎪⎫12>f (0)=f (2)=f (3),即a >b =c .故选A.5.已知函数f (x )=⎩⎨⎧ ⎝ ⎛⎭⎪⎫12x ,x ≥4,f (x +1),x <4,则f (2+log 23)的值为( )A.124B.112C.16D.13答案 A解析 ∵2+log 23<4,∴f (2+log 23)=f (3+log 23).∵3+log 23>4,∴f (2+log 23)=f (3+log 23)=⎝ ⎛⎭⎪⎫123+log 23=18×⎝ ⎛⎭⎪⎫12log 23=18×13=124.故选A. 6.若y =f (x )既是周期函数,又是奇函数,则其导函数y =f ′(x )( )A .既是周期函数,又是奇函数B.既是周期函数,又是偶函数C.不是周期函数,但是奇函数D.不是周期函数,但是偶函数答案 B解析因为y=f(x)是周期函数,设其周期为T,则有f(x+T)=f(x),两边同时求导,得f′(x+T)(x+T)′=f′(x),即f′(x+T)=f′(x),所以导函数为周期函数.因为y=f(x)是奇函数,所以f(-x)=-f(x),两边同时求导,得f′(-x)(-x)′=-f′(x),即-f′(-x)=-f′(x),所以f′(-x)=f′(x),即导函数为偶函数,选B.判断f(x)=x2+1,x∈[-2,2)的奇偶性.[错解][错因分析]忽视判断函数的奇偶性时对定义域的要求.[正解]由于x∈[-2,2),所以f(x)=x2+1的定义域不关于原点对称,所以函数f(x)=x2+1是非奇非偶函数.[心得体会]………………………………………………………………………………………………时间:60分钟基础组1.[2016·冀州中学期末]下列函数中,既是偶函数又在(-∞,0)上单调递增的是()A.y=x2B.y=2|x|C.y=log21|x|D.y=sin x答案 C解析函数y=x2在(-∞,0)上是减函数;函数y=2|x|在(-∞,0)上是减函数;函数y=log21|x|=-log2|x|是偶函数,且在(-∞,0)上是增函数;函数y=sin x不是偶函数.综上所述,选C.2. [2016·衡水中学预测]函数f (x )=a sin 2x +bx 23 +4(a ,b ∈R ),若f ⎝ ⎛⎭⎪⎫lg 12014=2013,则f (lg 2014)=( ) A .2018B .-2009C .2013D .-2013答案 C解析 g (x )=a sin 2x +bx 23 ,g (-x )=a sin 2x +bx 23 ,g (x )=g (-x ),g (x )为偶函数,f ⎝ ⎛⎭⎪⎫lg 12014=f (-lg 2014),f (-lg 2014)=g (-lg 2014)+4=g (lg 2014)+4=f (lg 2014)=2013,故选C.3.[2016·枣强中学热身]若函数f (x )(x ∈R )是奇函数,函数g (x )(x ∈R )是偶函数,则一定成立的是( )A .函数f (g (x ))是奇函数B .函数g (f (x ))是奇函数C .函数f (f (x ))是奇函数D .函数g (g (x ))是奇函数答案 C解析 由题得,函数f (x ),g (x )满足f (-x )=-f (x ),g (-x )=g (x ),则有f (g (-x ))=f (g (x )),g (f (-x ))=g (-f (x ))=g (f (x )),f (f (-x ))=f (-f (x ))=-f (f (x )),g (g (-x ))=g (g (x )),可知函数f (f (x ))是奇函数,故选C.4.[2016·衡水中学猜题]定义域为(-∞,0)∪(0,+∞)的函数f (x )不恒为0,且对于定义域内的任意实数x ,y 都有f (xy )=f (y )x +f (x )y 成立,则f (x )( )A .是奇函数,但不是偶函数B .是偶函数,但不是奇函数C .既是奇函数,又是偶函数D .既不是奇函数,又不是偶函数答案 A解析 令x =y =1,则f (1)=f (1)1+f (1)1,∴f (1)=0.令x =y =-1,则f (1)=f (-1)-1+f (-1)-1,∴f (-1)=0. 令y =-1,则f (-x )=f (-1)x +f (x )-1, ∴f (-x )=-f (x ).∴f (x )是奇函数.又∵f (x )不恒为0,∴f (x )不是偶函数.故选A.5.[2016·衡水中学一轮检测]设偶函数f (x )满足f (x )=x 3-8(x ≥0),则{x |f (x -2)>0}=( )A .{x |x <-2或x >4}B .{x |x <0或x >4}C .{x |x <0或x >6}D .{x |x <-2或x >2} 答案 B解析 当x <0时,-x >0,∵f (x )是偶函数,∴f (x )=f (-x )=-x 3-8.∴f (x )=⎩⎪⎨⎪⎧ x 3-8,x ≥0,-x 3-8,x <0,∴f (x -2)=⎩⎪⎨⎪⎧ (x -2)3-8,x ≥2,-(x -2)3-8,x <2,由f (x -2)>0,得⎩⎪⎨⎪⎧ x ≥2(x -2)3-8>0或⎩⎪⎨⎪⎧x <2,-(x -2)3-8>0, 解得x >4或x <0.故选B.6. [2016·冀州中学模拟]已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)答案 D解析 由函数f (x )是奇函数且f (x )在[0,2]上是增函数可以推知,f (x )在[-2,2]上递增,又f (x -4)=-f (x )⇒f (x -8)=-f (x -4)=f (x ),故函数f (x )以8为周期,f (-25)=f (-1),f (11)=f (3)=-f (3-4)=f (1),f (80)=f (0),故f (-25)<f (80)<f (11).7.[2016·衡水二中周测]函数f (x )=x 3+sin x +1(x ∈R ),若f (m )=2,则f (-m )的值为( )A .3B .0C .-1D .-2答案 B解析 把f (x )=x 3+sin x +1变形为f (x )-1=x 3+sin x ,令g (x )=f (x )-1=x 3+sin x ,则g (x )为奇函数,有g (-m )=-g (m ),所以f (-m )-1=-[f (m )-1],得到f (-m )=-(2-1)+1=0.8.[2016·枣强中学仿真]设函数f (x )是定义在R 上的周期为2的偶函数,当x ∈[0,1]时,f (x )=x +1,则f ⎝ ⎛⎭⎪⎫32=________. 答案 32解析 f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫32-2=f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫12=12+1=32. 9.[2016·枣强中学月考]若f (x )=(x +a )(x -4)为偶函数,则实数a =________.答案 4解析 由f (x )=(x +a )(x -4),得f (x )=x 2+(a -4)x -4a ,若f (x )为偶函数,则a -4=0,即a =4.10.[2016·武邑中学热身]设f (x )是定义在R 上的以3为周期的奇函数,若f (2)>1,f (2014)=2a -3a +1,则实数a 的取值范围是________. 答案 ⎝ ⎛⎭⎪⎫-1,23解析 ∵f (2014)=f (1)=f (-2)=-f (2)<-1,∴2a -3a +1<-1,解得-1<a <23. 11.[2016·衡水二中热身]设函数f (x )是定义在R 上的偶函数,且满足:①f (x )=f (2-x );②当0≤x ≤1时,f (x )=x 2.(1)判断函数f (x )是否为周期函数;(2)求f解 (1)由⎩⎪⎨⎪⎧f (x )=f (2-x ),f (x )=f (-x )⇒f (-x )=f (2-x )⇒f (x )=f (x +2)⇒f (x )是周期为2的周期函数.(2)fffff12.[2016·武邑中学期末]已知函数f (x )的定义域为(-2,2),函数g (x )=f (x -1)+f (3-2x ).(1)求函数g (x )的定义域;(2)若f (x )为奇函数,并且在定义域上单调递减,求不等式g (x )≤0的解集.解 (1)由题意可知⎩⎪⎨⎪⎧ -2<x -1<2,-2<3-2x <2,∴⎩⎨⎧ -1<x <3,12<x <52,解得12<x <52,故函数g (x )的定义域为⎝ ⎛⎭⎪⎫12,52. (2)由g (x )≤0得f (x -1)+f (3-2x )≤0.∴f (x -1)≤-f (3-2x ).又∵f (x )为奇函数,∴f (x -1)≤f (2x -3),而f (x )在(-2,2)上单调递减,∴⎩⎨⎧ x -1≥2x -3,12<x <52,解得12<x ≤2,∴不等式g (x )≤0的解集为⎝ ⎛⎦⎥⎤12,2. 能力组13.[2016·衡水二中预测]已知y =f (x )是偶函数,而y =f (x +1)是奇函数,且对任意0≤x ≤1,都有f ′(x )≥0,则a =f ⎝ ⎛⎭⎪⎫9819,b =f ⎝ ⎛⎭⎪⎫10117,c =f ⎝ ⎛⎭⎪⎫10615的大小关系是( ) A .c <b <aB .c <a <bC .a <c <bD .a <b <c答案 B 解析 因为y =f (x )是偶函数,所以f (x )=f (-x ),①因为y =f (x +1)是奇函数,所以f (x )=-f (2-x ),②所以f (-x )=-f (2-x ),即f (x )=f (x +4).所以函数f (x )的周期为4.又因为对任意0≤x ≤1,都有f ′(x )≥0,所以函数在[0,1]上单调递增,又因为函数y =f (x +1)是奇函数,所以函数在[0,2]上单调递增,又a =f ⎝ ⎛⎭⎪⎫9819=f ⎝ ⎛⎭⎪⎫2219,b =f ⎝ ⎛⎭⎪⎫10117=f ⎝ ⎛⎭⎪⎫3317,c =f ⎝ ⎛⎭⎪⎫10615=f ⎝ ⎛⎭⎪⎫-1415=f ⎝ ⎛⎭⎪⎫1415,所以f ⎝ ⎛⎭⎪⎫1415<f ⎝ ⎛⎭⎪⎫2219<f ⎝ ⎛⎭⎪⎫3317,即c <a <b . 14.[2016·衡水二中月考]已知y =f (x )+x 2是奇函数,且f (1)=1.若g (x )=f (x )+2,则g (-1)=________.答案 -1解析 设h (x )=f (x )+x 2为奇函数,则h (-x )=f (-x )+x 2,∴h (-x )=-h (x ),∴f (-x )+x 2=-f (x )-x 2,∴f (-1)+1=-f (1)-1,∴f (-1)=-3,∴g (-1)=f (-1)+2=-1.15. [2016·衡水二中猜题]定义在R 上的函数f (x )对任意a ,b ∈R 都有f (a +b )=f (a )+f (b )+k (k 为常数).(1)判断k 为何值时f (x )为奇函数,并证明;(2)设k =-1,f (x )是R 上的增函数,且f (4)=5,若不等式f (mx 2-2mx +3)>3对任意x ∈R 恒成立,求实数m 的取值范围.解 (1)若f (x )在R 上为奇函数,则f (0)=0,令x =y =0,则f (0+0)=f (0)+f (0)+k ,∴k =0.证明:令a =b =0,由f (a +b )=f (a )+f (b ),得f (0+0)=f (0)+f (0),即f (0)=0.令a =x ,b =-x ,则f (x -x )=f (x )+f (-x ),又f (0)=0,则有0=f (x )+f (-x ),即f (-x )=-f (x )对任意x ∈R 成立,∴f (x )是奇函数.(2)∵f (4)=f (2)+f (2)-1=5,∴f (2)=3.∴f (mx 2-2mx +3)>3=f (2)对任意x ∈R 恒成立.又f (x )是R 上的增函数,∴mx 2-2mx +3>2对任意x ∈R 恒成立, 即mx 2-2mx +1>0对任意x ∈R 恒成立,当m =0时,显然成立;当m ≠0时,由⎩⎪⎨⎪⎧m >0,Δ=4m 2-4m <0,得0<m <1. ∴实数m 的取值范围是[0,1).16.[2016·衡水二中一轮检测]已知函数f (x )对任意实数x ,y 恒有f (x +y )=f (x )+f (y ),且当x >0时,f (x )<0,又f (1)=-2.(1)判断f (x )的奇偶性;(2)求证:f (x )是R 上的减函数;(3)求f (x )在区间[-3,3]上的值域;(4)若∀x ∈R ,不等式f (ax 2)-2f (x )<f (x )+4恒成立,求a 的取值范围.解 (1)取x =y =0,则f (0+0)=2f (0),∴f (0)=0.取y =-x ,则f (x -x )=f (x )+f (-x ),∴f (-x )=-f (x )对任意x ∈R 恒成立,∴f (x )为奇函数.(2)证明: 任取x 1,x 2∈(-∞,+∞),且x 1<x 2,则x 2-x 1>0,f (x 2)+f (-x 1)=f (x 2-x 1)<0,∴f (x 2)<-f (-x 1),又f (x )为奇函数,∴f (x 1)>f (x 2).∴f (x )是R 上的减函数.(3)由(2)知f (x )在R 上为减函数,∴对任意x ∈[-3,3],恒有f (3)≤f (x )≤f (-3),∵f (3)=f (2)+f (1)=f (1)+f (1)+f (1)=-2×3=-6,∴f (-3)=-f (3)=6,f (x )在[-3,3]上的值域为[-6,6].(4)f (x )为奇函数,整理原式得f (ax 2)+f (-2x )<f (x )+f (-2), 则f (ax 2-2x )<f (x -2),∵f (x )在(-∞,+∞)上是减函数,∴ax 2-2x >x -2,当a =0时,-2x >x -2在R 上不是恒成立,与题意矛盾;当a >0时,ax 2-2x -x +2>0,要使不等式恒成立,则Δ=9-8a <0,即a >98;当a <0时,ax 2-3x +2>0在R 上不是恒成立,不合题意.综上所述,a 的取值范围为⎝ ⎛⎭⎪⎫98,+∞.。
第三讲+函数的奇偶性与周期性课件-2025届高三数学一轮复习
f(x)=x-2-x22-x,2xx,≥x0<,0, 画出函数 f(x)的图
象,如图 2-3-1,观察图象可知,函数 f(x)的图象
关于原点对称,故函数 f(x)为奇函数,且在(-1,
1)上单调递减.故选 C.
图 2-3-1
答案:C
(2)(多选题)(2023 年辽宁省月考)已知 f(x)是定义在 R 上不恒为 0 的偶函数,g(x)是定义在 R 上不恒为 0 的奇函数,则( )
答案:C
考向 2 周期性与奇偶性的综合问题 通性通法:此类问题多考查求值问题,常利用奇偶性及周期 性进行变换,将所求函数值的自变量转化到已知解析式的函数定 义域内求解.
[例 4](2023 年未央区模拟)定义在 R 上的奇函数 f(x)满足 f(x)
=f(2-x),当 x∈[0,1]时,f(x)=ax3+2x+a+1,则 f(2 023)=
(3)奇函数在关于原点对称的区间上具有相同的单调性;偶函
数在关于原点对称的区间上具有相反的单调性.
2.函数的周期性 (1)周期函数:一般地,对于函数 f(x),如果存在一个非零常数 T,使得当 x 取定义域内的每一个值时,都有 f(x+T)=f(x),那么 函数 f(x)就叫做周期函数,非零常数 T 叫做这个函数的周期. (2)最小正周期:如果在周期函数 f(x)的所有周期中存在一个最 小的正数,那么这个最小正数就叫做 f(x)的最小正周期.
即(-x+a)ln
22xx+ -11=(-x+a)ln
22xx+-11-1=(x-a)ln
2x-1 2x+1
=(x+a)ln 22xx- +11,
∴x-a=x+a,得-a=a,得 a=0.故选 B. 答案:B
(2)已知函数 f(x)是定义在 R 上的偶函数,且在区间[0,+∞)
高考数学一轮复习函数的奇偶性对称性与周期性课件
(2)定义域关于原点对称是函数具有奇偶性的一个必要条件.
()
(3)若T是函数的一个周期,则nT(n∈Z,n≠0)也是函数的周期.
()
(4)若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称. ( )
(5)若函数y=f(x+b)是奇函数,则函数y=f(x)的图象关于点(b,0)中心对称.( )
和f(-1),所得出结果一定不可能的是
()
A.4和6 B.3和1
C.2和4
D.1和2
【解析】选D.因为f(x)=asin x+bx+c,所以f(1)+f(-1)=2c,又因为c∈Z,所以
f(1)与f(-1)之和应为偶数.
A.f(x)=x-1
B.f(x)=x2+x
C.f(x)=2x-2-x
D.f(x)=2x+2-x
【解析】选D.D中,f(-x)=2-x+2x=f(x),所以f(x)为偶函数.其余A、B、C选项均不
满足f(-x)=f(x).
2.(必修1P49练习AT1改编)下列函数中为偶函数的是
()
A.y=x2sin x
对f(x)定义域内任一自变量的值x:
(1)若f(x+a)=-f(x),则T=2a(a>0).
(2)若f(x+a)=
f
1
x
,则T=2a(a>0).
(3)若f(x+a)=
f
1
x
,则T=2a(a>0).
【知识点辨析】
(正确的打“√”,错误的打“×”)
(1)偶函数图象不一定过原点,奇函数的图象一定过原点. ( )
图象特点 关于_y_轴__对称
专题3.3--函数的奇偶性与周期性--教师版
专题3.3函数的奇偶性与周期性练基础1.(2021·海南海口市·高三其他模拟)已知函数()(0)f x kx b k =+≠,则“(0)0f =”是“函数()f x 为奇函数”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C 【解析】化简“(0)0f =”和“函数()f x 为奇函数”,再利用充分必要条件的定义判断得解.【详解】(0)0f =,所以0b =,函数()f x 为奇函数,所以()()0f x kx b f x kx b -=-+=-=--=,所以0b =.所以“(0)0f =”是“函数()f x 为奇函数”的充分必要条件.故选:C2.(2021·福建高三三模)若函数()y f x =的大致图象如图所示,则()f x 的解析式可能是()A .()1xf x x =-B .()1x f x x=-C .()21x f x x =-D .()21x f x x =-【答案】C 【解析】利用排除法,取特殊值分析判断即可得答案解:由图可知,当(0,1)x ∈时,()0f x <,取12x =,则对于B ,112(101212f ==>-,所以排除B ,对于D ,1122()012314f ==>-,所以排除D ,当0x >时,对于A ,()1111x f x x x ==+--,此函数是由1y x =向右平移1个单位,再向上平移1个单位,所以1x >时,()1f x >恒成立,而图中,当1x >时,()f x 可以小于1,所以排除A,故选:C3.(2021·广东高三其他模拟)下列函数中,既是奇函数又在区间()0,1上单调递增的是()A.y =B .1y x x=+C .xx y ee =-﹣D .2log y x=【答案】C 【解析】利用函数奇偶性的定义和函数的解析式判断.【详解】A.函数y =的定义域是[0,)+∞,所以函数是非奇非偶函数,故错误;B.1y x x=+在()0,1上单调递减,故错误;C.因为()()()xx x x f x ee e ef x --=---=-=﹣,所以函数是奇函数,且在()0,1上单调递增,正确;D.因为()()22log =log f x x x f x -=-=,所以函数是偶函数,故错误;故选:C .4.(2021·湖南高三月考)定义函数1,()1,x D x x ⎧=⎨-⎩为有理数,为无理数,则下列命题中正确的是()A .()D x 不是周期函数B .()D x 是奇函数C .()yD x =的图象存在对称轴D .()D x 是周期函数,且有最小正周期【答案】C 【解析】当m 为有理数时恒有()()D x m D x +=,所以()D x 是周期函数,且无最小正周期,又因为无论x 是有理数还是无理数总有()()D x D x -=,所以函数()D x 为偶函数,图象关于y 轴对称.当m 为有理数时,()1,1,x D x m x ⎧+=⎨-⎩为有理数为无理数,()()D x m D x ∴+=,∴任何一个有理数m 都是()D x 的周期,()D x ∴是周期函数,且无最小正周期,∴选项A ,D 错误,若x 为有理数,则x -也为有理数,()()D x D x ∴=-,若x 为无理数,则x -也为无理数,()()D x D x ∴=-,综上,总有()()D x D x -=,∴函数()D x 为偶函数,图象关于y 轴对称,∴选项B 错误,选项C 正确,故选:C5.【多选题】(2021·淮北市树人高级中学高一期末)对于定义在R 上的函数()f x ,下列说法正确的是()A .若()f x 是奇函数,则()1f x -的图像关于点()1,0对称B .若对x ∈R ,有()()11f x f x =+-,则()f x 的图像关于直线1x =对称C .若函数()1f x +的图像关于直线1x =-对称,则()f x 为偶函数D .若()()112f x f x ++-=,则()f x 的图像关于点()1,1对称【答案】ACD 【解析】四个选项都是对函数性质的应用,在给出的四个选项中灵活的把变量x 加以代换,再结合函数的对称性、周期性和奇偶性就可以得到正确答案.【详解】对A ,()f x 是奇函数,故图象关于原点对称,将()f x 的图象向右平移1个单位得()1f x -的图象,故()1f x -的图象关于点(1,0)对称,正确;对B ,若对x ∈R ,有()()11f x f x =+-,得()()2f x f x +=,所以()f x 是一个周期为2的周期函数,不能说明其图象关于直线1x =对称,错误.;对C ,若函数()1f x +的图象关于直线1x =-对称,则()f x 的图象关于y 轴对称,故为偶函数,正确;对D ,由()()112f x f x ++-=得()()()()112,202f f f f +=+=,()()()()312,422,f f f f +-=+-= ,()f x 的图象关于(1,1)对称,正确.故选:ACD.6.【多选题】(2020·江苏南通市·金沙中学高一期中)已知偶函数()f x 在区间[)0,+∞上是增函数,则满足1(21)()3f x f -<的x 的取值是()A .0B .12C .712D .1【答案】BC 【解析】根据偶函数和单调性求得不等式的解,然后判断各选项..【详解】由题意1213x -<,解得1233x <<,只有BC 满足.故选:BC .7.【多选题】(2021·广东高三二模)函数()f x 的定义域为R ,且()1f x -与()1f x +都为奇函数,则下列说法正确的是()A .()f x 是周期为2的周期函数B .()f x 是周期为4的周期函数C .()2f x +为奇函数D .()3f x +为奇函数【答案】BD 【解析】AB 选项,利用周期函数的定义判断;CD 选项,利用周期性结合()1f x -,()1f x +为奇函数判断.【详解】因为函数()f x 的定义域为R ,且()1f x -与()1f x +都为奇函数,所以()()11f x f x --=--,()()11f x f x -+=-+,所以()()2f x f x =---,()()2f x f x =--+,所以()()22f x f x --=-+,即()()4f x f x +=,故B 正确A 错误;因为()()()3341f x f x f x +=+-=-,且()1f x -为奇函数,所以()3f x +为奇函数,故D 正确;因为()2f x +与()1f x +相差1,不是最小周期的整数倍,且()1f x +为奇函数,所以()2f x +不为奇函数,故C 错误.故选:BD.8.(2021·吉林高三二模(文))写出一个符合“对x R ∀∈,()()0f x f x +-=”的函数()f x =___________.【答案】3x (答案不唯一)【解析】分析可知函数()f x 的定义域为R ,且该函数为奇函数,由此可得结果.【详解】由题意可知,函数()f x 的定义域为R ,且该函数为奇函数,可取()3f x x =.故答案为:3x (答案不唯一).9.(2021·全国高三二模(理))已知()y f x =为R 上的奇函数,且其图象关于点()2,0对称,若()11f =,则()2021f =__________.【答案】1【解析】根据函数的对称性及奇函数性质求得函数周期为4,从而()2021(1)1f f ==.【详解】函数关于点()2,0对称,则()(4)f x f x =--,又()y f x =为R 上的奇函数,则()(4)(4)f x f x f x =--=-,因此函数的周期为4,因此()2021(1)1f f ==.故答案为:1.10.(2021·上海高三二模)已知函数()f x 的定义域为R ,函数()g x 是奇函数,且()()2x g x f x =+,若(1)1f =-,则(1)f -=___________.【答案】32-【解析】通过计算(1)(1)g g +-可得.【详解】因为()g x 是奇函数,所以(1)(1)0g g +-=,即1(1)2(1)02f f ++-+=,所以53(1)122f -=-=-.故答案为:32-.练提升1.(2021·安徽高三三模(文))若把定义域为R 的函数()f x 的图象沿x 轴左右平移后,可以得到关于原点对称的图象,也可以得到关于y 轴对称的图象,则关于函数()f x 的性质叙述一定正确的是()A .()()0f x f x -+=B .()()11f x f x -=-C .()f x 是周期函数D .()f x 存在单调递增区间【答案】C 【解析】通过举例说明选项ABD 错误;对于选项C 可以证明判断得解.【详解】定义域为R 的函数()f x 的图象沿x 轴左右平移后,可以得到关于原点对称的图象,也可以得到关于y 轴对称的图象,∴()f x 的图象既有对称中心又有对称轴,但()f x 不一定具有奇偶性,例如()sin 3f x x π⎛⎫=+⎪⎝⎭,由()()0f x f x -+=,则()f x 为奇函数,故选项A 错误;由()()11f x f x -=-,可得函数()f x 图象关于0x =对称,故选项B 错误;由()0f x =时,()f x 不存在单调递增区间,故选项D 错误;由已知设()f x 图象的一条对称抽为直线x a =,一个对称中心为(),0b ,且a b ¹,∴()()2f a x f x +=-,()()2f x f b x -=-+,∴()()22f a x f b x +=-+,∴()()()2222f a x b f b x b f x +-=-+-=-,∴()()()()442222f x a b f b x b f x a b f x +-=-+-=-+-=,∴()f x 的一个周期()4T a b =-,故选项C 正确.故选:C2.(2021·天津高三二模)已知函数()f x 在R 上是减函数,且满足()()f x f x -=-,若31log 10a f ⎛⎫=- ⎪⎝⎭,()3log 9.1b f =,()0.82c f =,则a ,b ,c 的大小关系为()A .a b c >>B .c b a >>C .b a c >>D .c a b>>【答案】B 【解析】根据对数运算性质和对数函数单调性可得331log log 9.1210->>,根据指数函数单调性可知0.822<;利用()f x 为减函数可知()()0.8331log log 9.1210f f f ⎛⎫-<< ⎪⎝⎭,结合()f x 为奇函数可得大小关系.【详解】33331log log 10log 9.1log 9210-=>>= ,0.822<即:0.8331log log 9.1210->>又()f x 是定义在R 上的减函数()()0.8331log log 9.1210f f f ⎛⎫∴-<< ⎪⎝⎭又()f x 为奇函数3311log log 1010f f⎛⎫⎛⎫∴-=- ⎪ ⎪⎝⎭⎝⎭()()0.8331log log 9.1210f f f ⎛⎫∴-<< ⎪⎝⎭,即:c b a >>.故选:B.3.(2021·陕西高三三模(理))已知函数f (x )为R 上的奇函数,且()(2)f x f x -=+,当[0,1]x ∈时,()22x xaf x =+,则f (101)+f (105)的值为()A .3B .2C .1D .0【答案】A 【解析】根据函数为奇函数可求得函数的解析式,再由()(2)f x f x -=+求得函数f (x )是周期为4的周期函数,由此可计算得选项.【详解】解:根据题意,函数f (x )为R 上的奇函数,则f (0)=0,又由x ∈[0,1]时,()22xx a f x =+,则有f (0)=1+a =0,解可得:a =﹣1,则有1()22xxf x =-,又由f (﹣x )=f (2+x ),即f (x +2)=﹣f (x ),则有f (x +4)=﹣f (x +2)=f (x ),即函数f (x )是周期为4的周期函数,则1313(101)(1)2,(105)(1)22222f f f f ==-===-=,故有f (101)+f (105)=3,故选:A .4.(2021·上海高三二模)若()f x 是R 上的奇函数,且()f x 在[0,)+∞上单调递增,则下列结论:①|()|y f x =是偶函数;②对任意的x ∈R 都有()|()|0f x f x -+=;③()()y f x f x =-在(,0]-∞上单调递增;④反函数1()y fx -=存在且在(,0]-∞上单调递增.其中正确结论的个数为()A .1B .2C .3D .4【答案】C 【解析】根据奇函数定义以及单调性性质,及反函数性质逐一进行判断选择.【详解】对于①,由()f x 是R 上的奇函数,得()()f x f x -=-,∴|()||()||()|-=-=f x f x f x ,所以|()|y f x =是偶函数,故①正确;对于②,由()f x 是R 上的奇函数,得()()0f x f x -+=,而()|()|f x f x =不一定成立,所以对任意的x ∈R ,不一定有()|()|0f x f x -+=,故②错误;对于③,因为()f x 是R 上的奇函数,且()f x 在[0,)+∞上单调递增,所以()f x 在(,0]-∞上单调递增,且()(0)0f x f £=,因此2()()[()]y f x f x f x =-=-,利用复合函数的单调性,知()()y f x f x =-在(,0]-∞上单调递增,故③正确.对于④,由已知得()f x 是R 上的单调递增函数,利用函数存在反函数的充要条件是,函数的定义域与值域是一一映射,且函数与其反函数在相应区间内单调性一致,故反函数1()y f x -=存在且在(,0]-∞上单调递增,故④正确;故选:C5.【多选题】(2021·全国高三专题练习)已知函数()f x 是偶函数,(1)f x +是奇函数,并且当[]1,2x ∈,()1|2|f x x =--,则下列选项正确的是()A .()f x 在(3,2)--上为减函数B .()f x 在(3,2)--上()0f x <C .()f x 在(3,2)--上为增函数D .()f x 在(3,2)--上()0f x >【答案】CD 【解析】根据题意,分析可得(4)()f x f x +=,结合函数的解析式可得当(3,2)x ∈--时函数的解析式,据此分析可得答案.【详解】解:根据题意,函数(1)f x +为奇函数,则有(1)(1)f x f x +=--+,即(2)()f x f x +=--,又由()f x 为偶函数,则()()f x f x -=,则有(2)()f x f x +=-,即有(4)()f x f x +=,当[1x ∈,2]时,()1|2|1f x x x =--=-,若(3,2)x ∈--,则4(1,2)x +∈,则(4)(4)13f x x x +=+-=+,则当(3,2)x ∈--时,有()3f x x =+,则()f x 为增函数且()(3)0f x f >-=;故()f x 在(3,2)--上为增函数,且()0f x >;故选:CD .6.【多选题】(2021·全国高三专题练习)若函数()f x 对任意x ∈R 都有()()0f x f x +-=成立,m R ∈,则下列的点一定在函数()y f x =图象上的是()A .(0,0)B .(,())m f m --C .(,())m f m --D .(,())m f m -【答案】ABC 【解析】根据任意x ∈R 满足()()0f x f x +-=,得到()f x 是奇函数判断.【详解】因为任意x ∈R 满足()()0f x f x +-=,所以()f x 是奇函数,又x ∈R ,所以令0x =,则(0)(0)f f -=-,得(0)0f =,所以点(0,0),且点(,())m f m --与(,())m f m --也一定在()y f x =的图象上,故选:ABC .7.【多选题】(2021·浙江高一期末)已知函数()y f x =是定义在[1,1]-上的奇函数,当0x >时,()(1)f x x x =-,则下列说法正确的是()A .函数()y f x =有2个零点B .当0x <时,()(1)f x x x =-+C .不等式()0f x <的解集是(0,1)D .12,[1,1]x x ∀∈-,都有()()1212f x f x -≤【答案】BCD 【解析】根据函数奇偶性定义和零点定义对选项一一判断即可.【详解】对A ,当0x >时,由()(1)0f x x x =-=得1x =,又因为()y f x =是定义在[1,1]-上的奇函数,所以()()()00,110f f f =-=-=,故函数()y f x =有3个零点,则A 错;对B ,设0x <,则0x ->,则()()()()11f x f x x x x x =--=----=-+⎡⎤⎣⎦,则B 对;对C ,当01x <≤时,由()(1)0f x x x =-<,得01x <<;当10x -≤≤时,由()(1)0f x x x =-+<,得x 无解;则C 对;对D ,12,[1,1]x x ∀∈-,都有()()()()12max min 1111122442f x f x f x f x f f ⎛⎫⎛⎫⎛⎫-≤-=--=--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则D 对.故选:BCD .8.【多选题】(2021·苏州市第五中学校高一月考)高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号.设x ∈R ,用[]x 表示不超过x 的最大整数,[]y x =也被称为“高斯函数”,例如:[ 3.5]4-=-,[2.1]2=.已知函数()[1]f x x x =+-,下列说法中正确的是()A .()f x 是周期函数B .()f x 的值域是[0,1]C .()f x 在(0,1)上是减函数D .x ∀∈R ,[()]0f x =【答案】AC 【解析】根据[]x 定义将函数()f x 写成分段函数的形式,再画出函数的图象,根据图象判断函数的性质.【详解】由题意可知[]1,210,1011,012,12x x x x x --≤<-⎧⎪-≤<⎪⎪+=≤<⎨⎪≤<⎪⎪⎩,()[]1,21,1011,012,12x x x x f x x x x x x x ---≤<-⎧⎪--≤<⎪⎪∴=+-=-≤<⎨⎪-≤<⎪⎪⎩,可画出函数图像,如图:可得到函数()f x 是周期为1的函数,且值域为(]0,1,在()0,1上单调递减,故选项AC 正确,B 错误;对于D ,取1x =-()11f -=,则()11f -=⎡⎤⎣⎦,故D 错误.故选:AC .9.【多选题】(2021·湖南高三月考)函数()f x 满足以下条件:①()f x 的定义域是R ,且其图象是一条连续不断的曲线;②()f x 是偶函数;③()f x 在()0,∞+上不是单调函数;④()f x 恰有2个零点.则函数()f x 的解析式可以是()A .2()2f x x x =-B .()ln 1f x x =-C .2()1f x x x =-++D .()2xf x e =-【答案】CD 【解析】利用函数图象变换画出选项A ,B ,C ,D 对应的函数图象,逐一分析即可求解.【详解】解:显然题设选项的四个函数均为偶函数,但()ln 1f x x =-的定义域为{}0x x R ≠≠,所以选项B 错误;函数2()2f x x x =-的定义域是R ,在(),1-∞-,()0,1单调递减,在()1,0-,()1,+∞单调递增,但()()()2020f f f -===有3个零点,选项A 错误;函数2()1f x x x =-++的定义域是R ,当()0,x ∈+∞时,2()1f x x x =-++的图象对称轴为12x =,其图象是开口向下的抛物线,故()f x 在1,2⎛⎫-∞- ⎪⎝⎭,10,2⎛⎫ ⎪⎝⎭单调递增,在1,02⎛⎫- ⎪⎝⎭,1,2⎛⎫+∞ ⎪⎝⎭单调递减,由图得()f x 恰有2个零点,选项C 正确;函数()2xf x e =-的定义域是R ,在(),ln 2-∞-,()0,ln 2单调递减,在()ln 2,0-,()ln 2,+∞单调递增,且()()ln 2ln 20f f -==有2个零点,选项D 正确.故选:CD.10.(2021·黑龙江大庆市·高三二模(理))定义在R 上的函数()f x 满足()2()f x f x +=,当[]1,1x ∈-时,2()f x x =,则函数()f x 的图象与()3x g x =的图象的交点个数为___________.【答案】7由题设可知()f x 的周期为2,结合已知区间的解析式及()3x g x =,可得两函数图象,即知图象交点个数.【详解】由题意知:()f x 的周期为2,当[1,1]x ∈-时,2()f x x =,∴()f x 、()g x 的图象如下:即()f x 与()g x 共有7个交点,故答案为:7.【点睛】结论点睛:()()f m x f x +=有()f x 的周期为||m .练真题1.(2020·天津高考真题)函数241xy x =+的图象大致为()A.B.C.D.【解析】【分析】由题意首先确定函数的奇偶性,然后考查函数在特殊点的函数值排除错误选项即可确定函数的图象.【详解】由函数的解析式可得:()()241xf x f x x --==-+,则函数()f x 为奇函数,其图象关于坐标原点对称,选项CD 错误;当1x =时,42011y ==>+,选项B 错误.故选:A.2.(2020·全国高考真题(理))设函数()ln |21|ln |21|f x x x =+--,则f (x )()A.是偶函数,且在1(,)2+∞单调递增B.是奇函数,且在11(,22-单调递减C.是偶函数,且在1(,)2-∞-单调递增D.是奇函数,且在1(,2-∞-单调递减【答案】D 【解析】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称,又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-,()f x ∴为定义域上的奇函数,可排除AC;当11,22x ⎛⎫∈-⎪⎝⎭时,()()()ln 21ln 12f x x x =+--,()ln 21y x =+Q 在11,22⎛⎫- ⎪⎝⎭上单调递增,()ln 12y x =-在11,22⎛⎫- ⎪⎝⎭上单调递减,()f x ∴在11,22⎛⎫- ⎪⎝⎭上单调递增,排除B;当1,2x ⎛⎫∈-∞-⎪⎝⎭时,()()()212ln 21ln 12ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭,2121x μ=+- 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,D 正确.故选:D.3.(2020·海南省高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是()A.[)1,1][3,-+∞ B.3,1][,[01]-- C.[1,0][1,)-⋃+∞D.[1,0][1,3]-⋃【答案】D 【解析】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞ 时,()0f x <,所以由(10)xf x -≥可得:021012x x x <⎧⎨-≤-≤-≥⎩或或001212x x x >⎧⎨≤-≤-≤-⎩或或0x =解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃,故选:D.4.(2018年理全国卷II)已知op 是定义域为(−∞,+ ∞)的奇函数,满足o1−p =o1+p .若o1)=2,则o1)+o2)+o3)+⋯+o50)=()A.−50B.0C.2D.50【答案】C 【解析】因为op 是定义域为(−∞,+ ∞)的奇函数,且o1−p =o1+p ,所以o1+p =−o −1)∴o3+p =−o +1)=o −1)∴=4,因此o1)+o2)+o3)+⋯+o50)=12[o1)+o2)+o3)+o4)]+o1)+o2),因为o3)=−o1),o4)=−o2),所以o1)+o2)+o3)+o4)=0,∵o2)=o −2)=−o2)∴o2)=0,从而o1)+o2)+o3)+⋯+o50)=o1)=2,选C.5.(2019·全国高考真题(文))设()f x 是定义域为R 的偶函数,且在()0,∞+单调递减,则()A.233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B.233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭C.23332122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D.23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】C 【解析】()f x 是R 的偶函数,()331log log 44f f ⎛⎫∴= ⎪⎝⎭.223303322333log 4log 31,1222log 422---->==>>∴>> ,又()f x 在(0,+∞)单调递减,∴()23323log 422f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,23323122log 4f f f --⎛⎫⎛⎫⎛⎫∴>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选C.6.(2019·全国高考真题(理))已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =__________.【答案】-3【解析】因为()f x 是奇函数,且当0x >时0x ->,()()ax f x f x e -=--=.又因为ln 2(0,1)∈,(ln 2)8f =,所以ln 28a e-=,两边取以e 为底的对数得ln 23ln 2a -=,所以3a -=,即3a =-.。
第2章 第3课时 函数的奇偶性、周期性-备战2025年高考数学一轮复习(解析版)
第3课时函数的奇偶性、周期性[考试要求]1.了解函数奇偶性的含义,了解函数的周期性及其几何意义.2.会依据函数的性质进行简单的应用.1.函数的奇偶性奇偶性定义图象特点偶函数一般地,设函数f (x )的定义域为D ,如果∀x ∈D ,都有-x ∈D ,且f (-x )=f (x ),那么函数f (x )就叫做偶函数关于y 轴对称奇函数一般地,设函数f (x )的定义域为D ,如果∀x ∈D ,都有-x ∈D ,且f (-x )=-f (x ),那么函数f (x )就叫做奇函数关于原点对称2.周期性(1)周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.[常用结论]1.函数奇偶性常用结论(1)如果函数f (x )是奇函数且在x =0处有定义,则一定有f (0)=0.如果函数f (x )是偶函数,那么f (x )=f (|x |).(2)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.(3)若y =f (x +a )是奇函数,则f (-x +a )=-f (x +a );若y =f (x +a )是偶函数,则f (-x +a )=f (x +a ).2.函数周期性常用结论对f(x)定义域内任一自变量的值x:(1)若f(x+a)=-f(x),则T=2a(a>0).(2)若f(x+a)=1,则T=2a(a>0).(3)若f(x+a)=-1,则T=2a(a>0).(4)若f(x+a)=f(x+b),则T=|a-b|(a≠b).3.常见奇、偶函数的类型(1)f(x)=a x+a-x(a>0且a≠1)为偶函数;(2)f(x)=a x-a-x(a>0且a≠1)为奇函数;(3)f(x)=−−+−=2−12+1(a>0且a≠1)为奇函数;(4)f(x)=log a K r>0且≠1,≠0为奇函数;(5)f(x)=log a(2+1±x)(a>0且a≠1)为奇函数;(6)f(x)=|ax+b|+|ax-b|为偶函数;(7)f(x)=|ax+b|-|ax-b|为奇函数.一、易错易混辨析(正确的打“√”,错误的打“×”)(1)函数y=x2,x∈(0,+∞)是偶函数.()(2)存在既是奇函数,又是偶函数的函数.()(3)偶函数图象不一定过原点,奇函数的图象一定过原点.()(4)若函数f(x)在定义域上满足f(x+a)=-f(x)(a>0),则f(x)是周期为2a的周期函数.() [答案](1)×(2)√(3)×(4)√二、教材经典衍生1.(多选)(人教A版必修第一册P84例6改编)下列函数中为奇函数的是() A.f(x)=2x4+3x2B.f(x)=x3-2xC.f(x)=2+1D.f(x)=x3+1[答案]BC2.(人教A版必修第一册P203练习T4改编)若f(x)是定义在R上的周期为2的函数,当x∈[0,2)时,f(x)=2-x,则f(2025)=________.[∵f(x)的周期为2,∴f(2025)=f(1)=2-1=12.]3.(人教A版必修第一册P86习题3.2T11改编)已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x-2x+a,则a=________;当x<0时,f(x)=________.-1-2-x-2x+1[∵f(x)是定义在R上的奇函数,∴f(0)=0,即1+a=0,∴a=-1.∴当x≥0时,f(x)=2x-2x-1,设x<0,则-x>0,∴f(-x)=2-x-2(-x)-1=2-x+2x-1,又f(x)为奇函数,∴f(-x)=-f(x),∴-f(x)=2-x+2x-1,∴f(x)=-2-x-2x+1.]4.(人教A版必修第一册P85练习T1改编)设奇函数f(x)的定义域为[-5,5],若当x∈[0,5]时,f(x)的图象如图所示,则不等式f(x)<0的解集为________.(-2,0)∪(2,5][由题图可知,当0<x<2时,f(x)>0;当2<x≤5时,f(x)<0,又f(x)是奇函数,∴当-2<x<0时,f(x)<0,当-5≤x<-2时,f(x)>0.综上,f(x)<0的解集为(-2,0)∪(2,5].]考点一函数奇偶性的判断[典例1]判断下列函数的奇偶性:(1)f(x)=3−22−3;(2)f(x)=(1+x(3)f(x)=2+,<0,−2+,>0;(4)f(x)=log2(x+2+1).[解](1)由3−2≥0,2−3≥0,得x2=3,解得x=±3,即函数f(x)的定义域为{-3,3},从而f(x)=3−2+2−3=0.因此f(-x)=-f(x)且f(-x)=f(x),∴函数f(x)既是奇函数又是偶函数.(2)函数f(x)=(1+x的定义域满足1−1+≥0,则1+1−≥0≠−1⇒-1<x≤1,由于定义域不关于原点对称,故f(x)为非奇非偶函数.(3)显然函数f(x)的定义域为(-∞,0)∪(0,+∞),关于原点对称.∵当x<0时,-x>0,则f(-x)=-(-x)2-x=-x2-x=-f(x);当x>0时,-x<0,则f(-x)=(-x)2-x=x2-x=-f(x);综上可知:对于定义域内的任意x,总有f(-x)=-f(x)成立,∴函数f(x)为奇函数.(4)显然函数f(x)的定义域为R,f(-x)=log2[-x+−2+1]=log2(2+1-x)=log2(2+1+x)-1=-log2(2+1+x)=-f(x),故f(x)为奇函数.判断函数奇偶性的两个必备条件及方法(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先判断函数的定义域是不是关于原点对称;(2)判断f(x)与f(-x)是否具有等量关系,在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关系式(f(x)+f(-x)=0(奇函数)或f(x)-f(-x)=0(偶函数))是否成立.(3)判断函数奇偶性的方法:①定义法;②图象法.[跟进训练]1.(1)(多选)设函数f(x)=e−e−2,则下列结论正确的是()A.|f(x)|是偶函数B.-f(x)是奇函数C.f(x)|f(x)|是奇函数D.f(|x|)f(x)是偶函数(2)已知函数y=f(x)的解析式为f(x)=2x2+(a∈R),讨论f(x)的奇偶性,并说明理由.(1)ABC [对于A ,B ,C 用定义验证正确;因为f (x )=e −e −2,则f (-x )=e −−e2=-f (x ),所以f (x )是奇函数.因为f (|-x |)=f (|x |),所以f (|x |)是偶函数,所以f (|x |)f (x )是奇函数,所以D 错误.](2)[解]由题意知,函数定义域为(-∞,0)∪(0,+∞),当a =0时,f (x )=2x 2,f (-x )=2(-x )2=2x 2=f (x ),f (x )是偶函数;当a ≠0时,f (1)=2+a ,f (-1)=2-a ,f (1)≠f (-1),f (-1)≠-f (1),f (x )是非奇非偶函数.考点二函数奇偶性的应用利用奇偶性求值(解析式)[典例2](1)(2023·新高考Ⅱ卷)若f (x )=(x +a )·ln2K12r1为偶函数,则a =()A .-1B .0C .12D .1(2)(2024·山东潍坊模拟)已知函数f (x )是定义在R 上奇函数,当x >0时,f (x )22−2r2,则f (x )=________.(1)B(2<0>0[(1)法一:由2K12r1>0,得x >12或x <-12,由f (x )是偶函数,∴f (-x )=f (x ),得(-x +a )ln −2K1−2r1=(x +a )ln 2K1,又(-x +a )ln 2r12K1=(-x +a )ln2r1,所以(x -a )ln2K12r1=(x +a )ln 2K12r1,∴x -a =x +a ,得-a =a ,得a =0.故选B.法二:因为f (x )=(x +a )ln2K12r1为偶函数,f (-1)=(a -1)ln 3,f (1)=(a +1)ln 13=-(a +1)ln 3,所以(a -1)ln 3=-(a +1)ln 3,解得a =0.故选B.(2)由函数f(x)是R上的奇函数,得f(0)=0,而当x<0时,-x>0,所以f(x)=-f(-x)=-2−2−+2=-22+2r2,综上所述,f(x)<0,>0.](1)选择、填空题中,已知奇偶性求参数值,可采用特值法,如f(-1)=-f(1),f(-1)=f(1).(2)利用奇偶性求解析式,求谁设谁,自变量转移.利用奇偶性解不等式[典例3](1)(2023·山东鄄城一中三模)已知函数f(x)=x3+(a-2)x2+2x+b是定义在[-2c-1,c+3]上的奇函数,则不等式f(2x+1)+f(a+b+c)>0的解集为()A.(-2,4]B.(-3,5]C.−52,2D.(-2,2](2)(2024·湖南师大附中模拟)已知函数f(x)是定义在R上的偶函数,f(x)在[0,+∞)上单调递减,且f(3)=0,则不等式(2x-5)f(x-1)<0的解集为() A.(-∞,-2)∪4B.(4,+∞)C.−2(4,+∞)D.(-∞,-2)(1)C(2)C[(1)因为函数f(x)=x3+(a-2)x2+2x+b是定义在[-2c-1,c+3]上的奇函数,所以-2c-1+c+3=0,解得c=2,又f(-x)=-f(x),即-x3+(a-2)x2-2x+b=-x3-(a-2)x2-2x-b,所以2(a-2)x2+2b=0,解得2−2=0,2=0,解得=2,=0,所以f(x)=x3+2x,x∈[-5,5],因为y=x3与y=2x在定义域[-5,5]上单调递增,所以f(x)在定义域[-5,5]上单调递增,则不等式f(2x+1)+f(a+b+c)>0,即f(2x+1)+f(4)>0,等价于f(2x+1)>f(-4),所以2+1>−4,−5≤2+1≤5,解得-52<x ≤2,即不等式的解集为−52,2.故选C.(2)依题意,函数的大致图象如图:因为f (x )是定义在R 上的偶函数,在[0,+∞)上单调递减,且f (3)=0,所以f (x )在(-∞,0]上单调递增,且f (-3)=0,则当x >3或x <-3时,f (x )<0;当-3<x <3时,f (x )>0,不等式(2x -5)f (x -1)<0化为2−5>0,−1<0或2−5<0,−1>0,所以2−5>0,−1>3或2−5>0,−1<−3或2−5<0,−3<−1<3,解得x >4或x ∈∅或-2<x <522<x52或x >4,即原不等式的解集为−2(4,+∞).故选C.](1)利用函数的奇偶性可求函数值或求参数的值,求解的关键在于借助奇偶性转化为求已知区间上的函数值或得到参数的恒等式,利用方程思想求参数的值.(2)利用函数的奇偶性可画出函数在其对称区间上的图象,结合图象直观求解相关问题.[跟进训练]2.(1)(2024·安徽滁州模拟)函数y =f (x )是R 上的偶函数,且在(-∞,0]上单调递增,若f (a )≥f a 的取值范围是()A 3+∞B .−∞,−C .−13D .−∞,−∪+∞(2)已知函数f(x)=sin x+x3+1+3,若f(a)=1,则f(-a)=________.(3)(2023·福建漳州三模)已知函数f(x)是定义在[-2,2]上的奇函数,且f(x)=2−,0<≤1,−1,1<≤2,则f−f f(0)=________.(1)C(2)5(3)-[(1)∵y=f(x)是R上的偶函数,且在(-∞,0]上单调递增,∴y=f(x)在[0,+∞)上单调递减,∵f(a)≥f3∴|a|≤13,-13≤a≤13,a的取值范围是−13, C.(2)根据题意f(a)=sin a+a3+1+3=1,即sin a+a3+1=-2,3所以f(-a)=sin(-a)+(-a)3=-sin+3+3=2+3=5.(3)由函数f(x)是定义在[-2,2]上的奇函数,则f−f−1=12,f(0)=0,由f-12=-14,则f−f f(0)=-12−14+0=-34.]考点三函数的周期性[典例4](1)已知函数f(x)是定义在R上的奇函数,对任意的实数x,f(x-2)=f(x+2),当x∈(0,2)时,f(x)=x2,则f()A.-94B.-14C.14D.94(2)(2023·湖北二模)已知函数y=f(x),对任意x∈R,都有f(x+2)·f(x)=k(k 为常数),且当x∈[0,2]时,f(x)=x2+1,则f(2025)=________.(1)A(2)2[(1)由f(x-2)=f(x+2),知y=f(x)的周期T=4,又f(x)是定义在R上的奇函数,∴f f8−f−f=-94.(2)因为对任意x∈R,都有f(x+2)·f(x)=k为常数,所以f(x+4)·f(x+2)=k,从而f(x+4)=f(x),即f(x)的周期为4,所以f(2025)=f(1)=2.]等问题,转化到已知区间上,进而解决问题;利用函数的周期性,能实现自变量的转移,把自变量大化小.[跟进训练]3.设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x-x2.(1)f(x)的最小正周期是________;(2)当x∈[2,4]时,f(x)=________;(3)计算f(0)+f(1)+f(2)+…+f(2023)=________.(1)4(2)x2-6x+8(3)0[(1)∵f(x+2)=-f(x),∴f(x+4)=-f(x+2)=f(x).∴f(x)是周期为4的周期函数.(2)当x∈[-2,0]时,-x∈[0,2],由已知得f(-x)=2(-x)-(-x)2=-2x-x2.又f(x)是奇函数,∴f(-x)=-f(x)=-2x-x2.∴f(x)=x2+2x.又当x∈[2,4]时,x-4∈[-2,0],∴f(x-4)=(x-4)2+2(x-4).又f(x)是周期为4的周期函数,∴f(x)=f(x-4)=(x-4)2+2(x-4)=x2-6x+8.即当x∈[2,4]时,f(x)=x2-6x+8.(3)∵f(0)=0,f(1)=1,f(2)=0,f(3)=-1,且f(x)是周期为4的周期函数,∴f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)=…=f(2020)+f(2021)+f (2022)+f(2023)=0.∴f(0)+f(1)+f(2)+…+f(2023)=0.]课时分层作业(八)函数的奇偶性、周期性一、单项选择题1.(2024·福州模拟)下列函数中,既不是奇函数,也不是偶函数的为() A.y=0B.y=1C.y=x2D.y=2xD[对于A,定义域为R,且f(-x)=0=f(x),则f(x)为偶函数,故A不满足题意;对于B,因为定义域为{x|x≠0},f(-x)=-1=-f(x),所以f(x)为奇函数,故B不满足题意;对于C,因为定义域为R,且f(-x)=(-x)2=x2=f(x),所以f(x)为偶函数,故C不满足题意;对于D,因为f(-x)=2-x,f(-x)≠-f(x),f(-x)≠f(x),所以f(x)既不是奇函数,也不是偶函数.故选D.] 2.(2024·湖南长沙模拟)已知f(x)=2-x+a·2x为奇函数,则f(1)的值为() A.-32B.1C.32D.52A[因为f(x)为定义在R上的奇函数,所以f(0)=0,即20+a·20=0,解得a=-1,当a=-1时,f(x)=2-x-2x,此时f(-x)=2x-2-x=-(2-x-2x)=-f(x),则f(x)为奇函数,故f(1)=12-2=-32.故选A.]3.已知函数f(x)的图象关于原点对称,且周期为4,f(1)=-2,则f(2023)=()A.2B.0C.-2D.-4A[依题意,函数f(x)的图象关于原点对称,则函数f(x)是奇函数,又f(x)的周期为4,且f(1)=-2,则f(2023)=f(-1+506×4)=f(-1)=-f(1)=2.] 4.(2021·全国乙卷)设函数f(x)=1−1+,则下列函数中为奇函数的是()A.f(x-1)-1B.f(x-1)+1C.f(x+1)-1D.f(x+1)+1B[f(x)=1−1+==21+-1,为保证函数变换之后为奇函数,需将函数y=f(x)的图象向右平移1个单位长度,再向上平移1个单位长度,得到的图象对应的函数为y=f(x-1)+1.故选B.]5.(2024·江苏南京模拟)已知奇函数f(x)与偶函数g(x)满足f(x)+g(x)=1K1,则f(x)=()A.12−1B.11−2C.2−1D.1−2C[由f(x)+g(x)=1K1可得,f(-x)+g(-x)=1−K1,又f(x),g(x)分别为奇,偶函数,所以g(x)-f(x)1−K1,由+=1K1,−=1−K1解得f(x)=2−1.故选C.]6.(2023·广东六校联考)设函数f(x)=(a-1)x|x-b+1|为奇函数且在R上为减函数,则关于a,b的值表述正确的是()A.a>1,b=1B.a>1,b<1C.a<1,b=1D.a<1,b>1C[因为函数f(x)=(a-1)x|x-b+1|为R上的奇函数,且是R上的减函数,所以a-1≠0且f(-1)=-f(1),即-(a-1)|-b|=-(a-1)|2-b|,所以|-b|=|2-b|,解得b=1,经检验符合题意,故f(x)=(a-1)x|x|=−12,≥0,−−12,<0,因为函数f(x)=(a-1)x|x|在R上为减函数,所以a-1<0,所以a<1.故选C.]7.函数f(x)是定义域为R的奇函数,f(x)在(0,+∞)上单调递增,且f(2)=0,的解集为()A.(-2,2)B.(-∞,0)∪(0,2)C.(2,+∞)D.(-∞,-2)∪(2,+∞)D[由于f(x)是定义域为R的奇函数,所以f(0)=0,又f(x)在(0,+∞)上单调递增,且f(2)=0,所以f(x)的大致图象如图所示.由f(-x)=-f(x),由于x在分母位置,所以x≠0,当x<0时,只需f(x)<0,由图象可知x<-2;当x>0时,只需f(x)>0,由图象可知x>2.综上,不等式的解集为(-∞,-2)∪(2,+∞).]8.定义在R上的函数f(x)满足f(x+6)=f(x),当-3≤x<-1时,f(x)=-(x+2)2;当-1≤x<3时,f(x)=x,则f(1)+f(2)+f(3)+…+f(2023)等于() A.336B.338C.337D.339B[因为f(x+6)=f(x),所以函数的周期T=6,于是f(1)=1,f(2)=2,f(3)=f(-3)=-(-3+2)2=-1,f(4)=f(-2)=-(-2+2)2=0,f(5)=f(-1)=-1,f(6)=f(0)=0,所以f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=1,而2023=6×337+1,所以f(1)+f(2)+f(3)+…+f(2023)=337×1+1=338.]二、多项选择题9.已知y=f(x)是定义在R上的奇函数,则下列函数中为奇函数的是()A.y=f(|x|)B.y=f(-x)C.y=xf(x)D.y=f(x)+xBD[由奇函数的定义f(-x)=-f(x)验证,对于A项,f(|-x|)=f(|x|),为偶函数;对于B项,f(-(-x))=f(x)=-f(-x),为奇函数;对于C项,-xf(-x)=-x·[-f(x)]=xf(x),为偶函数;对于D项,f(-x)+(-x)=-[f(x)+x],为奇函数.可知BD正确.]10.已知函数f(x)的定义域为R,∀x1,x2∈R,x2-x1=2,都有f(x1)+f(x2)=0,且f(1)=1,则下列结论正确的是()A.f(23)=1B.f(-23)=1C.f(1)+f(2)+f(3)+f(4)+f(5)=1D.f(x)+f(x+1)+f(x+2)+f(x+3)=0BCD[由x2-x1=2得x2=x1+2,所以f(x1)+f(x1+2)=0,故f(x1+2)+f(x1+4)=0,所以f(x1+4)=f(x1),所以函数f(x)是周期为4的周期函数.对于A,f(23)=f(5×4+3)=f(3)=-f(1)=-1,A错误;对于B,f(-23)=f(-6×4+1)=f(1)=1,B正确;对于C,f(1)+f(3)=0,f(2)+f(4)=0,f(5)=f(1)=1,所以f(1)+f(2)+f(3)+f(4)+f(5)=1,C正确;对于D,f(x)+f(x+2)=0,f(x+1)+f(x+3)=0,所以f(x)+f(x+1)+f(x+2)+f(x+3)=0,D正确.故选BCD.]三、填空题11.(2023·广东湛江二模)已知奇函数f(x)=2−3−,<0,+1,>0,则g(x)=________.-x2+3x-1[当x>0时,-x<0,f(x)=g(x)+1=-f(-x)=-[(-x)2-3-(-x)]=-x2+3x,则g(x)=-x2+3x-1.]12.(2024·烟台模拟)已知f(x)为定义在R上的奇函数,且f(x)+f(2-x)=0,当-1<x<0时,f(x)=2x,则f(2+log25)的值为________.[因为f(2-x)=-f(x)=f(-x),所以f(2+x)=f(x),所以f(x)的周期为2,所以f(2+log25)=f2×2+log=f log f log2又-1<log245<0,所以f(2+log25)=-f log2−2log245=-45.]13.函数f(x)=x(e x+e-x)+1在区间[-2,2]上的最大值与最小值分别为M,N,则M+N的值为()A.-2B.0C.2D.4C[依题意,令g(x)=x(e x+e-x),显然函数g(x)的定义域为R,则g(-x)=-x(e-x+e x)=-g(x),即函数g(x)是奇函数,因此,函数g(x)在区间[-2,2]上的最大值与最小值的和为0,易知f(x)=g(x)+1,则有M=g(x)max+1,N=g(x)min+1,于是得M+N=g(x)max+1+g(x)min+1=2,所以M+N的值为2.故选C.]14.(多选)已知定义域为R的函数f(x)满足:∀x,y∈R,f(x+y)+f(x-y)=f(x)f (y),且f(1)=1,则下列结论正确的是()A.f(0)=2B.f(x)为偶函数C.f(x)为奇函数D.f(2)=-1ABD[因为∀x,y∈R,f(x+y)+f(x-y)=f(x)f(y),取x=1,y=0可得f(1)+f(1)=f(1)f(0),又f(1)=1,所以f(0)=2,A正确;取x=0,y=x可得f(x)+f(-x)=f(0)f(x),因为f(0)=2,所以f(-x)=f(x),所以f(x)为偶函数,C错,B正确;取x=1,y=1可得f(2)+f(0)=f(1)f(1),又f(1)=1,f(0)=2,所以f(2)=-1,D正确.]15.设f(x)是定义在R上的函数,且f(x+2)1+1−f(3)=3,则f(5)f(2023)=________.[∵f(x+2)1+1−∴f(x+4)r2r2=-1,∴f(x+8)=-1r4=f(x),∴f(x)的周期为8,∵f(x+2)f(3)=3,∴f(5)=1+31−3=-2,∴f(7)55=1−21+2=-13,∴f(2023)=f(7)=-13.f(5)f(2023)=-2×−=23.] 16.(2024·贵州模拟)已知函数f(x)=ln(2+1+x)+x,若f(2x-1)+f(2-x)>0,则x的取值范围是________.(-1,+∞)[因为函数f(x)=ln(2+1+x)+x的定义域为R,且f(-x)+f(x)=ln(2+1-x)-x+ln(2+1+x)+x=ln[(2+1-x)(2+1+x)]=ln(x2+1-x2)=ln1=0,即f(-x)=-f(x),即f(x)为奇函数,当x>0时,y=2+1+x,y=ln x,y=x均单调递增,所以f(x)=ln(2+1+x)+x在(0,+∞)上单调递增,则f(x)在(-∞,0)上单调递增,所以f(x)是奇函数且在R上单调递增,由f(2x-1)+f(2-x)>0,得f(2x-1)>f(x-2),所以2x-1>x-2,解得x>-1,即x的取值范围为(-1,+∞).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三讲 函数的奇偶性与周期性
考点分析:
1.判断函数的奇偶性.
2.利用函数奇偶性、周期性求函数值及求参数值.
3.考查函数的单调性与奇偶性的综合应用.
复习指导:
复习时应结合具体实例和函数的图象,理解函数的奇偶性、周期性的概念,明确它们在研究函数中的作用和功能.重点解决综合利用函数的性质解决有关问题.
知识梳理:、
1、奇、偶函数的概念
一般地,如果对于函数f(x)的定义域关于原点对称,且定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数.
一般地,如果对于函数f(x)的定义域关于原点对称,且定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数.
奇函数的图象关于原点对称;偶函数的图象关于y轴对称.
2.奇、偶函数的性质
(1)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.
(2)在公共定义域内
①两个奇函数的和(差)是奇函数,两个奇函数的积(商)是偶函数;
②两个偶函数的和(差)、积(商)都是偶函数;
③一个奇函数,一个偶函数的积(商)是奇函数.一个奇函数,偶函数的和(差)是非奇非偶函数
▲奇奇=奇,奇×奇=偶,偶偶=偶,偶×偶=偶,奇×偶=奇.3.周期性
(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.
(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.
关于周期函数的常用结论:
1、若对于函数f(x)定义域内的任意一个x都有:
(1),则函数f(x)必为周期函数,2|a|是它的一个周期;
(2),则函数f(x)必为周期函数,2|a|是它的一个周期;
2、如果T是函数y=f(x)的周期,则
(1)kT(k∈Z,k≠0)也是函数y=f(x)的周期,即f(x+kT)=f(x);
(2)若已知区间[m,n](m<n)上的图象,则可画出区间[m+kT,n+kT](k∈Z,k≠0)上的图象.
3、若对于R上的任意的x都有f(2a-x)=f(x)或f(-x)=f(2a+x),则y =f(x)的图象关于直线x=a对称.
四、例题讲解
(一)函数奇偶性的判定
1、利用定义判断函数奇偶性的一般步骤
,
(1)首先确定函数的定义域,看它是否关于原点对称。
若不对称,则既不是奇函数又不是偶函数。
(2)若定义域关于原点对称,再判定f(-x)与f(x)之间的关系
①若f(-x)=-f(x)(或f(-x) +f(x)=0),则为奇函数;
②若f(-x)=f(x)(或 f(-x) -f(x)=0),则f(x)为偶函数;
③若f(-x)=-f(x)且f(-x)=f(x),则f(x)既是奇函数又是偶函数;
④若f(-x) ≠f(x)且f(-x)≠- f(x),则f(x)既不是奇函数也不是偶函数。
<2>图象法:
<3>性质法:
例1、讨论的奇偶性
解:(1)函数定义域为R,
,
∴f(x)为偶函数;
(另解)先化简:
,显然
为偶函数;从这可以看出,化简后再解决要容易得多。
练习1、判断函数的奇偶性
2、分段函数的奇偶性
分段函数奇偶性的判定步骤
(1)分析定义域是否关于原点对称;
(2)对x的值进行分段讨论,寻求f(X)与f(-X)在各段上的关系;(3)综合(2)在定义域内f(X)与f(-X)的关系,从而判断f(X)的奇偶性。
注:奇偶性是函数的一个整体性质,不能说函数在定义域的某一段上是奇函数或偶函数。
例2、已知函数试判断的奇偶性
确定定义域判断每一段上与的关系判断整个定义域上与的关系结论。
解答:由题设可知函数的定义域关于原点对称。
当时,
练习2、判断函数
的奇偶性
3、抽象函数的奇偶性
(1)判断(或证明)抽象函数的奇偶性的步骤
(2)利用函数奇偶性的定义,找准方向(想办法出现f(x),f(-x));(3)巧妙赋值,合理、灵活变形配凑;
(4)找出f(X)与f(-X)关系,得出结论。
例3、已知函数f(x)对一切x、y∈R,都有f(x+y)=f(x)+f(y),
(1)判断函数f(x)的奇偶性;
(2)若f(-3)=a,用a表示f(12).
分析:判断函数奇偶性的一般思路是利用定义,看f(-x)与f(x)的关系,进而得出函数的奇偶性;解决本题的关键是在f(x+y)=f(x)+f(y)中如何出现f(-x);用a表示f(12)实际上是如何用f(-3)表示f(12),解决该问题的关键是寻找f(12)与f(-3)的关系.
解答:
例4、已知函数f(x)对任意的实数x满足:且当x∈[-1,1]时,
f(x)=x2.
求f(2012)
【解析】(1)∵对任意x∈R,都有
∴f(x)是以2为周期的函数,
∴f(2 012)=f(2×1 006+0)=f(0)=02=0.
例5、已知函数f(x)是(-∞,+∞)上的奇函数,且f(x)的图象关于x=1对称,当x∈[0,1]时,f(x)=2x-1,
(1)求证:f(x)是周期函数;
(2)当x∈[1,2]时,求f(x)的解析式;
(3)计算f(0)+f(1)+f(2)+…+f(2013)的值.
(1)只需证明f(x+T)=f(x),即可说明f(x)为周期函数;
(2)由f(x)在[0,1]上的解析式及f(x)图象关于x=1对称求得f(x)在[1,2]上的解析式;
(3)由周期性求和的值.
(1)证明:函数f(x)为奇函数,则f(-x)=-f(x),函数f(x)的图象关于x=1对称,则f(2+x)=f(-x)=-f(x),所以f(4+x)=f[(2+x)+2]=-f(2+x)=f(x),所以f(x)是以4为周期的周期函数.
(2)解 当x∈[1,2]时,2-x∈[0,1],
又f(x)的图象关于x=1对称,则f(x)=f(2-x)=22-x-1,x∈[1,2].(3)解 ∵f(0)=0,f(1)=1,f(2)=0,
f(3)=f(-1)=-f(1)=-1
又f(x)是以4为周期的周期函数.
∴f(0)+f(1)+f(2)+…+f(2013)
=f(2 012)+f(2 013)=f(0)+f(1)=1.
练习4、设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x-x2.
(1)求证:f(x)是周期函数;
(2)当x∈[2,4]时,求f(x)的解析式;
(3)计算f(0)+f(1)+f(2)+…+f(2 013).
【解析】(1)∵f(x+2)=-f(x),
∴f(x+4)=-f(x+2)=f(x).
∴f(x)是周期为4的周期函数.
(2)当x∈[-2,0]时,-x∈[0,2],由已知得
f(-x)=2(-x)-(-x)2=-2x-x2,
又f(x)是奇函数,∴f(-x)=-f(x)=-2x-x2,
∴f(x)=x2+2x.
又当x∈[2,4]时,x-4∈[-2,0],
∴f(x-4)=(x-4)2+2(x-4).
又f(x)是周期为4的周期函数,
∴f(x)=f(x-4)=(x-4)2+2(x-4)=x2-6x+8.
从而求得x∈[2,4]时,f(x)=x2-6x+8.
(3)f(0)=0,f(2)=0,f(1)=1,f(3)=-1.
又f(x)是周期为4的周期函数,
∴f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)
=…=f(2 008)+f(2 009)+f(2 010)+f(2 011)=0.
∴f(0)+f(1)+f(2)+…+f(2 013)=f(0)+f(1)=0+1=1.
练习5、已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则( ).
A.f(-25)<f(11)<f(80) B.f(80)<f(11)<f(-25)
C.f(11)<f(80)<f(-25) D.f(-25)<f(80)<f(11)
[尝试解答]
由函数f(x)是奇函数且f(x)在[0,2]上是增函数可以推知,f(x)在[-2,2]上递
增,又f(x-4)=-f(x)⇒f(x-8)=-f(x-4)=f(x),故函数f(x)以8为周期,f(-25)=f(-1),f(11)=f(3)=-f(3-4)=f(1),f(80)=f(0),故f(-25)<f(80)<f(11).故选D.
答案 D。