小学奥数题小升初考试题及答案
小升初奥数题及答案(三篇)
【导语】在解奥数题时,经常要提醒⾃⼰,遇到的新问题能否转化成旧问题解决,化新为旧,透过表⾯,抓住问题的实质,将问题转化成⾃⼰熟悉的问题去解答。
转化的类型有条件转化、问题转化、关系转化、图形转化等。
以下是整理的《⼩升初奥数题及答案(三篇)》相关资料,希望帮助到您。
⼩升初奥数题及答案篇⼀ 1、⼀个数除以7所得的余数和商相同,并且各个数位上的数字和最⼩,这个数是_______。
2、⼀项⼯程,预计15个⼯⼈每天做4个⼩时,18天可以完成。
为了赶⼯期,增加3⼈并且每天⼯作时间增加1⼩时,可以提前_______天完⼯。
3、甲、⼄两⼈背诵英语单词,甲⽐⼄每天多背8个,⼄因⽣病,中途停⽌10天。
40天后,⼄背的单词正好是甲的⼀半,甲背单词________个。
4、在⼀个两位数的两个数字之间加上⼀个0,所得的新数是原数的9倍,原数是。
5、买电影票,5元、8元、12元⼀张的⼀共150张,⽤去1140元,其中5元和8元的张数相等,5元的电影票有。
答案: 1、40 2、6 3、960 4、45 5、60⼩升初奥数题及答案篇⼆ 1、有2013名学⽣参加竞赛,共有20道竞赛题,每个学⽣有基础分25分,此外,答对⼀题得3分,不答题得1分,答错1题扣1分。
那么,所有参赛学⽣的得分总和是奇数还是偶数? 2、有n个同样⼤⼩的正⽅体,将它们堆成⼀个长⽅体,这个长⽅体的底⾯就是原正⽅体的底⾯。
如果这么长⽅体的表⾯积是3096平⽅厘⽶,当从这个长⽅体的顶部拿去⼀个正⽅体后,新的长⽅体的表⾯积⽐原来的表⾯积减少144平⽅厘⽶,那么n等于多少? 答案: 1、每个学⽣的基础分为奇数,⽆论题⽬的答题情况,每⼀题都将是总分加上或减去⼀个奇数,所以20题之后,总分相当于21个奇数做加减法,所以每个学⽣的总分肯定是奇数,⽽学⽣有2013名,奇数和奇数的和还是奇数,所以所有学⽣的分数⼀定是奇数。
2、正⽅体⼀个⾯的⾯积是144÷4=36平⽅厘⽶,根据长⽅体的表⾯积可得: 36×(4n+2)=3096 144n+72=3096 n=21 答:n是21。
小升初小学奥数试题及答案
小升初小学奥数试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是最小的质数?A. 0B. 1C. 2D. 3答案:C2. 一个数的3倍加上15等于这个数的5倍,这个数是多少?A. 5B. 10C. 15D. 20答案:B3. 一个长方体的长、宽、高分别是12厘米、8厘米和6厘米,其表面积是多少平方厘米?A. 432B. 504C. 576D. 648答案:B4. 一个数除以3的余数是2,除以5的余数是1,这个数最小是多少?A. 11B. 16C. 21D. 26答案:A5. 一本书的价格是35元,如果打8折,那么现价是多少元?A. 25B. 28C. 30D. 35答案:B二、填空题(每题3分,共15分)6. 一个数的1/4加上它的1/2等于______。
答案:3/47. 一个正方形的面积是64平方厘米,它的周长是______厘米。
答案:328. 一本书有120页,小明第一天看了总页数的1/3,第二天看了剩下页数的1/2,那么小明两天共看了______页。
答案:609. 一个数的2/3加上它的1/3等于______。
答案:110. 一个长方形的长是15厘米,宽是10厘米,如果长和宽都增加5厘米,那么新的长方形面积比原来增加了______平方厘米。
答案:125三、解答题(共75分)11. 一个长方形的长是21厘米,宽是15厘米。
如果长和宽都减少3厘米,那么新的长方形的面积是多少平方厘米?(10分)答案:新的长方形的长是21 - 3 = 18厘米,宽是15 - 3 = 12厘米。
面积是18 * 12 = 216平方厘米。
12. 小明和小红合伙买了一些文具,小明出了总金额的2/5,小红出了总金额的3/5。
如果小红出了60元,那么小明出了多少元?(15分)答案:小红出的钱是总金额的3/5,那么总金额是60 / (3/5) = 100元。
小明出了总金额的2/5,即小明出了100 * (2/5) = 40元。
小升初奥数题必考100道及答案(完整版)
小升初奥数题必考100道及答案(完整版)题目1:有一个两位数,十位上的数字是个位上数字的2 倍,如果把十位上的数字与个位上的数字交换,就得到另外一个两位数,把这个两位数与原两位数相加,和是132。
求原两位数。
答案:设原两位数个位上的数字为x,则十位上的数字为2x。
原两位数为20x + x = 21x,交换后的两位数为10x + 2x = 12x。
根据题意可得:21x + 12x = 132,33x = 132,x = 4。
所以原两位数为84。
题目2:小明从家到学校,如果每分钟走50 米,就要迟到3 分钟;如果每分钟走70 米,则可提前5 分钟到校。
小明家到学校的路程是多少米?答案:设小明按时到校要x 分钟。
50(x + 3) = 70(x - 5),50x + 150 = 70x - 350,20x = 500,x = 25。
路程为50×(25 + 3) = 1400(米)题目3:甲乙两数的和是180,甲数的1/4 等于乙数的1/5,甲乙两数各是多少?答案:设甲数为x,则乙数为180 - x。
1/4 x = 1/5 (180 - x),5x = 4×(180 - x),5x = 720 - 4x,9x = 720,x = 80,乙数为100。
题目4:某工厂有三个车间,第一车间的人数占三个车间总人数的25%,第二车间人数是第三车间的3/4,已知第一车间比第二车间少40 人,三个车间一共有多少人?答案:设三个车间总人数为x 人。
第一车间人数为0.25x,第二车间和第三车间人数之和为0.75x。
第二车间人数为0.75x×3/7 = 9/28 x。
0.25x + 40 = 9/28 x,9/28 x - 7/28 x = 40,2/28 x = 40,x = 560 人。
题目5:一桶油,第一次用去2/5 ,第二次用去10 千克,这时剩下的油正好是整桶油的一半。
这桶油有多少千克?答案:设这桶油有x 千克。
小升初奥数题大全100道附答案(完整版)
小升初奥数题大全100道附答案(完整版)题目1:有三个连续的自然数,它们的乘积是60。
这三个数分别是多少?答案:3、4、5因为3×4×5 = 60题目2:一个数除以5 余3,除以6 余4,除以7 余5。
这个数最小是多少?答案:2085、6、7 的最小公倍数是210,这个数为210 - 2 = 208题目3:小明在计算两个数相加时,把一个加数个位上的6 错写成2,把另一个加数十位上的5 错写成3,所得的和是374。
原来两个数相加的正确结果是多少?答案:408一个加数个位上的6 错写成2,少加了4;把另一个加数十位上的5 错写成3,少加了20。
所以正确结果是374 + 4 + 20 = 408题目4:鸡兔同笼,共有30 个头,88 只脚。
求笼中鸡兔各有多少只?答案:鸡16 只,兔14 只假设全是鸡,有脚60 只,少了28 只脚。
每把一只鸡换成一只兔,脚多2 只,所以兔有28÷2 = 14 只,鸡有16 只题目5:在一条长400 米的环形跑道上,甲、乙两人同时从同一点出发,同向而行,甲每秒跑6 米,乙每秒跑4 米。
经过多少秒甲第一次追上乙?答案:200 秒甲每秒比乙多跑2 米,多跑一圈400 米追上,所以400÷2 = 200 秒题目6:一个长方体的棱长总和是80 厘米,长、宽、高的比是5 : 3 : 2。
这个长方体的体积是多少?答案:240 立方厘米长方体有4 条长、4 条宽、4 条高,所以一组长、宽、高的和为20 厘米。
按比例分配可得长10 厘米、宽6 厘米、高4 厘米,体积为10×6×4 = 240 立方厘米题目7:某工厂有三个车间,第一车间人数占总人数的1/4,第二车间人数是第三车间人数的3/4,第一车间比第二车间少40 人。
三个车间共有多少人?答案:560 人设总人数为x 人,则第一车间人数为1/4 x 人,第二车间人数为3/7×3/4 x 人,可列方程3/7×3/4 x - 1/4 x = 40题目8:一个分数,分子与分母的和是48,如果分子、分母都加上1,所得分数约分后是2/3。
小升初常考奥数练习题及答案【三篇】
小升初常考奥数练习题及答案【三篇】1和差问题已知两数的和与差,求这两个数。
【口诀】和加上差,越加越大;除以2,便是大的;和减去差,越减越小;除以2,便是小的。
例:已知两数和是10,差是2,求这两个数。
按口诀,则大数=(10+2)/2=6,小数=(10-2)/2=4 2差比问题【口诀】我的比你多,倍数是因果。
分子实际差,分母倍数差。
商是一倍的,乘以各自的倍数,两数便可求得。
例:甲数比乙数大12且甲:乙=7:4,求两数。
先求一倍的量,12/(7-4)=4,所以甲数为:4X7=28,乙数为:4X4=16。
3年龄问题【口诀】岁差不会变,同时相加减。
岁数一改变,倍数也改变。
抓住这三点,一切都简单。
例1:小军今年8 岁,爸爸今年34岁,几年后,爸爸的年龄是小军的3倍?分析:岁差不会变,今年的岁数差点34-8=26,到几年后仍然不会变。
已知差及倍数,转化为差比问题。
26/(3-1)=13,几年后爸爸的年龄是13X3=39岁,小军的年龄是13X1=13岁,所以应该是5年后。
例2:姐姐今年13岁,弟弟今年9岁,当姐弟俩岁数的和是40岁时,两人各应该是多少岁?分析:岁差不会变,今年的岁数差13-9=4几年后也不会改变。
几年后岁数和是40,岁数差是4,转化为和差问题。
则几年后,姐姐的岁数:(40+4)/2=22,弟弟的岁数:(40-4)/2=18,所以答案是9年后。
4和比问题已知整体,求部分。
【口诀】家要众人合,分家有原则。
分母比数和,分子自己的。
和乘以比例,就是该得的。
例:甲乙丙三数和为27,甲:乙:丙=2:3:4,求甲乙丙三数。
分母比数和,即分母为:2+3+4=9;分子自己的,则甲乙丙三数占和的比例分别为2/9,3/9,4/9。
和乘以比例,则甲为27X2/9=6,乙为27X3/9=9,丙为27X4/9=12 5鸡兔同笼问题【口诀】假设全是鸡,假设全是兔。
多了几只脚,少了几只足?除以脚的差,便是鸡兔数。
例:鸡免同笼,有头36 ,有脚120,求鸡兔数。
小升初典型奥数题及详细答案
【答案解析】:设总路程为S,则去时用的时间为S/X,回来的时候用的时间为S/Y 那么平均速度为2S∕(S/X+S/Y)=2/(1∕X+1∕Y)=2XY∕(X+Y) 6、参加数学竞赛的男生比女生多28人,女生全部优胜,男生的3/4得优胜男女生各优胜的共42人,求男女生参 加竞赛的各多少人?
31、一对李生姐妹今年的年龄的和、差、积、商相加的和为100,她们今年多少岁? 【答案解析】:年龄为X,则: 2X+0+X×X+l=100 解得X=9 32、一列客车长200皿,一列货车长280πι,它们在平行的轨道上相向行驶,从相遇到车尾离开需18s. 【答案解析】:巳知客车与货车的速度为5:3,求两车每秒各行多少千米? 速度和=(200+280)+18=80/3米/秒 客车速度二80∕3÷(5+3)x5=50∕3米/秒 货车速度=80/3-50/3=10米/秒 33、圆锥形容器中装有2升水,水面高度正好是圆锥高度的一半,这个容 器还能装多少升水? (8-1)x2=14 注:在这种情况下体积的比永远是8:1 34、六年级(D班原来有学生54人,男生占全班人数的5/9,后来男生转走了几人,这时男生占全班的13
3×3×3×3×2=162o 26、一只布袋中装有大小相同,但颜色不同的手套若干只。已知手套的颜色有黑白灰三种。最少要取多少副手 套才有保证有3副手套是同色的? 【答案解析】:4+3+3=10只 最坏的取法是三种手套分别拿4只3只3只,取10只就能保证有两副相同 手套只有3种,题目要我们要相同,我们就不让他相同,抽屉原理就是这样的
小升初奥数试题及参考答案
小升初奥数试题及参考答案一、选择题1. 下列哪个数是最小的质数?A. 0B. 1C. 2D. 3参考答案:C2. 一个数的1/5加上它的1/3,求和的结果是这个数的几分之几?A. 1/15B. 8/15C. 1/3D. 3/5参考答案:B3. 一个长方体的长是10厘米,宽是8厘米,高是5厘米,其表面积是多少平方厘米?A. 170B. 270C. 340D. 420参考答案:D二、填空题4. 一个数的3/4加上它的1/2,和是这个数的______。
参考答案:7/85. 一本书的价格是35元,如果打8折出售,那么现价是______元。
参考答案:286. 一个正方形的边长增加10%,那么它的面积增加了多少百分比?参考答案:21%三、解答题7. 一块长方形草地的长是40米,宽是30米。
现在要在其四周围上篱笆,问篱笆的总长度是多少米?参考答案:(40+30)×2 = 140米8. 小明和小红合作完成一项工作,小明单独完成需要4小时,小红单独完成需要6小时。
现在他们合作,共同完成这项工作需要多少时间?参考答案:设工作总量为1,小明每小时完成1/4,小红每小时完成1/6的工作量。
合作时,他们每小时完成的工作量是1/4 + 1/6 =5/12。
所以,他们合作完成工作需要的时间为1 ÷ (5/12) = 2.4小时。
9. 一个班级有48名学生,其中2/3是男生,剩下的是女生。
问这个班级有多少名女生?参考答案:48 × (1 - 2/3) = 48 × 1/3 = 16名女生。
四、应用题10. 小华有一些贴纸,她给了小明一半的贴纸后,自己还剩下20张。
请问小华原来有多少张贴纸?参考答案:设小华原来有x张贴纸,根据题意,x/2 = 20,解得x = 40张。
11. 一辆汽车从甲地到乙地,如果速度提高20%,可以比原定时间提前1小时到达。
已知原定速度是60公里/小时,求两地之间的距离。
小升初最常考奥数题100道及答案(完整版)
小升初最常考奥数题100道及答案(完整版)1. 一桶水可灌3/4 壶水,1 壶水可以冲2 杯水,1 桶水可以冲几杯水?答案:3/4×2 = 3/2 = 1.5(杯)2. 小明看一本书,第一天看了全书的1/4,第二天看了全书的2/5,第二天比第一天多看了21 页,这本书一共有多少页?答案:21÷(2/5 - 1/4)= 21÷3/20 = 140(页)3. 有一批货物,第一天运走了总数的2/5,第二天运走的货物比总数的1/4 多4 吨,这时还剩17 吨,这批货物共有多少吨?答案:(17 + 4)÷(1 - 2/5 - 1/4)= 21÷7/20 = 60(吨)4. 某工厂有三个车间,第一车间的人数占三个车间总人数的25%,第二车间人数是第三车间的3/4,已知第一车间比第二车间少40 人,三个车间一共有多少人?答案:40÷[(1 - 25%)×3/(3 + 4) - 25%] = 40÷[3/7 - 1/4] = 560(人)5. 师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21 个,这批零件有多少个?答案:21÷(1 - 2/7 - 2/7)= 21÷3/7 = 49(个)6. 仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3 少12 袋,这时仓库里还剩24 袋,两次共取出多少袋?答案:(24 - 12)÷(1 - 2/5 - 1/3)= 12÷4/15 = 45(袋),45 - 24 = 21(袋)7. 甲、乙、丙三个数的和是110,甲与乙的比是3:2,乙与丙的比是4:1,乙数是多少?答案:甲:乙= 3:2 = 6:4,乙:丙= 4:1,所以甲:乙:丙= 6:4:1,乙数:110×4/(6 + 4 + 1) = 408. 一辆汽车从甲地开往乙地,行了全程的3/8,离乙地还有135 千米,两地之间的公路长多少千米?答案:135÷(1 - 3/8)= 216(千米)9. 修一条路,已修的与未修的比是1:5,又修了490 米后,已修的与未修的比是3:1,这时还有多少米未修?答案:490÷(3/4 - 1/6)×1/4 = 180(米)10. 某校有学生465 人,其中女生的2/3 比男生的4/5 少20 人,男、女生各有多少人?答案:设男生有x 人,4/5 x - 2/3×(465 - x) = 20 ,解得x = 225,女生人数:465 - 225 = 240(人)11. 水果店里卖出的梨的重量是苹果的5/7,梨比苹果少卖30 千克,梨卖了多少千克?答案:30÷(1 - 5/7)×5/7 = 75(千克)12. 一筐苹果卖掉1/5 后,又卖掉6 千克,这时卖出的重量正好是剩下的1/2,这筐苹果原来有多少千克?答案:6÷(1/3 - 1/5)= 45(千克)13. 甲、乙两班共有84 人,甲班人数的5/8 与乙班人数的3/4 共有58 人,甲、乙两班各有多少人?答案:设甲班有x 人,5/8 x + 3/4×(84 - x) = 58 ,解得x = 40,乙班:84 - 40 = 44(人)14. 学校买来两种图书共220 本,取出甲种图书的1/4 和乙种图书的1/5 共50 本借给五年级(1)班同学阅读,问甲、乙两种图书各买来多少本?答案:设甲种图书有x 本,1/4 x + 1/5×(220 - x) = 50 ,解得x = 120,乙种图书:220 - 120 = 100(本)15. 某工厂第一车间有工人150 人,第二车间有工人90 人,要使第一车间人数是第二车间的2 倍,需要从第二车间调多少人到第一车间?答案:(150 + 90)÷(2 + 1) = 80(人),90 - 80 = 10(人)16. 甲、乙两堆煤共180 吨,甲堆煤的1/3 比乙堆煤的2/3 多18 吨,甲、乙两堆煤各有多少吨?答案:设甲堆煤有x 吨,1/3 x - 2/3×(180 - x) = 18 ,解得x = 138,乙堆煤:180 - 138 = 42(吨)17. 学校图书馆有科技书和文艺书共3200 本,科技书的本数是文艺书的4/5,科技书和文艺书各有多少本?答案:文艺书:3200÷(1 + 4/5)= 16000/9 ≈1778(本),科技书:3200 - 1778 = 1422(本)18. 一辆汽车从甲地到乙地,已经行了全程的1/5,再向前行50 千米,就比全程的2/3 少6 千米,求甲乙两地的距离。
小升初奥数题及答案【六篇】
【导语】奥数是奥林匹克数学竞赛的简称。
1934年—1935年,前苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克竞赛的名称,1959年在布加勒斯特举办第xx届国际数学奥林匹克竞赛。
以下是整理的《2021年愚⼈节简短句⼦3篇》相关资料,希望帮助到您。
1.⼩升初奥数题及答案 ⽤1~9可以组成______个不含重复数字的三位数:如果再要求这三个数字中任何两个的差不能是1,那么可以组成______个满⾜要求的三位数? 答案与解析: (1)9×8×7=504个。
(2)504-(6+5+5+5+5+5+5+6)×6-7×6=210个; (减去有2个数字差是1的情况,括号⾥8个数分别表⽰这2个数是12,23,34,45,56,67,78,89的情况,×6是对3个数字全排列,7×6是三个数连续的123、234、345、456、567、789这7种情况)。
2.⼩升初奥数题及答案 龟兔赛跑,全程5.2千⽶,兔⼦每⼩时跑20千⽶,乌龟每⼩时跑3千⽶,乌龟不停地跑;兔⼦边跑边玩,它先跑了1分钟后玩了15分钟,⼜跑了2分钟后玩15分钟,再跑3分钟后玩15分钟,……。
那么先到达终点⽐后到达终点的快多少分钟? 答案与解析: 乌龟⽤时:5.2÷3×60=104(分钟);兔⼦总共跑了:5.2÷20×60=15.6(分钟)。
⽽我们有:15.6=1+2+3+4+5+0.6按照题⽬条件,从上式中我们可以知道兔⼦⼀共休息了5次,共15×5=75(分钟)。
所以兔⼦共⽤时:15.6+75=90.6(分钟)。
兔⼦先到达终点,⽐后到达终点的乌龟快:104-90.6=13.4(分钟)。
3.⼩升初奥数题及答案 ⼩华从甲地到⼄地,3分之1骑车,3分之2乘车;从⼄地返回甲地,5分之3骑车,5分之2乘车,结果慢了半⼩时。
已知,骑车每⼩时12千⽶,乘车每⼩时30千⽶,问:甲⼄两地相距多少千⽶? 解答:把路程当作1,得到时间系数 去时时间系数:1/3÷12+2/3÷30 返回时间系数:3/5÷12+2/5÷30 两者之差:(3/5÷12+2/5÷30)-(1/3÷12+2/3÷30)=1/75相当于1/2⼩时 去时时间:1/2×(1/3÷12)÷1/75和1/2×(2/3÷30)1/75 路程:12×〔1/2×(1/3÷12)÷1/75〕+30×〔1/2×(2/3÷30)1/75〕=37.5(千⽶)4.⼩升初奥数题及答案 ⽼奶奶家有20个鸡蛋,还养了⼀天能下⼀个蛋的⽼母鸡,如果她家⼀天吃两个鸡蛋,⽼奶奶家的鸡蛋可以连续吃多少天? 解答: (1)20个鸡蛋,每天吃2个 20÷2=10天,在这10天⾥,母鸡⼜下了10个鸡蛋 (2)10个鸡蛋,每天吃2个 10÷2=5天,在这5天⾥,母鸡⼜下了5个鸡蛋 (3)5个鸡蛋,每天吃2个 5÷2=2天……1个,在这2天⾥,母鸡⼜下了2个鸡蛋 (4)2个鸡蛋+余下的1个鸡蛋,每天吃2个 3÷2=1天……1个,在这1天⾥,母鸡⼜下了1个鸡蛋 (5)1个鸡蛋+余下的1个鸡蛋,每天吃2个 2÷2=1天 (6)总天数 10+5+2+1+1=19天5.⼩升初奥数题及答案 有⼀班同学去划船,他们算了⼀下,如果增加⼀条船,每条船正好坐6⼈;如果减少⼀条船,每条船正好坐9⼈。
小升初奥数题及答案五篇
【导语】在解奥数题时,经常要提醒⾃⼰,遇到的新问题能否转化成旧问题解决,化新为旧,透过表⾯,抓住问题的实质,将问题转化成⾃⼰熟悉的问题去解答。
转化的类型有条件转化、问题转化、关系转化、图形转化等。
以下是®⽆忧考⽹整理的《⼩升初奥数题及答案五篇》相关资料,希望帮助到您。
1.⼩升初奥数题及答案 1、⽤⼀只⽔桶装⽔,把⽔加到原来的2倍,连桶重10千克,如果把⽔加到原来的5倍,连桶重22千克。
桶⾥原有⽔多少千克? 想:由已知条件可知,桶⾥原有⽔的(5-2)倍正好是(22-10)千克,由此可求出桶⾥原有⽔的重量。
解:(22-10)÷(5-2)=12÷3=4(千克) 答:桶⾥原有⽔4千克。
2、⼩红和⼩华共有故事书36本。
如果⼩红给⼩华5本,两⼈故事书的本数就相等,原来⼩红和⼩华各有多少本? 想:从“⼩红给⼩华5本,两⼈故事书的本数就相等”这⼀条件,可知⼩红⽐⼩华多(5×2)本书,⽤共有的36本去掉⼩红⽐⼩华多的本数,剩下的本数正好是⼩华本数的2倍。
解:⼩华有书的本数:(36-5×2)÷2=13(本) ⼩红有书的本数:13+5×2=23(本) 答:原来⼩红有23本,⼩华有13本。
2.⼩升初奥数题及答案 1、已知⼀张桌⼦的价钱是⼀把椅⼦的10倍,⼜知⼀张桌⼦⽐⼀把椅⼦多288元,⼀张桌⼦和⼀把椅⼦各多少元? 想:由已知条件可知,⼀张桌⼦⽐⼀把椅⼦多的288元,正好是⼀把椅⼦价钱的(10-1)倍,由此可求得⼀把椅⼦的价钱。
再根据椅⼦的价钱,就可求得⼀张桌⼦的价钱。
解:⼀把椅⼦的价钱:288÷(10-1)=32(元) ⼀张桌⼦的价钱:32×10=320(元) 答:⼀张桌⼦320元,⼀把椅⼦32元。
2、3箱苹果重45千克。
⼀箱梨⽐⼀箱苹果多5千克,3箱梨重多少千克? 想:可先求出3箱梨⽐3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。
小升初数学必考奥数题100道附答案(完整版)
小升初数学必考奥数题100道附答案(完整版)题目1:有四个小朋友,他们的年龄一个比一个大一岁,四个人的年龄乘积是360。
他们中年龄最大的是多少岁?答案:将360 分解因数,360 = 2×2×2×3×3×5 = 3×4×5×6,所以年龄最大的是6 岁。
题目2:计算:1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 +…+ 2014 - 2015 - 2016 + 2017 + 2018答案:原式= (1 + 2 - 3 - 4) + (5 + 6 - 7 - 8) +…+ (2013 + 2014 - 2015 - 2016) + 2017 + 2018 = 2017 + 2018 = 4035题目3:一项工程,甲单独做10 天完成,乙单独做15 天完成。
甲乙合作,几天可以完成?答案:甲每天完成工程的1/10,乙每天完成工程的1/15,两人合作每天完成1/10 + 1/15 = 1/6,所以合作需要6 天完成。
题目4:在一个比例中,两个外项互为倒数,其中一个内项是2.5,另一个内项是多少?答案:两个外项互为倒数,乘积为1。
根据比例的性质,两个内项的积也为1,所以另一个内项是1÷2.5 = 0.4题目5:一个数除以8 余5,除以9 余6,这个数最小是多少?答案:这个数加上3 就能被8 和9 整除,8 和9 的最小公倍数是72,所以这个数最小是72 - 3 = 69题目6:一个圆形花坛的周长是25.12 米,在它的周围加宽1 米,加宽后的面积比原来增加了多少平方米?答案:原来花坛的半径为25.12÷3.14÷2 = 4 米,加宽后的半径为5 米。
增加的面积为3.14×(5²- 4²) = 28.26 平方米题目7:一个长方体的棱长总和是120 厘米,长、宽、高的比是3:2:1,这个长方体的体积是多少立方厘米?答案:120÷4 = 30 厘米,3 + 2 + 1 = 6,长为15 厘米,宽为10 厘米,高为5 厘米,体积为750 立方厘米题目8:甲乙两车同时从A、B 两地相对开出,4 小时后相遇。
小升初数学奥数题120道附带完整答案
小升初数学奥数题120道附带完整答案1. 某数加上6,乘以6,减去6,除以6,其结果等于6,求这个数。
答案:1。
解题思路:从后向前来推算,“除以6,结果等于6”,则前一个数是6×6=36;“减去6 等于36”,则前一个数是36+6=42;“乘以6 等于42”,则前一个数是42÷6=7;“加上6 等于7”,所以这个数是7-6=1。
2. 两支蜡烛,第一支4 小时燃尽,第二支3 小时燃尽,如果同时点燃这两支蜡烛,问多长时间后第一支蜡烛的长度是第二支蜡烛的2 倍?答案:12/5 小时。
解题思路:把蜡烛的长度看作单位“1”,第一支蜡烛每小时燃烧1/4,第二支蜡烛每小时燃烧1/3,设x 小时后第一支蜡烛的长度是第二支蜡烛的 2 倍,可列出方程1-x/4=2×(1-x/3),解得x=12/5。
3. 一个最简分数,如果分子加1,分数值就等于1,如果分母加1,分数值就等于2/3,求原来这个分数。
答案:4/5。
解题思路:设分子为x,分母为y,根据条件可列方程组(x+1)/y=1,x/(y+1)=2/3,解方程组可得x=4,y=5,所以原来的分数是4/5。
4. 甲、乙两车分别从A、B 两地同时出发相向而行,它们的速度比是2:3,在途中相遇后,甲车速度提高20%,乙车速度不变,当乙车到达A 地时,甲车距B 地还有28 千米,求A、B 两地相距多少千米?答案:180 千米。
解题思路:相遇时甲乙所行路程比也是2:3,设全程为 5 份,相遇后乙行2 份到 A 地,甲行2×(1+20%)=2.4 份,那么3-2.4=0.6 份是28 千米,一份是28÷0.6=140/3 千米,全程5 份就是140/3×5=700/3=180 千米。
5. 有含盐8%的盐水40 千克,要配制成含盐20%的盐水,需加盐多少千克?答案:6 千克。
解题思路:原来盐水中盐的质量为40×8%=3.2 千克,设加盐x 千克,可列出方程(3.2+x)/(40+x)=20%,解得x=6。
小升初奥数题及答案五篇
小升初奥数题及答案五篇第一篇:数与代数1. 某数的三倍加上5等于20,求这个数。
解答:设这个数为x,则根据题意,可以列出方程3x + 5 = 20。
解这个一次方程可以得到x = 5。
2. 一个数增加20%后得到30,求这个数。
解答:设这个数为x,则根据题意,可以列出方程x + 0.2x = 30。
解这个一次方程可以得到x = 25。
第二篇:几何与图形1. 已知长方形的长是5cm,宽是3cm,求其面积和周长。
解答:长方形的面积可以通过长度乘以宽度来计算,即5cm × 3cm = 15cm²。
周长可以通过将长度和宽度相加再乘以2来计算,即(5cm + 3cm) × 2 = 16cm。
2. 在平面直角坐标系中,点A(2,3)和点B(5,1)连线,求线段AB的长度。
解答:根据坐标系中两点间的距离公式,线段AB的长度可以计算为√[(5-2)²+(1-3)²] = √[(3)²+(-2)²] = √(9+4) = √13。
第三篇:概率与统计1. 从1至15中随机抽取一个整数,求这个整数是偶数的概率。
解答:在1至15中,一共有8个偶数(2, 4, 6, 8, 10, 12, 14, 15)和7个奇数(1, 3, 5, 7, 9, 11, 13)。
因此,抽取的整数是偶数的概率为8/15。
2. 一个骰子中的每个面都标有1至6的数字,投掷骰子一次,求投掷结果是5或6的概率。
解答:骰子共有6个面,其中有2个面标有5和6。
因此,投掷结果是5或6的概率为2/6 = 1/3。
第四篇:逻辑与推理1. 小明说他有7本书,其中一半给了朋友,又借了5本回来,这时他还有多少本书?解答:小明有7本书,一半给了朋友,剩下的数量是7/2 = 3.5本。
因为书的数量不能为小数,所以小明实际上只剩下3本书。
2. 汤姆比杰克大三岁,而杰克比肯尼大两岁。
如果汤姆今年10岁,那么肯尼的年龄是多少?解答:根据题意,杰克比肯尼大两岁,汤姆比杰克大三岁,所以汤姆与肯尼之间的年龄差是5岁。
小升初最常考的奥数题100道及答案(完整版)
小升初最常考的奥数题100道及答案(完整版)1. 已知一张桌子的价钱是一把椅子的10 倍,又知一张桌子比一把椅子多288 元,一张桌子和一把椅子各多少元?答案:桌子320 元,椅子32 元。
解析:设一把椅子的价格为x 元,则一张桌子的价格为10x 元。
根据一张桌子比一把椅子多288 元,可列出方程:10x - x = 288,解得x = 32,那么桌子的价格为10x = 320 元。
2. 3 箱苹果重45 千克。
一箱梨比一箱苹果多5 千克,3 箱梨重多少千克?答案:60 千克。
解析:一箱苹果的重量为45÷3 = 15 千克,一箱梨比一箱苹果多5 千克,所以一箱梨重15 + 5 = 20 千克,3 箱梨的重量为20×3 = 60 千克。
3. 甲乙二人从两地同时相对而行,经过4 小时,在距离中点4 千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?答案:2 千米。
解析:甲比乙在4 小时内多走了4×2 = 8 千米,那么甲每小时比乙快8÷4 = 2 千米。
4. 李军和张强付同样多的钱买了同一种铅笔,李军要了13 支,张强要了7 支,李军又给张强0.6 元钱。
每支铅笔多少钱?答案:0.15 元。
解析:两人付同样多的钱,应得到同样多的铅笔,一共买了13 + 7 = 20 支铅笔,平均每人10 支。
李军多要了13 - 10 = 3 支,给张强0.6 元,所以每支铅笔的价格为0.6÷3 = 0.2 元。
5. 甲乙两辆客车上午8 时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2 点。
甲车每小时行40 千米,乙车每小时行45 千米,两地相距多少千米?(交换乘客的时间略去不计)答案:250 千米。
解析:下午2 点即14 点,从上午8 点到下午2 点经过了6 小时。
小升初数学常见奥数题100道附答案(完整版)
小升初数学常见奥数题100道附答案(完整版)1. 甲、乙两人同时从A、B 两地相向而行,甲每分钟走52 米,乙每分钟走48 米,两人走了10 分钟后交叉而过,又相距38 米,A、B 两地相距多少米?答案:962 米思路:两人10 分钟走的路程之和为(52 + 48)×10 = 1000 米,减去交叉而过相距的38 米,A、B 两地相距1000 - 38 = 962 米。
2. 一筐苹果,先拿出140 个,又拿出余下的60%,这时剩下的苹果正好是原来总数的1/6,这筐苹果原来有多少个?答案:240 个思路:设这筐苹果原来有x 个,(x - 140)×(1 - 60%) = 1/6x ,解得x = 240 。
3. 修一条路,第一天修了全长的1/5 多100 米,第二天修了余下的2/7 ,还剩500 米,这条路全长多少米?答案:1000 米思路:设全长为x 米,第一天修了1/5x + 100 米,余下x - (1/5x + 100) = 4/5x - 100 米,第二天修了2/7×(4/5x - 100) 米,可列方程4/5x - 100 - 2/7×(4/5x - 100) = 500 ,解得x = 1000 。
4. 某工厂三个车间共有180 人,第二车间人数是第一车间人数的3 倍多1 人,第三车间人数是第一车间人数的一半还少1 人,三个车间各有多少人?答案:第一车间40 人,第二车间121 人,第三车间19 人思路:设第一车间有x 人,则第二车间有3x + 1 人,第三车间有1/2x - 1 人,x + 3x + 1 + 1/2x - 1 = 180 ,解得x = 40 ,第二车间121 人,第三车间19 人。
5. 一个书架,上层书的本数是下层的4 倍,如果从上层拿60 本到下层,两层书的本数就相同,上层和下层原来各有多少本书?答案:上层160 本,下层40 本思路:设下层原来有x 本,则上层原来有4x 本,4x - 60 = x + 60 ,解得x = 40 ,上层160 本。
小升初常考的奥数题100道附答案(完整版)
小升初常考的奥数题100道附答案(完整版)1. 有红、黄、白三种颜色的球,红球和黄球一共有21 个,黄球和白球一共有20 个,红球和白球一共有19 个。
三种球各有多少个?答案:三种球的总数:(21 + 20 + 19)÷2 = 30(个)白球:30 - 21 = 9(个)红球:30 - 20 = 10(个)黄球:30 - 19 = 11(个)2. 在一个减法算式里,被减数、减数与差的和等于120,而减数是差的3 倍,那么差等于多少?答案:被减数= 减数+ 差被减数+ 减数+ 差= 120所以被减数= 60差:60÷(3 + 1) = 153. 某班学生去划船,如果增加一条船,那么每条船正好坐6 人;如果减少一条船,那么每条船就要坐9 人。
问:学生有多少人?答案:设原来有x 条船。
6(x + 1) = 9(x - 1)x = 5学生人数:6×(5 + 1) = 36(人)4. 老师把一些苹果分给小朋友。
如果每人分一个,还剩下8 个苹果;如果每人分2 个,那么还少2 个苹果。
一共有多少个小朋友?答案:设小朋友有x 个。
x + 8 = 2x - 2x = 105. 甲、乙两数的和是180,甲数的1/4 等于乙数的1/5,甲、乙两数各是多少?答案:甲:乙= 4 : 5甲:180×4/(4 + 5) = 80乙:180 - 80 = 1006. 一个长方形,如果长增加2 厘米,宽增加5 厘米,那么面积就增加60 平方厘米,这时恰好是一个正方形。
原来长方形的面积是多少平方厘米?答案:设正方形边长为x 厘米。
(x - 2)(x - 5) + 60 = x²x = 10原长方形长8 厘米,宽 5 厘米,面积40 平方厘米。
7. 一筐苹果分给甲、乙、丙三人,甲分得全部苹果的1/5 加5 个苹果,乙分得全部苹果的1/4 加7 个苹果,丙分得其余苹果的1/2,最后剩下的苹果正好等于一筐苹果的1/8。
小升初奥数题卷子及答案
小升初奥数题卷子及答案一、选择题(每题2分,共10分)1. 下列哪个数是质数?A. 4B. 9C. 13D. 162. 一个数的平方是其本身,这个数可能是:A. 0B. 1C. -1D. 23. 一个圆的直径是14厘米,它的周长是多少厘米?A. 28B. 42C. 56D. 844. 一个数的倒数是1/5,这个数是:A. 5B. 1/5C. 1/6D. 65. 一个长方体的长、宽、高分别是8厘米、6厘米和5厘米,它的体积是多少立方厘米?A. 240B. 180C. 360D. 480二、填空题(每题2分,共10分)1. 如果一个数是另一个数的2倍,那么这个数的______是另一个数的1倍。
2. 一个数的平方根是5,那么这个数是______。
3. 一个数的立方根是2,那么这个数是______。
4. 如果一个数的1/4加上2等于这个数本身,那么这个数是______。
5. 一个数的1/5加上它的4/5等于______。
三、计算题(每题5分,共20分)1. 计算下列表达式的值:(2^3 + 3^2) / 4 - 12. 解方程:2x - 5 = 3x + 13. 计算下列分数的和:1/2 + 1/3 + 1/44. 计算下列多项式的乘积:(x + 2)(x - 3)四、解答题(每题15分,共30分)1. 一个长方形的长是宽的两倍,如果长增加10厘米,宽增加5厘米,面积就增加了120平方厘米。
求原来长方形的长和宽。
2. 一个班级有40名学生,其中1/4的学生是优秀学生,1/8的学生是中等生,其余是差生。
如果班级要组织一次活动,需要每个学生交10元,那么组织这次活动需要多少元?五、应用题(每题25分,共50分)1. 一个农场有鸡和兔子共40只,它们的腿总共有100条。
问农场里有多少只鸡和多少只兔子?2. 一个工厂生产一批玩具,如果每天生产200个,需要20天完成。
如果每天生产250个,需要多少天完成?答案:一、选择题1. C2. B3. B4. D5. A二、填空题1. 1/22. 253. 84. 85. 1三、计算题1. 52. x = -23. 1 1/124. x^2 - 5x + 6四、解答题1. 原长方形的长是16厘米,宽是8厘米。
小升初奥数试题及答案
小升初奥数试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的质数?A. 0B. 1C. 2D. 3答案:C2. 一个数的1/4加上它的1/2,和是1。
这个数是多少?A. 1/2B. 2/3C. 1D. 4答案:C3. 一个长方体的长、宽、高分别是12cm、8cm和6cm,它的表面积是多少平方厘米?A. 432B. 360C. 312D. 288答案:A4. 一本书的价格是35元,如果打8折,那么现价是多少元?A. 28B. 30C. 35D. 42答案:A5. 一个数除以3的余数是2,除以5的余数是1,这个数除以15的余数是多少?A. 3B. 2C. 1D. 0答案:A6. 一个数的3/4加上它的1/2,和是2。
这个数是多少?A. 1B. 2C. 3D. 4答案:B7. 一个班级有48名学生,其中2/3是男生,那么这个班级有多少名女生?A. 16B. 24C. 32D. 40答案:A8. 一个正方形的面积是64平方厘米,它的周长是多少厘米?A. 32B. 48C. 64D. 16答案:A9. 一辆汽车以每小时60公里的速度行驶,2小时后它行驶了多少公里?A. 120B. 100C. 80D. 60答案:A10. 一个数的2倍加上3等于这个数的3倍减去5,这个数是多少?A. 5B. 8C. 10D. 6答案:D二、填空题(每题4分,共40分)11. 一个数的倒数是1/4,这个数是_________。
答案:412. 一本书的价格比原价便宜了18元,现在的价格是42元,原价是_________元。
答案:6013. 一个长方体的长是15cm,宽是10cm,高是8cm,它的体积是_________立方厘米。
答案:120014. 一个数的1/3与它的1/2的和是20,这个数是_________。
答案:2415. 一个班级有36名学生,其中3/4是女生,那么这个班级有多少名男生?答案:916. 一个数的4/5加上它的1/2,和是6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学奥数题小升初考试题及答案The pony was revised in January 2021小学奥数题(小升初考试题)及答案1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时解:1/20+1/16=9/80表示甲乙的工作效率9/80×5=45/80表示5小时后进水量1-45/80=35/80表示还要的进水量35/80÷(9/80-1/10)=35表示还要35小时注满答:5小时后还要35小时就能将水池注满。
2.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。
单份给男生栽,平均每人栽几棵答案是15棵算式:1÷(1/6-1/10)=15棵3.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来电了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟设停电X分钟,则:粗蜡烛长度减少:X÷60÷2=X÷120细蜡烛长度减少:X÷601-(X÷120)=2(1-X÷60)X=40分钟4.在一个直径是2分米的圆柱形容器里,放入一个底面半径3厘米的圆锥形铁块,全部浸没在水中,这时水面上升0.3厘米.圆锥形铁块的高是多少厘米分析:根据题干,这个圆锥形铁块的体积就是上升0.3厘米的水的体积,由此可以求出这个圆锥的体积,再利用圆锥的体积公式即可求出这个圆锥的高.解答:解:2分米=20厘米,3.14×(20÷2)2×0.3×3÷(3.14×32),=314×0.9÷28.26,=282.6÷28.26,=10(厘米);答:圆锥形铁块的高是10厘米.5,汽车上山每小时行20千米,3小时登顶,下山按原路返回,用了2小时,求汽车往返的平均速度.分析:根据速度×时间=路程,求出上山的路程,用上、下山的总路程除以总时间就是汽车往返的平均速度.解答:解:20×3×2÷(3+2),=120÷5,=24(千米),答:汽车往返的平均速度是24千米.6。
为了学生的卫生安全,学校给每个学生配一个水杯,同样的水杯甲乙丙三家商场每只的售价都是3元,不过各商场的优惠措施有所不同:甲商场:一律按八五折出售;乙商场:买5只送1只;丙商场:购物每满200元减30元现金,以此类推….(不够200元的部分一律不减);学校需要购买150只水杯,请你当参谋,算一算到哪家购买比较合算需要多少钱分析:本题根据学校需要购买的水杯及三家商场的优惠方案分别进行分析计算后即能得出到哪家购买比较合算,需要多少钱:已知学校需要购买150只水杯,三家商场每只的售价都是3元.甲商场:律按八五折出售,即按原价的85%出售,需花:3×150×85%=382.5元;乙商场:买5只送1只,150÷(5+1)=25只,即能获送25只,只需购150-25=125只即可,需花:125×3=375元;丙商场:购物每满200元减30元现金,以此类推….(不够200元的部分一律不减).买150只一共要花150×3=450只,450÷200=2…50元,可返还30×2=60元,实花450-60=390元.375元<382.5元<390元.所以到乙商店花钱最少,需花375元.解答:解:甲商场需花:3×150×85%=382.5元;乙商场需花:150÷(5+1)=25只,(150-25)×3=375(元);丙商场:150×3÷200=2…50元;150×3-30×2=390元.375元<382.5元<390元.答:到乙商店花钱最少,需花375元.7,买语文书18本,数学书15本,共花167.1元,已知每本语文书比每本数学书贵0.3元,语文书、数学书每本各多少元分析:要求语文书、数学书每本各多少元,据题目条件可知:买语文书花的钱+买数学书花的钱=167.1,由此等量关系就可以列方程解决.解答:解:设数学书每本x元,则语文书为(x+0.3)元15x+(x+0.3)×18=167.115x+18x+5.4=167.1 33x=167.1-5.4 33x=161.7 x=4.9;所以语文书的单价为4.9+0.3=5.2(元);答:数学书每本4.9元,语文书每本5.2元.,8,亮亮从家步行去学校,每小时走5千米.回家时,骑自行车,每小时走13千米.骑自行车比步行的时间少4小时,亮亮家到学校的距离是分析:根据题干可知,亮亮骑车和步行行走的路程相等,都是从亮亮家到学校的距离.设亮亮家到学校的距离是x千米,根据骑自行车用的时间—步行用的时间=时间差4小时,列出方程即可解决问题.解答:解:设亮亮家到学校的距离是x千米,根据题意可得方程,x÷5-x÷13=4,解这个方程得x=32.5答:亮亮家到学校的距离是32.5千米.9.一个两位数,在它的前面写上3,所组成的三位数比原两位数的7倍多24,求原来的两位数.答案为24解:设该两位数为a,则该三位数为300+a7a+24=300+aa=24答:该两位数为24。
10.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。
甲、乙两队每天共修多少米分析:根据甲队每天比乙队多修10米,可以这样考虑:如果把甲队修的4天看作和乙队4天修的同样多,那么总长度就减少4个10米,这时的长度相当于乙(4+5)天修的。
由此可求出乙队每天修的米数,进而再求两队每天共修的米数。
解:乙每天修的米数:(400-10×4)÷(4+5)=(400-40)÷9=360÷9=40(米)甲乙两队每天共修的米数:40×2+10=80+10=90(米)答:两队每天修90米。
11.某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。
运后结算时,共付运费4400元。
托运中损坏了多少箱玻璃分析:根据已知托运玻璃250箱,每箱运费20元,可求出应付运费总钱数。
根据每损坏一箱,不但不付运费还要赔偿100元的条件可知,应付的钱数和实际付的钱数的差里有几个(100+20)元,就是损坏几箱。
解:(20×250-4400)÷(10+20)=600÷120=5(箱)答:损坏了5箱。
12.五年级一中队和二中队要到距学校20千米的地方去春游。
第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。
第一中队先出发2小时后,第二中队再出发,第二中队出发后几小时才能追上一中队分析:因第一中队早出发2小时比第二中队先行4×2千米,而每小时第二中队比第一中队多行(12-4)千米,由此即可求第二中队追上第一中队的时间。
解:4×2÷(12-4)=4×2÷8=1(时)答:第二中队1小时能追上第一中队。
13.妈妈让小红去商店买5支铅笔和8个练习本,按价钱给小红3.8元钱。
结果小红却买了8支铅笔和5本练习本,找回0.45元。
求一支铅笔多少元分析:小红打算买的铅笔和本子总数与实际买的铅笔和本子总数量是相等的,找回0.45 元,说明(8-5)支铅笔当作(8-5)本练习本计算,相差0.45元。
由此可求练习本的单价比铅笔贵的钱数。
从总钱数里去掉8个练习本比8支铅笔贵的钱数,剩余的则是(5+8)支铅笔的钱数。
进而可求出每支铅笔的价钱。
解:每本练习本比每支铅笔贵的钱数:0.45÷(8-5)=0.45÷3=0.15(元)8个练习本比8支铅笔贵的钱数:0.15×8=1.2(元)每支铅笔的价钱:(3.8-1.2)÷(5+8)=2.6÷13=0.2(元)答:每支铅笔0.2元。
14.有一周长600米的环形跑道,甲、乙二人同时、同地、同向而行,甲每分钟跑300米,乙每分钟跑400米,经过几分钟二人第一次相遇分析:由已知条件可知,二人第一次相遇时,乙比甲多跑一周,即600米,又知乙每分钟比甲多跑(400-300)米,即可求第一次相遇时经过的时间。
解:600÷(400-300)=600÷100=6(分)答:经过6分钟两人第一次相遇15.甲、乙二人同时从相距18千米的两地相对而行,甲每小时行走5千米,乙每小时走4千米。
如果甲带了一只狗与甲同时出发,狗以每小时8千米的速度向乙跑去,遇到乙立即回头向甲跑去,遇到甲又回头向乙跑去,这样二人相遇时,狗跑了多少千米分析:由题意知,狗跑的时间正好是二人的相遇时间,又知狗的速度,这样就可求出狗跑了多少千米。
解:18÷(5+4)=2(小时)8×2=16(千米)答:狗跑了16千米。
16.甲,乙,丙三人都在银行有存款,乙的存款数比甲的两倍少100元,丙的存款数比甲乙两人的存款和少300元,丙的存款是甲的2倍,那么甲,乙,丙共有存款多少元解设甲x元,丙2x元,乙2x-100元2x=x+2x-100-3002x=3x-400x=400乙:400×2-100=700元丙:400×2=800元甲乙丙共:400+700+800=1900元17.A车和B车同时从甲城和乙城两地相向开出,经过5小时相遇。
然后,它们又各自按原速原方向继续行驶3小时,这时A车离乙地还有135千米,B车离甲地还有165千米。
甲,乙两地相距多少千米分析:两车5小时相遇,之后又行驶3小时,那么这3小时两车走的路程之和就是全程的3/5A距离乙还有135千米,B距离甲还有165千米,所以总共还剩下135+165=300千米这300千米就相当于全程的1-(3/5)=2/5 列式:(135+165)÷[1-(3/5)]=750千米或:(135+165)×5÷(5-3)=750千米。