各类化合物的质谱
质谱分析法(下)
支链烷烃:1)分枝烷烃的分子离子峰强度较直链烷烃降低。 2)各峰簇顶点不再形成一平滑曲线,因在分枝处易 断裂,其离子强度增加。 3)在分枝处的断裂,伴随有失去单个氢原子的倾向, 产生较强的 Cn H2n 离子。 4)有 M-15 的峰。 环烷烃:1)由于环的存在,分子离子峰的强度相对增加。 2)常在环的支链处断开,给出 Cn H2n-1 峰, 也常伴随氢原子的失去,因此该 CnH2n-2 峰较强。 (41、55、56、69…) 3)环的碎化特征是失去 C2H4 (也可能失去 C2H5)。
H
O
+
.
OCH3
.
OCH3
15
m/z74 奇电子离子
� 乙酯和高级酯
RCOOR′: 当R′大于丁基时,M+• 很小。
第四章:质谱法测定分子结构
H
.+
O O
rH
.
H
+
O O
α
H +
+
O
.O
m/z60
.
H O
H
+
H
O
+
.
m/z56
+ O
O
.
rH
双氢重排
OH + HO
m/z47,61,75 特征离子系列
第四章:质谱法测定分子结构
质谱法(下)
Mass Spectrum
1
第四章:质谱法测定分子结构
常见各类化合物的质谱特征
诱导断裂是由正电荷诱导、吸引一对电子而发生的断裂, 其结果是正电荷的转移。诱导断裂常用i来表示。
2
一、烃类
随机重排倾向,氢原子和碳骨架都可能(饱和烃中最为严重)
各类有机化合物质谱与主要结构
+ H2C CH2
2. 酚(或芳醇)
1)分子离子峰很强。苯酚的分子离子峰为基峰。 2)M-1 峰。苯酚很弱,甲酚和苯甲醇的很强。 3)酚、苄醇最主要的特征峰: M-28 (-CO)
M-29(-CHO)
酚类 在苯环上引入羟基,谱图比芳烃更富有特征
a: M 峰很强,往往是基峰 b:[M - CO] 是酚类特征峰,对鉴别结构很有用。
2. 烯烃
1)由于双键的引入,分子离子峰增强。 2)相差14的一簇峰,(41+14 n)41、55、69、83…。 3)断裂方式有 β 断裂;γ-H、六元环、麦氏重排。 4)环烯烃及其衍生物发生 RDA 反应。
烯烃易发生烯丙基断裂:
CH3 CH2 CH CH2
CH3 CH2 CH CH3
CH3 + CH2 CH CH2
醇类
M 很难得到,因为离子化羟基引发的反应使分解 更为容易, *当进样量较多时,易形成[M+H]+峰(易发生 离子-分子反应)。
除1- 链烷醇外,α-碎裂是醇类最有用的特征反应, 并优先失去最大烷基,形成丰度最大的离子。
CH3
(1)
C4H9 C OH
C4H9
α
C2H5
CH3 H C OH
H2C C H H
各类有机化合物的 质谱和主要结构
各类有机化合物的质谱和
§1 烃类化合物的质谱
1. 烷烃
直链烷烃:1)显示弱的分子离子峰。 2)由一系列峰簇组成,峰簇之间差14个单位。 (29、43、57、71、85、99…) 3)各峰簇的顶端形成一平滑曲线,最高点在C3或C4。 4)比 M+. 峰质量数低的下一个峰簇顶点是 M-29。 而有甲基分枝的烷烃将有 M-15,这是直链烷烃 与带有甲基分枝的烷烃相区别的重要标志。
质 谱(第五六节)
(M-OR)的峰 ,判断酯的类型;(31+14 n )
(M-R)的峰,29+14 n;59+14 n 3)麦氏重排,产生的峰:74+14 n 4)乙酯以上的酯可以发生双氢重排,生成 的峰:61+14 n
33
5. 酰胺类化合物 1)分子离子峰较强。 2) α 裂解; γ-氢重排
34
6. 氨基酸与氨基酸酯
芳香羧酸分子离子峰强,苯甲酸α -断裂丢失-OH基团后。再丢失中性 分子CO得到m/z 77的苯基离子,其质谱图示于图4-42中。
30
芳酸:1)分子离子峰较强。 2)邻位取代羧酸会有 M-18(-H2O)峰。
31
4 .酯
酯可以发生 α - 裂解丢失 · R或· OR 自由基产生 m/z59+n×14 和 29+n×14 的离子,乙酸丙酯为例:
37
2.芳胺 1)分子离子峰很强,基峰。 2)杂原子控制的 α 断裂。
38
芳胺的分子离子峰是基峰,M-1是中等强度的峰;特征裂解是丢 失HCN,与苯酚丢失CHO基团相类似。
12
叔醇 - 叔丁醇也有三种 α - 断裂,每种α - 断裂丢失的 · R 自由基是相同的, 得到m/z59的强峰,其他叔醇可产生m/z59+n×14的峰。
消去H20的开裂(见重排裂解)产生M-18(H20)的离子峰。正丁醇的质谱有很 弱的分子离子峰 m/z74 ,强的 m/z56 的离子峰就是 M-18(H20) 而得的。长链 高级醇更容易发生环化脱水反应。
26
1)酮类化合物分子离子峰较强。
2)α 裂解(优先失去大基团)
烷系列:29+14 n
3) γ-氢重排 酮的特征峰 m/z 58 或 58+14 n
27
3.羧酸
质谱 有机化合物
H CH R
CH R CH 2 M 一 46 +
+
H2O
(4)、羟基的Cα-Cβ键容易断裂,形成极强的: m/z 31峰 (CH2 =O+H,伯醇), m/z45峰(MeCH =O+H,仲醇), m/z 59峰(Me2C=OH,叔醇) 。
H 伯醇 R C OH H R' 仲醇 R C OH H R' 叔醇 R C OH R'' R' C OH H m/z 45+14n R' C OH R'' m/z 59+14n + R + R H 2C OH + R
1.
R X
异 裂
M
R + M-X
X
R
X
均 裂
R +
M
X M-R
H
2.
R
C H
CH 2 X
RCH
CH 2 + HX
M
M-HX (当X=F或Cl,强峰)
CH 2 X H2C X
3.
R
+ R
M
M一 R
100 80 60 40 20 0 CH3 Br
170 M 91 172
间-溴代甲苯质谱图
100 80 60 40 20 0 49 CH2Cl+ 51 BrCH2Cl M 130
出现m/z 27、41、55、69、83、等(CnH2n一l)+系列的离子 峰。长链烯烃还有 (CnH2n+l)+。
(3)、烯往往发生麦克拉夫梯重排裂解,产生CnH2n离子。
H
CH3 β
第二章 有机质谱2
质谱图: ① 分子离子峰提供分子量, ② 碎片峰提供结构信息
复习质谱峰类型 分子在离子源中可产生各种电离,即同一分子可产生多种离子峰:分
子离子峰、同位素离子峰、碎片离子峰、重排离子峰、亚稳离子峰等。
设有机化合物由A,B,C和D组成,当蒸汽分子进入离子源,受到电
子轰击可能发生下列过程而形成各种类型的离子: 分子离子
2、重排(脱掉中性分子)
麦氏(Mclafferty)重排反应
具有以下结构通式的化合物,可进行γ-H重排到不饱和 基团上,并伴随发生β键断裂的麦氏重排反应:
H QZ CY
X
-e
H QZ
CY X
QH Z CY
X
Z
+ QH
C
Y
X
醛、酮、羧酸、酯都可发生麦氏重排,产生特征质谱峰。
OH R
γ
RC
α
β
OH R RC
HN(C2H5)2 73
① H
H3C
- CH2=CH2
②
H2
a
C
. N(C2H5)2
H2C
- CH3
N(C2H5)2
101
86
. ③ i - N(C2H5)2
④ i - CH2=NC2H5
+ C2H5 29
+ C2H5 29
第二章 有机质谱
➢质谱概述 ➢质谱仪及其原理 ➢有机化合物的质谱反应及机理 ➢各类化合物的质谱特征 ➢有机化合物质谱解析 ➢生物质谱技术及联用技术
R' CR Y
R + CR Y
c、含π键的化合物
R1 CH2 CH
CH2
- e R1 CH2 CH
各类化合物的质谱
C2H4
CH3CH OH m /z =45
CH3
CH3
H C OH
(2)
C4H9 C OH
C2H5
α
C2H5
C H
CH H
C2H5
m/z = 101
C4H9 rH
CH3CH OH
45
C2H5
CH3
H C OH
(
C2H5
C H
CH H
C2H5
m/z = 101
支链烷烃:1)分枝烷烃的分子离子峰强度较直链烷烃降低。 2)各峰簇顶点不再形成一平滑曲线,因在分枝处易 断裂,其离子强度增加。 3)在分枝处的断裂,伴随有失去单个氢原子的倾向, 产生较强的 CnH2n 离子。 4)有 M-15 的峰。
环烷烃:1)由于环的存在,分子离子峰的强度相对增加。 2)常在环的支链处断开,给出 CnH2n-1 峰, 也常伴随氢原子的失去,因此该 CnH2n-2 峰较强。 (41、55、56、69…) 3)环的碎化特征是失去 C2H4 (也可能失去 C2H5)。
§3 硫醇、硫醚
硫醇与硫醚的质谱与相应的醇和醚的质谱类似,但硫醇和硫醚 的分子离子峰比相应的醇和醚要强。
1. 硫醇 1)分子离子峰较强。 2)α 断裂,产生强的 CnH2n+1 S+峰 ,出现含硫特征碎片离子峰。
( 47+14 n ;47、61、75、89…) 3)出现(M-34)(-SH2), (M-33)(-SH),33(HS+),
5. 酰胺类化合物 1)分子离子峰较强。 2) α 裂解; γ-氢重排
6. 氨基酸与氨基酸酯
小结:
羰基化合物中 各类化合物的 麦氏重排峰
醛、酮:58+14 n 酯: 74+14 n 酸: 60+14 n 酰胺: 59+14 n
各类有机化合物质谱-张敏
当-C上有烷基取代时,重排优先发生在有较大取 代基的那个-H上,次序为叔碳>仲碳>伯碳。
2-戊酮
2-辛酮
4.芳酮有较明显的M+.峰,当酮羰基的一短大于丙基时发生 麦氏重排.。如 苯丙酮 M=148
苯丙酮 的裂解
5.芳酮有较明显的M+.峰,如
薄荷酮 M=154
薄荷酮 的裂解
六、羧 酸 和 羧 酸 酯
二、醇 类
(一)脂肪族饱和醇
1.开裂
1-己醇 M=102
2-甲基-2戊醇M=102
2. 脱 水 所有的醇(甲醇除外),通过环状过程脱水, 生成M-18峰,峰强一般超过M+.峰; 长链醇的质谱图与烯烃化合物的质谱图类似,其 特征离子均是41、55、69等系列离子即为41+14n
1-十六醇 M=242
1. 特征离子 分子离子峰:脂肪族为较弱的峰:芳香族为强峰。
2. 麦氏重排
最重要的裂解方式
3. -开裂
4. 在芳香羧酸中,如邻位有CH3,NH2,OH时,易失 去H2O,NH3,ROH。
2-羟基-苯 甲酸丁酯
2-羟基-苯 甲酸丁酯 的质谱裂 解谱图
十六酸 M=256
十六酸甲酯 M=270
十六酸乙酯 M=284
3. 麦氏重排:具-H的脂肪醛,能发生麦氏重排, 产生偶数质量的重排离子(m/e 44+14n),有时为基峰。
丁醛 M=72
己醛 M=100
醛类化合物的裂解机理图
(二)酮 类
1. 分子离子峰M+.较强; 2. 易发生-开裂;
3. 小分子的酮类化合物的质谱类似烷烃;当酮羰基 的一边烷基大于等于丙基时易麦氏重排,有一个-H时 发生一次麦氏重排,如有二个-H时,则发生二次麦氏 重排。
1[1].4各类化合物的质谱特征
+
1-溴戊烷
2-氯庚烷
α
+
R• + CH2=NH2 m/z 30 H α rH m/z 30
+
R−CH2−NH−CH2CH2
CH2=NH2 + C2H4 + R•
二乙胺
苯胺的重要碎裂反应:
•+
NH2 -HCN
HH
•+
-H
m/z 93
66
65
11.
含氮化合物
谱图分析框 —— 含氮化合物 分子离子 酰胺:弱 M+• 氰:很弱 M+• 硝基:弱 M+• 碎片离子 m/z = 44, 59 m/z = 41, 强 (M – 1)+ R+, NO+, NO2+
醛( R′ = H):
=
产物离子为: [CH2=CH−OH]+•
m/z 44(特征峰)
=
=
丁醛
苯甲醛
2-丁酮
2-辛酮
8.
酯
谱图分析框 —— 酯 分子离子 碎片离子 甲基酯: M – 31, m/z = 59, 74 高级酯: M - 45, M - 59, M – 73 m/z = 73, 87, 101 m/z = 88, 102, 116 m/z = 61, 75, 89 m/z = 77, 105, 108 M – 32, M – 46, M - 60
m/z 43, 57, 71 等
酯重要的裂解反应(续): R H O O
•+
rH R′
+
R
•
OH O R′
α
+
R
+
仪器分析-质谱图解析.
3、m/z 57为M-17离子,m/z 29为M-45 离子,同时产生m/z 45(COOH)离子峰, 说明化合物可能含有羧基
4、m/z 29为乙基碎片离子峰,说明化合物可能含有乙基
H2 O H3C C C OH
m/z=74
H3C
H2 C
O C m/z=57
分子结构的推导
■ 计算分子的不饱和度推测分子结构
一价原三 子价 数原子数
U四价原 - 子2数
2
1
■ 根据碎片离子的质量及所符合的化学通式,推测离子可能 对应的特征结构或官能团
■ 结合相对分子质量、不饱和度和碎片离子结构及官能团等 信息,合并可能的结构单元,搭建完整分子结构
■ 核对主要碎片,检查是否符合裂解机理。 结合其他分析方法最终确定化合物结构
相对丰度 (%)
100 80 60 40 20
m/z
43 O
71
断裂
H7C3 C
58
99
Rearrangement
β异裂
86
113
40
60
80
100 120
4壬酮的质谱图(M=142)
C5H1 1
1、酮类化合物分子离子 峰较强。
2、α裂解(优先失去大 基团)
烷系列:29+14 n
142(M+·) 3、γ-氢重排
未知化合物质谱图分析
CH2
某化合物C10H4
HH CH2
结构式:
1、计算不饱和度U=4, 2、分子离子峰m/z=134较大,结合不饱和度,说明该化合物含有苯环
3、m/z=91为(M-43)碎片离子峰,说明化合物可能失去C3H7+为烷基苯,m/z=65是 其进一步丢失乙炔分子产生的碎片离子峰。
各类有机化合物质谱的裂解规律
各类有机化合物质谱的裂解规律烃类化合物的裂解规律:烃类化合物的裂解优先失去大的基团生成稳定的正碳离子含杂原子化合物的裂解(羰基化合物除外):正电荷在杂原子上,异裂羰基化合物的裂解:直链烷烃的质谱特点: 1.直链烷烃显示弱的分子离子峰。
2.直链烷烃的质谱由一系列峰簇(C n H2n-1, CnH2n, C n H2n+1)组成,峰簇之间差14个质量单位。
3.各峰簇的顶端形成一平滑曲线,最高点在C3或C4支链烷烃的质谱特点: 1.支链烷烃的分子离子峰较直链烷烃降低。
2.各峰簇顶点不再形成一平滑曲线。
因在分枝处易断裂,其离子强度增强。
3.在分枝处的断裂,伴随有失去单个氢的倾向,产生较强的C n H2n离子,有时可强于相应的C n H2n+1离子。
环烷烃的质谱特点: 1.分子离子峰的强度相对增加。
2.质谱图中可见m/z为41,55,56,69,70等C n H2n-1和C n H2n的碎片离子峰。
3.环的碎化特征是失去C2H4(也可能失去C2H5)。
链状不饱和脂肪烃的质谱特点:1.双键的引入,可增加分子离子峰的强度2.仍形成间隔14质量单位的一系列峰簇,但峰簇内最高峰为CnH2n-1 出现m/z 41, 55, 69, 83等离子峰。
3.长碳链烯烃具有γ-H原子的可发生麦氏重排反应,产生28,42,56,70,……CnH2n系列峰环状不饱和脂肪烃的质谱特点:1.当符合条件时环状不饱和脂肪烃可发生RDA反应。
2.环状不饱和脂肪烃支链的质谱碎裂反应类似于链烃的断裂方式。
芳烃:1. 分子离子峰较强2. 简单断裂生成苄基离子当苯环连接CH2时,m/z 91 的峰一般都较强。
3. MacLafferty 重排当相对苯环存在 氢时,m/z 92 的峰有相当强度。
4. 苯环碎片离子依次失去C2H2化合物含苯环时,一般可见m/z 39、51、65、77 等峰醇:1.醇类分子离子峰都很弱,有的甚至不出现分子离子峰。
2.容易发生α断裂反应,生成较强的CnH2n+1O+特征碎片离子,伯醇R-OH,则生成CH2=O+H,m/z为31的特征峰,仲醇则产生m/z为45的特征峰,叔醇则产生m/z为59的特征峰。
质谱谱图解析 ppt课件
X、Y、Z可以是C、O、N、S等。
PPT课件
20
5.脱去乙炔分子的开裂
由开裂生成的桌翁离子或开裂生成的苯离子等还能 继续裂解,脱去乙炔分子:
PPT课件
21
CH 2 CH 2 CH 2 CH 3
CH 2 CH 2 CH 3
m /z=134
m /z=39 HC
m /z=65 CH
HC
CH
CH 2 m /z=91
苯,能发生麦氏重排裂解,产生m/z 92(C7H8+·)的 重排离子(奇电子离子峰),进一步裂解,产生m/z 78
,52或 66,40的峰。
PPT课件
18
3.开裂和氢的重排 取代苯也能发生α裂解,产生苯离子,进一步裂解 成环丙烯离子和环丁二烯离子。
PPT课件
19
4.逆狄尔斯—阿尔德开裂及其它重排开裂
H 3C
CH
C CH 2 CH 3
CH 2 CH 3 m / z = 5 5 CH 3
CH 3
CH 3
H 3 C CH
100
C 41
H 3C
CH C CH 2 m /z= 6 9
% OF BASE PEAK
90 80
70
60
69
50
55
84(M )
40
30
27
20 10 0
0 1 0 2 0 3 0 4 0 5 0 P6PT0课件7 0 8 0 9 0 1 0 0 1 1 0
C2H5+( M /e =29)→ C2H3+( M /e =27)+H2 ❖有M /e :28,42,56,70P,PT…课件…CnH2n系列峰(四圆环重排6 )
成都中医药大学-波谱分析课件质谱 第五节
例2. 某化合物的质谱如图所示。该化合物的 1H NMR 谱在 2.3 ppm 左右有一个单峰,试推测其结构。
解: ①分子离子峰 m/z 149是奇数,说明分子中含奇数个氮原子; ③ 碎片离子 m/z 91 表明,分子中可能存在 苄基 结构单元。 ② m/z 149与相邻峰 m/z 106 质量相差 43u,为合理丢失,丢 失的碎片可能是 CH3CO 或 C3H7; 综合以上几点及题目所给的 1H NMR图谱数据得出该化合物
序的结构信息,有利于推断分子结构
一般质谱的标准谱图均是对EI而言的,解质 谱也是指解EI质谱。
某化合物EI质谱图
一、质谱的解析程序
❖ 1,解析分子离子峰区域 ❖ 2,解析碎片离子峰区域 ❖ 3,列出部分结构单元 ❖ 4,推出试样可能的结构式
1,解析分子离子峰区域
① 确认分子离子峰,定出分子量(注意分子离子峰 的判断原则,分子离子峰与结构关系)
乙基异丁基醚的质谱及裂解示意
醚类化合物的质谱特点:
1. 分子离子峰不稳定 2. 脂肪醚的简单开裂后,可继续发生重排,脱去烯 3. 芳香醚的α-裂解后,会进一步脱去CO;存在γ-H
重排 4. 环醚裂解脱去中性醛分子 5. 缩醛的质谱中,分子离子峰极弱,(M-R)和(M-
OR)峰明显
四、 醛、酮的质谱图
❖ (2)分子离子峰与基峰的差值为31,推测脱去的是CH2OH 或CH3O。, 裂解类型可能是简单开裂
❖ (3)质荷比33.8的亚稳离子峰表明有m/z105→m/z77的开 裂。
❖ 3,列出部分结构单元 ❖ (1)推测试样有结构单元 ❖ (2)再根据Ω,确定分子式为C8H8O2。算出碎片为CH2OH
各种化合物的质谱
CH3CH2
CH2
O
CH2
CH3
CH3CH2 O
+
CH2
+
CH3
m/z 87 4%
3. 发生烷氧键的断裂。
五、醛和酮
易发生α裂解;含γ氢,发生麦氏重排。 1 醛 ① M+峰明显;
② α裂解产生 M-1峰、 m/z29峰及M-29峰
③γ-H,麦氏重排:戊醛
产生
④可发生β裂解
2 酮 ① 明显 ②易发生α裂解
CnH2n+1离子系列
71 85 99 113
142 m/z
正癸烷质谱图
11:16:47
85
CH3CH2 CH CH2 CH3
43
CH2CH2CH3
29
71
3-乙基己烷质谱图
11:16:47
2.环烷烃的质谱特点
①分子离子峰较强。 ②通常在环的侧链处断开,正电荷保留在环上。
③环的碎化特征是失去C2H4。 ④相对丰度较强的碎片离子其组成大多为 CnH2n-1。
11:16:47
酚
质谱特点: 1.分子离子峰很强,往往是基峰。
2.易失去CO和CHO形成M-28和M-29的离子
峰。
醚
质谱特点: 1.芳醚分子离子峰较强。 2.α-裂解:优先失去较大的烷基自由基。
CH3CH2 CH2 O CH2 CH3 CH2 + O CH2 CH3 + CH2CH3 m/z 73 51%
11:16:47
③含γ氢的酮,发生麦氏重排
④可发生β裂解
11:16:47
六、酸和酯
1.芳酸及其酯的分子离子峰较强;
2.易发生α裂解
O+
第五节:基本有机化合物的质谱
2、基峰常有丙烯碎裂产生,如己烯-1质谱图。形成 CnH2n, CnH2n+1, CnH2n-1 三种不同类型的离子。
裂解过程:
3、丙烯型碎裂产生的偶电子离子系列41,55,69, 83与烷烃碎片离子系列失去CH2的各峰重合,使 烯烃中的CnH2n-1各峰强度明显增强。 4、烯烃因为有键,所以可以观察到McLafferty重 排产生的离子CnH2n。
2-丁基吡啶的质谱图
如上述丁基苯中当位含有h时可以发生重排生成较稳定的离子3开裂和氢的重排4rda开裂ch5脱去乙炔分子的开裂由开裂形成的卓鎓离子或由开裂形成的苯基离子等还可以继续开裂脱去乙炔分子
第五节 基本有机化合物的质谱
一、碳氢化合物 (一)、烷烃
1、直链烷烃
特征:
⑴
一般都能找到分子离子峰,但分子离子峰的相 对丰 度随着碳链的增长而下降。
O
+
4、缩醛的裂解 缩醛是醚的特殊类型,其质谱的特征是分子离子峰极弱, (MR)和(MOR)峰明显,(MH)的峰较弱。
(M-OR) (M-R) R OR C H (M-H ) OR (M-OR)
四、 酮和醛类化合物
1、 酮类化合物 脂肪酮的分子离子清晰可见,环酮和芳酮的分子离子 峰较大。酮类化合物的裂解主要方式有: (1)-裂解
O R R H2C R + R O R + CO
裂解过程中,优先失去较大的R,形成偶电子离子,主 要碎片离子有43,57,71,85…等系列。
(2)麦氏重排(rH重排) 该重排过程较易发生,和醛类不同,有时可以 发生两次重排。
H O OH + CH2 CH2
(3)复杂开裂 环酮发生复杂开裂
O O O O
CH 3 CH 3 i R' R' R
各类化合物的质谱碎裂方式
-H重排
五元、六元 环化脱烷基
芳香族含杂原子化合物,杂原子易保留在芳环上
酚
(邻位效应 重排脱水)
芳香醚
(丢失侧链 烷基)
(烯烃的重排)
芳香胺
(M-1)
芳香酮 芳香醛 芳香酸、酯
(比例较小)
(M-1丰度大)
(M-29)
(邻位重排)
化合物类型
各类化合物的裂分方式
-碎裂
-碎裂
i-碎裂
-H重排
烷烃
环烷烃 (丢失侧链)
烯烃、炔烃
(麦氏重排)
环烯烃
(RDA)
芳烃 醇
脂肪醚 脂肪胺
(麦氏重排)
(重排脱水)
(二级碎裂、 四元环重排)
(二级碎裂 四元环重排)
(二级碎裂 四元环重排)
化合物类型 脂肪酮 脂肪醛 羧酸 酯 酰胺 腈 硫醇 硫醚
-碎裂
-碎裂
i-碎裂
-H重排
(麦氏重排)
(M-1、29) (M-29) (44+14n)
(乙酸酯会 发生双H重排)
(重排脱 H2S)
(二级碎裂、 四元环重排)
化合物类型 卤化物
硝基化合物
-碎裂
-碎裂
(M-30、 M-46)
i-碎裂
(M-X、 M-HX)
各类有机化合物质谱的裂解规律
各类有机化合物质谱的裂解规律烃类化合物的裂解规律:烃类化合物的裂解优先失去大的基团生成稳定的正碳离子含杂原子化合物的裂解(羰基化合物除外):正电荷在杂原子上,异裂羰基化合物的裂解:直链烷烃的质谱特点: 1.直链烷烃显示弱的分子离子峰。
2.直链烷烃的质谱由一系列峰簇(Cn H2n-1, CnH2n, CnH2n+1)组成,峰簇之间差14个质量单位。
3.各峰簇的顶端形成一平滑曲线,最高点在C3或C4支链烷烃的质谱特点: 1.支链烷烃的分子离子峰较直链烷烃降低。
2.各峰簇顶点不再形成一平滑曲线。
因在分枝处易断裂,其离子强度增强。
3.在分枝处的断裂,伴随有失去单个氢的倾向,产生较强的Cn H2n离子,有时可强于相应的CnH2n+1离子。
环烷烃的质谱特点: 1.分子离子峰的强度相对增加。
2.质谱图中可见m/z为41,55,56,69,70等Cn H2n-1和CnH2n的碎片离子峰。
3.环的碎化特征是失去C2H4(也可能失去C2H5)。
链状不饱和脂肪烃的质谱特点:1.双键的引入,可增加分子离子峰的强度2.仍形成间隔14质量单位的一系列峰簇,但峰簇内最高峰为CnH2n-1 出现m/z 41, 55, 69, 83等离子峰。
3.长碳链烯烃具有γ-H原子的可发生麦氏重排反应,产生28,42,56,70,…… CnH2n系列峰环状不饱和脂肪烃的质谱特点:1.当符合条件时环状不饱和脂肪烃可发生RDA反应。
2.环状不饱和脂肪烃支链的质谱碎裂反应类似于链烃的断裂方式。
芳烃:1. 分子离子峰较强2. 简单断裂生成苄基离子当苯环连接 CH2时,m/z 91 的峰一般都较强。
3. MacLafferty 重排当相对苯环存在 氢时,m/z 92 的峰有相当强度。
4. 苯环碎片离子依次失去 C2H 2化合物含苯环时,一般可见 m/z 39、51、65、77 等峰醇:1.醇类分子离子峰都很弱,有的甚至不出现分子离子峰。
2.容易发生α断裂反应,生成较强的CnH2n+1O+特征碎片离子,伯醇R-OH,则生成CH2=O+H,m/z为31的特征峰 ,仲醇则产生m/z为45的特征峰 ,叔醇则产生m/z为59的特征峰。
常见化合物质谱解析
1、m/z 29离子峰
O
O
RCH
CH
m/z 29
2、m/z 43,57,71......离子系列,随着烷基链增长,这些离子的丰度增高
Oi
R CH
R
m/z 43,57,71......
3、m/z 44离子'
H
O
R'
CH
H2C
C H
OH +
rH
R'
H
m/z 44
γH
H
O
H
H
i
H -CO
H
O
O m/z 66
CH
CH
rd
-HCO
m/z 65
芳环上只有一个酚羟基的酚
苯酚、1-萘酚和1-菲酚的质谱
邻乙基苯酚的EI质谱图
若酚羟基的邻位有取代基,而且该取代基有强的接受氢重排的能力, 则酚羟基的氢主要重排到该基团并失去一稳定的中性分子,得到的奇 电子碎片离子还可进一步失去CO。
CH3
-CH3
H H
-CH3
CH3 CH3
甲基环庚三烯离子
m/z 91
α
γH
H
α m/z 92
m/z 91
图9.14 正丁基苯的EI-质谱图
脂肪醇
1 伯醇
分子离子峰很弱,碳数大于4的伯醇已观察不到分子离子峰,只能观察到 M-H2O的峰。主要反应通道如下:
+· [M-H2O]
H
γH R CH CH2 OH
芳香醇-酚
芳环上只有一个酚羟基,一般有较强的分子离子峰M+·。两个主要碎裂产物 :[M-CO]+·、[M-HCO]+·
质谱的图谱分析
质谱高质量端离子峰是由分子离子失去碎片形成的。从分 子离子失去的碎片,可以确定化合物中含有哪些取代基
M-1 -H 醛类(一些醚类和胺类)
M-15 -CH3 甲基取代
M-18 -H2O 醇类
M-28 -C2H4, CO, N2 失C2H4(McLafferty重排),失CO (从酯环酮脱下)
14
分子电离所需的能量越低,分子离子也越 高。
n-C4H9OH n-C4H9SH n- C4H9NH CH3-CH3 CH2=CH2 苯
萘
电离能(eV) 10.1 9.1 8.7 11.5 10.5 9.2 8.1
分子离子丰度 1 54 6 30 100 100 100
15
M+1峰:醚、酯、胺、酰胺、腈化物、氨 基酸酯、胺醇
M-1峰: 醛 氮规则:只有C, H, O,组成的化合物,其
分子离子峰质量数为偶数。C, H, O, N 组 成的,N为奇数,则分子离子峰质量数为 奇数。N为偶数,则分子离子峰质量数为 偶数。
16
例:试判别三张质谱图中质荷比最大的离子是否为 分子离子,已知三个化合物均不含氮原子。
17
2.离子特征丢失与化合物的类型
离子和特征离子系列。例如,正构烷烃的特征离子系列为 m/z15、29、43、57、71等,烷基苯的特征离子系列为 m/z91、77、65、39等。根据特征离子系列可以推测化合 物类型。
离子质量
元素组成
结构类型
29
CHO
醛
30
CH2NH2
43 29,43,57,71 等
CCH2H3C5,OC, 3CH37H等7
8
质谱常用术语
分子离子 被电离了的分子。 “+”表示分子离子带一个电子 电量的正电荷, “.” 表示它有一个不成对电子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
芳系:39、51、65、77、91、92、93
氧系:31、45、59、73(醚、酮) 氮系:30、44、58
6.尽可能推测结构单元和分子结构
7.对质谱的校对、指认
§2 质谱解析实例
1. 请写出下列化合物质谱中基峰离子的形成过程。
① 1,4-二氧环己烷
基峰离子 m/z 28 可能的形成过程为:
② 2-巯基丙酸甲酯
O HH CH2
3. 醚
脂肪醚: 1)分子离子峰弱。 2) α –裂解及碳-碳 σ 键断裂,生成系列 CnH2n+1O 的 含氧碎片峰。(31、45、59…) 3)ί-裂解,生成一系列 CnH2n+1 碎片离子。
(29、43、57、71…)
芳香醚:1)分子离子峰较强。 2)裂解方式与脂肪醚类似,可见 77、65、39 等苯的特 征碎片离子峰。
4)含氧的碎片峰 (45、59、73…)
芳酸:1)分子离子峰较强。 2)邻位取代羧酸会有 M-18(-H2O)峰。
4. 酯类化合物 1)分子离子纷纷较弱,但可以看到。 2) α 裂解,强峰
(M-OR)的峰 ,判断酯的类型;(31+14 n )
(M-R)的峰,29+14 n;59+14 n 3)麦氏重排,产生的峰:74+14 n 4)乙酯以上的酯可以发生双氢重排,生成 的峰:61+ 101
CH3 CH3 (2) C4H9 C C2H5 OH C2H5 H C2H5 C H C OH C4H9 rH CH3CH OH 45
α
C H H m/z = 101
C2H5
CH3 (3) C4H9 C C2H5 OH CH3
H C2H5 C H
C
OH C4H8 rH C2H5CH OH m/z = 59 H H C C H H OH
芳香烯类 注意重排的离子峰:m/z 92. 当苯环上烷基侧链C≥C3时,通过六元环过渡态的氢 重排可产生特征的OE+.离子。
思考:
H3C
写出重要裂解碎片
§2 醇、酚、醚
1.醇
1)分子离子峰弱或不出现。 2) Cα-C β 键的裂解生成 31+14 n 的含氧碎片离子峰。 伯醇:31+14 n ; 仲醇:45+14 n ; 叔醇:59+14 n 3)脱水:M-18 的峰。 4)似麦氏重排:失去烯、水;M-18-28 的峰。
2.芳胺 1)分子离子峰很强,基峰。 2)杂原子控制的 α 断裂。
§5 卤代烃
脂肪族卤代烃的分子离子峰弱,芳香族卤代烃的分子离子峰 强。
分子离子峰的相对强度随 F、Cl、Br、I 的顺序依次增大。 1) α 断裂产生符合通式 CnH2nX+ 的离子
2)ί 断裂,生成(M-X )+的离子
3)含 Cl、Br 的直链卤化物易发生重排反应,形成符合 CnH2nX+ 通式的离子
各类有机化合物的质谱
§1 烃类化合物的质谱 1. 烷烃
直链烷烃:1)显示弱的分子离子峰。
2)由一系列峰簇组成,峰簇之间差14个单位。
(29、43、57、71、85、99…) 3)各峰簇的顶端形成一平滑曲线,最高点在C3或C4。 4)比 M+. 峰质量数低的下一个峰簇顶点是 M-29。 而有甲基分枝的烷烃将有 M-15,这是直链烷烃
§6 羰基化合物
1. 醛 脂肪醛:1)分子离子峰明显。
2)α 裂解生成 (M-1) (-H. ),( M-29) (-CHO)
和强的 m/z 29(HCO+) 的离子峰;同时伴随有 m/z 43、57、71…烃类的特征碎片峰。 3)γ-氢重排,生成 m/z 44(44+14n)的峰。 芳醛:1)分子离子峰很强。 2)M-1 峰很明显。
34(H2S+)的峰。
2.硫醚
1)硫醚的分子离子峰较相应的硫醇强。 2) α 断裂、碳-硫 σ 键裂解生成 CnH2n+1S+ 系列含硫的
碎片离子。
§4 胺类化合物
1.脂肪胺 1)分子离子峰很弱;往往不出现。
2)主要裂解方式为 α 断裂和经过四元环过渡态的氢重排。
3)出现 30、44、58、72…系列 30+14 n 的含氮特征碎片离子峰。
OH H3C H3C
O H H rH
O H H -H -CO
H3C
H H
α -H
H3C
m/z 80
m/z 79
邻甲基苯酚有较大的(M - 1) 峰,是失去苯基氢而产 生的。苯酚的质谱图中,没有(M - 1) 峰。 邻甲基苯酚的(M – H2O) OE 很小. 特征离子是 “邻位效应”
+
+
的一个例子,在相应的间位和对位异构体中,(M - 18) 丰度
3.芳烃
1)芳烃类化合物稳定,分子离子峰强。 2)有烷基取代的,易发生 Cα-C β 键的裂解,生成的苄基离子往
往是基峰。91+14 n--苄基苯系列。
3)也有 α 断裂,有多甲基取代时,较显著。 4)四元环重排; 有 γ-H,麦氏重排; RDA 裂解。 5)特征峰:39、51、65、77、、78、91、92、93
3)环的碎化特征是失去 C2H4 (也可能失去 C2H5)。
2. 烯烃
1)由于双键的引入,分子离子峰增强。 2)相差14的一簇峰,(41+14 n)41、55、69、83…。
3)断裂方式有 β 断裂;γ-H、六元环、麦氏重排。
4)环烯烃及其衍生物发生 RDA 反应。
烯烃易发生烯丙基断裂:
CH3 CH2 CH CH2
基峰离子 m/z 61 可能的形成过程为:
③ E-1-氯-1-己烯
基峰离子 m/z 56 可能的形成过程为:
2.试判断质谱图1、2分别是2-戊酮还是3-戊酮的质谱
图。写出谱图中主要离子的形成过程。
解:由图 1 可知,m/z 57 和 m/z 29 很强,且丰度相当。m/z 86
分子离子峰的质量比最大的碎片离子 m/z 57 大 29 u ,该质量差
解:由质谱图可知:
①分子离子峰 m/z 149是奇数,说明分子中含奇数个氮原子;
② m/z 149与相邻峰 m/z 106 质量相差 43u,为合理丢失,丢 失的碎片可能是 CH3CO 或 C3H7; ③ 碎片离子 m/z 91 表明,分子中可能存在 苄基 结构单元。 综合以上几点及题目所给的 1H NMR图谱数据得出该化合物
CH3 CH2 CH CH3
CH3 + CH2 CH CH2
烯烃在质谱的碎裂过程中,显示双键位移的倾向。 在高鲨烯中, (M- 57)+ 离子是由于双键迁移到共轭位置 上再发生α- 碎裂产生的。
(C5H8) 4H (M - 83)
(C5H8) 4H (M - 57)
多双键的烯烃质谱往往与双键位置无关。(*双键定位)
由于红外谱在1740~1720 cm-1 和3640~3620 cm-1无吸收,可否 定化合物为醛和醇。因为醚的 m/z 31 峰可通过以下重排反应产生:
据此反应及其它质谱信息,推测未知物可能的结构为:
质谱中主要离子的产生过程
4. 某化合物的质谱如图所示。该化合物的 1H NMR 谱 在 2.1 ppm 左右有一个单峰,试推测其结构。
与带有甲基分枝的烷烃相区别的重要标志。
支链烷烃:1)分枝烷烃的分子离子峰强度较直链烷烃降低。 2)各峰簇顶点不再形成一平滑曲线,因在分枝处易 断裂,其离子强度增加。
3)在分枝处的断裂,伴随有失去单个氢原子的倾向,
产生较强的 CnH2n 离子。 4)有 M-15 的峰。 环烷烃:1)由于环的存在,分子离子峰的强度相对增加。 2)常在环的支链处断开,给出 CnH2n-1 峰, 也常伴随氢原子的失去,因此该 CnH2n-2 峰较强。 (41、55、56、69…)
1.校核质谱谱峰的m/z值
2.分子离子峰的确定
3.对质谱图作一总的浏览
分析同位素峰簇的相对强度比及峰形,判断是否有 Cl、Br S、Si、F、P、I 等元素。
4.分子式的确定 -----计算不饱和度 5.研究重要的离子
(1)高质量端的离子(第一丢失峰 M-18 -OH)
(2)重排离子 (3)亚稳离子 (4)重要的特征离子 烷系:29、43、57、71、85….
解:从质谱图中得知以下结构信息: ① m/z 88 为分子离子峰; ② m/z 88 与 m/z 59质量差为29u,为合理丢失。且丢失的可能
的是 C2H5 或 CHO;
③图谱中有 m/z 29、m/z 43 离子峰,说明可能存在乙基、正丙 基或异丙基; ④基峰 m/z 31为醇或醚的特征离子峰,表明化合物可能是醇或 醚。
2. 酮
1)酮类化合物分子离子峰较强。
2)α 裂解(优先失去大基团)
烷系列:29+14 n
3) γ-氢重排 酮的特征峰 m/z 58 或 58+14 n
3. 羧酸类 脂肪酸:1)分子离子峰很弱。 2) α 裂解
出现 (M-17) (OH),(M-45) (COOH),
m/z 45 的峰及烃类系列碎片峰。 3) γ-氢重排 羧酸特征离子峰 m/z 60 (60+14 n )
§3 硫醇、硫醚
硫醇与硫醚的质谱与相应的醇和醚的质谱类似,但硫醇和硫醚 的分子离子峰比相应的醇和醚要强。 1. 硫醇 1)分子离子峰较强。 2)α 断裂,产生强的 CnH2n+1 S+峰 ,出现含硫特征碎片离子峰。 ( 47+14 n ;47、61、75、89…)
3)出现(M-34)(-SH2), (M-33)(-SH),33(HS+),
5)小分子醇出现 M-1 的峰。
醇类 M 很难得到,因为离子化羟基引发的反应使分解
更为容易, *当进样量较多时,易形成[M+H]+峰(易发生
离子-分子反应)。
除1- 链烷醇外,α-碎裂是醇类最有用的特征反 应,并优先失去最大烷基,形成丰度最大的离子。