传热学课件.ppt
传热学(全套课件666P) ppt课件
§1-3 传热过程和传热系数
一、传热过程 1 、概念
热量由壁面一侧的流体通过壁面传到 另一侧流体中去的过程称传热过程。
2 、传热过程的组成 传热过程一般包括串联着的三个环节组成, 即:
① 热流体 → 壁面高温侧; ② 壁面高温侧 → 壁面低温侧; ③ 壁面低温侧 → 冷流体。 若是稳态过程则通过串联环节的热流量相同。
二、对流
1 、基本概念
1) 对流:是指由于流体的宏观运动,从而使 流体各部分之间发生相对位移,冷热流体 相互掺混所引起的热量传递过程。 对流仅发生在流体中,对流的同时必伴随 有导热现象。
2) 对流换热:流体流过一个物体表面时的 热量传递过程,称为对流换热。
2 、对流换热的分类
1)根据对流换热时是否发生相变分:有
第一章
绪
论
§1-0 概 述
一、基本概念
❖ 1 、传热学 ❖ 传热学是研究热量传递规律的学科。 ❖ 1)物体内只要存在温差,就有热量从物
体的高温部分传向低温部分; ❖ 2)物物体。
2 、热量传递过程 根据物体温度与时间的关系,热量传递过程 可分为两类:
t f1 tw1
Ah 1
tw1 tw2 A /
t w 2 t f 2 Ah 2
(d) (e) (f)
三式相加,整理可得:
A(t f 1 t f 2 )
1 1
h1 h2
也可以表示成:
(1-10)
A(tkf1tf2)A k t (1-11)
式中, k称为传热系数,单位为
。
W/ m2K
⑤热辐射现象仍是微观粒子性态的一种宏 观表象。
⑥ 物体的辐射能力与其温度性质有关。这 是热辐射区别于导热,对流的基本特点。
第八章——传热学课件PPT
(1)所研究的表面是漫射表面;
(2)所研究表面向外发射的辐射热流密度是均匀的。
• 在这两个假定下,当物体的表面温度及发射率的改变 时,只影响到该物体向外发射的辐射能的大小,而不 影响辐射能在空间的相对分布,因而不影响辐射能落 到其他表面的百分数,即不影响角系数的大小。这样, 角系数就是一个仅与辐射表面间相对位置有关,而与 表面特性无关的纯几何量,从而给计算带来极大的方 便。
• 考虑如图所示的表面1对表面2的角系数。由于 从表面1上发出的落到表面2的总能量,等于落 到表面2上各部分的能量之和,于是有
A1Eb1 X 1,2 A1Eb1 X 1,2a A1Eb1 X 1,2b
2a
2b
• 所以,有 X 1,2 X 1,2a X 1,2b
1
• 如果把表面2进一步分成
若干小块,则仍有
• 实际工程问题虽然不一定满足这些假设,但由此造成 的偏差一般均在计算允许的范围之内,因此这种处理 问题的方法在工程中被广泛采用。本书为讨论方便, 在研Байду номын сангаас角系数时把物体作为黑体来处理。但所得到的 结果对于漫射的灰体表面也适用。
角系数的性质
• 角系数的相对性 • 角系数的完整性 • 角系数的可加性
角系数的相对性
第八章 辐射换热的计算
• 本章讨论物体间辐射换热的计算方法,重点是 固体表面间辐射换热的计算。
• 首先讨论辐射换热计算中的一个重要几何因 子——角系数的定义、性质及其计算方法;
• 然后介绍由两个表面及多个表面所组成系统的 辐射换热计算方法。
• 此基础上总结辐射换热的强化及削弱方法。
• 最后对位于容器及设备壳体内的烟气的辐射换 热特性及烟气与壳体间的辐射换热计算方法作 简要的讨论。
传热学第五版课件完整版_图文
接触热阻的影响因素: 粗糙度
挤压压力 硬度匹配情形 空隙中介质的性质
减小接触热阻的措施: 表面尽量平整 增加挤压压力
两表面一软一硬 涂导热姆
第七节 二维稳态导热
应用领域:房间墙角,地下埋管,矩形保温层,短肋片
二维稳态导热微分方程: 二维稳态导热问题的研究手段:
解析法 数值法 形状因子法
第i层与第i+1层之间接触面的温度:
二、第三类边界条件
常物性时导热微分方程组如下:
根据第一类边界条件时的结果: (此时壁温tw1和tw2为未知) 与以上两个边界条件共三式变形后 相加,可消去tw1和tw2,得:
单层平壁的热流密度:
多层平壁的热流密度:
第二节 通过复合平壁的导热
应用领域:空心砖,空斗墙
并解出其通解为 :
代入边界条件求出c1和c2,并代入通解,得出特解 :
等截面直肋的温度分布:
肋端过余温度:
肋片散热量:
当考虑肋端散热时,计算肋片散热量时可采用假想肋高 代替实际肋高 l
一维温度场假定的检验 :
请同学们思考一个问题:
肋高越大,肋的散热面积越大,因而采用 增加肋高的方法可以增加肋的散热量。这 种方法在实际换热器设计中是否可行?若 可行,是否会有某些局限性?
一、等截面直肋的导热
一维简化的假设条件: 肋片的高度l远大于肋片的厚度δ, 因而厚度方向温差很小,
负内热源的处理方法—— 将y方向的对流散热量 等效转化为负内热源
断面周长: 断面面积:
进行负内热源处理后等截面直肋导热微分方程组如下:
(假定肋端绝热)
定义 :
令
—— 过余温度
:
使导热微分方程齐次化 :
1传热学第一章课件
辐射换热:物体间靠热 辐射进行的 热量传递
2.辐射换热的特点
➢不需要冷热物体的直接接触; 即:不需要 介质的 存在,在真空中就可 以传递能量
➢在辐射换热过程中伴随 着能量 形式的转换 物体热 力学能 电 磁波能 物体热力学能
热 力学: tm , Q
传热学:过程的速率
水,M2
20oC
t = f ( x , y , z , ); Q = f ( )
传热学研究内容 热量传递的机理和速率、温度 场的变化
传热学的工程应用
1、 强化传热:即在一定的 条件下, 增加 所传递 的热量。 如热水的 搅拌冷 却
2 、 削弱传热,也称 热绝缘 :即在一 定的温差 下,使 热量的传递 减到最小。如热 水瓶
教材
《传热学》,戴锅生著,第二版
学时
总学时:24,讲课:22,实验:2
参考资料:《传热学》,杨世铭、陶文铨编著,第四版 《传热学重点难点及典型题精解》,王秋旺,西安交大出版社
辅导
周四 4:00-5:00pm,一校区教4楼 热能教研室
第一章 绪论
§1-1 传热学概述 §1-2 热量传递的基本方式 §1-3 传热过程与热阻
燃煤电厂的基本流程
锅 炉 工 作 原 理
三、传热学与工程热力学的关系
相同点: 传热学以热力学第一定律和第二定律为基础
热力学第一定律
热量始终是从高温物体向低温物体传递,在热量传递过程中 若无能量形式的转换,则热量始终保持守恒。
热力学第二定律
热量能自发的从高温物体传递到低温物体
不同点 a. 工程热力学:热能与机械能及其他形式能量之间 相互转换的规律。不考虑热量传递过程的时间。
传热学基本知识.ppt
(3)湿度
• 保温隔热性的多孔材料很容易吸收水分,吸水后,由于孔隙中充 满了水,水导热系数大于空气导热系数,加之在温度梯度的推动 下引起水分迁移而传递热量。
• 结论:物质湿度越大,它的导热系数较大;反之,导热系数较小 。 所以,在寒冷地区保温隔热时要特别注意防潮。
• 传热的基本方式:
①传热存在的条件:有温度差存在。(热量的转移总是由高 温物体向低温物体传送。
2.1.2 等温面与等温线 • 等温面是同一时刻在温度场中所有温度相同的点连
接构成的面。 • 不同的等温面与同一平面相交所得到的一簇曲线为
等温线。 • 同时刻两个不同等温线不会彼此相交。同时刻两个
不同等温线不会彼此相交。
• 2.1.3 温度梯度
• 热传递的基本条件:在温差的作用下,才有热量传递,而 在等温面(线)上不可能有热量传递,所以热量传递只能
பைடு நூலகம்
②热量传递的三种方式:导热、热对流、热辐射。
a.导热:温度不同的物体直接接触,温度较高的物体把热能 传给温度较低的物体,或在同一物体内部,热能从温度较 高的部分传给温度较低的部分的传热现象。
• 导热的特点:在传热过程中没有物质的迁移。
• 导热存在条件:单纯导热只发生在密实的固体中。
• 导热的计算:
q
• 两者关系:1℃=1K 且 T=t+273.16≈t+273 K
2.1.1 温度场
• 导热与物体内的温度场密切相关。温度场是某一时 刻空间中各点温度分布的总称。一般来说,温度场 是空间坐标和时间的函数,即
t f x, y, z,
• 上式表示物体内部温度在x、y、z三个方向和在时 间上均发生变化的三维非稳态温度场。如果温度场 不随时间变化,则上式变为
(完整PPT)传热学
温度对导热系数的影响因材料而异,一般情况下,随着温度的升高 ,导热系数会增加。
压力
对于某些材料,如气体,压力的变化会对导热系数产生显著影响。
稳态与非稳态导热过程
稳态导热
物体内部各点温度不随时间变化而变化的导热过程。在稳态导热过程中,热流 密度和温度分布保持恒定。
非稳态导热
物体内部各点温度随时间变化而变化的导热过程。在非稳态导热过程中,热流 密度和温度分布会发生变化,通常需要考虑时间因素对导热过程的影响。
辐射换热计算方法
辐射换热量计算
通过斯蒂芬-玻尔兹曼定律计算两 个物体之间的辐射换热量,需要 考虑物体的发射率、温度以及物 体间的角系数等因素。
角系数计算
角系数表示一个表面对另一个表 面辐射能量的相对大小,可以通 过几何方法或数值方法计算得到 。
辐射换热网络模型
对于多个物体之间的复杂辐射换 热问题,可以建立辐射换热网络 模型,通过求解线性方程组得到 各个物体之间的辐射换热量。
06 传热学实验技术 与设备
实验测量技术与方法
温度测量
使用热电偶、热电阻等 温度传感器,配合数据 采集系统,实现温度的
精确测量。
热量测量
采用量热计、热流计等 设备,测量传热过程中
的热量变化。
热阻测量
通过测量传热设备两侧 温差和传热量,计算得
到热阻。
热流密度测量
利用热流计等设备,测 量单位面积上的热量传
(完整PPT)传热学
contents
目录
• 传热学基本概念与原理 • 导热现象与规律 • 对流换热原理及应用 • 辐射换热基础与特性 • 传热过程数值计算方法 • 传热学实验技术与设备 • 传热学在工程领域应用案例
01 传热学基本概念 与原理
传热学--导热理论基础--ppt课件精选全文
第二章 导热理论基础
第三节 热导率
3、隔热层必须采取防潮措施
(1) 湿材料 干材料或水
因多孔材料很容易吸收水分,吸水后,由于热导率较大的水
代替了热导率较小的介质,加之在温度梯度的推动下引起水分
迁移,使多孔材料的表观热导率增加很多。
0.35
0.599
第二章 导热理论基础
※导热是在温度差作用下依靠物质微粒(分子、原子和 自由电子等)的运动(移动、振动和转动)进行的能 量传递。因此,导热与物体内的温度分布密切相关。 ※本章将从温度场、温度梯度等基本概念出发 阐述导热过程的基本规律 讨论描述物体导热的导热微分方程和定解条件
第二章 导热理论基础
第一节 温度场和温度梯度 一、温度场(P13)
第二章 导热理论基础
第三节 热导率
4、几点说明
(1)保温材料的λ值界定值随时间和行业的不同有所变化。 保温材料热导率的界定值大小反映了一个国家保温材料的生
产及节能的水平。
20世纪50年代我国沿用前苏联标准为0.23W/(m·K); 20世纪80年代,GB4272-84规定为0.14W/(m·K), GB4272-92《设备及管道保温技术通则》中则降低到 (0.122)W对/(于m各·K向) 异性材料,其热导率还与方向有关。
1、等温面:同一瞬间,温度场中温度相同的点所连成的面。 2、等温线:等温面与其他任一平面的交线。
3、立体的等温面常用等温线的平面图来表示。
为了在平面内清晰地表示一组等温面,常用这些等温面与一 平面垂直相交所得的一簇等温线来表示。 图2-1是用等温线表示的内燃机活塞和水冷燃气轮机叶片的温度场
第二章 导热理论基础
三、温度梯度(P13-14)
传热学基本知识ppt课件
普朗克公式
用于计算黑体辐射出射度随波长的分 布,公式为M(λ,T)=c1λ^5/(e^(c2/λT)-1),其中c1和c2为普朗 克常数。
05
传热过程与换热器设计
传热过程分析
热量传递的三种基本 方式:导热、对流和 辐射。
一维稳态导热问题的 解析解:平壁、圆筒 壁导热。
传热过程的数学描述 :传热微分方程、定 解条件。
换热器类型及其工作原理
1 2
换热器的分类
按传热原理、结构形式、操作过程等分类。
常见换热器类型及其工作原理
管壳式换热器、板式换热器、热管换热器等。
3
换热器的性能评价
传热系数、压力降、热效率等。
换热器设计方法与优化措施
换热器设计的基本步骤
01
确定设计条件、选择换热器类型、计算传热面积、确定结构尺
寸等。
流体的流动状态(层流 或湍流)对对流换热系 数有显著影响。湍流状 态下的对流换热系数通 常比层流状态下高。
温度梯度越大,对流换 热系数越高。因为较大 的温度梯度会导致流体 内部产生更强烈的密度 差异和流动。
固体壁面的形状、粗糙 度以及表面条件(如氧 化、涂层等)也会影响 对流换热系数。
04
热辐射基本知识
到高温热源中释放热量,实现节能和环保。传热学在热泵技术的设计和
应用中起到重要作用。
环境保护领域应用案例
大气污染控制
传热学在大气污染控制设备如脱硫脱硝装置、除尘器等的 设计和运行中起到重要作用,提高污染物的去除效率。
废水处理
废水处理过程中涉及热量的传递和转化,传热学原理在废 水处理设备的设计和优化中起到关键作用,提高废水处理 效率。
对流换热系数及其影响因素
对流换热系数定义
《传热学》电子课件
第1章绪论§1.1 传热学的研究内容及其应用四、传热学在科学技术各个领域中的应用3.3.温度控制温度控制温度控制::为使一些设备能安全经济地运行为使一些设备能安全经济地运行,,或者为得到优质产品为得到优质产品,,要对热量传递过程中物体关键部位的温度进行控制部位的温度进行控制。
例如例如::电子器件的冷却航天器重返大气层时的热防护原子及自由电子等微观粒子热运动而传递热量:定律有:绪论第1章绪论§1.2 热能传递的三种基本方式二、对流对流((热对流热对流))(Convection )4. 对流对流换热的特点换热的特点第1章绪论§1.2 热能传递的三种基本方式二、对流对流((热对流热对流))(Convection )5. 对流对流换热量的计算换热量的计算换热量的计算------牛顿冷却定律牛顿冷却定律() w f ΦhA t t =− () w f q ΦA h t t ==−h —表面传热系数表面传热系数[[W/(m 2K)]Φ—热流量热流量[[W ],单位时间传递的热量q —热流密度热流密度[[W/m 2]A—与流体接触的壁面面积与流体接触的壁面面积[[m 2 ]w t —固体壁表面温度固体壁表面温度[[o C ]f t —流体温度流体温度[[o C ]()f w ΦhA t t =− ()f w q ΦA h t t ==−流体受冷流体受热第1章绪论§1.2 热能传递的三种基本方式二、对流对流((热对流热对流))(Convection )6. 表面传热系数表面传热系数((h )是过程量是过程量,,与具体的换热过程有关与具体的换热过程有关,,受许多因素影响第1章绪论§1.2 热能传递的三种基本方式二、对流对流((热对流热对流))(Convection )7. 对流热阻=1h t t ΦR hA ∆∆= =1h t t q r h∆∆=wt ft ΦhR 有限面积对流热阻1h R hA=单位面积对流热阻1h r h=第。
(完整PPT)传热学
t f ( x, y, z, )
考虑时 间因素
考虑空 间因素
不稳定温度场
t 0 加热
t 0 冷却
稳定温度场 t 0
一维温度场 二维温度场 三维温度场
t f (x, ) t f (x, y, ) t f (x, y, z, )
– 另一种观点认为其导热机理类似于非导电固体, 即主要依靠原子、分子在其平衡位置附近的振 动,只是振动的平衡位置间歇地发生移动。
• 总的来说,关于导热过程的微观机理,目前 仍不很清楚。
• 本章只讨论导热现象的宏观规律。
【热对流(对流)】
(1)定义:由于流体质点发生相对位移而引起的
热量传递过程。 如炉墙外表面向大气散热;
背景问题:
(1)冬天,木凳与铁凳温度一样,但人们坐在铁凳 上比作在木凳上感到冷得多,这是问什么?
(2)一杯热牛奶,放在水里比摆在桌子上冷得快, 这又是为什么?
人体热量向凳子传递,由于铁比木头传热速 率快得多,使人体表面散热快,而体内向体
表补充热量又跟不上,所以感觉凉。 同是固体,材质不同则传热快慢不同。
(2)特点:
炉内高温气体与被加热物 料或炉墙内衬间的换热
✓热对流只发生在流体中。
✓流体各部分间产生相对位移
【热对流(对流)】
(3)产生对流的原因 ➢ 由于流体内部温度不同形成密度的差异,在浮力的
作用下产生流体质点的相对位移,使轻者上浮,重 者下沉,称为自然对流; ➢ 由于泵、风机或搅拌等外力作用而引起的质点强制 运动,称为强制对流。
• 传热的特点:传热发生在有温度差的地方,并 且总是自发地由高温处向低温处传递。
传热学基本知识PPT课件
充满漩涡,混合很好, 对流为主,热阻小,温差 小。
第32页/共74页
传热学基本知识
4、对流换热方程
热对流
对流传热计算公式—牛顿冷却定律
Q At
Q A
t 1
t R
一侧对流传热推动力 一侧对流传热热阻
t (t1 t2 )
一般为传热壁面的温度与流体主体的平均温度之差。
度 再
差 乘
⊿以t温均度是t 差先修按正逆系流数计
算
对数平均 ,即
温
度
t均 t t逆
第18页/共74页
第19页/共74页
③错流和折流时的平均温度差
各种流动情况下的温度差修正系数,可以根据
两个参数查图
R T1 T2 热流体的温降 t2 t1 冷流体的温升
P t2 t1 T1 t1
冷流体的温升 两流体的最初温差
3)流体的物理性质对给热系数的影响 导热系数、比热容c、密度越大,动力粘度越小,对流传 热系数越大
第34页/共74页
传热学基本知识
热对流
2)流体有相变发生时
蒸汽的冷凝 液体的沸腾
膜状冷凝 滴状冷凝(传热系数大)
自然对流
泡状沸腾或泡核沸腾(传热系数大)
膜状沸腾
第35页/共74页
蒸汽冷凝时的对流传热
现2场.测采得用流经体的验流数量据,由流体在换热器进出口的状态变化而求得。
表5-2列出了常见的列管式换热器的传热系数经验值的大致范围。
3.计算法
传热系数的计算公式可利用串联热阻叠加原则导出。对于间壁式换热 器,传热过程的总阻力应等于两个对流传热阻力与一个导热阻力之和。 传热总阻力的倒数就是传热系数。
传热学完整课件PPT课件
凡是物体中各点温度不随时间而变的热传递 过程均称稳态传热过程。) 凡是物体中各点温度随时间的变化而变化
的热传递过程均称非稳态传热过程。 各种热力设备在持续不变的工况下运行时
的热传递过程属稳态传热过程;而在启动、停 机、工况改变时的传热过程则属 非稳态传热 过程。
.
❖ 3 )教育思想发生了本质性的变化 ❖ 传热学课程教学内容的组织和表达方
面从以往单纯的为后续专业课学习服务转 变到重点培养学生综合素质和能力方面, 这是传热学课程理论联系实际的核心。从 实际工程问题中、科学研究中提炼出综合 分析题,对培养学生解决分析综合问题的 能力起到积极的作用。
.
❖ 2 、研究对象
第一章
绪
论
.
§1-0 概 述
一、基本概念 ❖ 1 、传热学 ❖ 传热学是研究热量传递规律的学科。 ❖ 1)物体内只要存在温差,就有热量从物
体的高温部分传向低温部分; ❖ 2)物体之间存在温差时,热量就会自发
的从高温物体传向低温物体。
.
2 、热量传递过程 根据物体温度与时间的关系,热量传递过程 可分为两类:
❖ ( 3 )非导电固体:导热是通过晶格结构 的振动所产生的弹性波来实现的,即原子、 分子在其平衡位置附近的振动来实现的。
.
❖( 4 )液体的导热机理:存在两种不同的 观点:第一种观点类似于气体,只是复杂些, 因液体分子的间距较近,分子间的作用力对 碰撞的影响比气体大;第二种观点类似于非 导电固体,主要依靠弹性波(晶格的振动, 原子、分子在其平衡位置附近的振动产生的) 的作用。
.
b 微电子: 电子芯片冷却 c 生物医学:肿瘤高温热疗;生物芯片;组 织与器官的冷冻保存 d 军 事:飞机、坦克;激光武器;弹药贮 存 e 制 冷:跨临界二氧化碳汽车空调/热泵; 高温水源热泵 f 新能源:太阳能;燃料电池
高等传热学ppt课件
复合换热过程的数学模型
建立复合换热过程的数学模型,包括热传导、对流换热和辐射换热 的综合效应,以及不同换热方式之间的耦合关系。
复合换热过程的数值模拟
采用数值模拟方法,对复合换热过程进行仿真分析,揭示其温度场 、流场和传热特性的变化规律。
06
高等传热学应用领域探讨
Chapter
微尺度传热现象研究
微尺度传热机制
探讨在微米和纳米尺度下,热传导、热对流 和热辐射等传热机制的特点和规律。
微尺度效应
分析微尺度下,表面积与体积比增大、热边界层变 薄等效应对传热过程的影响。
微纳器件热管理
研究微纳电子器件、MEMS器件等的热设计 、热分析和热控制方法,以提高器件性能和 可靠性。
多维稳态导热问题求解
多维稳态导热
物体内部温度分布不随时间变化,但热量在多 个方向上传递。
求解方法
通过求解多维导热微分方程,结合给定的定解 条件,得到物体内部的温度分布。
应用举例
求解复杂形状物体、多层材料组成的复合结构等在稳态导热下的温度分布。
03
对流换热过程分析与计算
Chapter
对流换热现象及分类
热力学第一定律
热量可以从一个物体传递到另一个物体,也可以 与机械能或其他能量互相转换,但是在转换过程 中,能量的总值保持不变。
牛顿冷却定律
当物体表面与周围存在温度差时,单位时间从单 位面积散失的热量与温度差成正比。
热力学第二定律
不可能把热从低温物体传到高温物体而不产生其 他影响,或不可能从单一热源取热使之完全转换 为有用的功而不产生其他影响,或不可逆热力过 程中熵的微增量总是大于零。
传热学大全课件
目录
• 传热学基本概念与原理 • 导热理论及应用 • 对流换热理论及应用 • 辐射换热理论及应用 • 传热过程数值模拟方法 • 传热学实验技术与设备 • 传热学在工程领域应用案例
01
传热学基本概念与原理
热量传递方式
01
02
03
热传导
物体内部或两个直接接触 物体之间的热量传递现象。
对流传热实验装置
模拟流体与固体壁面间的对流传热过程,研究对流换热系数的影响 因素。
辐射传热实验装置
通过黑体辐射源和接收器,研究物体间辐射传热的规律。
实验数据处理与分析方法
数据采集与处理
介绍实验数据的采集、整理、筛选和预处理等方法。
误差分析
讨论实验误差的来源、分类及减小误差的方法,提高实验结果的可 靠性。
建筑环境与设备工程
改善建筑环境,提高设备效率。
材料科学与工程
研究材料热物性,优化材料性能。
生物医学工程
研究生物体热传递,应用于医疗 诊断和治疗。
02
导热理论及应用
导热基本定律与导热系数
导热基本定律
傅里叶定律及其物理意义,导热热流密度与温 度梯度的关系。
导热系数
定义、物理意义及影响因素,不同材料的导热 系数比较。
能源动力领域应用案例
热力发电
在火力发电厂中,传热学应用于锅炉、汽轮机等设备的热设计,提 高能源转换效率。
核能利用
核电站中的反应堆热工水力设计、冷却剂循环系统等均涉及传热学 原理。
可再生能源
太阳能热利用、地热能开发等领域也需要传热学的支持,以提高能源 利用效率。
建筑环境领域应用案例
建筑节能
利用传热学原理,优化 建筑围护结构、保温材 料和采光设计等,降低 建筑能耗。
传热学-导热基本原理PPT课件
①导入微元体的热量(Fourier Law) 沿x轴方向、经x表面导入的热量:
③导出微元体的热量
沿 x 轴方向、经 x+dx 表面导出 的热量
dz
dy
dx
z
y
x
沿x 轴方向导入与导出微元体净热量
同理可得:
沿 y 轴方向导入与导出微元体净热量
非稳态温度场
一维温度场 二维温度场 三维温度场
均匀温度场: 温度场中的温度沿三个坐标方向都不变化。
2.等温线,等温面
①定义:同一瞬间温度相等的各点连成的线或面 称为等温线或等温面
②特点: (1) 温度不同的等温面或等温线彼此不能相交 。 (2) 在连续的温度场中,等温面或等温线不会中 断。它们或者是物体中完全封闭的曲面(曲线), 或者终止于物体的边界上。
1. 圆柱坐标系(r, , z)
q
gradt
t
t r
er
1 r
t
e
t z
ez
2. 球坐标系(r, ,)
q
gradt
t
t r
er
1 r
t
e
1
r sin
t
e
2-3 初始条件和边界条件
导热微分方程式描写物体的温度随时间和空间变 化的关系;没有涉及具体、特定的导热过程。是通 用表达式。
性参数 、 、c 和 的数值,是否随温度 和压力变
化;有无内热源、大小和分布
时间条件:说明在时间上对流换热过程的特点 稳态对流换热过程不需要时间条件 — 与时间无关
边界条件:说明对流换热过程的边界特点
①初始条件 对非稳态导热过程,给出的是导热物体在过
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.2.3 平壁的稳定热传导
t
(1)单层平壁稳定热传导
一高度和宽度均很大的平壁,厚度
为b ,两侧表面温度保持均匀恒定,分别
t1
为t1 及t2 ,且t1 > t2,若t1、t2不随时间而 变,壁内的传热属于沿厚度x 方向的一维 定态热传导过程(见图5-5)。此时傅立
Q t2
叶定律可写成 q dt
t
t1
α> 0
α<0 t2
上式λ为常数,所以平壁内的 温度分布为一直线;若导热系数与 温度有关,则温度分布又是怎样的 ?
x x dx
t1
t2
5.2.3 平壁的稳定热传导
(2)多层平壁稳定热传导
Q
t1 t2
1
t2 t3
2
t3 t4
3
1 A
2 A
3 A
应用合比定律,得
3
Q
t1 t4 3 bi
热导率,W/m•℃
传热速率不仅与温度梯度成正比,还与传热面积成正比,即
Q A t
n
5.2.2 热导率
q t
n
q
t n
物理意义:温度梯度为1时,单位时间内通过单位面积的传热 量,在数值上等于单位温度梯度下的热通量,λ 越大,导热性 能越好。
(1)固体的热导率
纯金属:t↑, λ↓ ;
非金属: ρ↑或 t↑, λ↑。
热水 填料
(2)间壁式(间接接触式)传热
t2
空气
凉水塔示意图
T1 热流体
冷流体 t1
T2 Q
对流给热
对流给热
热流体 T 冷流体 t
间壁
导热
套管换热器中的换热
5.1.1.1 根据冷热两种流体的接触方式
① 热量由热流体靠对流传热传给金 属壁的一侧(对流给热);
Q
对流给热
对流给热
②热量自管壁一侧以热传导的形式 传至另一侧(导热);
i 1 i A
总 推 动 力 ti
i 1 3
总 阻 力 Ri
i 1
推广到n层平壁
n
Q
t1 tn1 n bi
i 1 i A
总 推 动 力 ti
i 1 n
总 阻 力 Ri
i 1
t t1
1
2 3
t2
t3
b1 b2 b3 t4
x 图5-7 多层平壁的热传导
(5-6)
5.2.3 平壁的稳定热传导
n
Q
λ=λ0(1+αt)
式中λ、 λ0——固体分别在温度t、273K时的热导率,W/(m•
K);
α——温度系数,对大多金属材料为负值,大多非金属 材 料为正值,1/K。
5.2.2 热导率
(2)液体的热导率 t↑, λ↓ ; 一般纯液体(水和甘油除外)的热导率比其溶液的热导
率大。 (3)气体的热导率
气体的λ很小,对导热不利,但对保温有利。 在相当大的压强范围内,压强对气体的热导率无明显影 响。一般情况下气体λ = f ( t ), t↑, λ↑。
冷流体
③ 热量以对流传热的方式从壁面的 另一侧传给冷流体(对流给热)。
热流体 T 冷流体 t
间壁
导热
热流体
固体填 充物
(3)蓄热式传热
热流体
冷流体
蓄热器示意图
5.1.1.2 根据传热的基本原理
(1)热传导 热量从物体内温度较高的部分传递到温度较 低的部分或传递的与之接触的温度较低的另一物体的过程称 为热传导,简称导热。
第五章 传热
5.1 概述
传热设备
其它设备
40%
60%
在设计时进行合理的优 化设计使其在满足工艺要求 的条件下投资费用最小;在 操作中进行强化传热操作过 程,进行最优化操作,对节 省传热设备投资,节省能源 有着重要的意义。
5.1 概述
5.1.1 传热过程的分类
5.1.1.1 根据冷热两种流体的接触方式 (1)直接接触式传热(混合式传热)
(2)对流传热 流体各部分质点发生相对位移而引起的热 量传递过程,只能发生在流体中。
流体被冷却时 流体被加热时
Q A(T tw) Q A(tw t)
(3)热辐射 因热的原因而发出辐射能的过程称为热辐射 。
以上三种传热方式往往是相互伴随着同时出现。
5.1.1.2 传热基本概念
(1)传热速率 单位时间内通过传热面传递的热量Q(W);
(2)热通量 单位时间、单位传热面积上传递的热量q(W/m2);
(3)非定态、定态传热过程 t =f(x,y,z,θ)温度不仅与空间位置还与时间有关
,为非定态传热; t =f(x,y,z)温度只与空间位置有关与时间无关,
为定态传热。
5. 2 热传导(导热Conduction)
5.2.1 傅立叶定律(Flourier’s law)
(1)温度场(Temperature field)
物体(或空间)各点温度在时空中的分布称为温度场。
t = f(x,y,z,θ)
(5-2)
温度相同的点所组成的面称为等温面。温度不同的等温
面不可能相交,为什么?
n
t t
(2)温度梯度 两等温面的温度差
t
Δt与其间的垂直距离Δn之比在Δn趋
t t
于零时的极限,即
5.2.2 热导率
固体、液体、气体的热导率的大致范围: λ金属固体>λ非金属固体>λ液体>λ气体
金属固体:101~ 102 W/(m• K); 建筑材料: 10-1~ 10 W/(m• K); 绝缘材料: 10-2~ 10-1 W/(m• K); 液体: 10-1 W/(m• K); 气体: 10-2~ 10-1 W/(m• K);
1 A 2 A 3 A
R1 : R2 : R3 此式说明,在多层壁导热过程中,哪层热阻大,哪层温差
就大;反之,哪层温差大,哪层热阻一定大。
dn
积分上式
b
qdx
t2 dt
0
t1
q t1 t2 t1 t2 b b
x x dx
b 图5-5 单层平壁的稳定热传导
5.2.3 平壁的稳定热传导
传热速率(单位时间通过面积A上的传热量)为:
Q t1 t2 bb
t R
推动力 阻力
A
b↑或A ↓或λ↓,R ↑。
t1 tn1 n bi
i 1 i A
总 推 动 力 ti
i 1 n
总 阻 力 Ri
i 1
(5-6)
从上式可以看出,通过多层壁的定态热传导,传热推动
力和热阻是可以加和的;总推动力等于各层推动力之和,总
热阻等于各层热阻之和。
t1 t2 : t2 t3 : t3 t4
b1 : b2 : b3
t t lim n0 n n
q
图 5-1 温度梯度与热流 方向的关系
5.2.1 傅立叶定律(Flourier’s law)
(3)傅立叶定律
傅立叶定律是用以确定在物体各点间存在温度差时,因
热传导而产生的热流大小的定律。单位时间内,单位传热面
积上传递的热量即热通量与温度梯度成正比,
q t
n
(5-3)