圆周角和圆心角的关系—知识讲解(基础)

合集下载

弧、弦、圆心角、圆周角--知识讲解(基础)

弧、弦、圆心角、圆周角--知识讲解(基础)

弧、弦、圆心角、圆周角--知识讲解(基础)【学习目标】1.了解圆心角、圆周角的概念;2.理解圆周角定理及其推论,能灵活运用圆周角的定理及其推理解决有关问题;3.掌握在同圆或等圆中,三组量:两个圆心角、两条弦、两条弧,只要有一组量相等,就可以推出其它两组量对应相等,及其它们在解题中的应用.【要点梳理】要点一、弧、弦、圆心角的关系1.圆心角定义如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.2.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.3.推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.要点诠释:(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)注意定理中不能忽视“同圆或等圆”这一前提.要点二、圆周角1.圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.4.圆内接四边形:(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).5.弦、弧、圆心角、弦心距的关系:在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等)。

*如果它们中间有一组量不相等,那么其它各组量也分别不等。

圆周角圆心角关系

圆周角圆心角关系

圆周角圆心角关系
圆周角和圆心角的关系
(一)定义
1. 圆周角:指圆的弧形轨迹沿着单位圆上某点旋转的路径轨迹水平方
向的转角,量度单位是弧度,它与普通角相比拥有更高的精度。

2. 圆心角:指两个线段(线段A和线段B)与其中一个(以下简称A)所共享的端点,A的直角顶点定义的角。

它的量度单位也是弧度。

(二)关系
1. 两种角的关系被称为帕斯卡定理:圆周角和圆心角之和为两线段所
围成的平行四边形的角的三倍。

2. 圆周角的具体值可以通过求线段A、B与圆上的一个点之间的距离,和线段A、B的距离来确定,最终得出:圆周角=(线段A、B的距离-
圆上点到线段A、B的距离)/2。

3. 若圆心角有定值,则可以通过圆周角得知圆上点到线段A、B的距离:圆上点到线段A、B的距离=线段A、B的距离-2*圆周角。

(三)应用
1. 圆周角和圆心角的关系最常见的应用就是用圆周角计算圆周上物体运动的路程。

2. 天文学中圆周角和圆心角的关系也有很多,例如行星运行轨迹和太阳系其他星系的位置等都是以圆周角和圆心角之间的关系来建立的。

3. 圆周角和圆心角在数学中也有很多应用,例如:确定三角形内某点的坐标,以及求山形线、圆锥线和圆柱曲线等的方法等。

3.4第1课时圆周角和圆心角的关系(教案)

3.4第1课时圆周角和圆心角的关系(教案)
举例:引导学生通过折叠、旋转等方法,观察圆周角和圆心角的变化,从而理解两者关系。
(2)运用圆周角和圆心角的关系解决问题:在实际问题中,学生可能不知道如何将所学的圆周角和圆心角关系应用到解题过程中。
举例:针对不同类型的题目,指导学生分析问题,找到运用圆周角和圆心角关系的关键步骤,并给出解题策略。
四、教学流程
3.加强实践活动的引导,让学生在讨论和操作过程中,能够更加深入地思考问题;
4.提高自己的课堂应变能力,针对学生的反馈,及时调整教学方法和策略。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“圆周角和圆心角在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
本节课将紧密围绕核心素养目标,关注学生能力培养,使学生在掌握知识的同时,提高数学学科综合素养。
三、教学难点与重点
1.教学重点
(1)圆周角和圆心角的概念及其关系:圆周角是圆上一段弧所对的角,圆心角是以圆心为顶点的角。圆周角是圆心角的一半,这是本节课的核心知识点。
举例:讲解圆周角和圆心角的定义,通过图示和实际操作,让学生直观感受两者的关系。
3.重点难点解析:在讲授过程中,我会特别强调圆周角和圆心角的关系,以及它们在解题中的应用这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与圆周角和圆心角相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过观察和测量圆周角和圆心角,验证圆周角是圆心角的一半这一性质。

第08讲 圆心角与圆周角

第08讲 圆心角与圆周角

第08讲圆心角与圆周角(核心考点讲与练)【知识梳理】一.圆心角、弧、弦的关系(1)定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.(2)推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.说明:同一条弦对应两条弧,其中一条是优弧,一条是劣弧,而在本定理和推论中的“弧”是指同为优弧或劣弧.(3)正确理解和使用圆心角、弧、弦三者的关系三者关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.这源于圆的旋转不变性,即:圆绕其圆心旋转任意角度,所得图形与原图形完全重合.(4)在具体应用上述定理解决问题时,可根据需要,选择其有关部分.二.圆周角定理(1)圆周角的定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角.注意:圆周角必须满足两个条件:①顶点在圆上.②角的两条边都与圆相交,二者缺一不可.(2)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.(3)在解圆的有关问题时,常常需要添加辅助线,构成直径所对的圆周角,这种基本技能技巧一定要掌握.(4)注意:①圆周角和圆心角的转化可通过作圆的半径构造等腰三角形.利用等腰三角形的顶点和底角的关系进行转化.②圆周角和圆周角的转化可利用其“桥梁”﹣﹣﹣圆心角转化.③定理成立的条件是“同一条弧所对的”两种角,在运用定理时不要忽略了这个条件,把不同弧所对的圆周角与圆心角错当成同一条弧所对的圆周角和圆心角.三.相交弦定理(1)相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.(经过圆内一点引两条线,各弦被这点所分成的两段的积相等).几何语言:若弦AB、CD交于点P,则P A•PB=PC•PD(相交弦定理)(2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.几何语言:若AB是直径,CD垂直AB于点P,则PC2=P A•PB(相交弦定理推论).【核心考点精讲】一.圆心角、弧、弦的关系(共4小题)1.(2021•江北区校级开学)在⊙O中,如果=2.那么弦AB与弦CD之间的关系是()A.AB=2CD B.AB>2CD C.AB<2CD D.无法确定2.(2020秋•靖江市期中)已知弦AB的长等于⊙O的半径,弦AB所对的圆周角是度.3.(2021•广州模拟)如图,AB,CD为⊙O内两条相交的弦,交点为E,且AB=CD,求证:AD∥BC.4.(2022春•永嘉县月考)如图,AB是⊙O的直径,点C,E都在⊙O上,OC⊥AB,=2,DE∥AB 交OC于点D,延长OC至点F,使FC=OC,连接EF.(1)求证:CD=OD.(2)若⊙O的直径是4,求EF的长.二.圆周角定理(共5小题)5.(2022•浦江县模拟)已知:如图,OA是⊙O的半径,若∠BAO=27°,则圆周角∠BDA的度数是()A.63°B.60°C.58°D.54°6.(2021秋•嘉兴期末)如图,AB是⊙O的直径,点C在圆上,若∠ABC=70°,则∠BAC的度数为()A.70°B.60°C.40°D.20°7.(2022•柯桥区一模)如图,在⊙O中,AD是直径,∠ABC=35°,则∠CAD等于()A.75°B.65°C.55°D.45°8.(2022•文成县一模)如图,点A,B,C都在⊙O上,∠AOC:∠BOC=2:5,OA∥BC,则∠ABC=°.9.(2021秋•嵊州市期末)已知:如图,在△ABC中,AB=AC,以腰AB为直径作⊙O,分别交BC,AC 于点D,E,连结OD,DE.(1)求证:BD=DC.(2)若∠BAC=50°,求∠ODE的度数.三.相交弦定理(共2小题)10.(2021秋•东阳市月考)已知四边形ABCD两条对角线相交于点E,AB=AC=AD,AE=3,EC=1,则BE•DE的值为()A.6B.7C.12D.1611.(2021秋•余姚市期中)如图,⊙O的弦AB、CD相交于点P,若AP=6,BP=8,CP=4,则CD长为()A.16B.24C.12D.不能确定【过关检测】一.选择题(共10小题)1.(2021秋•西城区校级期中)如图,在5×5正方形网格中,一条圆弧经过A、B、C三点,那么所对的圆心角的大小是()A.60°B.75°C.80°D.90°2.(2022•富阳区一模)如图,AB是⊙O的直径,弦CD⊥AB于点E,G是弧AC上一点,连接AD,AG,GD,BC.则下列结论错误的是()A.∠ADC=∠AGDB.若∠ADC=∠GAD,则=2C.若=,则△ADG是等腰三角形D.若=,则△AGF是等腰三角形3.(2022•舟山二模)如图,BC是⊙O的直径,AD⊥BC,∠ABC=25°,则弧CD的度数()A.50°B.25°C.100°D.65°4.(2022•西湖区一模)如图,已知AB是⊙O的直径,弦CD与AB交于点E,设∠ABC=α,∠ABD=β,∠AEC=γ,则()A.α+β﹣γ=90°B.β+γ﹣α=90°C.α+γ﹣β=90°D.α+β+γ=180°5.(1999•山西)如图,⊙O中,弦AB和CD相交于P,CP=2.5,PD=6,AB=8,那么以AP、PB的长为两根的一元二次方程是()A.x2﹣8x﹣15=0B.x2﹣8x+15=0C.x2+8x﹣15=0D.x2+8x+15=06.(2022•鹿城区校级二模)如图,△ABC的两顶点A,B在⊙O上,点C在圆外,∠C=46°,边AC交⊙O于点D,DE∥BC经过圆心交⊙O于点E,则的度数为()A.44°B.80°C.88°D.92°7.(2022•黄岩区一模)如图,△ABC是等边三角形,点A,点B在数轴上,点A表示数﹣2,点B表示数2,以AB为直径作圆交边AC于点P,以B为圆心,BP为半径作弧交数轴于点Q,则点Q在数轴上表示的数为()A.B.2C.2﹣2D.2﹣28.(2022•永康市模拟)如图,线段AB是⊙O的直径,点C在圆上,∠AOC=60°,点P是线段AB延长线上的一点,连结PC,则∠APC的度数不可能是()A.30°B.25°C.10°D.5°9.(2022•东坡区校级模拟)如图,AB为⊙O的直径,点D是弧AC的中点,过点D作DE⊥AB于点E,延长DE交⊙O于点F,若AC=12,AE=3,则⊙O的直径长为()A.10B.13C.15D.1610.(2021秋•杭州期末)如图,AB,CD是⊙O的两条弦,它们相交于点P,连接AD、BD,已知AD=BD=4,PC=6,那么CD的长为()A.6B.7C.8D.9二.填空题(共4小题)11.(2021秋•亭湖区期末)如图,AB是⊙O的直径,==,∠COD=34°,则∠AEO的度数是.12.(2014秋•柯城区校级期中)如图,在⊙O中,弦AB,CD相交于点E,AE=2cm,BE=6cm,DE=3cm,则CE=cm;学以致用:点P是直径为10的⊙Q中一点且PQ=2,过点P作弦HK,则线段PH 与线段PK的积等于.13.(2021秋•定海区期末)一块直角三角板的30°角的顶点A落在圆O上,两边分别交圆O于B、C两点,则弧BC的度数为.14.(2021秋•温州期末)如图,点A在半圆O上,BC是直径,.若AB=2,则BC的长为.三.解答题(共6小题)15.(2021秋•淳安县期中)如图,在⊙O中,弦AD=BC,连接AB、CD.求证:AB=CD.16.(2021秋•上城区期中)如图,AD、BC是⊙O的两条弦,且AB=CD,求证:AD=BC.17.(2021秋•长兴县期中)如图,MB,MD是⊙O的两条弦,点A,C分别在,上,且AB=CD,M是的中点.求证:MB=MD.18.(2021秋•诸暨市期末)如图,O为半圆的圆心,C、D为半圆上的两点,连接CD、BD、AD,CD=BD.连接AC并延长,与BD的延长线相交于点E.(1)求证:CD=DE;(2)若AC=6,半径OB=5,求BD的长.19.(2021秋•滨江区期末)如图,在⊙O中,AB=CD,弦AB与CD相交于点M.(1)求证:=.(2)连接AC,AD,若AD是⊙O的直径,求证:∠BAC+2∠BAD=90°.20.(2001•温州)⊙O的两条弦AB,CD交于点P,已知AP=4,BP=6,CP=3,求CD的长.。

3.4圆心角与圆周角的关系(教案)

3.4圆心角与圆周角的关系(教案)
-在解决实际问题时,如测量圆内接多边形的边长或角度,教师应指导学生如何运用圆心角和圆周角定理。
2.教学难点
-理解圆心角与圆周角之间的数量关系,特别是当圆心角是直角或平角时的情况。
-在复杂的图形中识别圆心角和圆周角,并能正确应用相关定理。
-将圆心角与圆周角的理论知识应用到解决综合性几何问题中。
举例解释:
其次,在教学难点部分,我发现有些学生在处理复杂的图形时,仍然难以准确识别圆心角和圆周角。这说明我在讲解这一部分时,可能需要更多针对性地设计一些练习题,让他们在实际操作中逐步突破难点。
在实践活动环节,学生们的参与度很高,但我也注意到有些小组在讨论时可能会偏离主题。为了提高讨论的效率,我应该在分组讨论前给出更明确的指导,比如设置一些具体的问题或任务,让学生们有针对性地展开讨论。
3.重点难点解析:在讲授过程中,我会特别强调圆心角与所对弧的关系以及圆周角是圆心角的一半这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与圆心角和圆周角相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过测量不同圆心角和对应的圆周角,验证它们之间的数量关系。
二、核心素养目标
本节课的核心素养目标主要包括以下三个方面:
1.培养学生的空间观念:通过探究圆心角与圆周角的关系,使学生能够形成对圆上角度的直观感知,提高空间想象能力。
2.提升学生的逻辑推理能力:引导学生运用圆的基本性质和几何定理,推导圆心角与圆周角的关系,培养学生严谨的逻辑思维。
3.增强学生的几何直观:通过实际操作和观察,让学生感受圆心角与圆周角在实际应用中的联系,提高解决几何问题的能力。同时,培养学生运用几何知识解释生活中现象的意识。

圆周角和圆心角的关系—知识讲解(基础)

圆周角和圆心角的关系—知识讲解(基础)

圆周角和圆心角的关系--知识讲解(基础)【学习目标】1.理解圆周角的概念,了解圆周角与圆心角之间的关系;2.理解圆周角定理及推论;3.熟练掌握圆周角的定理及其推理的灵活运用;通过观察、比较、分析圆周角与圆心角的关系,发展学生合情推理能力和演绎推理能力.【要点梳理】要点一、圆周角1.圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2.圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的一半.3.圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;推论2:直径所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.(3)圆心与圆周角存在三种位置关系:圆心在圆周角的一边上;圆心在圆周角的内部;圆心在圆周角的外部.(如下图)要点二、圆内接四边形1.圆内接四边形定义:四边形的四个顶点都在同一个圆上,像这样的四边形叫做圆内接四边形,这个圆叫做四边形的外接圆.ODCBA2.圆内接四边形性质:圆内接四边形的对角互补.如图,四边形ABCD 是⊙O 的内接四边形,则∠A+∠C=180°,∠B+∠D=180°.要点诠释:当四边形的四个顶点不同时在一个圆上时,四边形的对角是不互补.【典型例题】类型一、圆周角、圆心角、弧、弦之间的关系及应用1.如图,在⊙O 中,,求∠A 的度数.【答案与解析】.【总结升华】在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的圆周角相等,所对的 弦也相等. 举一反三:【变式】如图所示,正方形ABCD 内接于⊙O ,点E 在劣弧AD 上,则∠BEC 等于( )A .45°B .60°C .30°D .55° 【答案】A.∵ AB =BC =CD =DA ,∴ 90AB BC CD DA ====°, ∴ ∠BEC =45°.类型二、圆周角定理及应用2.观察下图中角的顶点与两边有何特征? 指出哪些角是圆周角?【思路点拨】根据圆周角的定义去判断,顶点在圆上,并且两边都和圆相交的角叫做圆周角. 【答案与解析】(a)∠1顶点在⊙O 内,两边与圆相交,所以∠1不是圆周角; (b)∠2顶点在圆外,两边与圆相交,所以∠2不是圆周角;(c)图中∠3、∠4、∠BAD 的顶点在圆周上,两边均与圆相交,所以∠3、∠4、∠BAD 是圆周角. (d)∠5顶点在圆上,一边与圆相交,另一边与圆不相交,所以∠5不是圆周角; (e)∠6顶点在圆上,两边与圆均不相交,由圆周角的定义知∠6不是圆周角. 【总结升华】 紧扣定义,抓住二要素,正确识别圆周角.3.(2015•台州)如图,四边形ABCD 内接于⊙O ,点E 在对角线AC 上,EC=BC=DC . (1)若∠CBD=39°,求∠BAD 的度数; (2)求证:∠1=∠2.【答案与解析】(1)解:∵BC=DC , ∴∠CBD=∠CDB=39°,∵∠BAC=∠CDB=39°,∠CAD=∠CBD=39°, ∴∠BAD=∠BAC+∠CAD=39°+39°=78°; (2)证明:∵EC=BC ,∴∠CEB=∠CBE,而∠CEB=∠2+∠BAE,∠CBE=∠1+∠CBD,∴∠2+∠BAE=∠1+∠CBD,∵∠BAE=∠CBD,∴∠1=∠2.【总结升华】本题主要考查了圆周角定理和等腰三角形的性质,熟悉圆的有关性质是解决问题的关键.4.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?【思路点拨】BD=CD,因为AB=AC,所以这个△ABC是等腰三角形,要证明D是BC的中点,只要连结AD,证明AD是高或是∠BAC的平分线即可.【答案与解析】BD=CD.理由是:如图,连接AD∵AB是⊙O的直径∴∠ADB=90°即AD⊥BC又∵AC=AB,∴BD=CD.【总结升华】解题的关键是正确作出辅助线.举一反三:【变式】(2015•安顺)如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为()DABCOA .2B . 4C . 4D .8【答案】C.提示:∵∠A=22.5°,∴∠BOC=2∠A=45°,∵⊙O 的直径AB 垂直于弦CD ,∴CE=DE,△OCE 为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4. 故选:C .类型三、圆内接四边形及应用5.圆内接四边形ABCD 的内角∠A :∠B :∠C=2:3:4,求∠D 的度数.【思路点拨】根据圆内接四边形的性质可求得四个角的比值,再根据四边形的内角和为360°,从而求得∠D 的度数. 【答案与解析】解:∵圆内接四边形的对角互补, ∴ ∠A :∠B :∠C :∠D=2:3:4:3 设∠A=2x ,则∠B=3x ,∠C=4x ,∠D=3x , ∴2x+3x+4x+3x=360°, ∴x=30°. ∴∠D=90°.【总结升华】本题考查圆内接四边形的性质和四边形的内角和为360°的运用.举一反三:【变式】如图,⊙O中,四边形ABCD是圆内接四边形,∠BOD=110°,则∠BCD的度数是().A.110°B.70°C.55°D.125°【答案】D.C。

初中数学知识点精讲精析 圆周角和圆心角的关系

初中数学知识点精讲精析 圆周角和圆心角的关系

3·3圆周角和圆心角的关系1.圆周角定义:圆周角(angle in a circular segment):顶点在圆上,并且角的两边和圆相交的角.两个特征:(1)角的顶点在圆上;(2)两边在圆内的部分是圆的两条弦.2.圆周角定理:同弧所对的圆周角相等,所对的圆周角都等于它所对的圆心角的一半.注意:(1)定理的条件是同一条弧所对的圆周角和圆心角,结论是圆周角等于圆心角的一半.(2)不能丢掉“一条弧所对的”而简单说成“圆周角等于圆心角的一半”.在同圆或等圆中,同弧或等弧所对的圆周角相等.注意:(1)“同弧”指“同一个圆”.(2)“等弧”指“在同圆或等圆中”.(3)“同弧或等弧”不能改为“同弦或等弦”.3.直径所对的圆周角是直角,90°的圆周角所对的弦是直径.注意:这一推论应用非常广泛,一般地,如果题目的已知条件中有直径时,往往作出直径上的圆周角——直角:如果需要直角或证明垂直时,往往作出直径即可解决问题.4.反证法:注意:用反证法证明命题的一般步骤:(1)假设命题的结论不成立;(2)从这个假设出发,经过推理论证,得出矛盾.(3)山矛盾判定假设不正确,从而肯定命题的结论正确.5.圆内角与圆外角:我们把顶点在圆内(两边自然和圆相交)的角叫圆内角(如图1.顶点在圆外并且两边都和圆相交的角叫圆外角(如图2).定理:圆内角的度数,等于它所对弧的度数与它的对顶角所对弧的度数之和的一半.圆外角的度数,等于它的两边所夹两条弧的度数的差的一半.1.已知:⊙O 中,所对的圆周角是∠ABC ,圆心角是∠AOC .求证:∠ABC =12AOC . 【解析】证明:∠AOC 是△ABO 的外角,∴∠AOC =∠ABO +∠BAO .∵OA =OB ,∴∠ABO =∠BAO . ∴∠AOC =2∠ABO .即∠ABC =12∠AOC .如果∠ABC 的两边都不经过圆心(如下图),那么结果怎样?特殊情况会给我们什么启发吗?你能将下图中的两种情况分别转化成上图中的情况去解决吗?如图(1),点O 在∠ABC 内部时,只要作出直径BD ,将这个角转化为上述情况的两个角的和即可证出.由刚才的结论可知:∠ABD =12∠AOD ,∠CBD =12∠COD , ∴∠ABD +∠CBD =12(∠AOD +∠COD),即∠ABC =12∠AOC .在图(2)中,当点O 在∠ABC 外部时,仍然是作出直径BD ,将这个角转化成上述情形的两个角的差即可.由前面的结果,有 ∠ABD =12∠AOD ,∠CBD =12∠COD .∴∠ABD -∠CBD =12(∠AOD -∠COD),即∠ABC=12∠AOC.2.如图示,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?[分析]由于AB是⊙O的直径,故连接AD.由推论直径所对的圆周角是直角,便可得AD⊥BC,又因为△ABC中,AC=AB,所以由等腰三角形的二线合一,可证得BD=CD.【解析】BD=CD.理由是:连结AD.∵AB是⊙O的直径,∴∠ADB=90°.即AD⊥BC.又∵AC=AB,∴BD=CD.3.为什么有些电影院的坐位排列(横排)呈圆弧形?说一说这种设计的合理性.【解析】有些电影院的坐位排列呈圆弧形,这样设计的理由是尽量保证同排的观众视角相等.4.如下图,哪个角与∠BAC相等?【解析】∠BDC=∠BAC.5. 如下图,⊙O的直径AB=10 cm,C为⊙O上的一点,∠ABC=30°,求AC的长.【解析】∵AB为⊙O的直径.∴ACB=90°.又∵∠ABC=30°, ∴AC=21AB=21×10=5(cm). 6.小明想用直角尺检查某些工件是否恰好为半圆形,根据下图,你能判断哪个是半圆形?为什么?【解析】图(2)是半圆形、理由是:90°的圆周角所对的弦是直径.7.船在航行过程中,船长常常通过测定角度来确定是否会遇到暗礁,如下图,A 、B 表示灯塔,暗礁分布在经过A 、B 两点的一个圆形区域内,C 表示一个危险临界点,∠ACB 就是“危险角”.当船与两个灯塔的夹角大于“危险角”时,就有可能触礁;当船与两个灯塔的夹角小于“危险角”时,就能避免触礁.(1)当船与两个灯塔的夹角∠α大于“危险角”时,船位于哪个区域?为什么? (2)当船与两个灯塔的夹角∠α小于“危险角”时,船位于哪个区域?为什么? 分析:这是一个有实际背景的问题,由题意可知:“危险角” ∠ACB 实际上就是圆周角,船P 与两个灯塔的夹角为∠α,P 有可能在⊙O 外,P 有可能在⊙O 内,当∠α>∠C 时,船位于暗礁区域内;当∠α<∠C 时,船位于暗礁区域外,我们可采用反证法进行论证. 【解析】(1)当船与两个灯塔的夹角∠α大于“危险角” ∠C 时,船位于暗礁区域内(即⊙O 内),理由是:连结BE ,假设船在(⊙O 上,则有∠α=∠C ,这与∠α>∠C 矛盾,所以船不可能在⊙O 上;假设船在⊙O 外,则有∠α<∠AEB ,即∠α<∠C ,这与∠α>∠C 矛盾,所以船不可能在⊙O 外.因此.船只能位于⊙O 内.(2)当船与两个灯塔的夹角∠α小于“危险角”∠C时,船位于暗礁区域外(即⊙O 外).理由是:假设船在⊙O上,则有∠α=∠C,这与∠α<∠C矛盾,所以船不可能在⊙O上;假设船在⊙O内,则有∠α>∠AEB,即∠α>∠C.这与∠α<∠C矛盾,所以船不可能在⊙O内,因此,船只能位于⊙O外.8.如图,已知在⊙O中,直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D.求BC、AD和BD的长.分析:由AB为直径,知∠ACB=90°,又AC、AB已知,可由勾股定理求BC.又∠ADB=90°,AD=DB,由勾股定理可求AD、BD.【解析】∵AB为直径,∴∠ACB=∠ADB=90°,又∵AB=10cm,AC=6cm,又∵CD是∠ACB的平分线,∠ACD=∠DCB,∴AD=DB.在 Rt∠ADB中,9.已知AB是⊙O的直径,AE是弦,C是的中点,CD⊥AB于D,交AE于F,CB交AE于G.求证:CF=FG.分析:如图7—107,要证CF=FG,只需证∠FCG=∠FGC.由已知,∠FCG与∠B互余.如果连结AC,∠ACB=90°.∠FGC与∠CAG互余.【解析】证明:连结AC,∵AB为直径,∴∠ACB=90°,∠FGC=90°-∠CAE.又∵CD⊥AB于D,∠FCG=90°-∠B,∴∠FGC=∠FCG.因此,CF=FG.10.如图,AB 是⊙O 的直径.(1)若OD ∥AC ,的大小有什么关系?为什么?(2)把(1)中的条件和结论交换一下,还能成立吗?说明理由. 【解析】(1)=延长DO 交⊙O 于E . ∵AC∥OD , ∴=. ∵∠1=∠2, ∴=. ∴=.(2)仍成立,延长DO 交⊙O 于点E ,连结AD . ∵=,=, ∴=. ∴∠3=∠D . ∴AC ∥OD .11.如图,⊙O 上三点A 、B 、C ,AB =AC ,∠ABC 的平分线交⊙O 于点E ,∠ACB 的平分线交⊙O 于点F ,BE 和CF 相交于点D ,四边形AFDE 是菱形吗?验证你的结论.【解析】四边形AFDE 是菱形.证明:∵∠ABC=∠ACB, ∠ABE=∠EBC=∠ACF=∠FCB. 又∠FAB ,∠FCB 是同弧上的圆周角, ∴∠FAB=∠FCB ,同理∠EAC=∠EBC. 有∠FAB=∠ABE=∠EAC=∠ACF.∴AF ∥ED ,AE ∥FD 且AF=AE. ∴四边形AFDE 是菱形.12.如图是一大型圆形工件被埋在土里而露出地表的部分.为推测它的半径,小亮同学谈了他的做法:先量取弦AB 的长,再量中点到AB 的距离CD 的长,就能求出这个圆形工件的半径.你认为他的做法合理吗?如不合理,说明理由;如合理,请你给出具体的数值,.BDCABD【解析】小亮的做法合理.取AB=8 m ,CD=2 m, 设圆形工件半径为r, ∴r 2=(r -2)2+42. 得r=5(m).13.如图,现需测量一井盖(圆形)的直径,但只有一把角尺(尺的两边互相垂直,一边有刻度,且两边长度都长于井盖的半径),请配合图形,用文字说明测量方案,写出测量的步骤.(要求写出两种测量方案)【解析】方案1:使角尺顶点在圆上,角尺两边与圆两交点连接就是圆的直径,用刻度尺量出直径.方案2:任画圆的一条弦,用尺量出弦的中点,利用角尺过弦中点做弦的垂线,垂线与圆的两交点间的线段为圆的直径.14.如图,在⊙O 中,AB 是直径,CD 是弦,AB ⊥CD . (1)P 是上一点(不与C 、D 重合),求证:∠CPD =∠COB .(2)点P ′在劣弧CD 上(不与C 、D 重合)时,∠CP′D 与∠COB 有什么数量关系?请证明你的结论.【解析】(1)证明:连结OD, ∵AB 是直径,AB ⊥CD, ∴=.∴∠COB=∠DOB=21∠COD. 又∵∠CPD=21∠COD, ∴∠CPD=∠COB. (2)∠CP ′D 与∠COB 的数量关系是:∠CP ′D+∠COB=180°.证明:∵∠CPD+∠CP ′D=180°,∠COB=∠CPD, ∴∠CP ′D+∠COB=180°15.(9分)已知,如图20,AB 是⊙O 的直径,C 是⊙O 上一点,连接AC,过点C 作直线CD ⊥AB 于D(AD<DB),点E 是DB 上任意一点(点D 、B 除外),直线CE 交⊙O 于点F,连接AF 与直线CD 交于点G.(1)求证:AC 2=AG ·AF ;(2)若点E 是AD (点A 除外)上任意一点,上述结论是否仍然成立?若成立,请画出图形并给予证明;若不成立,请说明理由.B【解析】(1)证明:连接CB ,∵AB 是直径,CD ⊥AB , ∴∠ACB =∠ADC =90°. ∴Rt △CAD ∽Rt △BAC . ∴得∠ACD =∠ABC . ∵∠ABC =∠AFC , ∴∠ACD =∠AFC . ∴△ACG ∽△ACF . ∴ACAF AG AC . ∴AC 2=AG ·AF . (2)当点E 是AD (点A 除外)上任意一点,上述结论仍成立 ①当点E 与点D 重合时,F 与G 重合, 有AG =AF ,∵CD ⊥AB ,∴=, AC =AF . ∴AC 2=AG ·AF .②当点E 与点D 不重合时(不含点A )时,证明类似①.。

圆圆周角和圆心角的关系、确定圆的条件1 - 【本讲教育信息】

圆圆周角和圆心角的关系、确定圆的条件1 - 【本讲教育信息】

【本讲教育信息】一. 教学内容:圆(二)圆周角和圆心角的关系、确定圆的条件二. 教学要求1、理解圆周角的概念及其相关性质,并能熟练地运用它们进行论证和计算。

2、了解不在同一条直线上的三个点确定一个圆,以及过不在同一条直线上的三个点作圆的方法,了解三角形的外接圆,三角形的外心等概念。

三. 重点及难点重点:圆周角定理及其推论,不在同一条直线上的三个点确定一个圆,掌握过不在同一直线上的三个点作圆的方法。

难点:圆周角定理的证明,不在同一直线上的三个点作圆的方法。

四. 课堂教学[知识要点]知识点1、圆周角的概念顶点在圆上,并且两边都和圆相交的角叫做圆周角。

说明:圆周角的两个特征:角的顶点在圆上;两边在圆内的部分是圆的两条弦,二者缺一不可。

知识点2、圆周角定理定理:一条弧所对的圆周角等于它所对的圆心角的一半。

说明:(1)定理的要求是同一条弧所对的圆周角和圆心角,从数值上来看,圆周角是圆心角的一半。

(2)不能忽略“同一条弧”这个基本前提,不能简单表述成“圆周角等于圆心角的一半”。

知识点3、圆周角定理的推论推论1、在同圆或等圆中,同弧或等弧所对的圆周角相等。

如图所示,AB所对的圆周角有∠ACB,∠ADB,∠AEB,因此∠ACB=∠ADB=∠AEB。

说明:(1)若将“同弧或等弧”改为“同弦或等弦”,结论不成立如图1所示,∠ACB,∠ADB,∠AEB所对的弦是同一条弦AB,∠ADB=∠AEB,但∠ACB与∠ADB,∠AEB与∠ACB却不相等。

(2)此推论的逆命题是一个真命题,可以作为圆周角定理的一个推论,其表述为:在同圆或等圆中,相等的圆周角所对的弧也相等。

如图(2)中所示,如果∠ACB =∠DFE ,那么⋂⋂=DE AB推论2、直径所对的圆周角是直角,90°的圆周角所对的弦是直径。

如图3所示,若AB 为直径,则∠ACB =90°,若∠ACB =90°,则AB 为直径。

知识点4、过三点的圆由圆的定义可知,圆有两个要素,一个是圆心,另一个是半径,圆心确定圆的位置,半径确定圆的大小,作圆的关键是确定圆心的位置和半径的大小。

弦所对的圆周角和圆心角的关系

弦所对的圆周角和圆心角的关系

弦所对的圆周角和圆心角的关系大家好,今天咱们来聊聊一个有趣的几何问题:弦所对的圆周角和圆心角的关系。

听到这儿,不要慌,别以为这是数学的“噩梦”,其实这就是咱们在数学里碰到的那些小秘密。

想象一下,你在一个大圆圈里,有一个弦,哦,就是那种连接圆上两点的线段。

那么,这条弦所对的圆周角和圆心角之间,到底有什么秘密关系呢?让我给大家掀开这层神秘的面纱。

首先,咱们得从圆心角说起。

圆心角,顾名思义,就是从圆心出发的角度,它的顶点正好在圆心上。

这角度的意思就是从圆心看向圆上的两个点,形成的那个角度。

是不是有点像你在玩飞镖,瞄准一个靶心,然后投掷飞镖?那个角度就是你弯腰的角度,不同的角度,飞镖飞出去的轨迹就不一样,对吧?好了,咱们知道了圆心角的定义,接下来就是要谈谈圆周角了。

圆周角听起来有点像是圆心角的“小弟弟”,它的顶点不在圆心上,而是在圆周上。

简单来说,圆周角就是那些由弦所形成的角度。

想象一下,你站在圆的边缘,看看圆上的弦,然后对着这个弦产生的那个角度,这就是圆周角。

也许你会觉得,这个角度和圆心角之间好像没啥联系,但其实,它们之间有个绝对的关系,那就是圆心角是圆周角的两倍。

这就像你和你的小伙伴一起吃大餐,你吃的比他多,但他觉得也不差,因为他正好可以尝到你喜欢的那些美味,哇,这真是个绝妙的“吃货”组合。

接下来,让我们来个小实验。

假如你在一个大圆上选取两点A和B,然后画一条弦AB。

如果我们在圆心O画出两个线段OA和OB,就形成了一个圆心角,而弦AB对面的圆周角就是圆心角的一半。

这就像你把一个蛋糕切成两半,一半就是你的,一半就是你朋友的,你们分得均匀,不觉得这是个公平的交易吗?所以,你可以发现,无论圆心角多么大,圆周角永远只有圆心角的一半。

这就像你去参加生日派对,即使蛋糕有多大,你总是只能分到那一小块,别想太多。

更有趣的是,这种关系在不同的圆中都是适用的。

无论你走到哪儿,画个圆,选取一条弦,它对面的圆周角总是圆心角的一半。

3.4.1圆周角和圆心角的关系(教案)

3.4.1圆周角和圆心角的关系(教案)
五、教学反思
在今天的教学中,我发现学生们对圆周角和圆心角的关系这一部分内容兴趣浓厚,但也存在一些理解上的难点。首先,他们对圆周角和圆心角的定义掌握得相对较好,但在应用到具体问题时,还是会出现一些困惑。我意识到,这主要是因为他们在将理论知识转化为实际应用时,缺乏足够的练习和经验。
在讲授过程中,我尽量用生动的例子和直观的图形来解释这两个概念,但效果似乎并不如预期。我反思,可能需要更多的互动和实际操作,让学生在动手实践中感受圆周角和圆心角的关系。比如,可以设计一些更具挑战性的题目,让学生分组讨论,通过合作解决问题,加深对知识点的理解。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“圆周角和圆心角在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
还有一个值得注意的问题是,在小组讨论过程中,部分学生表现出较强的依赖性,不够独立思考。针对这一问题,我将在后续教学中加强对学生的引导,培养他们独立思考的能力,鼓励他们大胆提出自己的观点和疑问。
三、教学难点与重点
1.教学重点
-理解并掌握圆周角和圆心角的定义:这是本节课的基础,要求学生能够明确圆周角和圆心角的含义,并能够正确画出相应的图形。
-掌握圆周角和圆心角的关系:学生需要理解在同圆或等圆中,相等的圆周角所对的圆心角相等,反之亦然。
-应用圆周角和圆心角的关系解决实际问题:学生应学会运用这一关系进行几何证明和计算,解决与圆相关的实际问题。
2.提高学生的逻辑推理能力:引导学生通过严密的逻辑推理证明圆周角和圆心角的关系,培养他们运用几何知识分析和解决问题的能力。

圆周角与圆心角、弧的关系

圆周角与圆心角、弧的关系

(教案)圆周角与圆心角、弧的关系一、知识讲解:1.圆周角与圆心角的的概念:顶点在圆上,同时两边都和圆相交的角叫做圆周角。

2.在同圆或等圆中,假如两条弦,两条弧,两个圆心角中有一组量相等,那么它们所对应的其它各组量都分别相等。

3.一条弧所对的圆周角等于这条弧所对的圆心角的一半。

4.直径所对的圆周角是90度,90度的圆周角所对的弦是直径。

5.圆的内接四边形对角之和是180度。

6.弧的度数确实是圆心角的度数。

解题思路:1.已知圆周角,能够利用圆周角求出圆心角2.已知圆心角,能够利用圆心角求出圆周角3.已知直径和弧度,能够求出圆周角与圆心角1.圆周角与圆心角的定义顶点在圆上,同时两边都和圆相交的角叫做圆周角。

注意圆周角定义的两个差不多特点:(1)顶点在圆上;(2)两边都和圆相交。

二、教学内容【1】圆心角:顶点在圆心的角。

利用两个错误的图形来强调圆周角定义的两个差不多特点:练习:判断下列各图形中的是不是圆周角,并说明理由.【2】明白得圆周角定理的证明一条弧所对的圆周角的度数等于这条弧所对的圆心角度数的一半。

已知:⊙O中,弧BC所对的圆周角是∠BAC,圆心角是∠BOC,求证:∠BAC= 1/2∠BOC.分析:通过图形的演示指导学生进一步去查找圆心O与∠BAC的关系本题有三种情形:(1)圆心O在∠BAC的一边上 O(2)圆心O在∠BAC的内部(3)圆心O在∠BAC的外部 B D C●假如圆心O在∠BAC的边AB上,只要利用三角形内角和定理的推论和等腰三角形的性质即可证明●假如圆心O在∠BAC的内部或外部,那么只要作出直径AD,将那个角转化为上述情形的两个角的和或差即可证明:圆心O在∠BAC的一条边上 AOA=OC==>∠C=∠BAC∠BOC=∠BAC+∠C O==>∠BAC=1/2∠BOC. B C【3】圆周角与圆心角的关系(1).在同圆或等圆中,假如两条弦,两条弧,两个圆心角中有一组量相等,那么它们所对应的其它各组量都分别相等。

圆心角与圆周角的关系证明

圆心角与圆周角的关系证明

圆心角与圆周角的关系证明要讨论圆心角与圆周角的关系,我们首先得了解这两个角的基本概念。

想象一下,我们站在一个圆的中心,眼前是一个大大的披萨(谁不喜欢披萨呢?),这个披萨的每一片都能代表一个圆心角。

圆心角就是从圆心出发,连接到圆的两边形成的那个角。

听起来是不是很简单?但别小看这个角,它可是有很多有趣的性质,尤其是与圆周角的关系。

接下来,我们聊聊圆周角。

圆周角就像是坐在披萨边缘的朋友,虽然离圆心远了一点,但它的工作同样重要。

简单来说,圆周角是圆周上某一段的端点与圆心之间形成的角。

这里面有个有趣的点:圆心角的度数和它对应的圆周角的度数是有关系的。

让我们用个小例子来说明吧:假设你有一个圆心角为60度的角,那么对应的圆周角就只有30度。

这是不是听起来很神奇?像是魔术一样,让人忍不住想要深入探讨。

在数学上,这种关系其实是有一定规律的。

我们可以用公式来简单地表示:圆周角= 1/2 × 圆心角。

也就是说,圆心角总是圆周角的两倍!如果你把这个关系想象成一对好朋友,那圆心角就像是个大嘴巴,总是说个不停,而圆周角则比较安静,时不时插一句。

这样的搭配,简直就是天生一对!要想彻底理解这个关系,我们可以借助几何图形来更直观地观察。

画个圆,标出圆心,接着在圆的边缘上找两个点。

用直线连接这两个点到圆心,再在这两个点之间的圆周上找一个点,看看你能形成什么样的角。

这时,你会发现无论你如何移动这些点,圆心角的度数永远是圆周角的两倍。

就像那句老话,“不怕慢,就怕站”,只要我们不停地探索,就总能找到答案。

当然,实际生活中,这个关系也会有很多应用,比如在建筑设计、机械工程等等领域。

想象一下,如果没有这个关系,建筑师们的设计图纸可能会变得乱七八糟,大家都搞不清楚哪个角应该怎么测量,最后建出来的房子可能会歪歪扭扭的,那可就闹笑话了。

可见,圆心角和圆周角的和谐关系在生活中是多么的重要!所以,朋友们,记住这段关系吧。

圆心角和圆周角就像是数学世界里的好搭档,无论走到哪里,它们都携手并进。

《圆周角和圆心角的关系》教学设计

《圆周角和圆心角的关系》教学设计

圆周角和圆心角的关系(第1课时)教学目标:(一)知识与技能 1.理解圆周角定义,掌握圆周角定理.2.会熟练运用定理解决问题.(二)过程与方法经历探索圆周角和圆心角的关系的过程,学会以特殊情况为基础,通过转化来解决一般性问题的方法,渗透分类的数学思想。

(三)情感态度价值观通过观察、猜想、验证推理,培养学生探索问题的能力和方法教学重点:理解圆周角定义,掌握圆周角定理并会熟练运用定理解决问题. 教学难点:认识圆周角定理需分三种情况证明的必要性教学设计第一环节知识回顾活动内容:Array1.圆心角的定义?——顶点在圆心的角叫圆心角2.圆心角的度数和它所对的弧的度数有何关系?如图:∠AOB弧AB的度数3.在同圆或等圆中,如果两个圆心角、两条、两条中有一组量相等,那么它们所对应的其余各组量都分别相等.活动目的:通过三个简单的练习,复习本章第二节课学习的同圆或等圆中弧和圆心角的关系.第二环节探究新知1活动内容:(1)问题:我们已经知道,顶点在圆心的角叫圆心角,那当角顶点发生变化时,我们得到几种情况?类比圆心角定义,得出圆周角定义:顶点在圆上,并且两边分别与圆还有一个交点的角叫做圆周角.活动目的:本环节的设置,需要学生类比圆心角的定义,采用分类讨论和类比的思想方法得出圆周角的定义.第三环节 定义的应用 活动内容:(1)练习、如图,指出图中的圆心角和圆周角 解:圆心角有∠AOB 、∠AOC 、∠BOC 圆周角有∠BAC 、∠ABC 、∠ACB活动目的:在学习了圆周角的定义后,为了下面学习圆周角的定理做铺垫,有必要先让学生熟练判断圆中哪些是同一条弧所对的圆周角,并掌握如何在比较复杂的图形中按照一定的规律寻找所有的圆周角和圆心角,这一能力对于学习后续的圆的相关证明题是很必要的.点A 在圆内点A 在圆外点A 在圆上.BOC A.B OC AO BC顶点在圆心.C .A OB圆心角圆周角第四环节 探究新知2 活动内容:(一)问题提出:当球员在B,D,E 处射门时,他所处的位置对球门AC 分别形成三个张角∠ABC ,∠ADC ,∠AEC .这三个角的大小有什么关系?教师提示:类比圆心角探知圆周角在同圆或等圆中,相等的弧所对的圆心角相等.在同圆或等圆中,相等的弧所对的圆周角有什么关系?为了解决这个问题,我们先探究一条弧所对的圆周角和圆心角之间有什么关系.(二)做一做:如图,∠AOB =80°,(1)请你画出几个 所对的圆周角,这教师提示:思考圆周角和圆心角有几种不同的位置关系?三种:圆心在圆周角一边上,圆心在圆周角内,圆心在圆周角外.(2)这些圆周角与圆心角∠AOB 的大小有什么关系? ∠AOB =2∠ACB(三)议一议:改变圆心角∠A0B 的度数,上述结论还成立吗?成立AB ⌒CC(四)猜想出圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半. 符号语言: (五)证明定理:已知:如图,∠ACB 是 所对的圆周角,∠AOB 是 所对的圆心角,求证:分析:1.首先考虑一种特殊情况:当圆心(O )在圆周角(∠ACB )的一边(BC )上时,圆周角∠ACB 与圆心角∠AOB 的大小关系.∵∠AOB 是△ACO 的外角∴∠AOB =∠C +∠A∵OA=OC ∴∠A =∠C∴∠AOB =2∠C2.当圆心(O)在圆周角(∠ACB )的内部时,圆周角∠ACB与圆心角∠AOB 的大小关系会怎样? 老师提示:能否转化为1的情况? 过点C 作直径CD .由1可得:3.当圆心(O)在圆周角(∠ACB)的外部时,圆周角∠ACB 与圆心角∠AOB 的大小关系会怎样?12ACB AOB∠=∠AB ⌒AB ⌒12ACB AOB∠=∠12ACB AOB∠=∠即11,22ACD AOD BCD BOD∠=∠∠=∠()12ACD BCD AOD BOD ∴∠+∠=∠+∠12ACB AOB∠=∠即C●OACB老师提示:能否也转化为1的情况?过点C 作直径CD.由1可得:活动目的:本活动环节,让学生经历猜想,实验,证明这三个探究问题的基本环节,得到一般的规律.规律探索后,得出圆周角定理,并对探究过程中的三种情况逐一加以演绎推理,证明定理.第五环节 方法小结 活动内容:化归化归DD思想方法:分类讨论,“特殊到一般”的转化活动目的:通过回顾圆周角定理的证明过程,体会探究过程中的数学思想方法的运用.第六环节定理的应用 活动内容:问题回顾:当球员在B,D,E 处射门时,他所处的位置对球门AC 分别形成三个张角∠ABC ,∠ADC ,∠AEC .这三个角的大小有什么关系?11,22ACD AOD BCD BOD∠=∠∠=∠()12ACD BCD AOD BOD ∴∠-∠=∠-∠12ACB AOB∠=∠即连接AO 、CO ,由此得出定理:同弧或等弧所对的圆周角相等.活动目的:通过回顾之前提出的问题,直接应用圆周角定理解决问题,然后推导出另一条圆周角与弧的定理. 第七环节 课堂小结活动内容:(一) 这节课主要学习了两个知识点: 1.圆周角定义.2.圆周角定理及其定理应用.(二)方法上主要学习了圆周角定理的证明,渗透了类比,“特殊到一般”的思想方法和分类讨论的思想方法.(三)圆周角及圆周角定理的应用极其广泛,也是中考的一个重要考点,望同学们灵活运用.活动目的:通过小结,让学生回顾本节课的学习内容,尤其是知识内容和方法内容都应该进行总结,让学生懂得,我们学习不但是学习了知识,更重要的是要学会进行方法的总结. 五、教学设计反思111,,222ABC AOC ADC AOC AEC AOC ∠=∠∠=∠∠=∠ABC ADC AEC∴∠=∠=∠。

圆周角和圆心角的关系ppt课件

圆周角和圆心角的关系ppt课件
50°,则∠EBC+∠ADC 的度数为 _______.
-18-
3.4 圆周角和圆心角的关系
解析:如解析图,连接 AB,DE,则∠ABE=∠ADE. ∵ 所对的圆心角的度数为 50°,∴∠ABE= ∠ADE =25°. ∵ 点 A,B,C,D 在 ⊙O 上 ,∴四边形 ABCD 是圆内接四边形, ∴∠ABC+∠ADC=180°, ∴∠ABE+∠EBC+∠ADC=180°, ∴∠EBC+∠ADC=180°-∠ABE=180°-25°=155°. 答案:155° 题型解法:本题考查了圆周角定理和圆内接四边形的 性质,作出辅助线构建圆内接四边形是解题的关键.
-10-
3.4 圆周角和圆心角的关系
■考点四 圆内接四边形
定义
四边形的四个顶点都在同一个圆上,这个四边形叫做圆内接四边形,这个 圆叫做四边形的外接圆
推论 圆内接四边形的对角互补
拓展 圆内接四边形的任何外角等于内对角
注意 并不是所有的四边形都存在外接圆,只有对角互补的四边形才存在外接圆
-11-
3.4 圆周角和圆心角的关系
A. 20° B. 40°
C. 50° D. 70°
-7-
3.4 圆周角和圆心角的关系
3. 如图,已知△ABC 的三个顶点都在同一圆上,且 AC=6,BC=8,AB=10, 则该圆的半径长是 ________.
(第 3 题图)
(第 4 题图)
4. 如图,AB=BC,∠ABC =120°,AD 为 ⊙O 的直径 ,AD=6,那么 AB 的
值为 ______.
-8-
3.4 圆周角和圆心角的关系
5. 如图,AB=AC,AB 是直径,求证:BC=2DE. (第 5 题图)

初中数学知识点精讲精析-圆周角和圆心角的关系

初中数学知识点精讲精析-圆周角和圆心角的关系

3·3圆周角和圆心角的关系要点精讲1.圆周角定义:圆周角(angle in a circular segment):顶点在圆上,并且角的两边和圆相交的角.两个特征:(1)角的顶点在圆上;(2)两边在圆内的部分是圆的两条弦.2.圆周角定理:同弧所对的圆周角相等,所对的圆周角都等于它所对的圆心角的一半.注意:(1)定理的条件是同一条弧所对的圆周角和圆心角,结论是圆周角等于圆心角的一半.(2)不能丢掉“一条弧所对的”而简单说成“圆周角等于圆心角的一半”.在同圆或等圆中,同弧或等弧所对的圆周角相等.注意:(1)“同弧”指“同一个圆”.(2)“等弧”指“在同圆或等圆中”.(3)“同弧或等弧”不能改为“同弦或等弦”.3.直径所对的圆周角是直角,90°的圆周角所对的弦是直径.注意:这一推论应用非常广泛,一般地,如果题目的已知条件中有直径时,往往作出直径上的圆周角——直角:如果需要直角或证明垂直时,往往作出直径即可解决问题.4.反证法:注意:用反证法证明命题的一般步骤:(1)假设命题的结论不成立;(2)从这个假设出发,经过推理论证,得出矛盾.(3)山矛盾判定假设不正确,从而肯定命题的结论正确.5.圆内角与圆外角:我们把顶点在圆内(两边自然和圆相交)的角叫圆内角(如图1.顶点在圆外并且两边都和圆相交的角叫圆外角(如图2).定理:圆内角的度数,等于它所对弧的度数与它的对顶角所对弧的度数之和的一半.圆外角的度数,等于它的两边所夹两条弧的度数的差的一半.典型例题1.已知:⊙O中,所对的圆周角是∠ABC,圆心角是∠AOC.求证:∠ABC=12 AOC.【解析】证明:∠AOC是△ABO的外角,∴∠AOC=∠ABO+∠BAO.∵OA=OB,∴∠ABO=∠BAO.∴∠AOC=2∠ABO.即∠ABC=12∠AOC.如果∠ABC的两边都不经过圆心(如下图),那么结果怎样?特殊情况会给我们什么启发吗?你能将下图中的两种情况分别转化成上图中的情况去解决吗?如图(1),点O在∠ABC内部时,只要作出直径BD,将这个角转化为上述情况的两个角的和即可证出.由刚才的结论可知:∠ABD=12∠AOD,∠CBD=12∠COD,∴∠ABD+∠CBD=12(∠AOD+∠COD),即∠ABC=12∠AOC.在图(2)中,当点O在∠ABC外部时,仍然是作出直径BD,将这个角转化成上述情形的两个角的差即可.由前面的结果,有∠ABD=12∠AOD,∠CBD=12∠COD.∴∠ABD-∠CBD=12(∠AOD-∠COD),即∠ABC=12∠AOC.2.如图示,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?[分析]由于AB是⊙O的直径,故连接AD.由推论直径所对的圆周角是直角,便可得AD⊥BC,又因为△ABC中,AC=AB,所以由等腰三角形的二线合一,可证得BD=CD.【解析】BD=CD.理由是:连结AD.∵AB是⊙O的直径,∴∠ADB=90°.即AD⊥BC.又∵AC=AB,∴BD=CD.3.为什么有些电影院的坐位排列(横排)呈圆弧形?说一说这种设计的合理性.【解析】有些电影院的坐位排列呈圆弧形,这样设计的理由是尽量保证同排的观众视角相等.4.如下图,哪个角与∠BAC相等?【解析】∠BDC=∠BAC.5. 如下图,⊙O的直径AB=10 cm,C为⊙O上的一点,∠ABC=30°,求AC的长.【解析】∵AB为⊙O的直径.∴ACB=90°.又∵∠ABC=30°, ∴AC=21AB=21×10=5(cm). 6.小明想用直角尺检查某些工件是否恰好为半圆形,根据下图,你能判断哪个是半圆形?为什么?【解析】图(2)是半圆形、理由是:90°的圆周角所对的弦是直径.7.船在航行过程中,船长常常通过测定角度来确定是否会遇到暗礁,如下图,A 、B 表示灯塔,暗礁分布在经过A 、B 两点的一个圆形区域内,C 表示一个危险临界点,∠ACB 就是“危险角”.当船与两个灯塔的夹角大于“危险角”时,就有可能触礁;当船与两个灯塔的夹角小于“危险角”时,就能避免触礁.(1)当船与两个灯塔的夹角∠α大于“危险角”时,船位于哪个区域?为什么? (2)当船与两个灯塔的夹角∠α小于“危险角”时,船位于哪个区域?为什么? 分析:这是一个有实际背景的问题,由题意可知:“危险角” ∠ACB 实际上就是圆周角,船P 与两个灯塔的夹角为∠α,P 有可能在⊙O 外,P 有可能在⊙O 内,当∠α>∠C 时,船位于暗礁区域内;当∠α<∠C 时,船位于暗礁区域外,我们可采用反证法进行论证. 【解析】(1)当船与两个灯塔的夹角∠α大于“危险角” ∠C 时,船位于暗礁区域内(即⊙O 内),理由是:连结BE ,假设船在(⊙O 上,则有∠α=∠C ,这与∠α>∠C 矛盾,所以船不可能在⊙O 上;假设船在⊙O 外,则有∠α<∠AEB ,即∠α<∠C ,这与∠α>∠C 矛盾,所以船不可能在⊙O 外.因此.船只能位于⊙O 内.(2)当船与两个灯塔的夹角∠α小于“危险角”∠C时,船位于暗礁区域外(即⊙O 外).理由是:假设船在⊙O上,则有∠α=∠C,这与∠α<∠C矛盾,所以船不可能在⊙O上;假设船在⊙O内,则有∠α>∠AEB,即∠α>∠C.这与∠α<∠C矛盾,所以船不可能在⊙O内,因此,船只能位于⊙O外.8.如图,已知在⊙O中,直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D.求BC、AD和BD的长.分析:由AB为直径,知∠ACB=90°,又AC、AB已知,可由勾股定理求BC.又∠ADB=90°,AD=DB,由勾股定理可求AD、BD.【解析】∵AB为直径,∴∠ACB=∠ADB=90°,又∵AB=10cm,AC=6cm,又∵CD是∠ACB的平分线,∠ACD=∠DCB,∴AD=DB.在 Rt∠ADB中,9.已知AB是⊙O的直径,AE是弦,C是的中点,CD⊥AB于D,交AE于F,CB交AE于G.求证:CF=FG.分析:如图7—107,要证CF=FG,只需证∠FCG=∠FGC.由已知,∠FCG与∠B互余.如果连结AC,∠ACB=90°.∠FGC与∠CAG互余.【解析】证明:连结AC,∵AB为直径,∴∠ACB=90°,∠FGC=90°-∠CAE.又∵CD⊥AB于D,∠FCG=90°-∠B,∴∠FGC=∠FCG.因此,CF=FG.10.如图,AB 是⊙O 的直径. ABCDO(1)若OD ∥AC ,与 的大小有什么关系?为什么?(2)把(1)中的条件和结论交换一下,还能成立吗?说明理由. 【解析】(1)=延长DO 交⊙O 于E . ∵AC ∥OD , ∴=. ∵∠1=∠2, ∴=. ∴=.(2)仍成立,延长DO 交⊙O 于点E ,连结AD . ∵=,=, ∴=. ∴∠3=∠D . ∴AC ∥OD .11.如图,⊙O 上三点A 、B 、C ,AB =AC ,∠ABC 的平分线交⊙O 于点E ,∠ACB 的平分线交⊙O 于点F ,BE 和CF 相交于点D ,四边形AFDE 是菱形吗?验证你的结论. AB CDEFO【解析】四边形AFDE 是菱形.证明:∵∠ABC=∠ACB, ∠ABE=∠EBC=∠ACF=∠FCB. 又∠FAB ,∠FCB 是同弧上的圆周角, ∴∠FAB=∠FCB ,同理∠EAC=∠EBC. 有∠FAB=∠ABE=∠EAC=∠ACF.∴AF ∥ED ,AE ∥FD 且AF=AE. ∴四边形AFDE 是菱形.12.如图是一大型圆形工件被埋在土里而露出地表的部分.为推测它的半径,小亮同学谈了他的做法:先量取弦AB 的长,再量中点到AB 的距离CD 的长,就能求出这个圆形工件的半径.你认为他的做法合理吗?如不合理,说明理由;如合理,请你给出具体的数值,求出半径,与同伴交流.BDCDEO1 23CABD【解析】小亮的做法合理.取AB=8 m ,CD=2 m, 设圆形工件半径为r, ∴r 2=(r -2)2+42. 得r=5(m).13.如图,现需测量一井盖(圆形)的直径,但只有一把角尺(尺的两边互相垂直,一边有刻度,且两边长度都长于井盖的半径),请配合图形,用文字说明测量方案,写出测量的步骤.(要求写出两种测量方案)【解析】方案1:使角尺顶点在圆上,角尺两边与圆两交点连接就是圆的直径,用刻度尺量出直径.方案2:任画圆的一条弦,用尺量出弦的中点,利用角尺过弦中点做弦的垂线,垂线与圆的两交点间的线段为圆的直径.14.如图,在⊙O 中,AB 是直径,CD 是弦,AB ⊥CD . (1)P 是上一点(不与C 、D 重合),求证:∠CPD =∠COB .(2)点P ′在劣弧CD 上(不与C 、D 重合)时,∠CP ′D 与∠COB 有什么数量关系?请证明你的结论.BA CDOP【解析】(1)证明:连结OD, ∵AB 是直径,AB ⊥CD, ∴=.∴∠COB=∠DOB=21∠COD. 又∵∠CPD=21∠COD, ∴∠CPD=∠COB. (2)∠CP ′D 与∠COB 的数量关系是:∠CP ′D+∠COB=180°.证明:∵∠CPD+∠CP ′D=180°,∠COB=∠CPD, ∴∠CP ′D+∠COB=180°15.(9分)已知,如图20,AB 是⊙O 的直径,C 是⊙O 上一点,连接AC,过点C 作直线CD ⊥AB 于D(AD<DB),点E 是DB 上任意一点(点D 、B 除外),直线CE 交⊙O 于点F,连接AF 与直线CD 交于点G.(1)求证:AC 2=AG ·AF ;(2)若点E 是AD (点A 除外)上任意一点,上述结论是否仍然成立?若成立,请画出图形并给予证明;若不成立,请说明理由.AB CD OEGF【解析】(1)证明:连接CB ,∵AB 是直径,CD ⊥AB , ∴∠ACB =∠ADC =90°. ∴Rt △CAD ∽Rt △BAC . ∴得∠ACD =∠ABC . ∵∠ABC =∠AFC , ∴∠ACD =∠AFC . ∴△ACG ∽△ACF . ∴ACAF AG AC. ∴AC 2=AG ·AF . (2)当点E 是AD (点A 除外)上任意一点,上述结论仍成立 ①当点E 与点D 重合时,F 与G 重合, 有AG =AF ,∵CD ⊥AB ,∴=, AC =AF . ∴AC 2=AG ·AF .②当点E 与点D 不重合时(不含点A )时,证明类似①.。

17-第三章4圆周角和圆心角的关系

17-第三章4圆周角和圆心角的关系
知识点三 圆内接四边形
栏目索引
8.(2019黑龙江哈尔滨道外一模)如图3-4-6,AB、BC为☉O的两条弦,∠AOC -∠ABC=60°,则∠ABC的度数为 ( )
A.120°
B.100°
C.160°
图3-4-6 D.150°
4 圆周角和圆心的关系
答案
B
如图,在优弧

AC
上取点D,连接DA、DC,
温馨提示 任何一个四边形都最多只有一个外接圆,但是一个圆的内接四边形有无数个
4 圆周角和圆心的关系
2.圆内接四边形的性质
内容
性质
圆内接四边形的对角互补
详解
∵ ︵ 与 ︵ 所对的圆心角之
ABC ADC
和为360°,∴∠ABC+∠D= 1×36
2
0°=180°.同理,∠BCD+∠BAD=1
80°
拓展
∵∠ABC+∠D=180°,∠CBE+∠ ABC=180°,∴∠CBE=∠D. 结论:圆内接四边形的任何一个 外角等于它的内对角
2
栏目索引
③如图3-4-1(3)所示,圆心O在∠BAC的外部.连接AO并延长交☉O于点D,由
①得∠BAD= 1 ∠BOD,∠CAD= 1 ∠COD,∴∠CAD-∠BAD= 1(∠COD-∠
2
2
2
BOD),即∠BAC= 1 ∠BOC.
2
提示:不能把“一条弧所对的”去掉,而简单说成“圆周角等于圆心角的一
解析 因为四边形ADBC内接于☉O,所以∠2+∠D=180°,同理可得∠1+∠ E=180°,所以∠1+∠2+∠D+∠E=360°,又∠1+∠2=180°-∠BAC=130°,所以 ∠D+∠E=230°.

圆周角和圆心角的关系证明

圆周角和圆心角的关系证明

圆周角和圆心角的关系证明某个物体绕某个圆周运动,便形成了一种运动角圆周角。

圆心角就是该物体在圆心起点绕圆周转过的角度大小,是相对于圆心处于一定角度之上的状态。

因此可以概括为:圆周角和圆心角具有某种关系。

首先,我们可以比较圆形的圆周角和圆心角的向量。

两个向量的长度可以相等,但其方向不同。

圆心角的方向与圆心起点的笛卡尔坐标轴正向重合,而圆周角的方向与与笛卡尔坐标轴的正向垂直。

其次,圆周角和圆心角之间的关系也可以用数学证明。

把夹角圆心角α和圆周角β,以及笛卡尔坐标系中相对应的半径r表示出来,建立圆形方程式:x2 + y2 = r2,其中:x = r cosα,y = r sen α。

将公式项展开:r2cos2α + r2sen2α = r2从而得出cos2α + sen2α = 1,记为:cos2α = 1 - sen2α。

它表明:圆心角α和圆周角β之间有一定的关系,即:cos2α = 1 - sen2β同时,将圆周角β和圆心角α之间的关系用另一种表示方式表示出来,即:cosβ = cosα - sinα从上面的公式可以看出,圆心角α和圆周角β之间存在一定的关系,可用cos2α = 1 - sen2β及cosβ = cosα - sinα来表示,经过数学的推理可得出圆心角α和圆周角β之间的关系,即:cos2α = 1 - sen2βcosβ = cosα - sinα从而得出,圆周角和圆心角之间存在一定的关系。

再次,我们可以通过几何图形来证明圆周角和圆心角之间的关系。

在一个平面上,以圆心O为原点,以半径r为长度的圆形上,可以建立一个等边三角形AOP,其中A为圆周上的一点,O为圆心,P为圆上的一点,半径为r,以O为起点,走过一个圆心角α后,必定会到达P点。

同时,从圆弧AP上可以看出这个圆心角α和圆周上的夹角β之间是相等的。

因此,根据等边三角形的各种性质,可以推出:圆心角α和圆周角β是相等的。

以上就是圆周角和圆心角之间关系的数学、向量和几何图形证明。

圆周角和圆心角的关系—知识讲解(基础)

圆周角和圆心角的关系—知识讲解(基础)

圆周角和圆心角的关系--知识讲解(基础)【学习目标】1 •理解圆周角的概念,了解圆周角与圆心角之间的关系;2 •理解圆周角定理及推论;3 •熟练掌握圆周角的定理及其推理的灵活运用;通过观察、比较、分析圆周角与圆心角的关系,发展学生合情推理能力和演绎推理能力.【要点梳理】要点一、圆周角1. 圆周角定义:像图中/ AEB / ADB / ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2. 圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的一半3. 圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;推论2:直径所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交(2)圆周角定理成立的前提条件是在同圆或等圆中(3)圆心与圆周角存在三种位置关系:圆心在圆周角的一边上;圆心在圆周角的内部;圆心在圆周要点二、圆内接四边形1.圆内接四边形定义:四边形的四个顶点都在同一个圆上,像这样的四边形叫做圆内接四边形,这个圆叫做四边形的外接圆2.圆内接四边形性质:圆内接四边形的对角互补•如图,四边形ABCD是O 0的内接四边形,则/ A+Z C=180°, / B+Z D=180°D要点诠释:当四边形的四个顶点不同时在一个圆上时,四边形的对角是不互补【典型例题】类型一、圆周角、圆心角、弧、弦之间的关系及应用C^1・如图,在O 0中 , _ ;i| ',求/ A的度数.【答案与解析】v AB =腮:.AB =腮•債养【总结升华】在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的圆周角相等,所对的弦也相等.举一反三:【变式】如图所示,正方形ABCD内接于O 0,点E在劣弧AD上,则/ BEC等于()A . 45°B . 60°C . 30°D . 55【答案】A.AB = BC= CD= DAAB =BC =CD 二DA =90°,/ BEC= 45°.类型二、圆周角定理及应用C"2.观察下图中角的顶点与两边有何特征?指出哪些角是圆周角?(C) (d)【思路点拨】根据圆周角的定义去判断,顶点在圆上,并且两边都和圆相交的角叫做圆周角•【答案与解析】⑻/1顶点在O O内,两边与圆相交,所以/ 1不是圆周角;(b) / 2顶点在圆外,两边与圆相交,所以/ 2不是圆周角;(c) 图中/ 3、/ 4、/ BAD的顶点在圆周上,两边均与圆相交,所以/ 3、/ 4、/ BAD是圆周角.(d) / 5顶点在圆上,一边与圆相交,另一边与圆不相交,所以/ 5不是圆周角;(e) / 6顶点在圆上,两边与圆均不相交,由圆周角的定义知/ 6不是圆周角.【总结升华】紧扣定义,抓住二要素,正确识别圆周角.3. (2015?台州)如图,四边形ABCD内接于O O,点E在对角线AC上,EC=BC=DC .(1)若/ CBD=39 °,求/ BAD 的度数;(2 )求证:/ 1 = / 2 .【答案与解析】(1)解:T BC=DC ,•••/ CBD= / CDB=39 °•••/ BAC= / CDB=39 ° / CAD= / CBD=39 °• / BAD= / BAC+ / CAD=39 °+39°=78 °(2)证明:T EC=BC ,:丄 CEB= / CBE ,而/ CEB= / 2+ / BAE ,/ CBE= / 1 + Z CBD ,•••/ 2+Z BAE= / 1 + / CBD ,•••/ BAE= / CBD ,•••/ 仁/2.【总结升华】 本题主要考查了圆周角定理和等腰三角形的性质,熟悉圆的有关性质是解决问题的关键.BD 是O 0的弦,延长BD 到C ,使AC=AB BD 与CD 的大小有什么关系?【思路点拨】BD=CD 因为AB=AC 所以这个厶ABC 是等腰三角形,要证明 D 是BC 的中点,只要连结 AD,证明AD 是高或是/ BAC 的平分线即可.【答案与解析】BD=CD.理由是:如图,连接 AD•/ AB 是O 0的直径•••/ ADB=90 即 ADL BC 又••• AC=AB • BD=CD.【总结升华】 解题的关键是正确作出辅助线 举一反三:【变式】(2015?安顺)如图,O O 的直径AB 垂直于弦CD ,垂足为E ,/ A=22.5 ° OC=4 , CD 的长为( ).如图,AB 是O 0的直径,为什么?【思路点拨】 根据圆内接四边形的性质可求得四个角的比值,再根据四边形的内角和为 得/ D 的度数.【答案与解析】 解:•••圆内接四边形的对角互补,••• / A: / B:/ C:/ D=2:3:4 : 3设/ A=2x ,则/ B=3x ,/ C=4x,/ D=3x,• 2x+3x+4x+3x=360 ° ,• x=30°• / D=90° .【总结升华】本题考查圆内接四边形的性质和四边形的内角和为提示:T/ A=22.5°,• / BOC=/A=45 ,TOO 的直径AB 垂直于弦CD• C E=DE △ OCE 为等腰直角三角形,• C E= :OC=2 匚,2• CD=2CE=4 匚.故选:C.类型三、圆内接四边形及应用5 •圆内接四边形 ABCD 勺内角/ A : / B:Z C=2:3:4,求/ D 的度数.360 °,从而求 360°的运用. B . 4【答案】C.举一反三:【变式】如图,O O中,四边形ABCD是圆内接四边形,/ BOD=110,则/ BCD的度数是()A.110 °B.70 °C.55 °D.125 °【答案】D.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆周角和圆心角的关系-- 知识讲解(基础)
【学习目标】
1.理解圆周角的概念,了解圆周角与圆心角之间的关系;
2.理解圆周角定理及推论;
3.熟练掌握圆周角的定理及其推理的灵活运用;通过观察、比较、分析圆周角与圆心角的关系,发展学生合情推理能力和演绎推理能力.
【要点梳理】
要点一、圆周角
1. 圆周角定义:
像图中∠ AEB、∠ ADB、∠ ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.
2. 圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的一半.
3. 圆周角定理的推论:
推论1:同弧或等弧所对的圆周角相等;
推论2:直径所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:
(1) 圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.
(2) 圆周角定理成立的前提条件是在同圆或等圆中.
( 3)圆心与圆周角存在三种位置关系:圆心在圆周角的一边上;圆心在圆周角的内部;圆心在圆周
要点二、圆内接四边形
1. 圆内接四边形定义:
四边形的四个顶点都在同一个圆上,像这样的四边形叫做圆内接四边形,这个圆叫做四边形的外接圆
2. 圆内接四边形性质:
圆内接四边形的对角互补.如图,四边形ABCD是⊙ O的内接四边形,则∠A+∠C=180°,∠B+∠D=180°
D
要点诠释:当四边形的四个顶点不同时在一个圆上时,四边形的对角是不互补
典型例题】类型一、圆周角、圆心角、弧、弦之间的关系及应用
1.如图,在⊙ O中,,求∠ A的度数.
答案与解析】
【总结升华】在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的圆周角相等,所对的弦也相等.
举一反三:
【变式】如图所示,正方形ABCD内接于⊙ O,点E在劣弧AD上,则∠ BEC等于( )
A .45°
B . 60°
C .30°
D . 55 答案】 A.
∵ AB = BC =CD =DA ,
AB BC CD DA 90°, ∠ BEC = 45°.
类型二、圆周角定理及应用
【思路点拨】 根据圆周角的定义去判断,顶点在圆上,并且两边都和圆相交的角叫做圆周角 . 【答案与解析】 (a) ∠1顶点在⊙ O 内,两边与圆相交,所以∠ 1 不是圆周角;
(b) ∠2顶点在圆外,两边与圆相交,所以∠ 2 不是圆周角;
(c) 图中∠ 3、∠ 4、∠ BAD 的顶点在圆周上,两边均与圆相交,所以∠ 3、∠ 4、∠ BAD 是圆周角. (d) ∠5顶点在圆上,一边与圆相交,另一边与圆不相交,所以∠ 5 不是圆周角;
(e) ∠ 6 顶点在圆上,两边与圆均不相交,由圆周角的定义知∠ 6 不是圆周角 .
【总结升华】 紧扣定义,抓住二要素,正确识别圆周角.
3. (2015?台州)如图,四边形 ABCD 内接于⊙ O ,点 E 在对角线 AC 上, EC=BC=DC . ( 1)若∠ CBD=39 °,求∠ BAD 的度数;
( 2)求证:∠ 1=∠ 2.
【答案与解析】
( 1)解:∵ BC=DC ,
∴∠ CBD= ∠CDB=39 °,
∵∠ BAC= ∠CDB=39 °,∠ CAD= ∠CBD=39 °,
∴∠ BAD= ∠BAC+ ∠CAD=39 °+39°=78°; (2)证明:∵ EC=BC ,
2. 观察下图中角的顶点与两边有何特征 ? 指出哪些角是圆周角 ?
∴∠ CEB= ∠CBE , 而∠CEB=∠2+∠BAE ,∠ CBE= ∠ 1+∠ CBD ,
∴∠ 2+∠BAE= ∠ 1+∠ CBD ,
∵∠ BAE= ∠CBD ,
∴∠ 1=∠ 2.
总结升华】 本题主要考查了圆周角定理和等腰三角形的性质,熟悉圆的有关性质是解决问题的关键.
BD 是⊙ O 的弦,延长 BD 到 C ,使AC=AB ,BD 与 CD 的大小有什么关系? 为什么?
思路点拨】 BD=CD ,因为 AB=AC ,所以这个△ ABC 是等腰三角形,要证明 D 是 BC 的中点,只要连结 AD , 证明 AD 是高或是∠ BAC 的平分线即可.
答案与解析】
BD=CD.
理由是:如图,连接 AD
∵AB 是⊙ O 的直径
∴∠ ADB=90°即 AD ⊥ BC 又∵ AC=AB ,∴ BD=CD.
总结升华】 解题的关键是正确作出辅助线 举一反三:
【变式】(2015?安顺)如图,⊙ O 的直径 AB 垂直于弦 CD ,垂足为 E ,∠ A=22.5 °,OC=4, CD 的长为 ()
.如图, AB 是⊙ O 的直径,
得∠ D 的度数 .
答案与解析】 解:∵圆内接四边形的对角互补,
∴ ∠ A :∠ B :∠ C :∠ D=2:3:4 :3
设∠ A=2x ,则∠ B=3x ,∠ C=4x ,∠ D=3x ,
∴ 2x+3x+4x+3x=360 °,
∴x=30°
∴∠ D=90°.
总结升华】 本题考查圆内接四边形的性质和四边形的内角和为
C .4
D .8
提示:∵∠ A=22.5°,
∴∠ BOC=∠2 A=45°, ∵⊙O 的直径
AB 垂直于弦 CD , ∴CE=D ,E △OCE
为等腰直角三角形,
∴ CE= OC=2 ,
∴CD=2CE=4 .
故选: C .
类型三、圆内接四边形及应用
5.圆内接四边形 ABCD 的内角∠ A :∠ B :∠ C=2:3:4 ,求∠ D 的度数 .
思路点拨】 根据圆内接四边形的性质可求得四个角的比值,再根据四边形的内角和为
360°的运用 .
B .4 答案】 C.
360°,从而求
举一反三:
【变式】如图,⊙ O中,四边形ABCD是圆内接四边形,∠ BOD=110°,则∠ BCD的度数是()
A.110 °
B.70 °
C.55 °
D.125 °
答案】D.A
C。

相关文档
最新文档