气相二氧化硅的用途
气相二氧化硅和二氧化硅气凝胶
气相二氧化硅和二氧化硅气凝胶
气相二氧化硅和二氧化硅气凝胶是一种重要的无机材料,具有广泛的应用。
气相二氧化硅是一种高温、高压下制备的纯净二氧化硅气体,具有高纯度、高活性、低含杂质等特点。
它可用于化学气相沉积、光刻、纳米加工等领域,是微电子和光电子工业中不可或缺的材料。
二氧化硅气凝胶是一种新型的多孔材料,由于其高比表面积、低密度、低热导率、良好的化学稳定性等特点,被广泛应用于绝热、过滤、吸附、催化、传感等领域。
它可用于制备超轻型隔热材料、高效过滤器、高灵敏传感器等。
气相二氧化硅和二氧化硅气凝胶的制备方法包括溶胶-凝胶法、气相沉积法、超临界干燥法等。
其中,溶胶-凝胶法是制备二氧化硅气凝胶的主要方法,它通过水解聚合物前体制备胶体,再经过凝胶和干燥等步骤制备出二氧化硅气凝胶。
气相沉积法则是制备气相二氧化硅的主要方法,它通过在高温下分解硅源气体,使其在表面沉积出二氧化硅薄膜。
总之,气相二氧化硅和二氧化硅气凝胶在微电子、光电子、绝热、过滤、吸附、催化、传感等领域具有广泛的应用前景,其制备方法也在不断完善和创新。
- 1 -。
气相二氧化硅的用途
气相二氧化硅的用途嘿,朋友们!今天咱来聊聊气相二氧化硅这玩意儿,可别小瞧它,它的用途那可真是多得让你想不到!气相二氧化硅就像是个神奇的小精灵,在各个领域都能大展身手呢!比如说在涂料里,它就像一个小卫士,能让涂料变得更加均匀、稳定,还能提高涂料的遮盖力,让墙面或者物品表面变得光滑又漂亮,就像给它们穿上了一件漂亮的外衣,这效果,多棒啊!在橡胶行业里,它就如同一个增强剂,能让橡胶变得更有弹性、更耐磨。
你想想,要是汽车轮胎里没有它,那轮胎得多不耐用啊,开不了多久就得换,多麻烦呀!还有啊,在塑料里它也能发挥大作用呢。
它能让塑料变得更坚固,不容易变形。
这就好比是给塑料打了一针“强心剂”,让它们变得更强大。
再说说化妆品吧,气相二氧化硅在里面可是个重要角色呢!它可以让化妆品的质地更加细腻,涂抹起来更顺滑。
女孩子用的那些粉底啦、散粉啦,很多都有它的功劳呢。
它就像是个幕后英雄,默默地为我们的美丽加分。
食品行业也有它的身影哦!它可以作为一种抗结剂,防止粉末状的食品结块。
就像我们吃的奶粉,要是结块了那多不方便呀,有了气相二氧化硅就不用担心这个问题啦。
在电子材料领域,它也是不可或缺的。
它能提高材料的性能,让电子产品更加可靠。
这就好像是给电子产品安装了一个稳定器,让它们能更好地工作。
这么一瞧,气相二氧化硅是不是无处不在呀?它就像是我们生活中的一个小助手,默默地为我们服务着。
我们的生活因为有了它变得更加美好、更加便利。
难道不是吗?所以啊,可别小看了这小小的气相二氧化硅,它虽然不起眼,但却有着大大的能量呢!它在各个领域的贡献可真是不容小觑啊!它就像是一颗小小的星星,虽然光芒不大,但却能照亮很多地方。
它让我们的生活变得更加丰富多彩,让我们享受到了更多的便利和美好。
怎么样,现在你是不是对气相二氧化硅有了更深的认识和了解呢?是不是也对它充满了敬意呢?。
气相二氧化硅的应用范围
气相二氧化硅的应用范围气相二氧化硅(Gas Phase Silicon Dioxide, GPD)是一种具有广泛应用范围的材料,由于其独特的特性和优势,在许多领域得到了广泛的应用。
本文将着重介绍气相二氧化硅在电子、光电子、玻璃和涂层、生物医药和环境保护等领域的应用。
首先,气相二氧化硅在电子领域有着重要的应用。
作为一种绝缘体材料,气相二氧化硅常被用于制造电子元器件中的绝缘层。
例如,它可以作为半导体芯片中的绝缘层,用于隔离电路元件以防止电流泄漏和干扰。
此外,气相二氧化硅还可以用于制造光电器件中的绝缘层,如太阳能电池板和光纤。
其次,气相二氧化硅在光电子领域也有广泛的应用。
由于其对光的传输具有良好的性能,气相二氧化硅常被用于制造光波导器件。
光波导器件可以用于光通信、光传感和光调制等领域。
此外,气相二氧化硅还可以增强光纤的抗拉强度和耐久性,在光纤通信领域有着重要的应用价值。
在玻璃和涂层领域,气相二氧化硅还可以用于制备具有优异性能的玻璃和涂层材料。
气相二氧化硅可以提高玻璃的抗紫外线性能,增强其耐候性和耐腐蚀性。
此外,气相二氧化硅还可以制备出具有良好防潮性能的涂层材料,用于包装食品和制药等领域,有效保护产品的品质和安全性。
在生物医药领域,气相二氧化硅也有广泛的应用。
它可以用于制备生物传感器和生物芯片等生物医学试剂。
通过修饰气相二氧化硅表面的化学、生物成分,可以实现生物分子的检测和监测。
此外,气相二氧化硅还可以用于制备药物缓释系统、人工骨骼和组织工程等。
它具有良好的生物相容性和生物安全性,为生物医药领域的研究和应用提供了广阔的空间。
最后,在环境保护领域,气相二氧化硅也发挥着重要的作用。
由于其对有害气体和污染物的吸附能力,气相二氧化硅常被用于制备气相过滤材料。
通过调控其孔隙结构和表面性质,可以实现对多种有害气体的高效去除和分离。
此外,气相二氧化硅还可以用于土壤修复和水处理等环境治理领域,发挥着重要的净化和治理作用。
气相二氧化硅的用途
气相二氧化硅的用途1.光纤制造:气相二氧化硅是光纤制造的关键材料。
通过化学气相沉积(CVD)方法,可以将气相二氧化硅沉积在光纤的芯和包层上,形成光传输的结构。
气相二氧化硅具有良好的光学性能和机械强度,使得光纤能够有效地传输光信号。
光纤广泛用于通信、医疗设备、工业检测等领域。
2.微电子制造:气相二氧化硅是微电子制造过程中常用的绝缘层材料。
通过CVD方法制备的气相二氧化硅可以在半导体芯片上形成绝缘层,用于隔离和保护电子器件。
气相二氧化硅具有优异的绝缘性能和化学稳定性,可以在高温和高压的环境下运行,并提供良好的电子隔离和保护。
3.涂料和陶瓷:气相二氧化硅可用作高温涂料和陶瓷的添加剂。
将气相二氧化硅粉末添加到涂料或陶瓷中,可以提高其耐磨损性、耐高温性和化学稳定性。
气相二氧化硅可以填充涂料和陶瓷的微观孔隙,增强其强度和硬度,同时提供抗腐蚀和防腐能力。
4.光学涂层:气相二氧化硅广泛用于光学涂层的制备。
在太阳能电池、LED灯、激光器等光学设备中,涂层是提高光传输效率和控制光学性能的重要组成部分。
气相二氧化硅可以形成高透明、低反射的涂层,有效地提高光学设备的效率和性能。
5.高温隔热材料:由于气相二氧化硅具有优异的热稳定性和低导热性能,因此被广泛应用于高温隔热材料的制备中。
将气相二氧化硅制备成纤维或薄膜,可以用于炉窑绝缘、高温管道隔热、火箭发动机隔热等高温环境中,有效地减少能量损失和材料熔化的风险。
此外,气相二氧化硅还可用于制备陶瓷纤维、防火材料、催化剂载体等。
随着科学技术的进步和应用需求的增加,气相二氧化硅的用途还在不断扩展和创新。
药用气相二氧化硅
药用气相二氧化硅简介药用气相二氧化硅(Pharmaceutical Grade Silicon Dioxide)是一种常见的药用辅料,也被称为二氧化硅。
它是一种无机物,化学式为SiO2,具有无色无味的性质。
药用气相二氧化硅被广泛应用于制药工业中,常用作药片、胶囊和粉剂的填充剂、稳定剂、分散剂和流动性改善剂。
特性和用途药用气相二氧化硅具有以下几个特点: - 高度吸附性:药用气相二氧化硅具有高度的吸湿性和吸附性,能有效地吸附和保护药物,防止其与外界空气接触和氧化。
- 稳定性:药用气相二氧化硅能够提高药物的稳定性,减少因药物分解而产生的气味和变质现象,延长药物的保质期。
- 流动性改善剂:药用气相二氧化硅能够改善粉剂的流动性,防止因粉剂堆积而导致出现结块现象,使药物更容易混合和分散。
- 高机械强度:药用气相二氧化硅具有较高的机械强度,适用于各种制剂工艺,能保持产品的稳定性。
- 缓释药物:药用气相二氧化硅可用于制备缓释药物,通过调控释放速率,延长药物在体内的作用时间。
药用气相二氧化硅的应用范围广泛,主要用于以下几个方面: - 制药工业:作为药片、胶囊和粉剂的填充剂、稳定剂和分散剂。
- 食品工业:用作悬浮剂、稳定剂和润滑剂。
- 化妆品工业:用于护肤品、化妆品和口腔护理产品中,起到稳定、吸湿和调整流动性的作用。
- 化学工业:用于合成树脂、塑料和橡胶等材料,提高其机械性能和流动性。
优势和安全性药用气相二氧化硅具有以下优势和良好的安全性: - 无毒性和无致敏性:药用气相二氧化硅是一种无毒、无致敏的物质,在制药过程中不会对人体产生有害影响。
- 经过认证:药用气相二氧化硅符合药典规定的质量标准,经过严格的审定和认证,确保产品的质量和安全性。
- 可溶性低:药用气相二氧化硅在水中的溶解度低,不会影响药物的稳定性和纯度。
- 无化学反应:药用气相二氧化硅与药物中的其他成分不会发生化学反应,不会导致药物变质或降解。
气相二氧化硅的应用
气相二氧化硅的应用气相二氧化硅是一种具有广泛应用前景的材料,可以用于多个领域的技术发展和工业生产。
本文将介绍气相二氧化硅的制备方法、物性特点以及其在电子、能源、医疗和环境领域的应用。
首先,气相二氧化硅的制备方法主要包括化学气相沉积(CVD)、热氧化法和等离子体增强化学气相沉积(PECVD)。
其中,CVD法是最常用的制备方法之一,通过在高温下将硅前体化合物和氧气反应生成气相二氧化硅,并在基底上进行沉积。
PECVD法具有比CVD法更高的沉积速率和更低的工艺温度,适用于一些对温度敏感的衬底材料。
气相二氧化硅具有一系列优异的物性特点,包括高比表面积、较好的热稳定性和化学稳定性、可调控的孔隙结构以及良好的机械性能。
这些特点使得气相二氧化硅在多个领域都有广泛的应用。
在电子领域,气相二氧化硅可用于制备微电子器件中的绝缘层和电隔离层。
其高介电常数和低介电损耗使其成为一种理想的绝缘材料,用于提高绝缘层的性能和减小绝缘板的尺寸。
此外,气相二氧化硅还可应用于光学薄膜、光纤通信和微纳加工等领域。
在能源领域,气相二氧化硅可以用于制备高效的太阳能电池。
其高比表面积和调控的孔隙结构可以提供更大的活性表面面积和更好的吸收光线能力,从而增强光电转换效率。
此外,气相二氧化硅还可用于电池隔膜的制备和储能设备的改进。
在医疗领域,气相二氧化硅可用于制备生物医用材料和药物递送系统。
其生物相容性和可调控的孔隙结构可以实现对细胞生长的促进和药物的控制释放。
此外,气相二氧化硅还可以用于生物传感器、组织工程和生物成像等应用。
在环境领域,气相二氧化硅可用于制备高效的吸附材料和过滤器。
其高比表面积和较好的化学稳定性可以提供更大的接触面积和更好的吸附性能,从而用于水处理、气体分离和空气净化等应用。
此外,气相二氧化硅还可以用于污染物检测和环境监测。
综上所述,气相二氧化硅是一种应用潜力巨大的材料,具有丰富的物性特点和多样的应用领域。
随着技术的不断发展和改进,相信气相二氧化硅在未来会有更广阔的应用前景。
气相二氧化硅在涂料中的作用
气相二氧化硅在涂料中的作用气相二氧化硅在涂料中的作用一、引言在现代化社会中,涂料已经成为我们生活中不可或缺的一部分。
涂料不仅可以保护建筑材料、家具和金属制品,还可以美化我们的居住环境。
而在涂料的生产中,添加剂起着至关重要的作用。
其中,气相二氧化硅作为一种广泛应用的添加剂,在涂料中扮演着重要的角色。
本文将从深度和广度两方面探讨气相二氧化硅在涂料中的作用,以期为读者带来更全面的了解。
二、气相二氧化硅的基本概念让我们来了解一下气相二氧化硅的基本概念。
气相二氧化硅,又称为沸石,是一种无机化合物,化学式为SiO2。
它具有很强的吸附性能和较大的比表面积,因此被广泛地用作涂料、塑料等制品的添加剂。
在涂料中,气相二氧化硅可以起到增稠、增强涂料耐磨性、增加光泽度等作用。
三、气相二氧化硅在涂料中的作用1. 增加涂料的附着力气相二氧化硅作为一种填料,可以帮助涂料增加涂膜与基材的附着力。
其微观孔隙结构可以有效地吸附涂料树脂颗粒,使得涂膜更加牢固地粘附在基材表面,从而提高涂料的使用寿命。
2. 增强涂料的耐磨性气相二氧化硅的高硬度和耐磨性使得其在涂料中能够有效地增强涂料的耐磨性能。
在涂料中加入适量的气相二氧化硅可以有效延长涂料的使用寿命,降低涂料的维护成本。
3. 增加涂料的光泽度气相二氧化硅颗粒的微观结构可以使涂膜表面更加平滑,从而增加涂料的光泽度。
这对于一些需要高光泽度的场合,比如汽车漆、家具漆等涂料来说尤为重要。
四、总结与展望通过对气相二氧化硅在涂料中的作用进行全面分析,我们不难得出结论:气相二氧化硅在涂料中扮演着十分重要的角色。
它不仅可以增强涂料的附着力和耐磨性,还能增加涂料的光泽度,从而提高涂料的使用性能。
未来,随着科学技术的不断发展,相信气相二氧化硅在涂料中的应用将会更加广泛,为人们的生活带来更多便利。
个人观点与理解对于气相二氧化硅在涂料中的作用,我认为还有很多待挖掘和发展的空间。
可以进一步研究气相二氧化硅在水性涂料、防腐涂料等方面的应用,以期为人们提供更环保、更耐用的涂料产品。
气相二氧化硅的用途及作用
气相二氧化硅的用途及作用气相二氧化硅,这个名字听起来有点高大上,但其实它在我们日常生活中可是个小能手呢。
你知道吗?气相二氧化硅就像是一个无处不在的“隐形战士”,虽然不显眼,但却默默地为我们服务。
想象一下,早上起来,喝上一杯香浓的咖啡,里面的奶泡是不是总是那么顺滑?没错,这里面就有气相二氧化硅的身影。
它能让我们的饮料更加细腻、丰富。
哎呀,生活中的小确幸,就是这么简单。
说到气相二氧化硅,它最为人熟知的一个用途就是作为增稠剂。
无论是护肤品还是食品,咱们平常用到的那些东西,里面总少不了它。
你用的护肤霜是不是总是感觉润润的,滑滑的?这就是气相二氧化硅在帮忙。
它不仅能让产品的质感变得更好,还能让我们在涂抹的时候感受到那种舒服的触感。
要是没有它,估计涂抹上去就像抹了一层石膏,干巴巴的,谁能受得了啊?气相二氧化硅还有个厉害的功能,就是吸附水分。
比如说,你的干燥剂里面是不是常常有那种小颗粒,晃一晃发出叮当声的?没错,那就是气相二氧化硅在发挥作用,帮你把湿气给锁住。
这样一来,食物不容易变质,保持新鲜。
尤其是那些干果、零食,简直就离不开它。
要不然一包打开,没几天就软了、发霉了,谁还敢吃啊!再说说化妆品吧,气相二氧化硅在这里也是个不折不扣的“美妆神器”。
它能让粉底更加服帖,妆容看起来更自然。
谁不想拥有那种如丝绸般光滑的肌肤呢?有了气相二氧化硅,妆感轻薄,皮肤看起来更加细腻。
感觉自己像是走在时尚T台上的超模,心里美滋滋的。
生活中的小美好,就是从这些细节开始的。
气相二氧化硅的用途可不仅限于此。
在电子产品中,气相二氧化硅也是个不可或缺的角色。
我们现在的手机、电脑,里面的电路板上,常常要用到气相二氧化硅来做绝缘材料。
想想看,现代生活离不开这些科技产品,气相二氧化硅就像是它们的“守护者”,确保电流不乱窜,咱们的设备能稳定工作。
要是没有它,估计手机早就“罢工”了,真是让人头疼的事情。
说到这里,有人可能会问,气相二氧化硅到底是啥东西?它是一种无色无味的粉末,化学性质稳定,安全性高。
气相二氧化硅在各个领域的运用
气相二氧化硅在各个领域的运用气相二氧化硅在各行业的应用气相法二氧化硅是极其重要的高科技超微细无机新材料之一,由于其粒径很小,因此比表面积大,表面吸附力强,表面能大,化学纯度高、分散性能好、热阻、电阻等方面具有特异的性能,以其优越的稳定性、补强性、增稠性和触变性,在众多学科及领域内独具特性,有着不可取代的作用。
纳米二氧化硅俗称"超微细白炭黑",广泛用于各行业作为添加剂、催化剂载体,石油化工,脱色剂,消光剂,橡胶补强剂,塑料充填剂,油墨增稠剂,金属软性磨光剂,绝缘绝热填充剂,高级日用化妆品填料及喷涂材料、医药、环保等各种领域。
并为相关工业领域的发展提供了新材料基础和技术保证。
由于它在磁性、催化性、光吸收、热阻和熔点等方面与常规材料相比显示出特异功能,因而得到人们的极大重视。
一、电子封装材料有机物电致发光器材(OELD)是目前新开发研制的一种新型平面显示器件,具有开启和驱动电压低,且可直流电压驱动,可与规模集成电路相匹配,易实现全彩色化,发光亮度高(105cd/m2)等优点,但OELD器件使用寿命还不能满足应用要求,其中需要解决的技术难点之一就是器件的封装材料和封装技术。
目前,国外(日、美、欧洲等)广泛采用有机硅改性环氧树脂,即通过两者之间的共混、共聚或接枝反应而达到既能降低环氧树脂内应力又能形成分子内增韧,提高耐高温性能,同时也提高有机硅的防水、防油、抗氧性能,但其需要的固化时间较长(几个小时到几天),要加快固化反应,需要在较高温度(60?至100?以上)或增大固化剂的使用量,这不但增加成本,而且还难于满足大规模器件生产线对封装材料的要求(时间短、室温封装)。
将经表面活性处理后的纳米二氧化硅充分分散在有机硅改性环氧树脂封装胶基质中,可以大幅度地缩短封装材料固化时间(为2.0-2.5h),且固化温度可降低到室温,使OELD器件密封性能得到显著提高,增加OELD器件的使用寿命。
二、树脂复合材料树脂基复合材料具有轻质、高强、耐腐蚀等特点,但近年来材料界和国民经济支柱产业对树脂基材料使用性能的要求越来越高,如何合成高性能的树脂基复合材料,已成为当前材料界和企业界的重要课题。
气相二氧化硅用途
气相二氧化硅用途
以气相二氧化硅用途为题,我们来了解一下它在工业生产中的应用。
气相二氧化硅可以用于半导体行业。
在半导体制造过程中,需要使用气相二氧化硅来制造氧化硅薄膜,以保护晶体管的表面。
此外,气相二氧化硅还可以用于制造光纤和太阳能电池板。
气相二氧化硅还可以用于制造涂层。
在汽车和飞机制造中,需要使用气相二氧化硅来制造涂层,以保护金属表面免受腐蚀和磨损。
此外,气相二氧化硅还可以用于制造防水涂层和防火涂层。
气相二氧化硅还可以用于制造高级陶瓷。
在陶瓷制造过程中,需要使用气相二氧化硅来制造高温陶瓷,以保证其强度和耐用性。
此外,气相二氧化硅还可以用于制造高级玻璃和光学器件。
气相二氧化硅还可以用于制造化学品。
在化学工业中,需要使用气相二氧化硅来制造硅酸盐和硅烷等化学品。
此外,气相二氧化硅还可以用于制造催化剂和吸附剂。
气相二氧化硅在工业生产中有着广泛的应用。
它不仅可以用于半导体制造、涂层制造、陶瓷制造和化学品制造等领域,还可以用于制造光纤、太阳能电池板、高级玻璃和光学器件等高科技产品。
气相二氧化硅的作用
气相二氧化硅的作用
气相二氧化硅是极其重要的高科技超微细无机新材料之一。
由于其粒径很小,比表面积大,表面吸附力强,表面能大,化学纯度高、分散性能好、热阻、电阻等方面具有特异的性能,以其优越的稳定性、补强性、增稠性、触变性,在众多学科领域内独具特性,有着不可取代的作用。
在化妆品中的应用:气相二氧化硅具有反射紫外线功能,主要作为防尘剂;在面霜中作为增稠、触变剂。
在硅橡胶中的应用:气相二氧化硅可以和硅橡胶大分子形成物理或化学结合,达到补强作用。
在不饱和树脂中的应用:在不饱和树脂中加入少量的气相二氧化硅能够赋予树脂极佳的透明度和优异的物理性能,提升下游产品的质量。
在轮胎中的应用:气相二氧化硅能大幅度提高胶料的物理机械性能,在胎面配方中加入硅可以“润滑”橡胶分子之间的摩擦,有效减少能量损失,也因此降低滚动阻力,从而节省车辆的燃油消耗。
在胶体电池的应用:气相二氧化硅具有增稠、抗结块、控制体系流变和触变等作用。
此外,气相二氧化硅还广泛应用于各行业作为添加剂、催化剂载体,石油化工,脱色剂,消光剂,橡胶补强剂,塑料充填剂,油墨
增稠剂,金属软性磨光剂,绝缘绝热填充剂,高级日用化妆品填料及喷涂材料、医药、环保等各种领域。
气相二氧化硅的应用领域
气相二氧化硅的应用领域气相二氧化硅(Gas-phase silica, GPS)是一种具有巨大应用潜力的新型材料,因其独特的性质和广泛的应用领域而备受关注。
本文将介绍气相二氧化硅的制备方法、物理和化学性质,并探讨其在不同领域的应用。
首先,我们来了解一下气相二氧化硅的制备方法。
目前,主要有两种方法可用于制备气相二氧化硅:化学气相沉积法和热氧化法。
化学气相沉积法是通过在特定条件下将硅烷和氧气反应,生成气相二氧化硅。
热氧化法则是将硅片在高温下与氧气反应,使其表面氧化形成气相二氧化硅层。
接下来,我们来看一下气相二氧化硅的物理和化学性质。
气相二氧化硅具有高温稳定性、高气体渗透率和超高比表面积等特点。
这使得它在多个领域都具有广泛的应用价值。
例如,在电子行业中,气相二氧化硅可以用作绝缘层,用于制造半导体器件。
其高温稳定性和电绝缘性能使其成为电子器件的理想材料。
此外,在能源领域,气相二氧化硅也可作为锂离子电池的负极材料。
它能够提供更高的比容量和更好的循环稳定性,从而提高电池的性能。
除了电子行业和能源领域,气相二氧化硅在催化剂、生物医学、环境保护等领域也有着广泛的应用。
在催化剂领域,气相二氧化硅可以作为载体材料,用于催化剂的固定和稳定。
其高比表面积和多孔性结构使其具有较大的活性表面积,从而提高催化剂的活性和选择性。
在生物医学领域,气相二氧化硅可以用于制备生物传感器和药物释放系统。
其生物兼容性和可调控的孔径结构使其成为生物医学材料的理想选择。
而在环境保护领域,气相二氧化硅可以用于水处理和气体吸附。
其高气体渗透率和吸附能力使其具有良好的去污和净化效果。
总结起来,气相二氧化硅作为一种新型材料,具有众多的应用优势。
其在电子行业、能源领域、催化剂、生物医学、环境保护等领域的应用,都显示了其巨大的潜力和优势。
随着技术不断发展和研究的深入,气相二氧化硅在更多领域的应用前景将会更加广阔。
希望本文能为读者提供一些关于气相二氧化硅应用领域的基本知识,并促进对该材料的深入了解和研究。
气相二氧化硅的密度
气相二氧化硅的密度一、气相二氧化硅的概述气相二氧化硅(Silicon Dioxide,简称SiO2)是一种无机非金属材料,具有良好的物理和化学性能。
它广泛应用于电子、化工、医药、涂料、塑料等行业。
气相二氧化硅又称硅气凝胶,是一种高孔隙度、低密度的纳米材料。
二、气相二氧化硅的密度及其影响因素1.气相二氧化硅的密度与孔隙结构密切相关。
孔隙结构越发达,密度越低。
一般来说,气相二氧化硅的密度在100-600 kg/m之间。
2.制备方法影响气相二氧化硅的密度。
常见的制备方法有溶胶-凝胶法、气相合成法等。
不同制备方法得到的气相二氧化硅密度有差异。
3.气相二氧化硅的密度还受颗粒尺寸、比表面积、孔径分布等因素影响。
三、气相二氧化硅的应用领域1.电子行业:气相二氧化硅用作电子封装材料、散热材料等。
2.化工行业:用作催化剂、催化剂载体、吸附剂等。
3.医药行业:用作药物载体、缓释材料等。
4.涂料行业:提高涂层的耐磨性、抗腐蚀性等。
5.塑料行业:改善塑料的力学性能、耐热性等。
四、提高气相二氧化硅密度的方法1.优化制备工艺:改进溶胶-凝胶法、气相合成法等制备工艺,以提高气相二氧化硅的密度。
2.调整颗粒尺寸:控制颗粒尺寸分布,提高小颗粒含量,有助于提高气相二氧化硅的密度。
3.改善孔径分布:优化孔径分布,降低大孔含量,有助于提高气相二氧化硅的密度。
4.复合其他材料:与高密度材料复合,共同发挥各自优势,提高整体密度。
五、总结气相二氧化硅是一种具有广泛应用的纳米材料,其密度受制备方法、颗粒尺寸、孔径分布等因素影响。
通过优化制备工艺、调整颗粒尺寸、改善孔径分布、复合其他材料等方法,可以提高气相二氧化硅的密度,以满足不同应用领域的需求。
气相二氧化硅在其他工业中应用
气相二氧化硅在其他工业中应用硅橡胶具有较好的耐高处与低处温、隔热、绝缘、防潮、防化学腐蚀、抗污染和生理惰性,在航空、航天、国防工业、机械制造、建筑装饰、生物医学等四十几个部门具有不行替代的作用,是公认的新型先进合成料子。
未经补强的硅橡胶,其强度不超出0.4Mpa,没有使用价值。
气相二氧化硅由于其比表面积大,粒径小,结构性高,具有优异的补强性能,硅橡胶经气相二氧化硅补强之后,强度最高提高可达40倍,具有广泛的用途。
二氧化硅表面上硅醇基(Si—OH)可以与硅橡胶分子形成物理或化学结合,在二氧化硅表面形成硅橡胶分子吸附层,构成二氧化硅粒子与橡胶分子联成一体的三维网络结构,从而实现补强作用。
2. 胶粘剂、密封剂在胶粘剂和密封剂中,气相二氧化硅紧要作为补强剂和添加剂,起到流变掌控、防沉降、防止流挂和补强作用。
二氧化硅的粒径小、表面积大、表面硅醇基(Si—OH)多及其聚集体的立体分支结构,通过氢键或范德华力使得二氧化硅与聚合物分子之间、二氧化硅分子之间产生强力作用,实现补强效果。
气相二氧化硅在胶粘剂和密封剂体系中均匀分散后,可以形成一个二氧化硅聚集体网络,聚集体通过表面的硅醇基(Si—OH)与聚合物分子形成氢键,使体系的流动性受到限制,体系的粘度加添,从而起到增稠的作用,同时,在剪切力的作用下,氢键和二氧化硅网络受到破坏,导致体系粘度下降,即发生触变效应,便于施工,一旦剪切力除掉,二氧化硅网络和氢键又重新形成。
从而有效防止产品储存期间的沉降和使用过程中的流挂。
3. 涂料、油漆和油墨气相二氧化硅广泛应用与油漆、油墨及涂料领域,紧要作为流变助剂、防沉剂、助分散剂使用。
在液态体系中,气相二氧化硅紧要作为流变掌控剂使用,它们在基质中分散形成一个二氧化硅网络,在储存过程中可以有效防止颜料的沉降分层现象。
在施工过程中,由于涂层边沿的溶剂挥发较快,导致表面张力不均匀,容易使涂料向边沿移动,二氧化硅网络能够有效地阻拦涂料的移动而形成厚边,同时二氧化硅网络还可以防止涂料在固化过程中的流挂现象,使涂层均匀,这对于一些厚浆型涂料来讲至关紧要。
格瑞斯气相二氧化硅
格瑞斯气相二氧化硅
格瑞斯气相二氧化硅是一种高纯度的二氧化硅材料,具有优异的物理和化学性质。
它是由气相沉积技术制备而成,具有高度的均匀性和纯度,被广泛应用于半导体、光电子、微电子等领域。
格瑞斯气相二氧化硅的制备过程是将气态硅源和氧气在高温下反应,生成纯净的SiO2气体,然后通过特殊的沉积技术将其沉积在基底上。
这种制备方法具有高度的控制性和可重复性,可以制备出高质量的二氧化硅材料。
格瑞斯气相二氧化硅具有优异的物理和化学性质。
它具有高度的均匀性和纯度,可以制备出非常薄的薄膜,具有优异的光学性能和电学性能。
此外,它还具有优异的化学稳定性和耐热性,可以在高温和强酸碱环境下稳定存在。
由于其优异的性能,格瑞斯气相二氧化硅被广泛应用于半导体、光电子、微电子等领域。
在半导体制造中,它被用作绝缘层、介质层和光刻层等材料,可以提高芯片的性能和稳定性。
在光电子领域,它被用作光学薄膜、光学波导和光学器件等材料,可以制备出高性能的光电子器件。
在微电子领域,它被用作微机电系统(MEMS)的材料,可以制备出高性能的微机电器件。
总之,格瑞斯气相二氧化硅是一种高纯度、高性能的二氧化硅材料,具有优异的物理和化学性质,被广泛应用于半导体、光电子、微电子等领域。
随着这些领域的不断发展,格瑞斯气相二氧化硅的应用前景将会越来越广阔。
5nm气相二氧化硅
5nm气相二氧化硅气相二氧化硅是一种重要的半导体材料,具有广泛的应用领域。
在半导体工业中,气相二氧化硅主要用于芯片制造过程中的绝缘层材料。
在最新一代的芯片制造工艺中,5nm气相二氧化硅已经成为主流材料之一。
本文将介绍5nm气相二氧化硅的概念、制备方法、特性及应用前景。
一、概念气相二氧化硅是一种通过气相化学气相沉积(PECVD)或化学气相沉积(CVD)等技术制备的二氧化硅薄膜。
它具有优异的绝缘性能、热稳定性和化学稳定性,能够有效地隔离芯片上的导电元件,避免元件之间的干扰和损坏。
在5nm气相二氧化硅中,薄膜的厚度约为5纳米,属于纳米级别。
二、制备方法5nm气相二氧化硅的制备方法主要包括PECVD和CVD两种技术。
1、PECVD技术PECVD技术是一种基于等离子体化学反应的气相沉积技术。
在PECVD系统中,通过加热和加压等手段将气体引入反应室,气体分子在射频等离子体的作用下发生化学反应,生成二氧化硅薄膜并沉积在基片表面。
PECVD技术具有工艺简单、成本低廉、生产效率高等优点。
2、CVD技术CVD技术是一种基于气相热化学反应的气相沉积技术。
在CVD系统中,将化学前体气体通过加热至高温,使其发生热化学反应生成二氧化硅薄膜并沉积在基片表面。
CVD技术具有沉积速度快、薄膜质量高等优点,适用于大规模生产。
三、特性5nm气相二氧化硅具有以下特性:1、良好的绝缘性能:气相二氧化硅作为绝缘材料,能够有效隔离芯片上的导电元件,防止元件之间的干扰和损坏。
2、热稳定性好:气相二氧化硅具有良好的热稳定性,能够在高温环境下保持稳定性能。
3、化学稳定性好:气相二氧化硅具有良好的化学稳定性,能够在恶劣的化学环境下保持稳定性能。
4、纳米尺寸:5nm气相二氧化硅具有纳米级别的厚度,能够满足当前芯片制造工艺对薄膜厚度的要求。
四、应用前景5nm气相二氧化硅具有良好的绝缘性能、热稳定性和化学稳定性,适用于半导体芯片制造过程中的绝缘层材料。
在5nm工艺节点下,气相二氧化硅将会成为主流材料之一,广泛应用于逻辑芯片、存储芯片等领域。
药用气相二氧化硅
药用气相二氧化硅药用气相二氧化硅,又称药用二氧化硅气相沉积材料,是一种用于制备药物缓释系统的重要材料。
它具有高比表面积、良好的孔隙结构和较大的孔容量等特点,被广泛应用于药物控释、药物传递和药物吸附等领域。
药物控释技术是一种将药物缓慢释放到体内的方法,以实现持续治疗效果。
而药用气相二氧化硅作为一种载体材料,可以将药物包裹在其孔隙结构中,通过控制孔径和孔隙度来调节药物的释放速率。
这种控释系统可以使药物在体内持续释放,从而减少服药频率,提高疗效,并减轻患者的不适感。
除了在药物控释领域的应用,药用气相二氧化硅还可以用于制备药物传递系统。
传统的药物传递系统往往需要通过注射等方式将药物直接输送到目标部位,而这种方式存在一定的局限性和风险。
而利用药用气相二氧化硅作为载体材料,可以将药物包裹在其孔隙结构中,通过控制释放速率和靶向性来实现药物的传递。
这种传递系统可以减少药物在体内的损失,提高治疗效果,并降低副作用。
此外,药用气相二氧化硅还可以用于吸附药物。
一些药物在制备过程中可能会产生不纯物质或有害物质,需要通过吸附来去除。
而药用气相二氧化硅具有较大的比表面积和孔容量,可以有效吸附这些有害物质,提高药物的纯度和质量。
在实际应用中,药用气相二氧化硅通常通过气相沉积技术制备而成。
这种技术可以在较低的温度下制备出具有良好孔隙结构和较大比表面积的材料。
制备过程中,先将二氧化硅前体物质蒸发成气体,然后通过化学反应将其沉积在基材上形成薄膜或颗粒。
通过调节沉积条件和前体物质的浓度等参数,可以得到不同孔径和孔隙度的药用气相二氧化硅材料。
总之,药用气相二氧化硅作为一种重要的材料,在药物控释、药物传递和药物吸附等领域具有广泛应用前景。
随着科技的不断进步和人们对健康的关注度增加,相信这种材料将会得到更多的研究和应用,并为人类带来更多的福祉。
卡博特气相二氧化硅
卡博特气相二氧化硅
卡博特气相二氧化硅是一种常见的材料,被广泛应用于电子、光伏、半导体等领域。
这种气相二氧化硅具有许多优良特性,使其成为许多行业的首选材料之一。
卡博特气相二氧化硅具有高纯度和均匀性。
在制备过程中,通过精密的控制和处理,可以获得高纯度的气相二氧化硅,从而确保其在各种应用中的稳定性和可靠性。
此外,卡博特气相二氧化硅的颗粒大小分布均匀,表面光洁度高,有利于提高材料的性能和可靠性。
卡博特气相二氧化硅具有良好的化学稳定性和热稳定性。
在高温环境下,卡博特气相二氧化硅表现出色的稳定性,不易发生化学反应或热分解,可以在极端条件下保持稳定的性能。
这使得卡博特气相二氧化硅成为许多高温应用的理想选择。
卡博特气相二氧化硅还具有优异的电学性能和光学性能。
它具有良好的绝缘性能,可以有效地阻止电流的流动,同时具有优异的光学透明性,使其在光学器件中得到广泛应用。
卡博特气相二氧化硅还具有较高的抗辐射性能,可以在高辐射环境下保持良好的性能。
总的来说,卡博特气相二氧化硅是一种优秀的材料,具有高纯度、均匀性、化学稳定性、热稳定性、电学性能和光学性能等优良特性。
它被广泛应用于电子、光伏、半导体等领域,为各种应用提供了稳定可靠的材料支持。
随着科技的不断进步,相信卡博特气相二氧化
硅在未来会有更广泛的应用和发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
气相二氧化硅的用途气相二氧化硅是极其重要的高科技超微细无机新材料之一,由于其粒径很小,因此比表面积大,表面吸附力强,表面能大,化学纯度高、分散性能好、热阻、电阻等方面具有特异的性能,以其优越的稳定性、补强性、增稠性和触变性,在众多学科及领域内独具特性,有着不可取代的作用。
纳米二氧化硅俗称“超微细白炭黑”,广泛用于各行业作为添加剂、催化剂载体,石油化工,脱色剂,消光剂,橡胶补强剂,塑料充填剂,油墨增稠剂,金属软性磨光剂,绝缘绝热填充剂,高级日用化妆品填料及喷涂材料、医药、环保等各种领域。
并为相关工业领域的发展提供了新材料基础和技术保证。
由于它在磁性、催化性、光吸收、热阻和熔点等方面与常规材料相比显示出特异功能,因而得到人们的极大重视。
(一)电子封装材料有机物电致发光器材(OELD)是目前新开发研制的一种新型平面显示器件,具有开启和驱动电压低,且可直流电压驱动,可与规模集成电路相匹配,易实现全彩色化,发光亮度高(>105cd/m2)等优点,但OELD器件使用寿命还不能满足应用要求,其中需要解决的技术难点之一就是器件的封装材料和封装技术。
目前,国外(日、美、欧洲等)广泛采用有机硅改性环氧树脂,即通过两者之间的共混、共聚或接枝反应而达到既能降低环氧树脂内应力又能形成分子内增韧,提高耐高温性能,同时也提高有机硅的防水、防油、抗氧性能,但其需要的固化时间较长(几个小时到几天),要加快固化反应,需要在较高温度(60℃至100℃以上)或增大固化剂的使用量,这不但增加成本,而且还难于满足大规模器件生产线对封装材料的要求(时间短、室温封装)。
将经表面活性处理后的纳米二氧化硅充分分散在有机硅改性环氧树脂封装胶基质中,可以大幅度地缩短封装材料固化时间(为2.0-2.5h),且固化温度可降低到室温,使OELD器件密封性能得到显著提高,增加OELD器件的使用寿命。
(二)树脂复合材料树脂基复合材料具有轻质、高强、耐腐蚀等特点,但近年来材料界和国民经济支柱产业对树脂基材料使用性能的要求越来越高,如何合成高性能的树脂基复合材料,已成为当前材料界和企业界的重要课题。
纳米二氧化硅的问世,为树脂基复合材料的合成提供了新的机遇,为传统树脂基材料的改性提供了一条新的途径,只要能将纳米二氧化硅颗粒充分、均匀地分散到树脂材料中,完全能达到全面改善树脂基材料性能的目的。
1、提高强度和延伸率。
环氧树脂是基本的树脂材料,把纳米二氧化硅添加到环氧树脂中,在结构上完全不同于粗晶二氧化硅(白炭黑等)添加的环氧树脂基复合材料,粗晶SiO2一般作为补强剂加入,它主要分布在高分子材料的链间中,而纳米二氧化硅由于表面严重的配位不足、庞大的比表面积以及表面欠氧等特点,使它表现出极强的活性,很容易和环氧环状分子的氧起键合作用,提高了分子间的键力,同时尚有一部分纳米二氧化硅颗粒仍然分布在高分子链的空隙中,与粗晶SiO2颗粒相比较,表现很高的流涟性,从而使纳米二氧化硅添加的环氧树脂材料强度、韧性、延展性均大幅度提高。
2、提高耐磨性和改善材料表面的光洁度。
纳米二氧化硅颗粒比SiO2要小100—1000倍,将其添加到环氧树脂中,有利于拉成丝。
由于纳米二氧化硅的高流动性和小尺寸效应,使材料表面更加致密细洁,摩擦系数变小,加之纳米颗粒的高强度,使材料的耐磨性大大增强。
3、抗老化性能。
环氧树脂基复合材料使用过程中一个致命的弱点是抗老化性能差,其原因主要是太阳辐射的280—400nm波段的紫外线中、长波作用,它对树脂基复合材料的破坏作用是十分严重的,高分子链的降解致使树脂基复合材料迅速老化。
而纳米二氧化硅可以强烈地反射紫外线,加入到环氧树脂中可大大减少紫外线对环氧树脂的降解作用,从而达到延缓材料老化的目的。
(三)塑料利用纳米二氧化硅透光、粒度小,可以使塑料变得更加致密,在聚苯乙烯塑料薄膜中添加二氧化硅后,不但提高其透明度、强度、韧性,而且防水性能和抗老化性能也明显提高。
通过在普通塑料聚氯乙烯中添加少量纳米二氧化硅后生产出的塑钢门窗硬度、光洁度和抗老化性能均大幅提高。
利用纳米二氧化硅对普通塑料聚丙烯进行改性,主要技术指标(吸水率、绝缘电阻、压缩残余变形、挠曲强度等)均达到或超过工程塑料尼龙6的性能指标,实现了聚丙烯铁道配件替代尼龙6使用,产品成本大幅下降,其经济效益和社会效益十分显著。
(四)涂料我国是涂料生产和消费大国,但当前国产涂料普遍存在着性能方面的不足,诸如悬浮稳定性差、触变性差、耐候性差、耐洗刷性差等,致使每年需进口大量高质量的涂料。
上海、北京、杭州、宁波等地的一些涂料生产企业敢于创新,成功地实现了纳米二氧化硅在涂料中的应用,这种纳米改性涂料一改以往产品的不足,经检测其主要性能指标除对比率不变外,其余均大幅提高,如外墙涂料的耐洗刷性由原来的一千多次提高到一万多次,人工加速气候老化和人工辐射暴露老化时间由原来的250小时(粉化1级、变色2级)提高到600小时(无粉化,漆膜无变色,色差值4.8),此外涂膜与墙体结合强度大幅提高,涂膜硬度显著增加,表面自洁能力也获得改善。
(五)橡胶橡胶是一种伸缩性优异的弹性体,但其综合性能并不令人满意,生产橡胶制品过程中通常需在胶料中加入炭黑来提高强度、耐磨性和抗老化性,但由于炭黑的加入使得制品均为黑色,且档次不高。
而纳米Si02在我国的问世为生产出色彩新颖、性能优异的新一代橡胶制品奠定了物质基础。
在普通橡胶中添加少量纳米Si02后,产品的强度、耐磨性和抗老化性等性能均达到或超过高档橡胶制品,而且可以保持颜色长久不变。
纳米改性彩色三元乙丙防水卷材,其耐磨性、抗拉强度、抗折性、抗老化性能均提高明显,且色彩鲜艳,保色效果优异。
彩色轮胎的研制工作也取得了一定的进展,如轮胎侧面胶的抗折性能由原来的10万次提高到50万次以上,有望在不久的将来,实现国产汽车、摩托车轮胎的彩色化。
(六)颜(染)料有机颜(染)料虽具有鲜艳的色彩和很强的着色力,但一般耐光、耐热、耐溶剂和耐迁移性能往往不及无机颜料。
通过添加纳米Si02对有机颜(染)料进行表面改性处理,不但使颜(染)料抗老化性能大幅提高,而且亮度、色调和饱和度等指标也均出现一定程度的提高,性能可与进口高档产品相媲美,极大地拓宽了有机颜(染)料的档次和应用范围。
(七)陶瓷用纳米Si02代替纳米A1203添加到95瓷里,既可以起到纳米颗粒的作用,同时它又是第二相的颗粒,不但提高陶瓷材料的强度、韧性,而且提高了材料的硬度和弹性模量等性能,其效果比添加A1203更理想。
利用纳米Si02来复合陶瓷基片,不但提高了基片的致密性、韧性和光洁度,而且烧结温度大幅降低。
此外,纳米Si02在陶瓷过滤网、刚玉球等陶瓷产品中应用效果也十分显著。
(八)密封胶、粘结剂密封胶、粘结剂是量大、面广、使用范围宽的重要产品。
它要求产品粘度、流动性、固化速度达最佳条件。
我国在这个领域的产品比较落后,高档的密封胶和粘结剂都依赖进口。
国外在这个领域的产品已经采用纳米材料作改性剂,而纳米Si02是首选材料,它主要是在纳米Si02表面包敷一层有机材料,使之具有憎水性,将它添加到密封胶中很快形成一种硅石结构,即纳米Si0X小颗粒形成网络结构抑制胶体流动,加快固化速度,提高粘结效果,由于纳米Si02颗粒尺小从而也增加了产品的密封性和防渗性。
(九)玻璃钢制品玻璃钢制品虽然有轻质、高强、耐腐蚀等优点,但其本身硬度较低、耐磨性较差。
有关专家通过超声分散方法将纳米Si02添加到胶衣树脂中,与未加纳米Si02的胶衣做性能对比实验,发现其莫氏硬度由原来的2.2级(相当于石膏的硬度)提高到2.8~2.9级(3级是天然大理石硬度),耐磨性提高1~2倍,因纳米颗粒与有机高分子产生接枝和键合作用,使材料韧性增加,故抗拉强度和抗冲击强度提高1倍以上,耐热性能也大幅提高。
(十)药物载体随着当前城市生活垃圾的大幅增长以及环境污染的日趋严重,加大消灭“四害”的力度、预防疾病的传播已十分迫切。
在树干上涂刷石灰、向垃圾箱喷洒药水已作用不大,现在大城市已采用喷涂中枢神经麻醉药类杀虫剂来消灭蚊子、苍蝇、蟑螂等昆虫类害虫,但这些杀虫剂多从国外进口,价格较高,喷涂后有效期较短(只有一个月)。
采用纳米Si02为载体吸附该类杀虫剂,起到了很好的缓释效果,据测定,其喷涂后有效期长达一年以上。
(十一)化妆品对于化妆品来说,要求对紫外线屏蔽能力强,最好是既能防护紫外中波(UVB)对人体的危害,亦能对紫外长波(UVA)起防护作用。
实质上,紫外屏蔽包括两方面,一是前面所述对紫外线的吸收,另一方面是对紫外线的反射,目前,世界上从紫外反射性能角度开发的抗紫外剂还未见报道。
在防晒产品中以往多使用有机化合物为紫外线吸收剂,但是存在诸如为了尽可能保护皮肤不接触紫外线而提高添加量之后,会增加发生皮肤癌以及产生化学性过敏等问题,而纳米Si02为无机成分,易于与化妆品其它组分配伍,无毒、无味,不存在上述问题,且自身为白色,可以简单地加以着色,尤其可贵的是纳米Si02反射紫外能力强、稳定性好,被紫外线照射后不分解,不变色,也不会与配方中其它组分起化学反应。
纳米Si02的这些突出特点为防晒化妆品的升级换代奠定了良好的基础。
(十二)抗菌材料利用纳米Si02庞大的比表面积、表面多介孔结构和超强的吸附能力以及奇异的理化特性,将银离子等功能离子均匀地设计到纳米Si0X表面的介孔中,并实施稳定,成功开发出高效、持久、耐高温、广谱抗菌的纳米抗菌粉(粒径只有70纳米左右),不但填补国内空白,而且主要技术指标均达到或超过日本同类产品。
经检测,当纳米抗菌粉在水中的浓度仅为0.315%时,对革兰氏阳性代表菌种与革兰氏阴性代表菌种的抗菌能力就可以非常明显的表露出来,抑菌圈出现2—3mm,且随着纳米抗菌粉在水中浓度的增加,抑菌圈明显增大。
据测定,水中含Ag+为0.01mg/1时,就能完全杀灭水中的大肠杆菌,并能保持长达90天内不繁衍出新的菌丛。
将纳米抗菌粉应用于搪瓷釉料中,生产出具有防霉、抗菌功能的滚筒洗衣机,其抗菌率高达99%以上。
应该指出的是,纳米抗菌粉在搪瓷釉料中使用条件较为苛刻,须在碱性较强的液体中和高温(900℃左右)烧瓷后仍保持很强的抗菌性能,这是其它抗菌粉望尘莫及的。
将纳米抗菌粉添加在内墙涂料中,生产出了具有长久抗菌防霉功能的内墙涂料。
将纳米抗菌粉用在妇女内裤洗涤剂、羊毛、羊绒洗涤剂、洗洁精、洗手液中,经卫生防疫部门检测,其抗菌性能十分显著。
可以预见,随着人们健康意识的增强,纳米抗菌粉将逐渐被相关应用企业的广大民众所接受,在票据、医疗卫生、化学建材、家电制品、功能纤维、塑料制品等行业中崭露头角。
(十三)其它1、在光学领域的应用纳米微粒应用于红外反射材料主要是制成薄膜和多层膜来使用。