2020届湖北省武汉市东湖高新区中考数学模拟试卷((有答案))(加精)
2020年湖北省武汉市东湖高新区中考数学模拟试卷(4月份) (含答案解析)
2020年湖北省武汉市东湖高新区中考数学模拟试卷(4月份)一、选择题(本大题共10小题,共30.0分)1.2019的相反数是()A. −2019B. 2019C. 12009D. −120092.若式子√a−1在实数范围内有意义,则实数a的取值范围是()A. a>−1B. a≥−1C. a>1D. a≥13.掷一枚均匀的骰子,骰子停止转动后朝上一面的点数出现下列情况的可能性最小的是()A. 偶数B. 奇数C. 比5小的数D. 数64.把图中阴影部分的小正方形移动一个,使它与其余四个阴影部分的正方形组成一个既是轴对称又是中心对称的新图形,这样的移法,正确的是()A. 6→3B. 7→16C. 7→8D. 6→155.下面由7个完全相同的小正方体组成的几何体的左视图是()A.B.C.D.6.某家具厂现有52名工人,每人每天能生产2张方桌或5张椅子,一张方桌与4张椅子配成一套,怎样合理分配工人生产方桌和椅子才能使每天生产的方桌和椅子恰好配套?设x名工人生产方桌,y名工人生产椅子,所列方程组正确的是()A. {x +y =262x =5yB. {x +y =265x =2yC. {x +y =524×2x =5yD. {x +y =524×5x =2y 7. 某林业部门要查某种幼树在一定条件下的移植成活率.在同样条件下,大量地对这种幼树进行移植,并统计成活情况,计算成活的频率.如下表: 移植总数(n) 成活数(m) 成活的频率(mn )108 0.80 5047 0.94 270235 0.870 400369 0.923 750662 0.883 15001335 0.89 35003203 0.915 70006335 0.905 90008073 0.897 14000 12628 0.902 所以可以估计这种幼树移植成活的概率为( )A. 0.1B. 0.2C. 0.8D. 0.9 8. 反比例函数y =k+3x 的图象在每个象限内,y 随x 的增大而增大,则k 的取值范围为( )A. k <3B. k >3C. k <−3D. k >−39. 如图,在平面直角坐标系中,点O 为坐标原点,点A 、B 在x 轴上、点C 在y 轴上,点A 、B 、C 的坐标分别为A(√3,0),B(3√3,0),C(0,5),点D 在第一象限内,且∠ADB =60°,则线段CD 长的最小值为( )A. 2√3B. 2√7−2C. 4D. 2√13−410.20172018的个位上的数字是()A. 9B. 7C. 3D. 1二、填空题(本大题共6小题,共18.0分)11.tan60°=______.12.一组数据7,7,9,10,x,已知这组数据的中位数是7,则x的取值范围是______.13.已知x1,x2是一元二次方程3x2=6−2x的两个实数根,则x1−x1x2+x2=______.14.已知等腰△ABC,其腰上的高线与另一腰的夹角为35°,那么顶角为度数是______.15.抛物线y=ax2+bx+c的对称轴为直线x=−1,部分图象如图所示,下列判断中:①abc>0;②b2−4ac>0;③9a−3b+c=0;④若点(−0.5,y1),(−2,y2)均在抛物线上,则y1>y2;⑤5a−2b+c<0.其中正确的有_________.16.如图,在△ABC中,∠B=45°,∠C=75°,BC=6−2√3,点P是BC上一动点,PD⊥AB于D,PE⊥AC于E,则线段DE的最小值为______ .三、解答题(本大题共8小题,共64.0分)17.计算:(−5a3)2+(−3a2)2⋅(−a2)18.如图,已知CD⊥AB,EF⊥AB,垂足分别为点D、点F,且∠1=∠2,试说明∠DGB=∠ACB.19.为了了解七年级学生每学期参加综合实践活动的情况,某区教育行政部门随机抽样调查了某校七年级学生一个学期参加综合实践活动的天数,并将得到的数据绘制成下面两幅统计图(不完整).请你根据图中提供的信息,回答下列问题:(1)求扇形统计图中a的值,以及该校七年级学生总人数;(2)求出活动时间为5天的学生人数,并补全条形统计图;(3)如果该区七年级学生共有3000人,根据以上数据,试估计这3000人中“活动时间不少于4天”的百分比.20.如图,在正方形网格中的每个小正方形边长都为1个单位长度,我们把每个小正方形的顶点称为格点,请分别仅用一把无刻度的直尺画图:(1)过点A画一条AB的垂线;(2)过点C画一条AB的平行线.21.如图,在△ABC中,AB=AC,AE是BC边上的高线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB为⊙O的直径.(1)求证:AM是⊙O的切线;(2)当BE=3,cosC=2时,求⊙O的半径.522.某商场销售A,B两款书包,已知A,B两款书包的进货价格分别为每个30元,50元,商场用3600元的资金购进A,B两款书包共100个.(1)求A,B两款书包分别购进多少个.(2)市场调查发现,B款书包每天的销售量y(个)与销售单价x(元)有如下关系:y=−x+90(60≤x≤90).设B款书包每天的销售利润为w元,当B款书包的销售单价为多少元时,商场每天B 款书包的销售利润最大?最大利润是多少元?23.在平面直角坐标系中,四边形OABC是矩形,点O(0,0),点A(3,0),点C(0,4),连接OB,以点A为中心,顺时针旋转矩形AOCB,旋转角为α(0°<α<360°),得到矩形ADEF,点O,C,B 的对应点分别为D,E,F.(Ⅰ)如图,当点D落在对角线OB上时,求点D的坐标;(Ⅱ)在(Ⅰ)的情况下,AB与DE交于点H.①求证△BDE≌△DBA;②求点H的坐标.(Ⅲ)α为何值时,FB=FA.(直接写出结果即可)24.已知直线y=12x+2分别交x轴、y轴于A、B两点,抛物线y=12x2+mx−2经过点A,和x轴的另一个交点为C.(1)求抛物线的解析式;(2)如图1,点D是抛物线上的动点,且在第三象限,求△ABD面积的最大值;(3)如图2,经过点M(−4,1)的直线交抛物线于点P、Q,连接CP、CQ分别交y轴于点E、F,求OE·OF的值.【答案与解析】1.答案:A解析:此题主要考查了相反数,正确把握相反数的定义是解题关键.直接利用相反数的定义分析得出答案.解:2019的相反数是:−2019.故选A.2.答案:D解析:根据二次根式有意义的条件列出不等式,解不等式即可.本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.解:由题意得,a−1≥0,解得,a≥1,故选D.3.答案:D解析:这是一道考查随机事件的概率的题目,解题关键在于逐个分析概率,即可求出答案.解:A.为奇数的概率为12;B.为偶数的概率为12;C.比5小的概率为46=23;D.为6的概率为16.16最小,故选D.4.答案:D解析:解:阴影部分的小正方形6→15,能使它与其余四个阴影部分的正方形组成一个既是轴对称又是中心对称的新图形.故选:D .直接利用轴对称图形以及中心对称图形的性质分别分析得出答案.此题主要考查了中心对称图形以及轴对称图形,正确把握相关定义是解题关键.5.答案:B解析:解:从左边看第一层是三个正方形,第二层是左边两个正方形,如图所示:故选:B .根据从左边看得到的图形是左视图,可得答案.本题考查简单组合体的三视图,从左边看得到的图形是左视图.6.答案:C解析:本题主要考查二元一次方程组的应用.难点在于理解第二个等量关系:若要保证配套,则生产的椅子的数量是生产的桌子数量的4倍,所以列方程的时候,应是桌子数量的4倍=椅子数量. 等量关系有:①生产桌子人数+生产椅子人数=52人;②每天生产的桌子和椅子按1:4配套,则桌子数量的4倍=椅子数量,据此可列出方程组.解:设x 名工人生产方桌,y 名工人生产椅子,根据生产桌子人数+生产椅子人数=52人,得方程x +y =52;根据桌子数量的4倍=椅子数量,得方程4×2x =5y .列方程组为{x +y =524×2x =5y. 故选C .7.答案:D解析:此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比解:根据表中信息,当移植总数足够大时,频率逐渐接近于0.90,由于试验次数较多,可以用频率估计概率.本题主要考查利用频率估计概率,大量反复试验下频率稳定于概率.故选D.8.答案:C解析:本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.根据反比例函数的性质列出关于k的不等式,求出k的取值范围即可.的图象,在每个象限内y随x的增大而增大,解:∵反比例函数y=k+3x∴k+3<0,解得k<−3.故选C.9.答案:B解析:解:作圆,使∠ADB=60°,设圆心为P,连结PA、PB、PC,PE⊥AB于E,如图所示:∵A(√3,0),B(3√3,0),∴E(2√3,0),又∠ADB=60°,∴∠APB=120°,∴PE=1,PA=2PE=2,∴P(2√3,1),∵C(0,5),∴PC=√(2√3)2+(5−1)2=2√7,又∵PD=PA=2,∴只有点D在线段PC上时,CD最短(点D在别的位置时构成△CDP),∴CD最小值为:2√7−2.故选:B.作圆,求出半径和PC的长度,判出点D只有在CP上时CD最短,CD=CP−DP求解.本题考查了点与圆的位置关系,坐标与图形的性质,圆周角定理及勾股定理,解决本题的关键是判出点D只有在CP上时CD最短.10.答案:A解析:解:∵20171个位是7;20172个位是9;20173个位是3;20174个位是1;20175个位是7;…∴2018÷4=504…2,∴20172018的个位上的数字与20172个位数字相同为:9.故选:A.直接分别得出20171个位是7;20172个位是9;20173个位是3;20174个位是1;20175个位是7;即可得出每4个尾数循环一次,进而得出答案.此题主要考查了尾数特征,正确得出尾数的变化规律是解题关键.11.答案:√3解析:解:tan60°的值为√3.故答案为:√3.根据特殊角的三角函数值直接得出答案即可.本题考查的是特殊角的三角函数值,熟记各特殊角的三角函数值是解答此题的关键.12.答案:x≤7解析:此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.根据中位数的定义先把数据从小到大排列,位于最中间的一个数或两个数的平均数为中位数,从而得出x的取值范围.解:这组数据的中位数为7,故7排在中间,x需要不大于7,则x的取值范围是x≤7.故答案为x≤7.13.答案:43解析:解:∵x1,x2是一元二次方程3x2+2x−6=0的两个实数根,∴x1+x2=−2,x1x2=−2,3,则原式=43故答案为:43利用根与系数的关系求出各自的值,代入计算即可求出值.此题考查了根与系数的关系,熟练掌握根与系数的关系式是解本题的关键.14.答案:55°或125°解析:解:如图(1),∵AB=AC,BD⊥AC,∴∠ADB=90°,∵∠ABD=35°,∴∠A=55°;如图(2),∵AB=AC,BD⊥AC,∴∠BDC=90°,∵∠ABD=35°,∴∠BAD=55°,∴∠BAC=125°;综上所述,它的顶角度数为:55°或125°.故答案为:55°或125°.分别从△ABC是锐角三角形与钝角三角形去分析求解即可求得答案.此题考查了等腰三角形的性质.此题难度适中,注意掌握分类讨论思想的应用是解此题的关键.15.答案:②③⑤解析:本题考查二次函数图像与系数的关系,二次函数图象上的点的特征,二次函数与方程,二次函数与不等式的关系.解题的关键是灵活运用所学知识解决问题,属于中考常考题型.利用抛物线开口方向得到a>0,利用抛物线的对称轴方程得到b=2a>0,利用抛物线与y轴的交点位置得到c<0,则可对①进行判断;利用抛物线与x轴交点个数可对②进行判断;利用抛物线的对称性得到抛物线与x轴的另一个交点坐标为(−3,0),则可对③进行判断;根据二次函数的性质,=−1,进而可得b=通过比较两点到对称轴的距离可对④进行判断;根据对称轴为x=−1可得−b2a2a,c=−3a,5a−2b+c=5a−4a−3a=−2a<0,即可解答.解:①∵抛物线对称轴x=−1,经过(1,0),=−1,a+b+c=0,∴−b2a∴b=2a,c=−3a,∵开口向上,即a>0,∴b>0,c<0,∴abc<0,∴故①错误;②∵抛物线与x轴有两交点,∴b2−4ac>0,故②正确;③根据对称性可知,抛物线与x轴交于(−3,0),∴9a−3b+c=0,故③正确;④∵点(−0.5,y1),(−2,y2)均在抛物线上,∴根据抛物线的对称性,(−1.5,y1),(−2,y2)也在抛物线上,∵−1.5>−2,则y1<y2;故④错误;⑤∵5a−2b+c=5a−4a−3a=−2a<0,故⑤正确.∴正确的有②③⑤个.故答案为②③⑤.16.答案:√3解析:本题考查了四点共圆,相似三角形的判定和性质,勾股定理,等腰直角三角形的判定和性质,解直角三角形,正确的判断当AP⊥BC时,线段DE的值最小是解题的关键.当AP⊥BC时,线段DE的值最小,利用四点共圆的判定可得:A、D、P、E四点共圆,且直径为AP,得出∠AED=∠B=45°,有一公共角,根据两角对应相等两三角形相似得△ADE∽△ACB,则AEAB =DECB,设AD=2x,表示出AE和AB的长,求出AE与AB的比,代入比例式中,可求出DE的值.解:当AP⊥BC时,线段DE的值最小,如图1,∵PD⊥AB于D,PE⊥AC于E,∴∠ADP=∠AEP=90°,∴∠ADP+∠AEP=180°,∴A、D、P、E四点共圆,且直径为AP,在Rt△PBD中,∠B=45°,∴△PBD是等腰直角三角形,∠APD=45°,∴△APD也是等腰直角三角形,∴∠PAD=45°,∴∠PBD=∠PAD=45°,∴∠AED=45°,∴∠AED=∠B=45°,∵∠EAD=∠CAB,∴△AED∽△ABC,∴AEAB =DECB,设AD=2x,则PD=DB=2x,AP=2√2x,如图1,取AP的中点O,连接EO,则AO=OE=OP=√2x,∵∠EAP=∠BAC−∠PAD=60°−45°=15°,∴∠EOP=2∠EAO=30°,过E作EM⊥AP于M,则EM=√22x,cos30°=OMOE,∴OM=√2x⋅√32=√62x,∴AM=√2x+√62x=2√2+√62x,由勾股定理得:AE=√AM2+EM2=(√3+1)x,∴(√3+1)x4x =6−2√3,∴ED=√3.则线段DE的最小值为√3;故答案为:√3.17.答案:解:(−5a3)2+(−3a2)2⋅(−a2)=25a6+9a4⋅(−a2)=25a6−9a6=16a6.解析:根据积的乘方、幂的乘方和同底数幂的乘法可以解答本题.本题考查整式的混合运算,解答本题的关键是明确整式的化简的方法.18.答案:证明:∵CD⊥AB,EF⊥AB∴EF//CD,∴∠1=∠ACD,∵∠1=∠2,∴∠2=∠ACD,∴AC//DG∴∠DGB=∠ACB.解析:此题考查平行线的判定和性质,由CD⊥AB,EF⊥AB可得EF//CD,推出∠1=∠ACD,进一步得出∠2=∠ACD,可得AC//DG,利用平行线的性质可得.19.答案:解:(1)根据题意得:1−(30%+15%+10%+5%+15%)=25%,20÷10%=200(人),则扇形统计图中a=25%,该校七年级学生总数为200人;(2)5天学生数为200×25%=50(人);补全条形统计图,如图所示:(3)根据题意得:估计这3000人中“活动时间不少于4天”的百分比为:30%+25%+15%+5%= 75%.解析:本题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.(1)由单位“1”减去其他天数的百分比求出5天的百分比,即为a的值;根据条形统计图中2天的人数除以占的百分比即可得到七年级的学生总数;(2)由总人数乘以5天占的百分比求出5天的学生数,补全条形统计图即可;(3)找出不少于4天的学生占的百分比即可.20.答案:解:(1)如图所示,AB的垂线为AD;(2)如图所示,直线CE即为所求.解析:本题考查了作图−应用与设计作图,垂线的定义,平行线的定义,正确的作出图形是解题的关键.(1)根据垂线的定义作出图形即可;(2)根据平行线的定义作出平行线即可.21.答案:解:(1)连结OM.∵BM平分∠ABC∴∠1=∠2又OM=OB∴∠2=∠3∴OM//BC∵AE是BC边上的高线∴AE⊥BC,∴AM⊥OM∴AM是⊙O的切线(2)∵AB=AC∴∠ABC=∠C,AE⊥BC,∴E是BC中点∴EC=BE=3∵cosC=25=ECAC∴AC=52EC=152∵OM//BC,∠AOM=∠ABE ∴△AOM∽△ABE∴OMBE=AOAB又∵∠ABC=∠C∴∠AOM=∠C 在Rt△AOM中cos∠AOM=cosC=25,∴OM AO=25∴AO=52 OMAB=52OM+OB=72OM而AB=AC=152∴72OM=152∴OM=15 7∴⊙O的半径是157解析:(1)连结OM,易证OM//BC,由于AE是BC边上的高线,从而可知AM⊥OM,所以AM是⊙O 的切线.(2)由于AB=AC,从而可知EC=BE=3,由cosC=25=ECAC,可知:AC=52EC=152,易证△AOM∽△ABE,所以OMBE =AOAB,再证明cos∠AOM=cosC=25,所以AO=52OM,从而可求出OM=157本题考查圆的综合问题,涉及锐角三角函数,相似三角形的判定与性质,等腰三角形的性质等知识,综合程度较高,需要学生综合运用知识的能力.22.答案:解:(1)设购进A款书包x个,则B款为100−x个,由题意得:30x+50(100−x)=3600,解得:x=70,即:A,B两款书包分别购进70和30个;(2)由题意得:w=y(x−50)=−(x−50)(x−90),∵−1<0,故w有最大值,函数的对称轴为:x=70,而60≤x≤90,故:当x=70时,w有最大值为400,即:B款书包的销售单价为70元时B款书包的销售利润最大,最大利润是400元.解析:(1)设购进A款书包x个,则B款为100−x个,由题意得:30x+50(100−x)=3600,即可求解;(2)由题意得:w=y(x−50)=−(x−50)(x−90),即可求解.本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=−b2a时取得23.答案:解:(I)如图1,过D作DG⊥OA于G,∵点A(3,0),点C(0,4),∴OC=4,OA=3,∵四边形OABC是矩形,∴∠OAB=90°,AB=OC=4,∴DG//AB,∴△ODG∽△OBA,∴OGDG =OAAB=34,设OG=3x,DG=4x,∴AG=3−3x,由旋转得:AD=OA=3,由勾股定理得:AD2=DG2+AG2,32=(4x)2+(3−3x)2,解得:x1=0(舍),x2=1825,∴OG=3x=5425,DG=4x=7225,∴D(5425,7225);(II)①由旋转得:DE=OC=AB,∵AD=OA,∴∠ADO=∠AOD,∵BC//OA,∴∠AOD=∠CBD,∴∠CBD=∠ADO,∴∠DBE=∠ADB,∵∠ADH=∠HBE=90°,∠AHD=∠BHE,∴∠DAB=∠BED,在△BDE和△DBA中,∵{∠BED=∠DAB ∠DBE=∠ADB DE=AB,∴△BDE≌△DBA(AAS);②∵△BDE≌△DBA,∴∠DBH=∠BDH,∴BH=DH,设BH=x,则DH=x,AH=4−x,在Rt△ADH中,由勾股定理得:AD2+DH2=AH2,x2+32=(4−x)2,x=78,∴AH=4−78=258,∴H(3,258);(III)分两种情况:①当F在AB的右侧时,如图2,过F作FM⊥AB于M,∵FB=FA,∴AM=BM=12AB=12AF,∴∠AFM=30°,∴∠MAF=60°,即α=60°时,FA=FB;②当F在AB的左侧时,如图3,过F作FM⊥AB于M,同理得:∠FAM=60°,此时α=360°−60°=300°,综上,α为60°或300°时,FB=FA.解析:(Ⅰ)如图1,作辅助线,证明△ODG∽△OBA,OGDG =OAAB=34,设OG=3x,DG=4x,根据勾股定理列方程得:32=(4x)2+(3−3x)2,解出可得结论;(Ⅱ)①根据AAS证明即可;②设BH=x,则DH=x,AH=4−x,在Rt△ADH中,由勾股定理列方程可得结论;(Ⅲ)当FB=FA时,F在AB的垂直平分线上,分两种情况:F在AB的左侧和右侧时,根据直角三角形直角边与斜边的关系可得角的大小,从而计算旋转角α的值.本题考查四边形综合题、矩形的性质、勾股定理、全等、相似三角形的判定和性质、旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用参数构建方程解决问题,属于中考压轴题.24.答案:解:(1)把y=0代入y=12x+2得:0=12x+2,解得:x=−4,∴A(−4,0),把点A的坐标代入y=12x2+mx−2得:m=32,∴抛物线的解析式为y=12x2+32x−2;(2)过点D作DH//y轴,交A与点H,设D(n,12n2+32n−2),H(n,12n+2).∴DH=(12n+2)−(12n2+32n−2)=−12(n+1)2+92,∴当n=−1时,DH最大,最大值为92,此时△ABD面积最大,最大值为12×92×4=9;(3)把y=0代入y=12x2+32x−2,得:x2+3x−4=0,解得:x=1或x=−4,∴C(1,0).设直线CQ的解析式为y=ax−a,CP的解析式为y=bx−b.∴{y=ax−ay=12x2+32x−2,解得:x=1或x=2a−4.∴x Q=2a−4.同理:x P=2b−4.设直线PQ的解析式为y=x+d,把M(−4,1)代入得:y=kx+4k+1,∴{y=kx+4k+1y=12x2+32x−2,∴x2+(3−2k)x−8k−6=0,∴x Q+x P=2a−4+2b−4=2k−3,x Q⋅x P=(2a−4)(2b−4)=−8k−6,解得:ab=−12,又∵OE=−b,OF=a,∴OE·OF=−ab=12.解析:本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、一次函数的解析式、一元二次方程根与系数的关系,建立关于a、b的方程组求得ab的值是解题的关键.(1)先求得点A的坐标,然后将点A的坐标代入抛物线的解析式求得m的值即可;(2)过点D作DH//y轴,交A与点H,设D(n,12n2+32n−2),H(n,12n+2),然后用含n的式子表示DH的长,接下来,利用配方法求得DH的最大值,从而可求得△ABD面积最大值;(3)先求得点C的坐标,然后设直线CQ的解析式为y=ax−a,CP的解析式为y=bx−b,接下来求得点Q和点P的横坐标,然后设直线PQ的解析式为y=x+d,把M(−4,1)代入得:y=kx+4k+1,将PQ的解析式为与抛物线解析式联立得到关于x的一元二次方程,然后依据一元二次方程根与系数的关系可求得ab=−12,最后,由ab的值可得到OE·OF的值.。
湖北省武汉东湖高新区六校联考2020届数学中考模拟试卷
湖北省武汉东湖高新区六校联考2020届数学中考模拟试卷一、选择题1.在数学课上,甲、乙、丙、丁四位同学共同研究二次函数y =x 2﹣2x+c (c 是常数).甲发现:该函数的图象与x 轴的一个交点是(﹣2,0);乙发现:该函数的图象与y 轴的交点在(0,﹣4)上方;丙发现:无论x 取任何值所得到的y 值总能满足c ﹣y≤1;丁发现:当﹣1<x <0时,该函数的图象在x 轴的下方,当3<x <4时,该函数的图象在x 轴的上方.通过老师的最后评判得知这四位同学中只有一位同学发现的结论是错误的,则该同学是( ) A .甲 B .乙C .丙D .丁2.如图的四个转盘中,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是( )A. B. C. D.3.(11·孝感)如图,某航天飞机在地球表面点P 的正上方A 处,从A 处观测到地球上的最远点Q ,若∠QAP =α,地球半径为R ,则航天飞机距地球表面的最近距离AP ,以及P 、Q 两点间的地面距离分别是( )A.,sin 180R R παα B.(90),sin 180R RR απα-- C.(90),sin 180R RR απα-- D.(90),sin 180R RR απα+- 4.如图所示的四边形,与选项中的一个四边形相似,这个四边形是( )A .B .C .D .5.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是( ) A .5B .6C .7D .86.2018年我国科技实力进一步增强,嫦娥探月、北斗组网、航母海试、鲲龙击水、港珠澳大桥正式通车……,这些成就的取得离不开国家对科技研发的大力投入.下图是2014年—2018年我国研究与试验发展(R&D)经费支出及其增长速度情况. 2018年我国研究与试验发展(R&D)经费支出为19657亿元,比上年增长11.6%,其中基础研究经费1118亿元.根据统计图提供的信息,下列说法中合理的是()A.2014年—2018年,我国研究与试验发展(R&D)经费支出的增长速度始终在增加B.2014年—2018年,我国研究与试验发展(R&D)经费支出增长速度最快的年份是2017年C.2014年—2018年,我国研究与试验发展(R&D)经费支出增长最多的年份是2017年D.2018年,基础研究经费约占该年研究与试验发展( (R&D)经费支出的10%7.如图,半径为3的⊙O经过等边△ABO的顶点A、B,点P为半径OB上的动点,连接AP,过点P作PC ⊥AP交⊙O于点C,当∠ACP=30°时,AP的长为()C.1.5D.3或1.5A.3 B.3或28.如图,⊙O,四边形ABCD为⊙O的内接矩形,, E为⊙O上的一个动点,连结DE,作DF⊥DE交射线EA于F,则DF的最大值为()9.选拔一名选手参加全国中学生男子百米比赛,我市四名中学生参加了训练,他们成绩的平均数x及其方差s2如表所示:A .甲B .乙C .丙D .丁10.如图,在平面直角坐标系中,正方形ABCD 的顶点A 的坐标为(﹣1,1),点B 在x 轴正半轴上,点D 在第三象限的双曲线6y x=上,过点C 作CE ∥x 轴交双曲线于点E ,连接BE ,则△BCE 的面积为( )A.5B.6C.7D.811.下列计算正确的是( ) A .23a a a ⋅=B .(a 3)2=a 5C .23a a a +=D .623a a a ÷=12.如图,△ABC 的顶点A 、B 、C 均在⊙O 上,若∠ABC+∠AOC=90°,则∠AOC 的大小是( )A.30°B.45°C.60°D.70°二、填空题13.如图,抛物线的顶点为P (-2,2)与y 轴交于点A (0,3),若平移该抛物线使其顶P 沿直线移动到点P (2,2)'-,点A 的对应点为A ',则抛物线上PA 段扫过的区域(阴影部分)的面积为 .14.如图,两块三角尺的直角顶点靠在一起,BC=3,EF=2,G 为 DE 上一动点,把三角尺DEF 绕直角顶点 F 旋转一周,在这个旋转过程中,B ,G 两点的最小距离为_____.15.如图,已知AD ∥BC ,要使四边形 ABCD 为平行四边形,需要添加的一个条件是:____.(填一个你认为正确的条件即可,不再添加任何线段与字母)16.如图,P (12,a )在反比例函数图象上,PH ⊥x 轴于H ,则tan ∠POH 的值为_____.17.如图所示,在66⨯的网格内填入1至6的数字后,使每行、每列、每个小粗线框中的数字不重复,则a c +=_____.18.已知抛物线y=ax 2+bx+c (a >0)的对称轴是直线x=2,且经过点P (3,1),则a+b+c 的值为____________. 三、解答题19.某校创客社团计划利用新购买的无人机设备测量学校旗杆AB 的高.他们先将无人机放在旗杆前的点C 处(无人机自身的高度忽略不计),测得此时点A 的仰角为60︒,因为旗杆底部有台阶,所以不能直接测出垂足B 到点C 的距离.无人机起飞后,被风吹至点D 处,此时无人机距地面的高度为3米,测得此时点C 的俯角为37︒,点A 的仰角为45︒,且点B ,C ,D 在同一平面内,求旗杆AB 的高度.(计算结果精确到0.1 1.414≈ 1.732≈,sin370.60︒≈,cos370.80︒≈,tan370.75︒≈)20.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答(1)本次参加抽样调查的居民有 人;(2)将条形统计图补充完整;扇形统计图中A 占 ,C 占 ;(3)若有外型完全相同的A 、B 、C 、D 粽子各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他吃到C 粽子的概率.21.阅读有助于提高孩子的学习兴趣和积极性,但近年来出现很多中学生在学校看武侠小说的现象,某校九年级数学兴趣小组的同学调查了若干名家长对“初中学生在校看武侠小说”这一现象的看法,统计整理并制作了如下的条形与扇形统计图.依据图中信息,解答下列问题:(1)本次调查的学生家长有 名,“不赞同”初中生在校看武侠小说的家长所对应的圆心角度数是 ;(2)请补全条形统计图(标上柱高数值);(3)该学校共3000名学生家长,请估计该校抱“不赞同”态度的学生家长人数.22.如图,方格纸中每个小正方形的边长均为1.线段AB 的两个端点在小正方形的顶点上。
2020年湖北省武汉市中考数学模拟试卷(含答案)
2020年湖北省武汉市中考数学模拟试卷一.选择题(满分30分,每小题3分)1.如果a表示有理数,那么下列说法中正确的是()A.+a和﹣(﹣a)互为相反数B.+a和﹣a一定不相等C.﹣a一定是负数D.﹣(+a)和+(﹣a)一定相等2.若分式有意义,则x的取值范围是()A.x≠5B.x≠﹣5C.x>5D.x>﹣53.下列事件中,必然发生的事件是()A.随意翻到一本书的某页,这页的页码是奇数B.通常温度降到0℃以下,纯净的水会结冰C.地面发射一枚导弹,未击中空中目标D.测量某天的最低气温,结果为﹣150℃4.下列我国著名企业商标图案中,是中心对称图形的是()A.B.C.D.5.下列几何体中,从正面看(主视图)是长方形的是()A.B.C.D.6.已知一个两位数,它的十位上的数字x比个位上的数字y大1,若对调个位与十位上的数字,得到的新数比原数小9,求这个两位数,所列方程组正确的是()A.B.C.D.7.如图,一个圆形转盘被平均分成6个全等的扇形,任意旋转这个转盘1次,则当转盘停止转动时,指针指向阴影部分的概率是()A.B.C.D.8.若反比例函数的图象经过(﹣1,3),则这个函数的图象一定过()A.(﹣3,1)B.(﹣,3)C.(﹣3,﹣1)D.(,3)9.如图,AB为⊙O的直径,C、D为⊙O上两点,=+,连AC、BD相交于M点.若AB=4CM,则的值为()A.B.C.D.210.将正偶数按图排成5列:根据上面的排列规律,则2008应在()A.第250行,第1列B.第250行,第5列C.第251行,第1列D.第251行,第5列二.填空题(满分18分,每小题3分)11.算术平方根等于它本身的数是.12.一组数据6,3,9,4,3,5,11的中位数是.13.已知=,则实数A﹣B=.14.如果等腰三角形的一个角比另一个角大30°,那么它的顶角是.15.若二次函数y=x2+bx﹣5的对称轴为直线x=2,则关于x的方程x2+bx﹣5=2x﹣13的解为.16.如图,将一张长方形纸片ABCD沿AC折起,重叠部分为△ACE,若AB=6,BC=4,则重叠部分△ACE的面积为.三.解答题(共8小题,满分72分)17.(8分)求值(1)已知2x+5y+3=0,求4x•32y的值;(2)已知2×8x×16=223,求x的值.18.(8分)如图,BD平分∠ABC,F在AB上,G在AC上,FC与BD相交于点H,∠3+∠4=180°,试说明∠1=∠2.(请通过填空完善下列推理过程)解:因为∠3+∠4=180°(已知)∠FHD=∠4().所以∠3+=180°.所以FG∥BD().所以∠1=().因为BD平分∠ABC.所以∠ABD=().所以.19.(8分)某中学计划为乡村希望小学购买一些文具送给学生,为此希望小学决定围绕在笔袋、圆规、直尺和钢笔四种文具中,你最需要的文具是什么(必选且只选一种)的问题,在全校内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中所给的信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)若希望小学共有360名学生,请你估计全校学生中最需要钢笔的学生有多少名?20.(8分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D均在小正方形的顶点上;(2)在图中画出以线段AB为一腰,底边长为2的等腰三角形ABE,点E在小正方形的顶点上.连结CE,则CE的长为.21.(8分)如图,AB是半圆O的直径,D为BC的中点,延长OD交弧BC于点E,点F 为OD的延长线上一点且满足∠OBC=∠OFC.(1)求证:CF为⊙O的切线;(2)若DE=1,∠ABC=30°.①求⊙O的半径;②求sin∠BAD的值.(3)若四边形ACFD是平行四边形,求sin∠BAD的值.22.(10分)某经销商以每千克30元的价格购进一批原材料加工后出售,经试销发现,每天的销售量y(千克)与销售单价x(元/千克)符合一次函数y=kx+b,且x=35时,y =55;x=42时,y=48.(1)求一次函数y=kx+b的表达式;(2)设该商户每天获得的销售利润为W(元),求出利润W(元)与销售单价x(元/千克)之间的关系式;(3)销售单价每千克定为多少元时,商户每天可获得最大利润?最大利润是多少元?(销售利润=销售额﹣成本)23.(10分)(1)如图1,在△ABC中,AB>AC,点D,E分别在边AB,AC上,且DE∥BC,若AD=2,AE=,则的值是;(2)如图2,在(1)的条件下,将△ADE绕点A逆时针方向旋转一定的角度,连接CE 和BD,的值变化吗?若变化,请说明理由;若不变化,请求出不变的值;(3)如图3,在四边形ABCD中,AC⊥BC于点C,∠BAC=∠ADC=θ,且tanθ=,当CD=6,AD=3时,请直接写出线段BD的长度.24.(12分)在平面直角坐标系中,抛物线y=ax2+bx﹣4经过点A(﹣8,0),对称轴是直线x=﹣3,点B是抛物线与y轴交点,点M、N同时从原点O出发,以每秒1个单位长度的速度分别沿x轴的负半轴、y的负半轴方向匀速运动,(当点N到达点B时,点M、N同时停止运动).过点M作x轴的垂线,交直线AB于点C,连接CN、MN,并作△CMN 关于直线MC的对称图形,得到△CMD.设点N运动的时间为t秒,△CMD与△AOB 重叠部分的面积为S.(1)求抛物线的函数表达式;(2)当0<t<2时,①求S与t的函数关系式;②直接写出当t=时,四边形CDMN为正方形;(3)当点D落在边AB上时,过点C作直线EF交抛物线于点E,交x轴于点F,连接EB,当S△CBE :S△ACF=1:3时,直接写出点E的坐标为.参考答案一.选择题1.解:A、+a和﹣(﹣a)互为相反数;错误,二者相等;B、+a和﹣a一定不相等;错误,当a=0时二者相等;C、﹣a一定是负数;错误,当a=0时不符合;D、﹣(+a)和+(﹣a)一定相等;正确.故选:D.2.解:根据题意得,x﹣5≠0,解得x≠5.故选:A.3.解:A、随意翻到一本书的某页,这页的页码是奇数,是随机事件;B、通常温度降到0℃以下,纯净的水会结冰,是必然事件;C、地面发射一枚导弹,未击中空中目标,是随机事件;D、测量某天的最低气温,结果为﹣150℃,是不可能事件;故选:B.4.解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:B.5.解:圆锥的主视图是等腰三角形,圆柱的主视图是长方形,圆台的主视图是梯形,球的主视图是圆形,故选:B.6.解:根据十位上的数字x比个位上的数字y大1,得方程x=y+1;根据对调个位与十位上的数字,得到的新数比原数小9,得方程10x+y=10y+x+9.列方程组为.故选:D.7.解:当转盘停止转动时,指针指向阴影部分的概率是,故选:D.8.解:∵反比例函数的图象经过(﹣1,3),∴k=﹣1×3=﹣3.∵﹣3×1=﹣3,﹣×3=﹣1,﹣3×(﹣1)=3,×3=1,∴反比例函数的图象经过点(﹣3,1).故选:A.9.解:连接BC,∵AB为圆O的直径,∴∠ACB=90°,∵=+,∴∠DBC=∠D+∠DCM,∵∠CMB=∠DCM+∠D,∴∠CMB=∠CBM,∴BC=CM,连接AD,同理,AD=DM,设BC=CM=a,∴BM=a,∵AB=4CM,∴AB=4a,∵AC2+CB2=AB2,∴AC=a,∴AM=(﹣1)a,∵AB为⊙O的直径,∴∠ADM=90°,∴DM=AM=a,∴==,故选:C.10.解:∵所在数列是从2开始的偶数数列,∴2008÷2=1004,即2008是第1004个数,∵1004÷4=251,∴第1004个数是第251行的第4个数,观察发现,奇数行是从第2列开始到第5列结束,∴2008应在第251行,第5列.故选:D.二.填空题11.解:算术平方根等于它本身的数是0和1.12.解:把这组数据按从小到大排列,得3,3,4,5,6,9,11,共7个数,中间的数是5,所以这组数据的中位数是5.故答案为:5.13.解:=+=,根据题意知,,解得:,∴A﹣B=﹣7﹣10=﹣17,故答案为:﹣17.14.解:①较大的角为顶角,设这个角为x,则:x+2(x﹣30)=180x=80;②较大的角为底角,设顶角为y°,则:y+2(y+30)=180y=40,答:等腰三角形的顶角为80°或40°.故答案为:80°或40°.15.解:∵二次函数y=x2+bx﹣5的对称轴为直线x=2,∴,得b=﹣4,则x2+bx﹣5=2x﹣13可化为:x2﹣4x﹣5=2x﹣13,解得,x1=2,x2=4.故答案为:x1=2,x2=4.16.解:∵长方形纸片ABCD按图中那样折叠,由折叠的性质可知,∠BAC=∠B′AC,∵DC∥AB,∴∠BAC=∠ECA,∴∠EAC=∠ECA,∴EA=EC,在Rt△ADE中,AD2+DE2=AE2,即42+(6﹣EC)2=EC2,解得,EC=∴重叠部分的面积=××4=,故答案为:.三.解答题17.解:(1)∵2x+5y+3=0,∴2x+5y=﹣3,∴4x•32y=22x•25y=22x+5y=2﹣3=;(2)∵2×8x×16=223,∴2×23x×24=223,∴1+3x+4=23,解得:x=6.18.解:∵∠3+∠4=180°(已知),∠FHD=∠4(对顶角相等),∴∠3+∠FHD=180°,∴FG∥BD(同旁内角互补,两直线平行),∴∠1=∠ABD(两直线平行,同位角相等),∵BD平分∠ABC,∴∠ABD=∠2(角平分线的定义),∴∠1=∠2,故答案为:对顶角相等,∠FHD,同旁内角互补,两直线平行,∠ABD,两直线平行,同位角相等,∠2,角平分线的定义,∠1=∠2.19.解:(1)抽取的学生数是:18÷30%=60(名);(2)喜欢圆规的学生:60﹣21﹣18﹣6=60﹣45=15(名),补全统计图如图所示;(3)根据题意得:360×=36(名)答全校学生中最需要钢笔的学生有36名.20.解:(1)如图所示,矩形ABCD即为所求;(2)如图所示,△ABE即为所求,CE=4,故答案为:4.21.解:(1)连接CO.∵D为BC的中点,且OB=OC,∴OD⊥BC,∵OB=OC,∴∠OBC=∠OCB,又∵∠OBC=∠OFC,∴∠OCB=∠OFC,∵OD⊥BC,∴∠DCF+∠OFC=90°.∴∠DCF+∠OCB=90°.即OC⊥CF,∴CF为⊙O的切线.(2)①设⊙O的半径为r.∵OD⊥BC且∠ABC=30°,∴OD=OB=r,又∵DE=1,且OE=OD+DE,∴,解得:r=2,②作DH⊥AB于H,在Rt△ODH中,∠DOH=60°,OD=1.∴DH=,OH=,在Rt△DAH中,∵AH=AO+OH=,∴由勾股定理:AD=.∴.(3)设⊙O的半径为r.∵O、D分别为AB、BC中点,∴AC=2OD,又∵四边形ACFD是平行四边形,∴DF=AC=2OD,∵∠OBC=∠OFC,∠CDF=∠ODB=90°,∴,∴,解得:,∴在Rt△OBD中,OB=r,∴,∴,∴在Rt△DAH中,∵AH=AO+OH=,∴由勾股定理:AD=,∴.22.解:(1)将x=35、y=55和x=42、y=48代入y=kx+b,得:,解得:,∴y=﹣x+90;(2)根据题意得:W=(x﹣30)(﹣x+90)=﹣x2+120x﹣2700;(3)由W=﹣x2+120x﹣2700=﹣(x﹣60)2+900,∴销售单价每千克定为60元时,商户每天可获得最大利润,最大利润是900元.23.解:(1)∵DE∥BC,∴===;故答案为:;(2)的值不变化,值为;理由如下:由(1)得:DE∥B,∴=,由旋转的性质得:∠BAD =∠CAE ,∴△ABD ∽△ACE ,∴==;(3)作AE ⊥CD 于E ,DM ⊥AC 于M ,DN ⊥BC 于N ,如图3所示:则四边形DMCN 是矩形,∴DM =CN ,DN =MC ,∵∠BAC =∠ADC =θ,且tan θ=,∴=,=,∴=,∴AE =AD =×3=,DE =AE =,∴CE =CD ﹣DE =6﹣=,∴AC ===,∴BC =AC =,∵△ACD 的面积=AC ×DM =CD ×AE ,∴CN =DM ==,∴BN =BC +CN =,AM ===,∴DN =MC =AM +AC =,∴BD ===.24.解:(1)抛物线y =ax 2+bx ﹣4经过点A (﹣8,0),对称轴是直线x =﹣3,则抛物线与x 轴另外一个交点坐标为:(2,0),则抛物线的表达式为:y =a (x +8)(x ﹣2)=a (x 2+6x ﹣16),故﹣16a =﹣4,解得:a =,故抛物线的表达式为:y =x 2+x ﹣4;(2)①抛物线的对称轴为:x =﹣3,OM =ON =t ,则AM =8﹣t ,∵MC ∥y 轴,则,即,解得:MC =(8﹣t ),S =S △MCN =MC ×t =﹣t 2+2t ;②四边形CDMN 为正方形时,MC =ND =2t ,即MC =(8﹣t )=2t ,解得:t =,故答案为;(3)由点A 、B 的坐标可得:直线AB 的表达式为:y =﹣x ﹣4,当点D 在AB 上时,在CD 在直线AB 上,设点M (﹣t ,0),则点N (2t ﹣8,﹣t ),由题意得:DM =MN =t ,即(3t ﹣8)2+t 2=2t 2,解得:t =2或4,当t =4时,S △CBE :S △ACF =1:3不成立,故t =2, 故点C (﹣2,﹣3);则AC =3=3CB ,过点E 、F 分别作AB 的垂线交于点M 、N ,∵S △CBE :S △ACF =1:3,∴EM =FN ,故点C 是MN 的中点,设点F (m ,0),点C (﹣2,﹣3), 由中点公式得:点E (﹣4﹣m ,﹣6),将点E 的坐标代入抛物线表达式并解得:m =0或﹣2, 故点E 的坐标为:(﹣4,﹣6)或(﹣2,﹣6), 故答案为:(﹣4,﹣6)或(﹣2,﹣6).。
湖北省2020年中考数学模拟试题(含答案)【精品】
湖北省2020年中考数学模拟试题含答案考生注意:1.本试卷分试题卷(共4页)和答题卷;全卷24小题,满分120分;考试时间120分钟.2.考生答题前,请将自己的学校、姓名、考号填写在试题卷和答题卷指定的位置,同时认真阅读答题卷上的注意事项.考生答题时,请按题号顺序在答题卷上各题目的答题区域内作答,写在试题卷上无效.试 题 卷一、精心选一选(本大题共8小题,每小题3分,满分24分.每小题给出的4个选项中只有一个符合题意,请在答题卷上将正确答案的代号涂黑) 1.计算1-(-2)的正确结果是【 ▲ 】A .-2B .-1C .1D .32.钓鱼岛是中国的固有领土,面积约4400000平方米,数据4400000用科学记数法表示应为【 ▲ 】A. 44×105B. 0.44×107C. 4.4×106D. 4.4×1053.下列式子中,属于最简二次根式的是【 ▲ 】.A .7B . 9C .20D .134.下列运算正确的是【 ▲ 】A. (a 2)3= a 5B. a 3·a = a 4C. (3ab )2= 6a 2b 2D. a 6÷a 3= a 25.下列说法中,正确的是【 ▲ 】A.“打开电视,正在播放新闻联播节目”是必然事件B. 某种彩票中奖概率为10%是指买10张一定有一张中奖C. 了解某种节能灯的使用寿命应采用全面检查D. 一组数据3,5,4,6,7的中位数是5,方差是26.如图,直线AB ,CD 相交于点O ,射线OM 平分∠AOC ,ON ⊥OM .若∠AOC =70°,则∠CON 的度数为【 ▲ 】A .65°B .55°C .45°D .35°BOANM CD(第6题)7.如图是某几何体的三视图,这个几何体的侧面积是【 ▲ 】A .6πB .210 πC .10 πD .3π8.如图,直线l :y =33x ,过点A (0,1)作y 轴的垂线交 直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;…按此作法继续下去,则点A 2015的坐标为【 ▲ 】A .(0,42015) B .(0,42014)C .(0,32015) D .(0,32014)二、细心填一填(本大题共8小题,每小题3分,满分24分.请将答案填写在答题卷相应题号的横线上)9.分解因式ax 2-9ay 2的结果为 ▲ .10.如图,在△ABC 中,按以下步骤作图:①分别以点B ,C 为圆心,以大于12BC 的长为半径作弧,两弧交于M ,N 两点;②作直线MN 交AB 于点D ,连接CD .如果已知CD =AC ,∠B =25°,则∠ACB 的度数为 ▲ .11.已知关于x 的方程kx 2+(k +2) x +k4=0有两个不相等 的实数根,则k 的取值范围是 ▲ .12.如图,在△ABC 中,AB =AC =5,BC =6,将△ABC 绕点C 顺时针方向旋转一定角度后得到△A ′B ′C ,若点A ′恰好落在BC 的延长线上,则点B ′到BA ′的距离为 ▲ . 13.一辆汽车开往距离出发地180km 的目的地,出发后第一小时按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,结果比原计划提前40min 到达目的地.原计划的行驶速度是 ▲ km/h.14.如图,直线AB 与半径为2的⊙O 相切于点C ,D 是⊙O 上一点,且∠EDC =30°,弦EF ∥AB ,则EF 的长度为 ▲ . ABCMN(第10题)D OAA 1A 2y x BB 1l主视图俯视图 左视图(第7题)23 23 ABCB ′ D(第15题)E(第14题)O DE F AC (第12题)B ′A ′15.如图,矩形ABCD 中,AB =3,BC =4,点E 是BC 边上一点,连接AE ,把△ABE 沿AE 折叠,使点B 落在点B ′处.当△CEB ′为直角三角形时,BE 的长为 ▲ . 16.对于二次函数y = x 2-2mx -3,有下列结论:①它的图象与x 轴有两个交点;②如果当x ≤-1时,y 随x 的增大而减小,则m =-1; ③如果将它的图象向左平移3个单位后过原点,则m =1; ④如果当x = 2时的函数值与x = 8时的函数值相等,则m =5.其中一定正确的结论是 ▲ .(把你认为正确结论的序号都填上)三、专心解一解(本大题共8小题,满分72分.请认真读题,冷静思考.解答题应写出必要的文字说明、证明过程或演算步骤.请把解题过程写在答题卷相应题号的位置) 17.(本题满分8分)(1)计算:4sin60°-︱3-12 ︱+( 12 )-2;(2)解方程x 2- 3 x -14 = 0.18.(本题满分7分)如图,点B (3,3)在双曲线y = kx(x >0)上,点D 在双曲线y =-4x(x <0)上, 点A 和点C 分别在x 轴、y 轴的正半轴上,且点A ,B ,C ,D 构成的四边形为正方形. (1)求k 的值;(2)求点A 的坐标. 19. (本题满分8分)如图,在□ABCD 中,F 是AD 的中点,延长BC 到点E , 使CE =12 BC ,连接DE ,CF .(1)求证:DE =CF ;(2)若AB =4,AD =6,∠B =60°,求DE 的长. 20. (本题满分8分)某学校“体育课外活动兴趣小组”,开设了以下体育课外活动项目:A .足球 B .乒乓球C .羽毛球 D .篮球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有 人,在扇形统计图中“D ”对应的圆心角的度数为 ; (2)请你将条形统计图补充完整; (3)在平时的乒乓球项目训练中, 甲、乙、丙、丁四人表现优秀,现B(第18题)C xO A Dy 36° AD BC2040 8060 100 人数(人) ABCD (第20题)(第19题)AEDF决定从这四名同学中任选两名参加 市里组织的乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答). 21. (本题满分9分)如图,在△ABC 中,AB =AC ,以AB 为直径作半圆⊙O ,交BC 于点D ,连接AD ,过点D 作DE ⊥AC ,垂足为点E ,交AB 的延长线于点F . (1)求证:EF 是⊙O 的切线.(2)如果⊙O 的半径为5,sin ∠ADE = 45 ,求BF 的长. 22. (本题满分10分)某商店销售10台A 型和20台B 型电脑的利润为4000元,销售20台A 型和10台B 型电脑的利润为3500元.(1)求每台A 型电脑和B 型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍.设购进A 型电脑x 台,这100台电脑的销售总利润为y 元.①求y 与x 的关系式;②该商店购进A 型、B 型各多少台,才能使销售利润最大?(3)实际进货时,厂家对A 型电脑出厂价下调m (0<m <100)元,且限定商店最多购进A 型电脑70台.若商店保持两种电脑的售价不变,请你根据以上信息及(2)中的条件,设计出使这100台电脑销售总利润最大的进货方案. 23.(本题满分10分)阅读理解:运用“同一图形的面积相等”可以证明一些含有线段的等式成立,这种解决问题的方法我们称之为面积法.... 如图1,在等腰△ABC 中,AB =AC , AC 边上的高为h ,点M 为底边BC 上的任意一点,点M 到腰AB 、AC 的距离分别为h 1、h 2,连接AM ,利用S△ABC=S △ABM +S △ACM ,可以得出结论:h = h 1+h 2.类比探究:在图1中,当点M 在BC 的延长线上时, 猜想h 、h 1、h 2之间的数量关系并证明你的结论.拓展应用:如图2,在平面直角坐标系中, 有两条直线l 1:y = 34x +3,l 2:y =-3x +3,AD(第21题)CE(第23题图2) O B AC x y l 1l 2(第23题图1) E FAh D M h 1h 2若l2上一点M到l1的距离是1,试运用“阅读理解”和“类比探究”中获得的结论,求出点M的坐标.24. (本题满分12分)如图,在平面直角坐标系中,已知矩形ABCD的三个顶点A(-3,4)、B(-3,0)、C(-1,0) .以D为顶点的抛物线y = ax2+bx+c过点B. 动点P从点D出发,沿DC边向点C 运动,同时动点Q从点B出发,沿BA边向点A运动,点P、Q运动的速度均为每秒1个单位,运动的时间为t秒. 过点P作PE⊥CD交BD于点E,过点E作EF⊥AD于点F,交抛物线于点G.(1)求抛物线的解析式;(2)当t为何值时,四边形BDGQ的面积最大?最大值为多少?(3)动点P、Q运动过程中,在矩形ABCD内(包括其边界)是否存在点H,使以B,Q,E,H为顶点的四边形是菱形,若存在,请直接写出此时菱形的周长;若不存在,请说明理由.(第24题)OBA DC xyPQEFG参考答案及评分说明说明:1.如果考生的解答正确,思路与本参考答案不同,可参照本评分说明制定相应的评分细则评分.2.每题都要评阅完毕,不要因为考生的解答中出现错误而中断对该题的评阅.当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这道题的内容和难度,则可视影响的程度决定后面部分的给分,但不得超过后面部分应给分数的一半;如果这一步以后的解答有较严重的错误,就不给分.3.为阅卷方便,解答题的解题步骤写得较为详细,但允许考生在解答过程中,合理地省略非关键性的步骤.4.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 5.每题评分时只给整数分数.一、精心选一选(每小题3分,满分24分)题 号 1 2 3 4 5 6 7 8 答 案DCABDBCA二、9. a (x +3y ) (x -3y );10. 105°;11. k >-1且k ≠0;12. 245 ;13. 60;14. 2 3 ;15. 32 或3; 16. ①③④(多填、少填或错填均不给分).三、专心解一解(共8小题,满分72分)17. 解:(1)原式=23-23+3+4(3分) = 7(4分)(2)方法一:移项,得x 2- 3 x = 14,配方,得(x -32)2= 1. (6分)由此可得x -32=±1, x 1=1+32 ,x 2=-1+32. (8分) 方法二:a =1,b =-3,c =-14.△=b 2-4ac =(-3)2-4×1×(-14 ) =4>0. (6分)方程有两个不等的实数根x = -b ±b 2-4ac 2a = 3±42×1 = 32±1,x 1=1+32 ,x 2=-1+32. (8分)18. 解:(1)∵点B (3,3)在双曲线y = kx(x >0)上,∴k =3×3=9.(2分)(2)过D 作DM ⊥x 轴于M ,过B 作BN ⊥x 轴于N ,∵四边形ABCD 是正方形,∴∠DAB =90°,AD =AB . ∴∠MDA +∠DAM =90°,∠DAM +∠BAN =90°,∴∠ADM =∠BAN .在Rt △ADM 和Rt △BAN 中,∠DMA =∠ANB =90°, ∴△ADM ≌△BAN (AAS ). (5分)∴AM =BN , AN =MD ,∵B 点坐标为(3,3),∴BN =ON =3. ∴AM = ON =3,即OM = AN = MD .设OM = MD =a ,∵点D 在双曲线y =-4x(x <0)上,∴-a 2=-4,∴a =2, ∴OA = AM -OM =3-2=1, 即点A 的坐标是(1,0).(7分)19. 解:(1)证明:∵四边形ABCD 是平行四边形,∴AD = BC ,AD ∥BC .又∵F 是AD 的中点,∴FD = 12 AD .∵CE = 12BC ,∴FD = CE .(第19题)BAEDFG方法一:又∵FD ∥CE ,∴四边形CEDF 是平行四边形. ∴DE =CF .(4分)方法二:∵FD ∥CE ,∴∠CDF =∠DCE .又CD = DC ,∴△DCE ≌△CDF (SAS ). ∴DE =CF .(4分)(2)过D 作DG ⊥CE 于点G .∵四边形ABCD 是平行四边形, ∴AB ∥CD ,CD = AB =4,BC =AD = 6.∴∠DCE =∠B =60°.在Rt △CDG 中,∠DGC =90°, ∴∠CDG =30°,∴CG = 12 CD =2.由勾股定理,得DG = CD 2-CG 2=2 3 . (6分)∵CE = 12 BC =3,∴GE = 1.在Rt △DEG 中,∠DGE =90°, ∴DE = DG 2+GE 2=13 .(8分)20. 解:(1) 300 , 72° ;(2分)(2)完整条形统计图(如右图所示); (4分) (3)画树状图如下:由上图可知,共有12种等可能的结果,其中恰好选中甲、乙两位同学的的结果有2种.20408060100人数(人) ABCD (第20题)甲乙 丙 丁 乙甲 丙 丁 丙甲 乙 丁 丁甲 乙 丙∴P (恰好选中甲、乙两位同学)= 212 = 16(8分)21. 解:(1)证明:∵连接OD ,∵AB 是⊙O 的直径. ∴AD ⊥BC .∵AB =AC ,∴BD =DC ,∠CAD =∠BAD .又OA =OB ,∴ OD ∥AC . ∵DE ⊥AC ,∴OD ⊥DE . ∵点D 在⊙O 上,∴EF 是⊙O 的切线. (4分) (2)∵∠CAD =∠BAD ,∠AED =∠ADB =90°.∴∠ADE =∠ABD . ∴sin ∠ABD = sin ∠ADE = 45∵AB =10,∴AD =8,AE = 325.∵OD ∥AC ,∴△ODF ∽△AEF .∴OD AE =OF AF ,即5 325= 5+BF 10+BF.解得BF = 907.(9分)22. 解:(1)设每台A 型电脑的销售利润为a 元,每台B 型电脑的销售利润为b 元,则有 解得即每台A 型电脑的销售利润为100元,每台B 型电脑的销售利润为150元.(4分)(2)①根据题意得y =100x +150(100-x ),即y =-50x +15000.(5分) ②根据题意得100-x ≤2x ,解得x ≥3313, ∵y =-50x +15000,-50<0,∴y 随x 的增大而减小.∵x 为正整数,∴当x =34最小时,y 取最大值,此时100-x =66.即商店购进A 型电脑34台,B 型电脑66台,才能使销售总利润最大.(7分)(3)根据题意得y =(100+m )x +150(100-x ),(第21题)10a +20b =4000, 20a +10b =3500. a =100,b =150.即y =(m -50)x +15000. (3313≤x ≤70). ①当0<m <50时,m -50<0,y 随x 的增大而减小. ∴当x =34时,y 取得最大值.即商店购进34台A 型电脑和66台B 型电脑时,才能获得最大利润; (8分) ②当m =50时,m -50=0,y =15000.即商店购进A 型电脑数最满足3313≤x ≤70的整数时, 均获得最大利润;(9分)③当50<m <100时,m -50>0,y 随x 的增大而增大.∴x =70时,y 取得最大值.即商店购进70台A 型电脑和30台B 型电脑时,才能获得最大利润.(10分)23. 解:(1)h = h 1-h 2.(1分) 证明:连接OA ,∵S △ABC = 12 AC ·BD = 12 AC ·h ,S △ABM = 12 AB ·ME = 12AB ·h 1,S △ACM = 12 AC ·MF = 12AC ·h 2,.又∵S △ABC =S △ABM -S △ACM ,∴12 AC ·h = 12 AB ·h 1-12 AC ·h 2. ∵AB =AC ,∴h = h 1-h 2.(4分)(2)在y = 34x +3中,令x =0得y =3;令y =0得x =-4,则:A (-4,0),B (0,3) , 同理求得C (1,), OA =4,OB =3, AC =5, AB =OA 2+OB 2=5,所以AB =AC ,即△ABC 为等腰三角形. (6分) 设点M 的坐标为(x ,y ),(第23题图1)E FA Bh C D M h 1h 2 (第23题图2)O B AC xy l 1l 2①当点M 在BC 边上时,由h 1+h 2=h 得:OB = 1+y ,y =3-1=2,把它代入y =-3x +3中求得:x = 13,∴M (13 ,2); (8分)②当点M 在CB 延长线上时,由h 1-h 2=h 得:OB = y -1,y =3+1=4,把它代入y =-3x +3中求得:x =-13,∴M (-13,4).综上所述点M 的坐标为(13 ,2)或(-13,4). (10分)24. 解:(1) 由题意得,顶点D 点的坐标为(-1,4). (1分)设抛物线的解析式为y =a (x +1) 2+4(a ≠0), ∵抛物线经过点B (-3,0),代入y =a (x +1) 2+4 可求得a =-1∴抛物线的解析式为y =- (x +1) 2+4 即y =-x 2-2x +3. (4分)(2)由题意知,DP =BQ = t ,∵PE ∥BC ,∴△DPE ∽△DBC .∴DP PE =DC BC =2,∴PE =12 DP = 12t . ∴点E 的横坐标为-1-12 t ,AF =2-12t .将x =-1-12 t 代入y =- (x +1) 2+4,得y =-14 t 2+4.∴点G 的纵坐标为-14 t 2+4,∴GE =-14 t 2+4-(4-t )=-14 t 2+t .连接BG ,S 四边形BDGQ = S △BQG +S △BEG +S △DEG , 即S 四边形BDGQ =12 BQ ·AF +12EG ·(AF +DF )= 12 t (2-12 t )-14 t 2+t . =-12 t 2+2t =-12(t -2)2+2.∴当t =2时,四边形BDGQ 的面积最大,最大值为2. (8分)(第24题)O BADCxyPQ EF G(3)存在,菱形BQEH 的周长为8013 或80-32 5 .(12分)(说明:写出一个给2分)。
2020年湖北省武汉市中考数学模拟试卷(含答案)
2020年湖北省武汉市中考数学模拟试卷一.选择题(满分27分,每小题3分)1.一元二次方程2x2+5x=6的二次项系数、一次项系数、常数项分别是()A.2,5,6 B.5,2,6 C.2,5,﹣6 D.5,2,﹣62.如图,△ABC与△A′B′C′关于点O成中心对称,则下列结论不成立的是()A.点A与点A′是对称点B.BO=B′OC.AB∥A′B′D.∠ACB=∠C′A′B′3.二次函数y=x2﹣1的图象的顶点坐标为()A.(0,0)B.(0,﹣1)C.(﹣,﹣1)D.(﹣,1)4.下列说法正确的是()A.调查某班学生的身高情况,适宜采用全面调查B.篮球队员在罚球线上投篮两次都未投中,这是不可能事件C.天气预报说明天的降水概率为95%,意味着明天一定下雨D.小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是15.下列方程中,有两个不相等的实数根的是()A.5x2﹣4x=﹣2 B.(x﹣1)(5x﹣1)=5x2C.4x2﹣5x+1=0 D.(x﹣4)2=06.已知⊙O的半径为3,A为线段PO的中点,则当OP=5时,点A与⊙O的位置关系为()A.点在圆内B.点在圆上C.点在圆外D.不能确定7.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.B.C.x(x﹣1)=28 D.x(x+1)=288.如图,将矩形ABCD 绕点A 顺时针旋转到矩形AB ′C ′D ′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是( )A .68°B .20°C .28°D .22°9.已知抛物线y =ax 2+bx +c (a <0)的对称轴为x =﹣1,与x 轴的一个交点为(2,0).若于x 的一元二次方程ax 2+bx +c =p (p >0)有整数根,则p 的值有( ) A .2个B .3个C .4个D .5个二.填空题(满分18分,每小题3分)10.已知A (m ,n ),B (m +8,n )是抛物线y =﹣(x ﹣h )2+2036上两点,则n = . 11.如图,小圆O 的半径为1,△A 1B 1C 1,△A 2B 2C 2,△A 3B 3C 3,…,△A n B n ∁n 依次为同心圆O 的内接正三角形和外切正三角形,由弦A 1C 1和弧A 1C 1围成的弓形面积记为S 1,由弦A 2C 2和弧A 2C 2围成的弓形面积记为S 2,…,以此下去,由弦A n ∁n 和弧A n ∁n 围成的弓形面积记为S n ,其中S 2020的面积为 .12.《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB =1尺(1尺=10寸),则该圆材的直径为 寸.13.已知圆锥的底面半径为3,母线长为7,则圆锥的侧面积是.14.若抛物线y=x2﹣4x+c的顶点在x轴上,则c的值是.15.一块等边三角形木板,边长为1,现将木板沿水平线翻滚,如图所示,若翻滚了40次,则B点所经过的路径长度为.三.解答题(共8小题,满分72分)16.(8分)解方程:x2+4x﹣3=0.17.(8分)如图,在⊙O中,AB是弦,OC⊥AB于C,OA=6,AB=8,求OC的长.18.(8分)如图所示,有一张“太阳”和两张“小花”样式的精美卡片(共三张),它们除花形外,其余都一样.(1)小明认为:闭上眼从中任意抽取一张,抽出“太阳”卡片与“小花”卡片是等可能的,因为只有这两种卡片.小明的说法正确吗?为什么;(2)混合后,从中一次抽出两张卡片,请通过列表或画树状图的方法求出两张卡片都是“小花”的概率;(3)混合后,如果从中任意抽出一张卡片,使得抽出“太阳”卡片的概率为,那么应添加多少张“太阳”卡片?请说明理由.19.(8分)如图,等腰直角△ABC的斜边AB上有两点M、N,且满足MN2=BN2+AM2,将△ABC绕着C点顺时针旋转90°后,点M、N的对应点分别为T、S.(1)请画出旋转后的图形,并证明△MCN≌△MCS;(2)求∠MCN的度数.20.(8分)如图,AE平分∠BAC,交BC于点D,AE⊥BE,垂足为E,过点E作EF∥AC,交AB于点F.求证:点F是AB的中点.21.(10分)某水果批发商销售每箱进价为40元的苹果,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?22.(10分)如图,△ABC是等边三角形,AB=2cm.动点P从点C出发,以lcm/s的速度在边BC的延长线上运动.以CP为边作等边三角形CPQ,点A、Q在直线BC同侧.连结AP、BQ 相交于点E.设点P的运动时间为t(s)(t>0).(1)当t=s时,△ABC≌△QCP.(2)求证:△ACP≌△BCQ.(3)求∠BEP的度数.(4)设AP与CQ交于点F,BQ与AC交于点G,连结FG,当点G将边AC分成1:2的两部分时,直接写出△CFG的周长.23.(12分)如图,抛物线y=ax2+2x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=3.(1)求该抛物线的函数解析式;(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD,OD交BC于点F,当S△COF :S△CDF=3:2时,求点D的坐标.(3)如图2,点E的坐标为(0,),在抛物线上是否存在点P,使∠OBP=2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.参考答案一.选择题1.解:方程整理得:2x2+5x﹣6=0,则方程的二次项系数、一次项系数、常数项分别是2,5,﹣6,故选:C.2.解:观察图形可知,A、点A与点A′是对称点,故本选项正确;B、BO=B′O,故本选项正确;C、AB∥A′B′,故本选项正确;D、∠ACB=∠A′C′B′,故本选项错误.故选:D.3.解:∵二次函数y=x2﹣1,∴该函数图象的顶点坐标为(0,﹣1),故选:B.4.解:A、调查某班学生的身高情况,适宜采用全面调查,此选项正确;B、篮球队员在罚球线上投篮两次都未投中,这是随机事件,此选项错误;C、天气预报说明天的降水概率为95%,意味着明天下雨可能性较大,此选项错误;D、小南抛掷两次硬币都是正面向上,并不能说明每次抛出硬币一定向上,即抛掷硬币正面向上的概率不是1,此选项错误;故选:A.5.解:A、原方程可变形为5x2﹣4x+2=0,∵△=(﹣4)2﹣4×5×2=﹣24<0,∴方程5x2﹣4x=﹣2无实数根;B、原方程可变形为6x﹣1=0,∴方程(x﹣1)(5x﹣1)=5x2只有一个实数根;C、∵△=(﹣5)2﹣4×4×1=9>0,∴方程4x2﹣5x+1=0有两个不相等的实数根;D、∵(x﹣4)2=0,∴x1=x2=4,∴方程(x﹣4)2=0有两个相等的实数根.故选:C.6.解:∵OA=OP=2.5,⊙O的半径为3,∴OA<⊙O半径,∴点A与⊙O的位置关系为:点在圆内.故选:A.7.解:设比赛组织者应邀请x个队参赛,依题意,得: x(x﹣1)=28.故选:A.8.解:∵四边形ABCD为矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠AD′C′=∠ADC=90°,∵∠2=∠1=112°,而∠ABC=∠D′=90°,∴∠3=180°﹣∠2=68°,∴∠BAB′=90°﹣68°=22°,即∠α=22°.故选:D.9.解:∵抛物线y=ax2+bx+c(a<0)的对称轴为x=﹣1∴﹣=﹣1,解得b=2a.又∵抛物线y=ax2+bx+c(a<0)与x轴的一个交点为(2,0).把(2,0)代入y=ax2+bx+c得,0=4a+4a+c解得,c=﹣8a.∴y=ax2+2ax﹣8a(a<0)对称轴h=﹣1,最大值k==﹣9a如图所示,顶点坐标为(﹣1,﹣9a)令ax2+2ax﹣8a=0即x2+2x﹣8=0解得x=﹣4或x=2∴当a<0时,抛物线始终与x轴交于(﹣4,0)与(2,0)∴ax2+bx+c=p即常函数直线y=p,由p>0∴0<y≤﹣9a由图象得当0<y≤﹣9a时,﹣4<x<2,其中x为整数时,x=﹣3,﹣2,﹣1,0,1 ∴一元二次方程ax2+bx+c=p(p>0)的整数解有5个.又∵x=﹣3与x=1,x=﹣2与x=0关于直线x=﹣1轴对称当x=﹣1时,直线y=p恰好过抛物线顶点.所以p值可以有3个.故选:B.二.填空题(共6小题,满分18分,每小题3分)10.解:∵A(m,n)、B(m+8,n)是抛物线y=﹣(x﹣h)2+2036上两点,∴A(h﹣4, n),B(h+4,n),当x=h+4时,n=﹣(h+4﹣h)2+2036=2020,故答案为2020.11.解:∵小圆O的半径为1,△A1B1C1,△A2B2C2,△A3B3C3,…,△A n B n∁n依次为同心圆O的内接正三角形和外切正三角形,∴S1=S﹣S=﹣××,S2=﹣2×1S3=﹣4×2…发现规律:Sn=﹣×(2n﹣1)×2n﹣2=×22n﹣2﹣22n﹣4×=22n﹣4(﹣)∴S2020的面积为:24036(﹣).故答案为:24036(﹣).12.解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸,故答案为:26.13.解:圆锥的侧面积=×2π×3×7=21π.故答案为21π.14.解:∵y=x2﹣4x+c=(x﹣2)2+c﹣4,∴其顶点坐标为(2,c﹣4),∵顶点在x轴上,∴c﹣4=0,解得c=4,故答案为:4.15.解:从图中发现:B点从开始至结束所走过的路径长度为两段弧长即第一段==π,第二段==π.故B点翻滚一周所走过的路径长度=π+π=π,三次一个循环,∵40÷3=13……1,若翻滚了40次,则B点所经过的路径长度为13×π+π=18π.故答案为:18π.三.解答题(共8小题,满分72分)16.解:原式可化为x2+4x+4﹣7=0即(x+2)2=7,开方得,x+2=±,x=﹣2+;1x=﹣2﹣.217.解:∵AB是⊙O的弦,OC⊥AB于点C,AB=8,∴AC=BC=4,∠ACO=90°,由勾股定理得:OC===2;18.解:(1)答:不正确,P(抽出“太阳”卡片)=,P(抽出“小花”卡片)=;(2)设“太阳”卡片与“小花”卡片分别为A,B,列表得:(A,B)(B,B)﹣﹣﹣(A,B)﹣﹣﹣﹣(B,B)﹣﹣﹣﹣﹣(B,A)(B,A)∴两张卡片都是“小花”的概率为=;(3)设应添加x张“太阳”卡片,,解得x=3.∴应添加3张“太阳”卡片.19.解:(1)画图形如右图所示:证明:由旋转的性质可得:CS=CN,AS=BN,又∵MN2=BN2+AM2,∴MN2=AS2+AM2=MS2,∴MS=MN,又∵CS=CN,CM=CM,∴△MCN≌△MCS(SSS).(2)由(1)得:△MCN≌△MCS,∴∠NCM=∠MCS=45°.20.证明:∵AE平分∠BAC,∴∠BAD=∠CAD,∵EF∥AC,∴∠FEA=∠CAD,∴∠BAD=∠FEA,∴FA=FE,∵AE⊥BE,∴∠BEF+∠AEF=90°,∵∠ABE+∠BAE=90°,∴∠ABE=∠BEF,∴FB=FE,∴FB=FA,即点F是AB的中点.21.解:(1)y=90﹣3(x﹣50)即y=﹣3x+240;(2)w=(x﹣40)y=(x﹣40)(﹣3x+240)=﹣3x2+360x﹣9600;(3)w=﹣3x2+360x﹣9600=﹣3(x﹣60)2+1200∵a=﹣3<0,∴当销售价x=60元时,利润w最大.最大利润为1200元.22.解:(1)∵△ABC,△CPQ都是等边三角形,∴当PC=AB=2时,△ABC≌△QCP.∴t=2s,故答案为2.(2)∵△ABC是等边三角形,∴∠ACB=60°,AC=BC,∵△CPQ是等边三角形,∴∠PCQ=60°,CP=CQ,∴∠ACP=∠BCQ=120°,∴△ACP≌△BCQ(SAS).(3)∵△ACP≌△BCQ,∴∠CAP=∠CBQ,∵∠BEP=∠ABE+∠BAE,∴∠BEP=∠ABC+∠BAC,∵△ABC是等边三角形,∴∠ABC=∠BAC=60°,∴∠BEP=120°.(4)如图1中,∵△ACP≌△BCQ,∴∠CAF=∠CBG,∵CA=CB,∠ACF=∠BCG=60°,∴△ACF≌△BCG(ASA),∴CF=CG,∵∠GCF=60°,∴△GCF是等边三角形,当AG=2CG时,CG=cm,∴△CFG的周长为2cm如图2中,当CG=2AG时,CG=cm,△FCG的周长为4cm.综上所述,△CFG的周长为2cm或4cm.23.解:(1)c=3,点B(3,0),将点B的坐标代入抛物线表达式:y=ax2+2x+3并解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3…①;(2)如图1,过点D作DH⊥x轴于点H,交AB于点M,S△COF :S△CDF=3:2,则OF:FD=3:2,∵DH∥CO,故CO:DM=3:2,则DM=C O=2,由B、C的坐标得:直线BC的表达式为:y=﹣x+3,设点D(x,﹣x2+2x+3),则点M(x,﹣x+3),DM=﹣x2+2x+3﹣(﹣x+3)=2,解得:x=1或2,故点D(1,4)或(2,3);(3)①当点P在x轴上方时,取OG=OE,连接BG,过点B作直线PB交抛物线于点P,交y轴于点M,使∠GBM=∠GBO,则∠OBP=2∠OBE,过点G作GH⊥BM,设MH=x,则MG=,则△OBM中,OB2+OM2=MB2,即(+)2+9=(x+3)2,解得:x=2,故MG==,则点M(0,4),将点B、M的坐标代入一次函数表达式并解得:直线BM的表达式为:y=﹣x+4…②,联立①②并解得:x=3(舍去)或,故点P(,);②当点P在x轴下方时,同理可得:点P(﹣,﹣);综上,点P的坐标(,)或(﹣,﹣).。
湖北省武汉市2020年数学中考模拟试卷及参考答案
A . 21,22 B . 21,21.5 C . 10,21 D . 10,22 4. 如图,在平面直角坐标系中,点A,B,C的坐标分别为(-1,3)、(-4,1)、(-2,1),将△ABC沿一确定方向 平移得到△A1B1C1 , 点B的对应点B1的坐标是(1,2),则点A1 , C1的坐标分别是( )
(1) 如图1,当点E在边BC上时,求证DE=EB; (2) 如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明; (3) 如图3,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,B H=3.求CG的长. 24. 如图,在平面直角坐标系xOy中,将抛物线y=﹣x2+bx+c与直线y=﹣x+1相交于点A(0,1)和点B(3,﹣2),交x轴于 点C,顶点为点F,点D是该抛物线上一点.
9. 如图,在等腰Rt△ABC中,∠C=90°,直角边AC长与正方形MNPQ的边长均为2cm,CA与MN在直线l上.开始时A 点与M点重合;让△ABC向右平移;直到C点与N点重合时为止.设△ABC与正方形MNPQ重叠部分(图中阴影部分)的面 积为ycm2 , MA的长度为xcm,则y与x之间的函数关系大致是( )
13. 计算:
________.
ห้องสมุดไป่ตู้
14. 如图,平行四边形ABCD的对角线AC,BD交于O,EF过点O与AD,BC分别交于E,F,若AB=4,BC=5,OE =1.5,则四边形EFCD的周长________.
15. 二次函数y=ax2+bx+3的图象经过点A(﹣2,0)、B(4,0),则一元二次方程ax2+bx=0的根是________. 16. 如图,以△ABC的边AB为直径的⊙O恰好过BC的中点D,过点D作DE⊥AC于E,连结OD,则下列结论中:①OD ∥AC;②∠B=∠C;③2OA=BC;④DE是⊙O的切线;⑤∠EDA=∠B,正确的序号是________.
2020届武汉市中考数学模拟试卷(四)(有答案)
湖北省武汉市中考数学模拟试卷(四)一、选择题(共 10小题,每小题 3 分,共 30 分)1.实数的值在()A.3与4之间 B.2与3之间 C.1与2之间 D.0与 1之间2.分式有意义,则 x 的取值范围是()A.x>﹣ 2 B.x≠2 C.x≠﹣ 2 D.x>23.运用乘法公式计算( a﹣2)2的结果是()A. a2﹣4a+4 B.a2﹣2a+4 C.a2﹣4 D.a2﹣4a﹣44.有 5 名同学参加演讲比赛,以抽签的方式决定每个人的出场顺序,签筒中有5 根形状大小相同的纸签,上面分别标有出场的序号 1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机地抽取一根纸签,下列事件是随机事件的是()A.抽取一根纸签,抽到的序号是 0B.抽取一根纸签,抽到的序号小于 6C.抽取一根纸签,抽到的序号是 1D.抽取一根纸签,抽到的序号有 6 种可能的结果5.下列计算正确的是()A.4x2﹣ 3x2=1 B.x+x=2x2 C. 4x6÷2x2=2x3 D.(x2)3=x67.有一种圆柱体茶叶筒如图所示,则它的主视图是(A(3,0),B(0,4),则点 C 的坐标为(A.B.C.C.(﹣ 4,4) D.(﹣4,D8.张大娘为了提高家庭收入,买来 10 头小猪.经过精心饲养,不到 7 个月就可以出售了,下 表为这些猪出售时的体重:体重 /Kg 116 135 136 117 139频数 2 1 2 3 2 则这些猪体重的平均数和中位数分别是( )A .126.8,126B .128.6,126C .128.6,135D .126.8, 135 9.小用火柴棍按下列方式摆图形, 第 1 个图形用了 4 根火柴棍,第 2 个图形用了 10 根火柴棍, 第 3 个图形用了 18 根火柴棍.依照此规律,若第 n 个图形用了 70根火柴棍,则 n 的值为( )10.如图, 绕 O 点旋转,连接 AD ,CB 交于 P 点,连接 MP ,则 MP 的最大值( )二、填空题(共 6 小题,每小题 3 分,共 18 分)11.计算 9+(﹣ 5)的结果为 .12.2016 年某市有 640000初中毕业生.数 640000用科学记数法表示为 .13.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为 1, 2, 3, 4,随机取出 一个小球,标号为奇数的概率为 .14.如图,已知 AB ∥CD ,BE 平分∠ ABC ,DE 平分∠ ADC ,∠ BAD=70°.∠ BCD=n °,则∠ BED 的度数为 度.15.如图, Rt △ABC 中,AC=BC=8,⊙C 的半径为 2,点 P 在线段 AB 上一动点,过点 P 作⊙C 的一条切线 PQ ,Q 为切点,则切线长 PQ 的最小值为 .A .6B .7 C .8 D .9Rt △ AOB ∽△ DOC ,∠ AOB=∠COD=90°,M 为 OA 的中点, OA=6,OB=8,将△COD D .1016.直线 y=m是平行于 x 轴的直线,将抛物线 y=﹣ x2﹣4x 在直线 y=m 上侧的部分沿直线 y=m 翻折,翻折后的部分与没有翻折的部分组成新的函数图象,若新的函数图象刚好与直线y=﹣x 有 3 个交点,则满足条件的 m 的值为.三、解答题(共 8 小题,共 72分)17.解方程 5x+2=2( x+7).18.如图, D 在 AB上,E在 AC上, AB=AC,∠ B=∠C,求证: AD=AE.19.在学校开展的“学习交通安全知识,争做文明中学生”主题活动月中,学校德工处随机选取了该校部分学生,对闯红灯情况进行了一次调查,调查结果有三种情况: A.从不闯红灯;B.偶尔闯红灯; C经常闯红灯.德工处将调查的数据进行了整理,并绘制了尚不完整的统计图如图,请根据相关信息,解答下列问题.(1)求本次活动共调查了多少名学生;(2)请补全(图二),并求(图一)中 B 区域的圆心角的度数;(3)若该校有 2400 名学生,请估算该校不严格遵守信号灯指示的人数.20.将直线 y=k1x向右平移 3 个单位后,刚好经过点 A(﹣1,4),已知点 A 在反比例函数 y= 的图象上.(1)求直线 y=k1x 和 y= 图象的交点坐标;(2)画出两函数图象,并根据图象指出不等式 k1x> 的解集.21.已知:如图, AB是⊙O的直径, C是⊙O上一点, OD⊥BC于点 D,过点 C作⊙ O的切线,交 OD 的延长线于点 E,连接 BE.1)求证: BE与⊙O 相切;2)连接 AD 并延长交 BE于点 F,若 OB=9,sin∠ABC= ,求 BF的长.22.某公司生产的 A种产品,它的成本是 2 元,售价是 3 元,年销售量为 100万件,为了获得更好的效益,公司准备拿出一定的资金做广告.根据经验,每年投入的广告费是x(10 万元)时,产品的年销售量将是原销售量的 y 倍,且 y 是 x 的二次函数,它们的关系如表:x(10 万元)0 1 2 ⋯y 1 1.5 1.8 ⋯(1)求 y 与 x 的函数关系式;(2)如果把利润看做是销售总额减去成本费和广告费,试写出年利润S(10 万元)与广告费x(10 万元)的函数关系式;(3)如果投入的年广告费为 10~30 万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增大? 23.如图,在△ ABC中,∠ACB=90°,BC=nAC,CD⊥AB于 D,点 P为 AB 边上一动点, PE⊥AC,PF⊥BC,垂足分别为 E、F.1)若 n=2,则 = ;2)当 n=3 时,连 EF、DF,求的值;3)若 = ,求 n 的值.24.已知抛物线 C1:y=ax2+bx+ (a≠0)经过点 A(﹣ 1,0)和 B(3,0).(1)求抛物线 C1 的解析式,并写出其顶点 C的坐标;(2)如图 1,把抛物线 C1 沿着直线 AC方向平移到某处时得到抛物线 C2,此时点 A,C分别平移到点 D,E处.设点 F在抛物线 C1上且在 x 轴的下方,若△DEF是以 EF为底的等腰直角三角形,求点 F 的坐标;(3)如图 2,在(2)的条件下,设点 M 是线段 BC上一动点, EN⊥EM 交直线 BF于点 N,点P为线段 MN 的中点,当点 M 从点 B向点 C运动时:①tan∠ENM的值如何变化?请说明理由;湖北省武汉市中考数学模拟试卷(四)参考答案与试题解析一、选择题(共 10 小题,每小题 3 分,共 30 分)1.实数的值在()A.3 与 4 之间 B.2 与 3 之间 C.1 与 2 之间 D.0与 1 之间【考点】估算无理数的大小.【分析】利用二次根式的性质,得出 < < ,进而得出答案.【解答】解:∵ < < ,∴ 2 < < 3,∴ 的值在整数 2 和 3 之间.故选 B.2.分式有意义,则 x 的取值范围是()A.x>﹣ 2 B.x≠2 C.x≠﹣ 2 D.x>2【考点】分式有意义的条件.【分析】直接利用分式有意义的条件进而分析得出答案.【解答】解:∵分式有意义,∴x+2≠0,∴x≠﹣ 2.故选: C.3.运用乘法公式计算( a﹣2)2的结果是()A. a2﹣4a+4 B.a2﹣2a+4 C.a2﹣4 D.a2﹣4a﹣4 【考点】完全平方公式.【分析】原式利用完全平方公式化简得到结果.【解答】解:原式 =a2﹣4a+4,故选 A4.有 5 名同学参加演讲比赛,以抽签的方式决定每个人的出场顺序,签筒中有 5 根形状大小相同的纸签,上面分别标有出场的序号 1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机地抽取一根纸签,下列事件是随机事件的是() A.抽取一根纸签,抽到的序号是 0B.抽取一根纸签,抽到的序号小于 6 C.抽取一根纸签,抽到的序号是 1D.抽取一根纸签,抽到的序号有 6 种可能的结果【考点】随机事件.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:抽取一根纸签,抽到的序号是 0 是不可能事件;抽取一根纸签,抽到的序号小于6 是不可能事件;抽取一根纸签,抽到的序号是 1 是随机事件;抽取一根纸签,抽到的序号有6 种可能的结果是不可能事件,故选: B.5.下列计算正确的是()A. 4x2﹣ 3x2=1 B.x+x=2x2 C. 4x6÷ 2x2=2x3 D.(x2)3=x6 【考点】整式的除法;合并同类项;幂的乘方与积的乘方.【分析】原式各项利用合并同类项法则,幂的乘方与积的乘方,以及整式的除法法则计算得到结果,即可作出判断.【解答】解:A、原式 =x2,错误;B、原式 =2x,错误;C、原式 =2x4,错误;D、原式 =x6,正确,故选 D 6.如图,四边形 ABCD是菱形, A(3,0),B(0,4),则点 C 的坐标为()A.(﹣ 5, 4) B.(﹣ 5, 5) C.(﹣ 4,4) D.(﹣4,3)【考点】菱形的性质;坐标与图形性质.【分析】 由勾股定理求出 AB=5,由菱形的性质得出 BC=5,即可得出点 C 的坐标.【解答】 解:∵ A (3,0),B (0,4),∴OA=3,OB=4,∴AB= =5,∵四边形 ABCD 是菱形, ∴BC=AD=AB=,5∴点 C 的坐标为(﹣ 5,4); 故选: A .7.有一种圆柱体茶叶筒如图所示,则它的主视图是(【分析】 找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中. 【解答】 解:主视图是从正面看,茶叶盒可以看作是一个圆柱体,圆柱从正面看是长方形. 故选:D .8.张大娘为了提高家庭收入,买来 10 头小猪.经过精心饲养,不到 7 个月就可以出售了,下 表为这些猪出售时的体重:体重 /Kg 116 135 136 117 139频数 2 1 2 3 2则这些猪体重的平均数和中位数分别是( )A .126.8,126B .128.6,126C .128.6,135D .126.8, 135【考点】 加权平均数;频数(率)分布表;中位数.【分析】 根据平均数和中位数的概念直接求解,再选择正确选项.【解答】 解:平均数 =÷10=126.8;数据按从小到大排列: 116,116,117, 117,117,135,136,136,139,139,A .B .C .考点】 简单组合体的三视D∴中位数 =÷2=126.故选: A .9.小用火柴棍按下列方式摆图形, 第 1 个图形用了 4 根火柴棍,第 2 个图形用了 10 根火柴棍,第 3 个图形用了 18 根火柴棍.依照此规律,若第 n 个图形用了 70根火柴棍,则 n 的值为(考点】 规律型:图形的变化类.分析】 根据图形中火柴棒的个数得出变化规律得出第 n 个图形火柴棒为: n (n+3)根,进而 求出 n 的值即可.【解答】 解:∵第一个图形火柴棒为: 1×(1+3)=4根; 第二个图形火柴棒为: 2×( 2+3)=10 根; 第三个图形火柴棒为: 3×( 3+3)=18 根; 第四个图形火柴棒为: 4×( 4+3)=28 根; ∴第 n 个图形火柴棒为: n ( n+3)根, ∵n (n+3)=70,解得: n=7 或 n=﹣10(舍), 故选: B .10.如图, Rt △ AOB ∽△ DOC ,∠ AOB=∠COD=90°,M 为 OA 的中点, OA=6,OB=8,将△ COD 绕 O 点旋转,连接 AD ,CB 交于 P 点,连接 MP ,则 MP 的最大值( )A . 7B .8C .9D . 10 【考点】 旋转的性质;相似三角形的性质.【分析】根据相似三角形的判定定理证明△ COB ∽△ DOA ,得到∠ OBC=∠OAD ,得到 O 、B 、P 、 A 共圆,求出 MS 和 PS ,根据三角形三边关系解答即可.【解答】 解:取 AB 的中点 S ,连接 MS 、PS ,则 PM ≤ MS+PS ,∵∠AOB=9°0,OA=6,OB=8,∴AB=10,A .6B .7C .8D .9∵∠AOB=∠COD=9°0,∴∠COB=∠DOA,∵△AOB∽△DOC,∴=,∴=,∴△ COB∽△ DOA,∴∠OBC=∠OAD,∴O、B、P、A 共圆,∴∠ APB=∠AOB=9°0,又 S是 AB 的中点,∴PS= AB=5,∵M 为 OA的中点, S是 AB的中点,∴MS= OB=4,∴MP 的最大值是 4+5=9,二、填空题(共 6小题,每小题 3 分,共 18分)11.计算 9+(﹣ 5)的结果为 4 .【考点】有理数的加法.【分析】原式利用异号两数相加的法则计算即可得到结果.【解答】解:原式 =+( 9﹣ 5) =4,故答案为: 4 12.2016 年某市有 640000初中毕业生.数 640000用科学记数法表示为6.4×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为 a×10n的形式,其中 1≤| a| <10,n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位, n 的绝对值与小数点移动的位数相同.当原数绝对值> 1 时,n 是正数;当原数的绝对值< 1 时,n 是负数.【解答】解: 640000=6.4×105,故答案为: 6.4×105.13.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1, 2, 3, 4,随机取出一个小球,标号为奇数的概率为.【考点】概率公式.【分析】直接利用概率公式求出得到奇数的概率.【解答】解:∵1、2、3、4 中,奇数有 2 个,∴随机取出一个小球,标号为奇数的概率为: = .故答案为:14.如图,已知 AB∥CD,BE 平分∠ ABC,DE 平分∠ ADC,∠ BAD=70°.∠ BCD=n°,则∠ BED 的度数为(35+ )度.【考点】平行线的性质;角平分线的定义;三角形内角和定理.【分析】先根据角平分线的定义,得出∠ ABE=∠CBE= ∠ABC,∠ ADE=∠CDE= ∠ ADC,再根据三角形内角和定理,推理得出∠ BAD+∠ BCD=2∠E,进而求得∠ E 的度数.【解答】解:∵ BE平分∠ ABC,DE平分∠ ADC,∴∠ABE=∠CBE= ∠ABC,∠ ADE=∠CDE= ∠ ADC,∵∠ABE+∠BAD=∠E+∠ADE,∠BCD+∠CDE=∠E+∠CBE,∴∠ABE+∠BAD+∠BCD+∠CDE=∠E+∠ADE+∠E+∠CBE,∴∠BAD+∠BCD=2∠E,∵∠ BAD=7°0 ,∠ BCD=°n,∴∠E= (∠ D+∠B)=35+ .故答案为: 35+15.如图, Rt△ABC中,AC=BC=8,⊙C的半径为 2,点 P 在线段 AB 上一动点,过点 P 作⊙C 的一条切线 PQ,Q 为切点,则切线长 PQ的最小值为 2 .【分析】当 PC⊥AB时,线段 PQ最短;连接 CP,根据勾股定理知 PQ2=CP2﹣CQ2,先求出 CP 的长,然后由勾股定理即可求得答案.【解答】解:连接 CP,∵PQ是⊙C的切线,∴CQ⊥PQ,∴∠CQP=9°0,根据勾股定理得: PQ2=CP2﹣CQ2,∴当 PC⊥AB 时,线段 PQ最短,此时, PC= AB=4 ,则 PQ2=CP2﹣CQ2=28,∴PQ=2 ,故答案为: 2 .16.直线 y=m是平行于 x 轴的直线,将抛物线 y=﹣ x2﹣4x 在直线 y=m 上侧的部分沿直线 y=m 翻折,翻折后的部分与没有翻折的部分组成新的函数图象,若新的函数图象刚好与直线y=﹣x 有 3 个交点,则满足条件的 m 的值为 0 或﹣.【考点】二次函数图象与几何变换.【分析】根据题意①当 m=0 时,新的函数 B 的图象刚好与直线 y=x有 3 个不动点;②翻折后的部分与直线 y=x有一个交点时,新的函数 B 的图象刚好与直线 y=x有 3 个不动点两种情况求得即可.【解答】解:根据题意①当 m=0 时,新的函数 B 的图象刚好与直线 y=x 有 3 个不动点;②当 m<0 时,且翻折后的部分与直线 y=x 有一个交点,∵y=﹣ x2﹣4x=﹣( x+4)2+8,∴顶点为(﹣ 4, 8),∴在直线 y=m 上侧的部分沿直线 y=m 翻折,翻折后的部分的顶点为(﹣ 4,﹣8﹣2m),∴翻折后的部分的解析式为 y= (x+4)2﹣8﹣2m,∵翻折后的部分与直线 y=x 有一个交点,∴方程(x+4)2﹣8﹣2m=x 有两个相等的根,整理方程得 x2+6x﹣ 4m=0.∴△ =36+16m=0,综上,满足条件的 m 的值为 0 或﹣.故答案为: 0 或﹣.三、解答题(共 8 小题,共 72分)17.解方程 5x+2=2( x+7).【考点】解一元一次方程.【分析】方程去括号,移项合并,把 x 系数化为 1,即可求出解.【解答】解:去括号得: 5x+2=2x+14,移项合并得: 3x=12,解得: x=4.18.如图, D 在 AB上,E在 AC上, AB=AC,∠ B=∠C,求证: AD=AE.【考点】全等三角形的判定与性质.【分析】根据全等三角形的判定定理 ASA可以证得△ ACD≌△ ABE,然后由“全等三角形的对应边相等”即可证得结论.【解答】证明:在△ ABE与△ ACD中,,∴△ACD≌△ABE(ASA),∴AD=AE(全等三角形的对应边相等).19.在学校开展的“学习交通安全知识,争做文明中学生”主题活动月中,学校德工处随机选取了该校部分学生,对闯红灯情况进行了一次调查,调查结果有三种情况: A.从不闯红灯;B.偶尔闯红灯; C经常闯红灯.德工处将调查的数据进行了整理,并绘制了尚不完整的统计图如图,请根据相关信息,解答下列问题.(1)求本次活动共调查了多少名学生;(2)请补全(图二),并求(图一)中 B 区域的圆心角的度数;(3)若该校有 2400 名学生,请估算该校不严格遵守信号灯指示的人数.考点】条形统计图;用样本估计总体;扇形统计图.分析】( 1)根据总数 =频数÷百分比,可得共调查的学生数;(2)B 区域的学生数 =总数减去 A 、C 区域的人数即可;再根据百分比 =频数÷总数计算可得最 喜爱甲类图书的人数所占百分比,从而求出 B 区域的圆心角的度数; (3)用总人数乘以样本的概率即可解答.【解答】 解:(1)(名).故本次活动共调查了 200 名学生..故 B 区域的圆心角的度数是 108°.(3) (人).故估计该校不严格遵守信号灯指示的人数为 960 人.20.将直线 y=k 1x 向右平移 3 个单位后,刚好经过点 A (﹣1,4),已知点 A 在反比例函数 y= 的图象上.k 1x> 的解集.【分析】(1)根据平移可知 y=k 1(x ﹣3),将A 点的坐标代入即可求出 k 1的值,再将 A 点代入 y= ,即可求出 k 2 的值;2)画出一次函数与反比函数的图象即可求出 x 的范围.1)求直线 y=k 1x 和 y= 图象的交点坐标;2)画出两函数图象,并根据图象指出不等式 2)补全图【解答】解:(1)将 y=k1x 向右平移 3 个单位后所得的直线为 y=k1(x﹣3)∵平移后经过点A(﹣ 1,4)∴k1=﹣1∵点 A(﹣ 1,4)在图象∴k=﹣4∴y=k1x 和图象交点坐标为(﹣ 2,2)和( 2,﹣2)(2)画出图象21.已知:如图, AB是⊙O的直径, C是⊙O上一点, OD⊥BC于点 D,过点 C作⊙ O的切线,交 OD 的延长线于点 E,连接 BE.(1)求证: BE与⊙O 相切;(2)连接 AD 并延长交 BE于点 F,若 OB=9,sin∠ABC= ,求 BF的长.【考点】切线的判定与性质;相似三角形的判定与性质;解直角三角形.【分析】( 1)连接 OC,先证明△ OCE≌△OBE,得出 EB⊥OB,从而可证得结论.(2)过点 D作 DH⊥AB,根据 sin∠ABC= ,可求出 OD=6,OH=4,HB=5,然后由△ADH∽△ AFB,利用相似三角形的性质得出比例式即可解出 BF的长.【解答】证明:(1)连接 OC,∴∠COE=∠BOE,在△OCE和△OBE中,∵,∴△ OCE≌△ OBE,∴∠ OBE=∠OCE=9°0,即 OB⊥BE,∵OB是⊙O半径,∴BE与⊙O 相切.2)过点 D 作 DH⊥AB,连接 AD并延长交 BE于点 F,∴△ODH∽△OBD,===又∵ sin∠ABC= ,OB=9,∴OD=6,易得∠ ABC=∠ODH,∴sin∠ ODH= ,即 = ,∴OH=4,∴DH= =2 ,又∵△ ADH∽△ AFB,,=,=FB=22.某公司生产的 A种产品,它的成本是 2 元,售价是 3 元,年销售量为 100 万件,为了获得更好的效益,公司准备拿出一定的资金做广告.根据经验,每年投入的广告费是x(10 万元)时,产品的年销售量将是原销售量的 y 倍,且 y 是 x 的二次函数,它们的关系如表: x(10 万元)0 1 2 ⋯y 1 1.5 1.8 ⋯(1)求 y 与 x 的函数关系式;(2)如果把利润看做是销售总额减去成本费和广告费,试写出年利润S(10 万元)与广告费x(10 万元)的函数关系式;(3)如果投入的年广告费为 10~30 万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增大?【考点】二次函数的应用.【分析】( 1)设二次函数的解析式为 y=ax2+bx+c,根据表格数据待定系数法求解可得;(2)根据利润 =销售总额减去成本费和广告费,即可列函数解析式;(3)将( 2)中函数解析式配方,结合 x 的范围即可得.【解答】解:(1)设二次函数的解析式为 y=ax2+bx+c,根据题意,得,解得∴所求函数的解析式是.(2)根据题意,得 S=10y(3﹣2)﹣ x=﹣x2+5x+10.(3).由于 1≤x≤3,所以当 1≤x≤2.5 时,S随 x的增大而增大.∴当广告费在 10~25 万元之间,公司获得的年利润随广告费的增大而增大.23.如图,在△ ABC中,∠ACB=90°,BC=nAC,CD⊥AB于 D,点 P为 AB边上一动点,PE⊥AC, PF⊥BC,垂足分别为 E、F.(1)若 n=2,则 = ;(2)当 n=3 时,连 EF、DF,求的值;(3)若 = ,求 n 的值.考点】相似形综合题.【分析】(1)根据∠ ACB=9°0,PE⊥AC,PF⊥BC,那么 CEPF就是个矩形.得到 CE=PF从而不难求得 CE: BF的值;(2)可通过构建相似三角形来求解;(3)可根据( 2)的思路进行反向求解,即先通过 EF,DF的比例关系,求出 DE:DF的值.也就求出了 CE:BF 的值即 tanB=AC: BC的值.【解答】解:(1)∵∠ ACB=90°,PE⊥AC,PF⊥BC,∴四边形 CEPF是矩形.∴CE=PF.∴CE: BF=PF:BF=tanB=AC:BC= .故答案是:.(2)连 DE,∵∠ ACB=9°0,PE⊥CA,PF⊥BC,∴四边形 CEPF是矩形.∴CE=PF.∴CE:BF=CD:BD=PF:BF=tanB.∵∠ACB=90°,CD⊥AB,∴∠B+∠A=90°,∠ECD+∠A=90°,∴∠ECD=∠B,∴△ CED∽△ BFD.∴∠EDC=∠FDB.∵∠FDB+∠CDF=9°0,∴∠CDE+∠CDF=9°0.∴∠EDF=90°.∵ =tanB= ,设 DE=a, DF=3a,在直角三角形 EDF中,根据勾股定理可得: EF= a.∴ = = .∴ = = .(3)可根据( 2)的思路进行反向求解,即先通过 EF,DF的比例关系,求出 DE:DF的值.也就求出了 CE:BF 的值,即 tanB= = .24.已知抛物线 C1:y=ax2+bx+ (a≠0)经过点 A(﹣ 1,0)和 B(3,0).(1)求抛物线 C1 的解析式,并写出其顶点 C的坐标;(2)如图 1,把抛物线 C1 沿着直线 AC方向平移到某处时得到抛物线 C2,此时点 A,C分别平移到点 D,E处.设点 F在抛物线 C1上且在 x轴的下方,若△DEF是以 EF为底的等腰直角三角形,求点 F 的坐标;(3)如图 2,在(2)的条件下,设点 M 是线段 BC上一动点, EN⊥EM 交直线 BF于点 N,点P为线段 MN的中点,当点 M从点 B向点 C运动时:①tan∠ENM的值如何变化?请说明理由;②点 M 到达点 C 时,直接写出点 P 经过的路线长.【考点】二次函数综合题.【分析】(1)根据待定系数法即可求得解析式,把解析式化成顶点式即可求得顶点坐标;(2)根据 A、C的坐标求得直线 AC的解析式为 y=x+1,根据题意求得 EF=4,求得 EF∥y 轴,设 F(m,﹣ m2+m+ ),则 E(m, m+1),从而得出( m+1)﹣(﹣ m2+m+ )=4,解方程即可求得 F 的坐标;(3)①先求得四边形 DFBC 是矩形,作 EG ⊥AC ,交 BF 于 G ,然后根据△ EGN ∽△ EMC ,对应 边成比例即可求得 tan ∠ ENM= =2;②根据勾股定理和三角形相似求得 EN= ,然后根据三角形中位线定理即可求得.解答】 解:(1)∵抛物线 C 1:y=ax 2+bx+ (a ≠0)经过点 A (﹣ 1, 0)和 B (3,0),∴抛物线 C 1 的解析式为 y=﹣ x 2+x+x ﹣1)2+2, ∴顶点 C 的坐标为( 1,2);2)如图 1,作 CH ⊥x 轴于 H , ∵A (﹣1,0),C (1,2),∴AH=CH=2,∴∠CAB=∠ACH=4°5,∴直线 AC 的解析式为 y=x+1,∵△ DEF 是以 EF 为底的等腰直角三角形,∴∠DEF=45°, ∴∠DEF=∠ACH ,∴EF ∥ y 轴, ∵DE=AC=2 ,解得 m=3(舍)或 m=﹣ 3, ∴F (﹣3,﹣6);(3)①tan ∠ENM 的值为定值,不发生变化; 如图 2,∵ DF ⊥AC ,BC ⊥AC ,∴DF ∥BC ,∵DF=BC=AC ,∴四边形 DFBC 是矩形, 作 EG ⊥AC ,交 BF 于 G , ∴EG=BC=AC=2 , ∵EN ⊥EM ,∴∠MEN=9°0 , ∵∠CEG=9°0, ∴∠CEM=∠NEG , ∴△ENG ∽△EMC , ∴=,∴=, ∵F (﹣3,﹣6),EF=4, ∴E (﹣3,﹣2), ∵C (1,2),∴EC==4 , =∵y=﹣ ∴EF=4,设 F( m ,∴( m+1) ﹣ m 2+m+ ), 则 E ( m , m 2+m+ ) =4,m+1), 解得∴tan ∠ENM= =2;∵tan∠ENM的值为定值,不发生变化;②∵直角三角形 EMN中, PE= MN,直角三角形 BMN 中,PB= MN,∴PE=PB,∴点 P在 EB的垂直平分线上,∴点 P 经过的路径是线段,如图 3,∵△EGN∽△ECB,∴=,∴=,∵EC=4 , EG=BC=2 ,∴EB=2 ,∴,∴ = ,∴EN= ,∵P1P2是△ BEN的中位线,∴P1P2= EN= ;∴点 M 到达点 C 时,点 P 经过的路线长为。
2020年湖北省武汉市中考数学模拟考试试卷及答案解析
2020年湖北省武汉市中考数学模拟考试试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)一元二次方程2x2+5x=6的二次项系数、一次项系数、常数项分别是()A.2,5,6B.5,2,6C.2,5,﹣6D.5,2,﹣6 2.(3分)下列图形中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个3.(3分)下列事件中,不可能事件是()A.水在100℃沸腾B.射击一次,命中靶心C.三角形的内角和等于360°D.经过路口,遇上红灯4.(3分)将抛物线y=﹣2(x+3)2+2以原点为中心旋转180°得到的抛物线解析式为()A.y=﹣2(x﹣3)2+2B.y=﹣2(x+3)2﹣2C.y=2(x﹣3)2﹣2D.y=2(x﹣3)2+25.(3分)下列说法错误的是()A.必然事件发生的概率是1B.通过大量重复试验,可以用频率估计概率C.概率很小的事件不可能发生D.投一枚图钉,“钉尖朝上”的概率不能用列举法求得6.(3分)如图,AB是⊙O的直径,点C,D在⊙O上,若∠DCB=110°,则∠AED的度数为()A.15°B.20°C.25°D.30°7.(3分)⊙O的半径r=10cm,圆心到直线l的距离OM=6cm,在直线l上有一点P,且PM=3cm,则点P()A.在⊙O内B.在⊙O上C.在⊙O外D.可能在⊙O上或在⊙O内8.(3分)如图,将Rt△ABC绕直角顶点A,沿顺时针方向旋转后得到Rt△AB1C1,当点B1恰好落在斜边BC的中点时,则∠B1AC=()A.25°B.30°C.40°D.60°9.(3分)已知△ABC中,AB=AC,以AB为直径的⊙O1分别交AC、BC于两D、E点,过B点的切线交OE的延长线于点F,连FD、BD、OD,下列结论:①四边形ODCE是平行四边形;②E是△BFD的内心;③E是△FDO的外心;④∠C=∠BFD;其中正确的有()个.A.1B.2C.3D.410.(3分)二次函数y=x2+bx的对称轴为直线x=1,若关于x的方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有实数解,则t的取值范围是()A.t≥﹣1B.﹣1≤t<3C.﹣1≤t<8D.t<3二.填空题(共6小题,满分18分,每小题3分)11.(3分)关于x的一元二次方程x2﹣2x﹣m=0有两个不相等的实数根,则m的最小整数值是.12.(3分)若点A(m,7)与点B(﹣4,n)关于原点成中心对称,则m+n=.13.(3分)今年我国生猪价格不断飙升,某超市的排骨价格由第一季度的每公斤40元上涨到第三季度的每公斤元90,则该超市的排骨价格平均每个季度的增长率为.14.(3分)用如图所示的两个转盘(分别进行四等分和三等分),设计一个“配紫色”的游戏(红色与蓝色可配成紫色),则能配成紫色的概率为.15.(3分)如图,正六边形ABCDEF纸片中,AB=6,分别以B、E为圆心,以6为半径画、.小欣把扇形BAC与扇形EDF剪下,并把它们粘贴为一个大扇形(B与E重合,F与A重合),她接着用这个大扇形作一个圆锥的侧面,则这个圆锥的高为.16.(3分)如图,P是等腰Rt△ABC内的一点,∠ACB=90°,P A=,PB=2,PC=1,∠APC的度数是.三.解答题(共8小题,满分72分)17.(8分)解方程:x2﹣x﹣3=0.18.(6分)在Rt△ABC中,∠ACB=90°,以点A为圆心,AC为半径,作⊙A交AB于点D,交CA的延长线于点E,过点E作AB的平行线EF交⊙A于点F,连接AF、BF,DF.(1)求证:BF⊥AF;(2)当∠CAB等于多少度时,四边形ADFE为菱形?请给予证明.19.(8分)如图,两转盘分别标有数字,转盘一被三等分,转盘二被分成六份,其中标有数字“8”的扇形的圆心角为90°,标有数字“5”的扇形圆心角是标有数字“2”的扇形圆心角的2倍,转动转盘,等旋转停止时,每个转盘上的前头各指向一个数字(若箭头指向两个扇形的交线,则重新转动转盘,直到指向数字为止).(1)转动转盘一次,求出指向数字“3”的概率,(2)同时转动两个转盘,通过画树状图法或列表法求这两个转盘转出的数字之和为偶数的概率.20.(8分)如图,已知点A(﹣2,﹣1)、B(﹣5,﹣5)、C(﹣2,﹣3),点P(﹣6,0).(1)将△ABC绕点P逆时针旋转90°得△A1B1C1,画出△A1B1C1,并写出点C的对应点C1的坐标为;(2)画出△ABC关于原点成中心对称的图形△A2B2C2,并写出点A的对应点A2的坐标为;(3)把△A2B2C2向下平移6个单位长度得△A3B3C3,画出△A3B3C3,由图可知△A3B3C3可由△A1B1C1绕点Q逆时针旋转90°而得到,则点Q的坐标为;21.(8分)如图,四边形ABCD内接于⊙O,AB是直径,C为的中点,延长AD,BC交于点P,连结AC(1)求证:AB=AP;(2)若AB=10,DP=2,①求线段CP的长;②过点D作DE⊥AB于点E,交AC于点F,求△ADF的面积.22.(10分)如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20米,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)若a=70米,求矩形菜园ABCD面积的最大值.23.(12分)在△ABC中,∠ACB=45°,BC=5,AC=2,D是BC边上的动点,连接AD,将线段AD绕点A逆时针旋转90°得到线段AE,连接EC.(1)如图a,求证:CE⊥BC;(2)连接ED,M为AC的中点,N为ED的中点,连接MN,如图b.①写出DE、AC,MN三条线段的数量关系,并说明理由;②在点D运动的过程中,当BD的长为何值时,M,E两点之间的距离最小?最小值是,请直接写出结果.24.(12分)如图,抛物线y=a(x2﹣2mx﹣3m2)(其中a,m为正的常数)与x轴交于点A,B,与y轴交于点C(0,﹣3),顶点为F,CD∥AB交抛物线于点D.(1)当a=1时,求点D的坐标;(2)若点E是第一象限抛物线上的点,满足∠EAB=∠ADC.①求点E的纵坐标;②试探究:在x轴上是否存在点P,使以PF、AD、AE为边长构成的三角形是以AE为斜边的直角三角形?如果存在,请用含m的代数式表示点P的横坐标;如果不存在,请说明理由.2020年湖北省武汉市中考数学模拟考试试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)一元二次方程2x2+5x=6的二次项系数、一次项系数、常数项分别是()A.2,5,6B.5,2,6C.2,5,﹣6D.5,2,﹣6【分析】方程整理为一般形式,找出所求即可.【解答】解:方程整理得:2x2+5x﹣6=0,则方程的二次项系数、一次项系数、常数项分别是2,5,﹣6,故选:C.2.(3分)下列图形中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个图是轴对称图形,是中心对称图形;第二个图是轴对称图形,不是中心对称图形;第三个图是轴对称图形,又是中心对称图形;第四个图是轴对称图形,不是中心对称图形;既是轴对称图形,又是中心对称图形的有2个,故选:B.3.(3分)下列事件中,不可能事件是()A.水在100℃沸腾B.射击一次,命中靶心C.三角形的内角和等于360°D.经过路口,遇上红灯【分析】根据事件发生的可能性大小判断.【解答】解:A、水在100℃沸腾是必然事件;B、射击一次,命中靶心是随机事件;C、三角形的内角和等于360°是不可能事件;D、经过路口,遇上红灯是随机事件;故选:C.4.(3分)将抛物线y=﹣2(x+3)2+2以原点为中心旋转180°得到的抛物线解析式为()A.y=﹣2(x﹣3)2+2B.y=﹣2(x+3)2﹣2C.y=2(x﹣3)2﹣2D.y=2(x﹣3)2+2【分析】求出绕原点旋转180°的抛物线顶点坐标,然后根据顶点式写出即可.【解答】解:∵抛物线y=﹣2(x+3)2+2的顶点为(﹣3,2),绕原点旋转180°后,变为(3,﹣2)且开口相反,故得到的抛物线解析式为y=2(x﹣3)2﹣2,故选:C.5.(3分)下列说法错误的是()A.必然事件发生的概率是1B.通过大量重复试验,可以用频率估计概率C.概率很小的事件不可能发生D.投一枚图钉,“钉尖朝上”的概率不能用列举法求得【分析】不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率大于0并且小于1.【解答】解:A、必然事件发生的概率是1,正确;B、通过大量重复试验,可以用频率估计概率,正确;C、概率很小的事件也有可能发生,故错误;D、投一枚图钉,“钉尖朝上”的概率不能用列举法求得,正确,故选:C.6.(3分)如图,AB是⊙O的直径,点C,D在⊙O上,若∠DCB=110°,则∠AED的度数为()A.15°B.20°C.25°D.30°【分析】连接AC,如图,利用圆周角定理的推论得到∠ACB=90°,则∠ACD=∠DCB ﹣∠ACB=20°,然后再利用圆周角定理可得到∠AED的度数.【解答】解:连接AC,如图,∵AB为直径,∴∠ACB=90°,∴∠ACD=∠DCB﹣∠ACB=110°﹣90°=20°,∴∠AED=∠ACD=20°.故选:B.7.(3分)⊙O的半径r=10cm,圆心到直线l的距离OM=6cm,在直线l上有一点P,且PM=3cm,则点P()A.在⊙O内B.在⊙O上C.在⊙O外D.可能在⊙O上或在⊙O内【分析】连接CP,根据圆心到直线l的距离CM=6cm,在直线l上有一点P且PM=3cm 得出CP的长度,即可得出P与圆的位置关系.【解答】解:∵过点O作OM⊥l,连接OP,∴MP=3cm,OM=6cm,∴CO===3,∵⊙C的半径r=10cm,∴d=3<10,∴点P在圆内,.故选:A.8.(3分)如图,将Rt△ABC绕直角顶点A,沿顺时针方向旋转后得到Rt△AB1C1,当点B1恰好落在斜边BC的中点时,则∠B1AC=()A.25°B.30°C.40°D.60°【分析】先根据直角三角形斜边上的中线性质得AB1=BB1,再根据旋转的性质得AB1=AB,旋转角等于∠BAB1,则可判断△ABB1为等边三角形,所以∠BAB1=60°,从而得出结论.【解答】解:∵点B1为斜边BC的中点,∴AB1=BB1,∵△ABC绕直角顶点A顺时针旋转到△AB1C1的位置,∴AB1=AB,旋转角等于∠BAB1,∴AB1=BB1=AB,∴△ABB1为等边三角形,∴∠BAB1=60°.∴∠B1AC=90°﹣30°=60°.故选:B.9.(3分)已知△ABC中,AB=AC,以AB为直径的⊙O1分别交AC、BC于两D、E点,过B点的切线交OE的延长线于点F,连FD、BD、OD,下列结论:①四边形ODCE是平行四边形;②E是△BFD的内心;③E是△FDO的外心;④∠C=∠BFD;其中正确的有()个.A.1B.2C.3D.4【分析】首先利用三角形的中位线定理证明OE∥AC,然后证得△FDO≌△FBO,可以得到DF是圆的切线,然后利用内心以及外心的定义和的等腰三角形的性质:等边对等角即可作出判断.【解答】解:连接AE,∵AB是直径,∴AE⊥BC,又∵AB=AC,∴BE=CE,又∵OA=OB,∴OE∥AC,∴∠BOE=∠BAC,∠EOD=∠ADO,∵∠BAC=∠ADO,∴∠BOE=∠EOD,在△FDO和△FBO中∵,∴△FDO≌△FBO∴∠ODF=∠OBF=90°,即△FDO是直角三角形,DF是圆的切线.如果四边形ODCE是平行四边形,则OD∥BC,则∠BEO=∠EOB=∠DOE则△OBE是等边三角形,从而得到△ABC是等边三角形,与已知不符,故①是错误的;∵FD、FB是圆的切线,∴FD=FB,又∵OB=OD∴OF是BD的中垂线,∴=,E在∠DFB的平分线上,∴E在∠FBD的平分线上,则E是△BFD的内心,故②正确;Rt△DOF中,若E是△FDO的外心,则E是OF的中点,可以得到△ODE是等边三角形,则△ABC是等边三角形,与已知不符,故③是错误的;设∠C=x°,则∠A=180﹣2x°,则在直角△ABD中,∠ABD=90°﹣(180﹣2x)=2x﹣90°,∵BF是切线,则∠ABF=90°,∴∠DBF=90°﹣∠ABD=90°﹣(2x﹣90)°=180﹣2x°,在等腰△BDF中,∠F=180°﹣2∠DBF=180°﹣2(180﹣2x)°=4x﹣180°,而4x﹣180与x不一定相等,故④不正确.故正确的只有②.故选:A.10.(3分)二次函数y=x2+bx的对称轴为直线x=1,若关于x的方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有实数解,则t的取值范围是()A.t≥﹣1B.﹣1≤t<3C.﹣1≤t<8D.t<3【分析】二次函数的表达式为y=x2﹣2x,顶点为:(1,﹣1),x=﹣1时,y=4,x=4时,y=8,即可求解.【解答】解:二次函数y=x2+bx的对称轴为直线x=1,则x=﹣=﹣=1,解得:b=﹣2,二次函数的表达式为y=x2﹣2x,顶点为:(1,﹣1),x=﹣1时,y=4,x=4时,y=8,t的取值范围为顶点至y=8之间的区域,即﹣1≤t<8;故选:C.二.填空题(共6小题,满分18分,每小题3分)11.(3分)关于x的一元二次方程x2﹣2x﹣m=0有两个不相等的实数根,则m的最小整数值是0.【分析】根据一元二次方程根的存在性,利用判别式△>0求解即可;【解答】解:一元二次方程x2﹣2x﹣m=0有两个不相等的实数根,∴△=4+4m>0,∴m>﹣1;故答案为0;12.(3分)若点A(m,7)与点B(﹣4,n)关于原点成中心对称,则m+n=﹣3.【分析】两个点关于原点对称时,它们的横坐标互为相反数,纵坐标也互为相反数,直接利用关于原点对称点的性质得出m,n的值,进而得出答案.【解答】解:∵点A(m,7)与点B(﹣4,n)关于原点成中心对称,∴m=4,n=﹣7,∴m+n=﹣3.故答案为:﹣3.13.(3分)今年我国生猪价格不断飙升,某超市的排骨价格由第一季度的每公斤40元上涨到第三季度的每公斤元90,则该超市的排骨价格平均每个季度的增长率为50%.【分析】设平均每个季度的增长率为x,根据该超市第一季度及第三季度排骨的单价,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设平均每个季度的增长率为x,依题意,得:40(1+x)2=90,解得:x1=0.5=50%,x2=﹣2.5(不合题意,舍去).故答案为:50%.14.(3分)用如图所示的两个转盘(分别进行四等分和三等分),设计一个“配紫色”的游戏(红色与蓝色可配成紫色),则能配成紫色的概率为.【分析】画树状图列出所有等可能结果和能配成紫色的结果,再根据概率公式计算可得.【解答】解:画树状图如下:由树状图知,共有12种等可能结果,其中能配成紫色的有3种结果,所以能配成紫色的概率为=,故答案为:.15.(3分)如图,正六边形ABCDEF纸片中,AB=6,分别以B、E为圆心,以6为半径画、.小欣把扇形BAC与扇形EDF剪下,并把它们粘贴为一个大扇形(B与E重合,F与A重合),她接着用这个大扇形作一个圆锥的侧面,则这个圆锥的高为2.【分析】根据正六边形的性质和弧长的公式即可得到结论.【解答】解:正六边形ABCDEF纸片中,∵∠B=∠E=120°,∵AB=6,∴+的长=×2=8π,∴圆锥的底面半径==4,∴圆锥的高==2,故答案为:2.16.(3分)如图,P是等腰Rt△ABC内的一点,∠ACB=90°,P A=,PB=2,PC=1,∠APC的度数是135°.【分析】如图,将△P AC绕C点顺时针旋转90°,与△P′CB重合,连结PP′.可求PP′=,∠CP′P=45°,由勾股定理的逆定理可求∠BP′P=90°,即可求解.【解答】解:如图,将△P AC绕C点顺时针旋转90°,与△P′CB重合,连结PP′.∴△P AC≌△P′BC,∠PCP′=90°,∴CP=CP′=1,∠APC=∠CP′B,AP=BP′=,∴△PCP′是等腰直角三角形,且PC=1,∴PP′=,∠CP′P=45°,在△BPP′中,∵PP′=,BP′=,PB=2,∴PP′2+BP′2=PB2,∴△CP′P是直角三角形,∠BP′P=90°,∴∠CP′B=∠BP′P+∠CP′P=45°+90°=135°,∴∠APC=135°,故答案为135°.三.解答题(共8小题,满分72分)17.(8分)解方程:x2﹣x﹣3=0.【分析】根据方程的特点可直接利用求根公式法比较简便.【解答】解:a=1,b=﹣1,c=﹣3∴x==∴,.18.(6分)在Rt△ABC中,∠ACB=90°,以点A为圆心,AC为半径,作⊙A交AB于点D,交CA的延长线于点E,过点E作AB的平行线EF交⊙A于点F,连接AF、BF,DF.(1)求证:BF⊥AF;(2)当∠CAB等于多少度时,四边形ADFE为菱形?请给予证明.【分析】(1)首先利用平行线的性质得到∠F AB=∠CAB,然后利用SAS证得两三角形全等,得出对应角相等即可;(2)当∠CAB=60°时,四边形ADFE为菱形,根据∠CAB=60°,得到∠F AB=∠CAB =∠CAB=60°,从而得到EF=AD=AE,利用邻边相等的平行四边形是菱形进行判断四边形ADFE是菱形.【解答】(1)证明:∵EF∥AB,∴∠E=∠CAB,∠EF A=∠F AB,∵∠E=∠EF A,∴∠F AB=∠CAB,在△ABC和△ABF中,,∴△ABC≌△ABF(SAS),∴∠AFB=∠ACB=90°,∴BF⊥AF;(2)解:当∠CAB=60°时,四边形ADFE为菱形.理由如下:∵∠CAB=60°,∴∠F AB=∠CAB=60°,∴∠EAF=60°,∵AE=AF=AD,∴△AEF,△ADF都是等边三角形,∴EF=AE=AD=AE,∴四边形ADFE是菱形.19.(8分)如图,两转盘分别标有数字,转盘一被三等分,转盘二被分成六份,其中标有数字“8”的扇形的圆心角为90°,标有数字“5”的扇形圆心角是标有数字“2”的扇形圆心角的2倍,转动转盘,等旋转停止时,每个转盘上的前头各指向一个数字(若箭头指向两个扇形的交线,则重新转动转盘,直到指向数字为止).(1)转动转盘一次,求出指向数字“3”的概率,(2)同时转动两个转盘,通过画树状图法或列表法求这两个转盘转出的数字之和为偶数的概率.【分析】(1)由概率公式即可得出答案(2)画出树状图,由概率公式即可得出答案.【解答】解:(1)转动转盘一一次,指向数字“3”的概率为;(2)∵标有数字“8”的扇形的圆心角为90°,∴标有数字“4”的扇形的圆心角为90°,∵标有数字“5”的扇形圆心角是标有数字“2”的扇形圆心角的2倍,∴标有数字“2”和“5”的扇形的圆心角的分别为60°、120°,画树状图如图:共有36个等可能的结果,两个转盘转出的数字之和为偶数的结果有16个,∴两个转盘转出的数字之和为偶数的概率为=.20.(8分)如图,已知点A(﹣2,﹣1)、B(﹣5,﹣5)、C(﹣2,﹣3),点P(﹣6,0).(1)将△ABC绕点P逆时针旋转90°得△A1B1C1,画出△A1B1C1,并写出点C的对应点C1的坐标为(﹣3,5);(2)画出△ABC关于原点成中心对称的图形△A2B2C2,并写出点A的对应点A2的坐标为(1,1);(3)把△A2B2C2向下平移6个单位长度得△A3B3C3,画出△A3B3C3,由图可知△A3B3C3可由△A1B1C1绕点Q逆时针旋转90°而得到,则点Q的坐标为(3,3);【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)分别作出A,B,C的对应点A2,B2,C2即可.(3)分别作出A1,B1,C1的对应点A3,B3,C3即可.对应点连线段的垂直平分线的交点即为所求的点Q.【解答】解:(1)如图△A1B1C1即为所求.点C的对应点C1的坐标为(﹣3,5);故答案为(﹣3,5).(2)如图△A2B2C2即为所求.点A的对应点A2的坐标为(1,1);故答案为(1,1).(3)如图△A3B3C3即为所求.由图可知△A3B3C3可由△A1B1C1绕点Q逆时针旋转90°而得到,则点Q的坐标为(3,3),故答案为(3,3).21.(8分)如图,四边形ABCD内接于⊙O,AB是直径,C为的中点,延长AD,BC交于点P,连结AC(1)求证:AB=AP;(2)若AB=10,DP=2,①求线段CP的长;②过点D作DE⊥AB于点E,交AC于点F,求△ADF的面积.【分析】(1)利用等角对等边证明即可.(2)①利用勾股定理分别求出BD,PB,再利用等腰三角形的性质即可解决问题.③作FH⊥AD于H.首先利用相似三角形的性质求出AE.DE,再证明AE=AH,设FH=EF=x,利用勾股定理构建方程解决问题即可.【解答】(1)证明:∵=,∴∠BAC=∠CAP,∵AB是直径,∴∠ACB=∠ACP=90°,∵∠ABC+∠BAC=90°,∠P+∠CAP=90°,∴∠ABC=∠P,∴AB=AP.(2)①解:连接BD.∵AB是直径,∴∠ADB=∠BDP=90°,∵AB=AP=10,DP=2,∴AD=10﹣2=8,∴BD===6,∴PB===2,∵AB=AP,AC⊥BP,∴BC=PC=PB=,∴PC=.②解:作FH⊥AD于H.∵DE⊥AB,∴∠AED=∠ADB=90°,∵∠DAE=∠BAD,∴△ADE∽△ABD,∴==,∴==,∴AE=,DE=,∵∠FEA=∠FEH,FE⊥AE,FH⊥AH,∴FH=FE,∠AEF=∠AHF=90°,∵AF=AF,∴Rt△AFE≌Rt△AFH(HL),∴AH=AE=,DH=AD﹣AH=,设FH=EF=x,在Rt△FHD中,则有(﹣x)2=x2+()2,解得x=,∴S△ADF=•AD•FH=×8×=.22.(10分)如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20米,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)若a=70米,求矩形菜园ABCD面积的最大值.【分析】(1)设AB=xm,则BC=(100﹣2x)m,列方程求解即可;(2)设AB=xm,由题意得关于x的二次函数,利用二次函数的性质即可解决问题.【解答】解:(1)设AB=xm,则BC=(100﹣2x)m,由题意得:x(100﹣2x)=450解得:x1=5,x2=45当x=5时,100﹣2x=90>20,不合题意舍去;当x=45时,100﹣2x=10<20答:AD的长为10m;(2)设AB=xm,则S=x(100﹣x)=﹣(x﹣50)2+1250,(0<x≤70)∴x=50时,S的最大值是1250.答:当x=50时,矩形菜园ABCD面积的最大值为1250.23.(12分)在△ABC中,∠ACB=45°,BC=5,AC=2,D是BC边上的动点,连接AD,将线段AD绕点A逆时针旋转90°得到线段AE,连接EC.(1)如图a,求证:CE⊥BC;(2)连接ED,M为AC的中点,N为ED的中点,连接MN,如图b.①写出DE、AC,MN三条线段的数量关系,并说明理由;②在点D运动的过程中,当BD的长为何值时,M,E两点之间的距离最小?最小值是1,请直接写出结果.【分析】(1)如图a,过点A作AH⊥AC交BC于H,由“SAS”可证△HAD≌△CAE,可得∠ACE=∠AHD=45°,可得结论;(2)①如图b,连接AN,CN,由直角三角形的性质和等腰三角形的性质可得AN=CN =DN=EN=DE,MN⊥AC,AM=CM=AC,由勾股定理可得结论.②根据垂线段最短即可解决问题.【解答】证明:(1)如图a,过点A作AH⊥AC交BC于H,∵∵∠ACB=45°,AH⊥AC,∴∠AHC=∠ACB=45°,∴AH=AC,∵将线段AD绕点A逆时针旋转90°得到线段AE,∴AD=AE,∠HAC=∠DAE=90°,∴∠HAD=∠CAE,且AD=AE,AH=AC,∴△HAD≌△CAE(SAS)∴∠ACE=∠AHD=45°,∴∠HCE=90°,∴CE⊥BC;(2)MN2+AC2=DE2,理由如下:如图b,连接AN,CN,∵∠EAD=∠ECD=90°,点N是DE中点,∴AN=CN=DN=EN=DE,∵M为AC的中点,∴MN⊥AC,AM=CM=AC,∵MN2+CM2=CN2,∴MN2+AC2=DE2.(3)如图c中,由(1)可知∠ECB=90°,∴CE⊥BC,∴当ME⊥EC时,ME的值最小,在Rt△ACH中,∵AH=AC=2,∴HC=4,∵AM=MC=,在Rt△CME中,∵∠ECM=∠CME=45°,∴EC=EM=1,由(1)可知:△HAD≌△CAE,∴HD=EC=1,∴CD=4﹣1=3,∴BD=5﹣3=2,∴当BD=2时,EM的值最小,最小值为1,故答案为:124.(12分)如图,抛物线y=a(x2﹣2mx﹣3m2)(其中a,m为正的常数)与x轴交于点A,B,与y轴交于点C(0,﹣3),顶点为F,CD∥AB交抛物线于点D.(1)当a=1时,求点D的坐标;(2)若点E是第一象限抛物线上的点,满足∠EAB=∠ADC.①求点E的纵坐标;②试探究:在x轴上是否存在点P,使以PF、AD、AE为边长构成的三角形是以AE为斜边的直角三角形?如果存在,请用含m的代数式表示点P的横坐标;如果不存在,请说明理由.【分析】(1)根据题意将a=1,C(0,﹣3)代入y=a(x2﹣2mx﹣3m2),进而求出m 的值,即可得出答案;(2)①表示D点坐标,得出∠EAB=∠BAD,则x轴平分∠BAD,可得出点D关于x 轴的对称点一定在直线AE上,求出直线AE的解析式,联立直线AE和抛物线解析式可得出点E的坐标.②由①知E点的坐标,得出F(m,﹣4)、A(﹣m,0)、D(2m,﹣3),再利用PF,AD,AE的关系得出答案.【解答】解:(1)当a=1时,y=a(x2﹣2mx﹣3m2)=x2﹣2mx﹣3m2,∵与y轴交于点C(0,﹣3),∴﹣3m2=﹣3,解得:m=±1,∵m>0,∴m=1,∴抛物线解析式为:y=x2﹣2x﹣3=(x﹣1)2﹣4,∵CD∥AB,∴C,D关于直线x=1对称,∴D点坐标为:(2,﹣3);(2)①对于y=a(x2﹣2mx﹣3m2),当y=0,则0=a(x2﹣2mx﹣3m2),解得:x1=﹣m,x2=3m,当x=0,y=﹣3am2,可得:A(﹣m,0)、B(3m,0),C(0,﹣3am2),∵抛物线过点C,∴﹣3am2=﹣3,则am2=1,∵CD∥AB交抛物线于点D,∴∠ADC=∠BAD,∴点D与点C关于抛物线的对称轴x=m对称,∴D(2m,﹣3),∵∠EAB=∠ADC,∴∠EAB=∠BAD,∴x轴平分∠BAD,∴点D关于x轴的对称点D'(2m,3)一定在直线AE上,∴直线AD′的解析式为:y=x+1,联立,整理得x2﹣3mx﹣4m2=0,解得x1=4m,x2=﹣m(舍去),∴E点的横坐标为4m,∴y=.∴点E的纵坐标为5.②存在,理由:当x=m时,y=a(m2﹣2m2﹣3m2)=﹣4am2=﹣4,∴F(m,﹣4),∵E(4m,5)、A(﹣m,0)、D(2m,﹣3),设P(b,0),∴PF2=(m﹣b)2+16,AD2=9m2+9,AE2=25m2+25,∴(m﹣b)2+16+9m2+9=25m2+25,解得:b1=﹣3m,b2=5m∴P(﹣3m,0)或(5m,0).。
2020年武汉市中考数学模拟试题与答案
2020年武汉市中考数学模拟试题与答案(试卷满分120分,考试时间120分钟)一、选择题(本题共12小题。
每小题3分,共36分。
在每小题给出的四个选项中,只有一项是正确的。
) 1.-61的倒数是( ) A .6B .61 C .-61 D .﹣62.计算(﹣x 2)3的结果是( )A A .﹣x 6B .x 6C .﹣x 5D .﹣x 83. 一件衣服的进价为a,在进价的基础上增加20%标价,则标价可表示为( ) A.(1﹣20%)a B.20%a C.(1+20%)a D.a+20%4.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为( ) A .2.1×109B .0.21×109C .2.1×108D .21×1075. 如图,直线a ∥b ,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为( ) A.20° B.40° C.30° D. 25°6. 已知坐标平面内点M(a ,b)在第三象限,那么点N(b,-a)在( )A.第一象限B.第二象限C.第三象限D.第四象限7. 如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .12cm 2B .(12+π)cm 2C .6πcm 2D .8πcm 28.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是( ) A .18分,17分B .20分,17分C .20分,19分D .20分,20分9.点M (1,2)关于y 轴对称点的坐标为( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(2,﹣1)10.如图,已知直线y1=k1x+m和直线y2=k2x+n交于点P(﹣1,2),则关于x的不等式(k1﹣k2)x>﹣m+n的解是()A.x>2 B.x>﹣1 C.﹣1<x<2 D.x<﹣111.小带和小路两个人开车从A城出发匀速行驶至B城.在整个行驶过程中,小带和小路两人的车离开A城的距离y(千米)与行驶的时间t(小时)之间的函数关系如图所示.有下列结论;①A.B两城相距300千米;②小路的车比小带的车晚出发1小时,却早到1小时;③小路的车出发后2.5小时追上小带的车;④当小带和小路的车相距50千米时,t=或t=.其中正确的结论有()A.①②③④ B.①②④ C.①② D.②③④12.二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c =0(a≠0)的两根之和()A.小于0 B.等于0 C.大于0 D.不能确定二、填空题(本题共6小题,满分18分。
2020年湖北省武汉市中考数学模拟考试试卷及答案解析
2020年湖北省武汉市中考数学模拟试卷一、选择题(每小题3分,共30分)1.若一元二次方程x2﹣2kx+1=0的一根为x=﹣1,则k的值为()A.﹣1B.0C.1D.22.二次函数y=﹣2(x﹣3)2﹣2的顶点坐标是()A.(﹣3,﹣2)B.(﹣3,2)C.(3,﹣2)D.(3,2)3.如图,已知平行四边形ABCD的两条对角线交于平面直角坐标系的原点,点A的坐标为(﹣3,4),则点C的坐标为()A.(﹣3,﹣4)B.(﹣3,4)C.(﹣4,3)D.(3,﹣4)4.掷一枚质地均匀的硬币100次,下列说法正确的是()A.不可能100次正面朝上B.不可能50次正面朝上C.必有50次正面朝上D.可能50次正面朝上5.如图,⊙O是△ABC的外接圆,∠AOB=60°,AB=AC=2,则弦BC的长为()A.B.3C.2D.46.已知关于x的一元二次方程x2﹣m=2x有两个不相等的实数根,则m的取值范围是()A.m>﹣1B.m<﹣2C.m≥0D.m<07.现有A、B、C三个不透明的盒子,A盒中装有红、黄、蓝球各1个,B盒中装有红、黄球各1个,C盒中装有红、蓝球各1个,这些球除颜色外都相同.现分别从A、B、C三个盒子中任意摸出一个球,摸出的三个球至少有一个红球的概率是()A.B.C.D.8.从地面竖直向上先后抛出两个小球,小球的高度h(米)与运动时间t(秒)之间的函数关系式为h=﹣(t﹣3)2+40,若后抛出的小球经过2.5秒比先抛出的小球高米,则抛出两个小球的间隔时间是()A.1秒B.1.5秒C.2秒D.2.5秒9.如图,在边长为2的正方形ABCD中,以点D为圆心,AD为半径画,再以BC为直径画半圆,若阴影部分①的面积为S1,阴影部分②的面积为S2,则图中S2﹣S1的值为()A.﹣4B.+4C.﹣2D.+210.已知函数y=2x与y=x2﹣c(c为常数,﹣1≤x≤2)的图象有且仅有一个公共点,则常数c的值为()A.0<c≤3或c=﹣1B.﹣l≤c<0或c=3C.﹣1≤c≤3D.﹣1<c≤3且c≠0二、填空题(每小题3分,共18分)11.某校图书馆的藏书在两年内从5万册增加到7.2万册,设平均每年藏书增长的百分率为x,则依据题意可得方程.12.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则两枚骰子向上一面的点数之和等于12为事件.13.将抛物线y=2x2分别向上、向左平移2个、1个单位,得到的抛物线的解析式为.14.如图,在△ABC中,∠A=62°,⊙O截△ABC三边所得的弦长相等,则∠BOC的度数是.。
2020年湖北省武汉市中考数学模拟试卷(10)
( 1)写出△ AOC 的顶点 C 的坐标:
.
( 2)将△ AOC 沿 x 轴向右平移得到△ OBD,则平移的距离是
( 3)将△ AOC 绕原点 O 顺时针旋转得到△ OBD,则旋转角可以是
度
( 4)连接 AD ,交 OC 于点 E,求∠ AEO 的度数.
23.( 10 分)如图,在梯形 ABCD 中, AD∥ BC,BC= 18, DB =DC= 15,点 E、 F 分别在 线段 BD 、 CD 上, DE = DF = 5. AE 的延长线交边 BC 于点 G, AF 交 BD 于点 N、其延 长线交 BC 的延长线于点 H. ( 1)求证: BG= CH; ( 2)设 AD = x,△ ADN 的面积为 y,求 y 关于 x 的函数解析式,并写出它的定义域; ( 3)联结 FG ,当△ HFG 与△ ADN 相似时,求 AD 的长.
D. 82
① +② 的: 2a+2c+2 e=82, ∴ a+c+e= 41,
故选: A.
6.( 3 分)如图, △ ABC 的三个顶点都在方格纸的格点上, 其中点 A 的坐标是 (﹣ 1,0).现
将△ ABC 绕点 A 顺时针旋转 90°,则旋转后点 C 的坐标是(
)
A .( 2, 1)
B .(1, 2)
故选: C.
3.( 3 分)计算(
-
2 3
)
2018×(
1.5)
2019
的结果是(
)
A .-
2 3
3 B.
2
【解答】 解:(- 2) 2018×( 1.5) 2019 3
2 C.
3
=(
2 )
2018×(
2020届中考复习湖北省武汉市东湖高新区中考数学模拟试题((有配套答案))
湖北省武汉市东湖高新区中考数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.我市2018年的最高气温为39℃,最低气温为零下7℃,则计算2018年温差列式正确的()A.(+39)﹣(﹣7)B.(+39)+(+7)C.(+39)+(﹣7) D.(+39)﹣(+7)2.无论a取何值时,下列分式一定有意义的是()A.B.C.D.3.下列运算正确的是()A.﹣a2b+2a2b=a2b B.2a﹣a=2C.3a2+2a2=5a4D.2a+b=2ab4.在一个不透明的布袋中装有40个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.30左右,则布袋中黄球可能有()A.12个B.14个C.18个D.28个5.如(x+a)与(x+3)的乘积中不含x的一次项,则a的值为()A.3 B.﹣3 C.1 D.﹣16.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)7.由一些大小相同的小正方体搭成的几何体的左视图和俯视图,如图所示,则搭成该几何体的小正方体的个数最多是()A.7 B.8 C.9 D.108.某校八年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛.各参赛选手成绩的数据分析如下表所示,则以下判断错误的是()班级平均数中位数众数方差八(1)班94 93 94 12八(2)班95 95.5 93 8.4A.八(2)班的总分高于八(1)班B.八(2)班的成绩比八(1)班稳定C.八(2)班的成绩集中在中上游D.两个班的最高分在八(2)班9.如图,在平面直角坐标系中,已知⊙A经过点E、B、O.C且点O为坐标原点,点C在y轴上,点E在x 轴上,A(﹣3,2),则cos∠OBC的值为()A.B.C.D.10.如图,AD和AC分别是⊙O的直径和弦,且∠CAD=30°,OB⊥AD,交AC于点B,若OB=5,则BC的长是()A.5 B.5C.5﹣10 D.10﹣5二.填空题(共6小题,满分18分,每小题3分)11.计算﹣9的结果是.12.若m+n=1,mn=2,则的值为.13.为了弘扬中华传统文化,营造书香校园文化氛围,2017年12月11日,兴义市新电学校举行中华传统文化知识大赛活动该学校从三名男生和两名女生中选出两名同学担任本次活动的主持人,则选出的恰为一男一女的概率是14.将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠ABE=20°,则∠DBC为度.15.如图,在菱形ABCD中,∠BAD=120°,CE⊥AD,且CE=BC,连接BE交对角线AC于点F,则∠EFC =°.16.已知二次函数y=x2﹣4x+k的图象的顶点在x轴下方,则实数k的取值范围是.三.解答题(共8小题,满分72分)17.解方程组:.18.如图,点D是AB上一点,E是AC的中点,连接DE并延长到F,使得DE=EF,连接CF.求证:FC∥AB.19.某校八(1)班同学为了解2018年姜堰某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理,请解答以下问题:月均用水量x(t)频数(户)频率0<x≤5 6 0.125<x≤10 12 0.2410<x≤15 m0.3215<x≤20 10 n20<x≤25 4 0.0825<x≤30 2 0.04(1)本次调查采用的调杳方式是(填“普査”或“抽样调查”),样本容量是;(2)补全频数分布直方图:(3)若将月均用水量的频数绘成扇形统计图,则月均用水量“15<x≤20”的圆心角度数是;(4)若该小区有5000户家庭,求该小区月均用水量超过20t的家庭大约有多少户?20.一个进行数值转换的运行程序如图所示,从“输入实数x”到“结果是否大于0”称为“一次操作”(1)判断:(正确的打“√”,错误的打“×”)①当输入x=3后,程序操作仅进行一次就停止.②当输入x为负数时,无论x取何负数,输出的结果总比输入数大.(2)探究:是否存在正整数x,使程序能进行两次操作,并且输出结果小于12?若存在,请求出所所有符合条件的x的值;若不存在,请说明理由.21.如图,以AB为直径作半圆O,点C是半圆上一点,∠ABC的平分线交⊙O于E,D为BE延长线上一点,且∠DAE=∠FAE.(1)求证:AD为⊙O切线;(2)若sin∠BAC=,求tan∠AFO的值.22.矩形AOBC中,OB=8,OA=4.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=(k>0)的图象与边AC交于点E.(1)当点F运动到边BC的中点时,求点E的坐标;(2)连接EF、AB,求证:EF∥AB;(3)如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式.23.△ABC中,BC=12,高AD=8,矩形EFGH的一边GH在BC上,顶点E、F分别在AB、AC上,AD与EF交于点M.(1)求证:;(2)设EF=x,EH=y,写出y与x之间的函数表达式;(3)设矩形EFGH的面积为S,求S与x之间的函数表达式,并写出S的最大值.24.如图,在平面直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求以C、E、F为顶点三角形与△COD相似时点P的坐标.湖北省武汉市东湖高新区中考数学模拟试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据题意列出算式即可.【解答】解:根据题意得:(+39)﹣(﹣7),故选:A.【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.2.【分析】由分母是否恒不等于0,依次对各选项进行判断.【解答】解:当a=0时,a2=0,故A、B中分式无意义;当a=﹣1时,a+1=0,故C中分式无意义;无论a取何值时,a2+1≠0,故选:D.【点评】解此类问题,只要判断是否存在a使分式中分母等于0即可.3.【分析】根据合并同类项的法则,合并时系数相加减,字母与字母的指数不变.【解答】解:A、正确;B、2a﹣a=a;C、3a2+2a2=5a2;D、不能进一步计算.故选:A.【点评】此题考查了同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.还考查了合并同类项的法则,注意准确应用.4.【分析】利用频率估计概率得到摸到黄球的概率为0.3,然后根据概率公式计算即可.【解答】解:设袋子中黄球有x个,根据题意,得:=0.30,解得:x=12,即布袋中黄球可能有12个,故选:A.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.5.【分析】利用多项式乘以多项式法则计算,根据结果中不含x的一次项求出a的值即可.【解答】解:原式=x2+(a+3)x+3a,由结果不含x的一次项,得到a+3=0,解得:a=﹣3,故选:B.【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.6.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数解答.【解答】解:点M(1,2)关于y轴对称点的坐标为(﹣1,2).故选:A.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.7.【分析】易得这个几何体共有2层,由俯视图可得第一层小正方体的个数,由左视图可得第二层小正方体的最多个数,相加即可.【解答】解:由俯视图易得最底层有6个小正方体,第二层最多有3个小正方体,那么搭成这个几何体的小正方体最多为3+6=9个.故选:C.【点评】考查学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.8.【分析】直接利用表格中数据,结合方差的定义以及算术平均数、中位数、众数得出答案.【解答】解:A、∵95>94,∴八(2)班的总分高于八(1)班,不符合题意;B、∵8.4<12,∴八(2)班的成绩比八(1)班稳定,不符合题意;C、∵93<94,∴八(2)班的成绩集中在中上游,不符合题意;D、无法确定两个班的最高分在哪个班,符合题意.故选:D.【点评】此题主要考查了方差的定义以及算术平均数、中位数、众数,利用表格获取正确的信息是解题关键.9.【分析】连接EC,由∠COE=90°,根据圆周角定理可得:EC是⊙A的直径,求出OE和OC,根据勾股定理求出EC,解直角三角形求出即可.【解答】解:过A作AM⊥x轴于M,AN⊥y轴于N,连接EC,∵∠COE=90°,∴EC是⊙A的直径,即EC过O,∵A(﹣3,2),∴OM=3,ON=2,∵AM⊥x轴,x轴⊥y轴,∴AM∥OC,同理AN∥OE,∴N为OC中点,M为OE中点,∴OE=2AN=6,OC=2AM=4,由勾股定理得:EC==2,∵∠OBC=∠OEC,∴cos∠OBC=cos∠OEC===,故选:B.【点评】此题考查了圆周角定理,勾股定理,坐标与图形性质,以及锐角三角函数定义,熟练掌握定理是解本题的关键.10.【分析】在Rt△AOB中,已知了OB的长和∠A的度数,根据直角三角形的性质可求得OA的长,也就得到了直径AD的值,连接CD,同理可在Rt△ACD中求出AC的长,由BC=AC﹣AB即可得解.【解答】解:连接CD;Rt△AOB中,∠A=30°,OB=5,则AB=10,OA=5;在Rt△ACD中,∠A=30°,AD=2OA=10,∴AC=cos30°×10=×10=15,∴BC=AC﹣AB=15﹣10=5,故选:A.【点评】本题主要考查了直角三角形的性质和圆周角定理的应用,难度不大.二.填空题(共6小题,满分18分,每小题3分)11.【分析】直接化简二次根式,进而合并求出答案.【解答】解:原式=2﹣9×=2﹣3=﹣.故答案为:﹣.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.12.【分析】原式通分并利用同分母分式的加法法则计算,将m+n与mn的值代入计算即可求出值.【解答】解:∵m+n=1,mn=2,∴原式==.故答案为:【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.13.【分析】画出树状图,再根据概率公式列式进行计算即可得解.【解答】解:画树状图如下:共有20种机会均等的结果,其中一男一女占12种,则恰好抽中一男一女的概率是=,故答案为:.【点评】本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.14.【分析】根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,再根据平角的度数是180°,∠ABE =20°,继而即可求出答案.【解答】解:根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠ABE+∠DBC=90°,又∵∠ABE=20°,∴∠DBC=70°.故答案为:70.【点评】此题考查了角的计算,根据翻折变换的性质,得出三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠A′BE,∠DBC=∠DBC′是解题的关键.15.【分析】由菱形及菱形一个内角为120°,易得△ABC与△ACD为等边三角形.CE⊥AD可由三线合一得CE平分∠ACD,即求得∠ACE的度数.再由CE=BC等腰三角形把∠E度数求出,用三角形内角和即能去∠EFC.【解答】解:∵菱形ABCD中,∠BAD=120°∴AB=BC=CD=AD,∠BCD=120°,∠ACB=∠ACD=∠BCD=60°,∴△ACD是等边三角形∵CE⊥AD∴∠ACE=∠ACD=30°∴∠BCE=∠ACB+∠ACE=90°∵CE=BC∴∠E=∠CBE=45°∴∠EFC=180°﹣∠E﹣∠ACE=180°﹣45°﹣30°=105°故答案为:105°【点评】本题考查了菱形的性质,等腰三角形及三线合一,三角形内角和.按照题目给的条件逐步综合信息即能求出答案.16.【分析】先根据函数解析式得出抛物线的开口向上,根据顶点在x轴的下方得出△>0,求出即可.【解答】解:∵二次函数y=x2﹣4x+k中a=1>0,图象的开口向上,又∵二次函数y=x2﹣4x+k的图象的顶点在x轴下方,∴△=(﹣4)2﹣4×1×k>0,解得:k<4,故答案为:k<4.【点评】本题考查了二次函数的图象与系数的关系和抛物线与x轴的交点,能根据题意得出(﹣4)2﹣4×1×k>0是解此题的关键.三.解答题(共8小题,满分72分)17.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②×3得:10x=50,解得:x=5,把x=5代入②得:y=3,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.【分析】利用已知条件容易证明△ADE≌△CFE,得出角相等,然后利用平行线的判定可以证明FC∥AB.【解答】证明:∵E是AC的中点,∴AE=CE,又EF=DE,∠AED=∠FEC,在△ADE与△CFE中,,∴△ADE≌△CFE(SAS).∴∠EAD=∠ECF.∴FC∥AB.【点评】此题主要考查了全等三角形的性质与判定,平行线的判定定理.通过全等得角相等,然后得到两线平行时一种常用的方法,应注意掌握运用.19.【分析】(1)由抽样调查的定义及第1组的频数与频率可得答案;(2)根据频数=总数×频率可得m的值,据此即可补全直方图;(3)先求得n的值,再用360°乘以n可得答案;(4)用总户数乘以最后两组的频率之和可得答案.【解答】解:(1)本次调查采用的调杳方式是抽样调查,样本容量为6÷0.12=50,故答案为:抽样调查,50;(2)m=50×0.32=16,补全直方图如下:(3)∵n=10÷50=0.2,∴月均用水量“15<x≤20”的圆心角度数是360°×0.2=72°,故答案为:72°;(4)该小区月均用水量超过20t的家庭大约有5000×(0.08+0.04)=600(户).【点评】本题考查频数(率)分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了用样本估计总体.20.【分析】(1)直接根据运算程序进而判断得出答案;(2)直接根据运算程序得出关于x的不等式进而求出答案.【解答】解:(1)①当输入x=3后,程序操作进行一次后得到3×(﹣2)+5=﹣1,故不可能就停止,故此说法错误;故答案为:×;②当输入x为负数时,无论x取何负数,输出的结果总比输入数大,正确;故答案为:√;(2)由题意可得:﹣2x+5≤0,且0<﹣2(﹣2x+5)+5<12,解得:≤x<,∵x为正整数,∴符合题意的x为:3,4.【点评】此题主要考查了一元一次不等式的应用,正确得出不等关系是解题关键.21.【分析】(1)先利用角平分线定义、圆周角定理证明∠4=∠2,再利用AB为直径得到∠2+∠BAE=90°,则∠4+∠BAE=90°,然后根据切线的判定方法得到AD为⊙O切线;(2)先利用圆周角定理得到∠ACB=90°,则sin∠BAC==,设BC=3k,AC=4k,所以AB=5k.连接OE交OE于点G,如图,利用垂径定理得OE⊥AC,所以OE∥BC,AG=CG=2k,则OG=k,EG=k,再证明△EFG∽△BFC,利用相似比得到=,于是可计算出FG=CG=k,然后根据正切的定义求解.【解答】(1)证明:∵BE平分∠ABC,∴∠1=∠2,∵∠1=∠3,∠3=∠4,∴∠4=∠2,∵AB为直径,∴∠AEB=90°,∵∠2+∠BAE=90°∴∠4+∠BAE=90°,即∠BAD=90°,∴AD⊥AB,∴AD为⊙O切线;(2)解:∵AB为直径,∴∠ACB=90°,在Rt△ABC中,∵sin∠BAC==,∴设BC=3k,AC=4k,则AB=5k.连接OE交OE于点G,如图,∵∠1=∠2,∴=,∴OE⊥AC,∴OE∥BC,AG=CG=2k,∴OG=BC=k,∴EG=OE﹣OG=k,∵EG∥CB,∴△EFG∽△BFC,∴===,∴FG=CG=k,在Rt△OGF中,tan∠GFO===3,即tan∠AFO=3.【点评】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了圆周角定理、垂径定理和解直角三角形.22.【分析】(1)首先确定点B坐标,再根据中点的定义求出点E坐标即可;(2)连接AB,分别求出∠EFC,∠ABC的正切值即可解决问题;(3)先作出辅助线判断出Rt△MED∽Rt△BDF,再确定出点E,F坐标进而EG=8﹣,GF=4﹣,求出BD,最后用勾股定理建立方程求出k即可得出结论;【解答】解:(1)∵四边形OACB是矩形,OB=8,OA=4,∴C(8,4),∵AE=EC,∴E(4,4),∵点E在y=上,∴E(4,4).(2)连接AB,设点F(8,a),∴k=8a,∴E(2a,4),∴CF=4﹣a,EC=8﹣2a,在Rt△ECF中,tan∠EFC===2,在Rt△ACB中,tan∠ABC==2,∴tan∠EFC=tan∠ABC,∴∠EFC=∠ABC,∴EF∥AB.(3)如图,设将△CEF沿EF折叠后,点C恰好落在OB上的G点处,∴∠EGF=∠C=90°,EC=EG,CF=GF,∴∠MGE+∠FGB=90°,过点E作EM⊥OB,∴∠MGE+∠MEG=90°,∴∠MEG=∠FGB,∴Rt△MEG∽Rt△BGF,∴=,∵点E(,4),F(8,),∴EC=AC﹣AE=8﹣,CF=BC﹣BF=4﹣,∴EG=EC=8﹣,GF=CF=4﹣,∵EM=4,∴=,∴GB=2,在Rt△GBF中,GF2=GB2+BF2,即:(4﹣)2=(2)2+()2,∴k=12,∴反比例函数表达式为y=.【点评】此题是反比例函数综合题,主要考查了根据条件求反比例函数解析式及其应用,利用图形性质表示出相关点的坐标,根据点与函数的关系找出关系式,涉及内容有锐角三角函数,三角形相似的性质和判定,勾股定理的应用,注意点(m,n)在函数y=的图象上,则mn=k的利用是解本题的关键.23.【分析】(1)先判断出AM是△AEF的高,再判断出△AEF∽△ABC,即可得出结论;(2)先判断出四边形EMDG是矩形,得出DM=EH,进而表示出AM=8﹣y,借助(1)的结论即可得出结论;(3)由矩形的面积公式得出函数关系式,即可得出结论.【解答】解:(1)∵四边形EFGH是矩形,∴EF∥BC,∵AD是△ABC的高,∴AD⊥BC,∴AM⊥EF,∵EF∥BC,∴△AEF∽△ABC,∴(相似三角形的对应边上高的比等于相似比);(2)∵四边形EFGH是矩形,∴∠FEH=∠EHG=90°,∵AD⊥BC,∴∠HDM=90°=∠FEH=∠EHG,∴四边形EMDH是矩形,∴DM=EH,∵EF=x,EH=y,AD=8,∴AM=AD﹣DM=AD﹣EH=8﹣y,由(1)知,,∴,∴y=8﹣x(0<x<12);(3)由(2)知,y=8﹣x,=xy=x(8﹣x)=﹣(x﹣6)2+24,∴S=S矩形EFGH∵a=﹣<0,∴当x=6时,S max=24.【点评】此题是相似形综合题,主要考查了矩形的性质,相似三角形的判定和性质,矩形的面积公式,掌握相似三角形的性质是解本题的关键.24.【分析】(1)根据正切函数,可得OB,根据旋转的性质,可得△DOC≌△AOB,根据待定系数法,可得函数解析式;(2)①根据相似三角形的判定,可得答案,②根据相似三角形的性质,可得PM与ME的关系,根据解方程,可得t的值,根据自变量与函数值的对应关系,可得答案.【解答】解:(1)在Rt△AOB中,OA=1,tan∠BAO==3,∴OB=3OA=3∵△DOC是由△AOB绕点O逆时针旋转90°而得到的,∴△DOC≌△AOB,∴OC=OB=3,OD=OA=1.∴A,B,C的坐标分别为(1,0),(0,3),(﹣3,0),代入解析式为,解得,抛物线的解析式为y=﹣x2﹣2x+3;(2)∵抛物线的解析式为y=﹣x2﹣2x+3,∴对称轴为l=﹣=﹣1,∴E 点坐标为(﹣1,0),如图,①当∠CEF =90°时,△CEF ∽△COD ,此时点P 在对称轴上,即点P 为抛物线的顶点,P (﹣1,4);②当∠CFE =90°时,△CFE ∽△COD ,过点P 作PM ⊥x 轴于M 点,△EFC ∽△EMP ,∴===∴MP =3ME ,∵点P 的横坐标为t ,∴P (t ,﹣t 2﹣2t +3),∵P 在第二象限,∴PM =﹣t 2﹣2t +3,ME =﹣1﹣t ,∴﹣t 2﹣2t +3=3(﹣1﹣t ),解得t 1=﹣2,t 2=3,(与P 在二象限,横坐标小于0矛盾,舍去),当t =﹣2时,y =﹣(﹣2)2﹣2×(﹣2)+3=3∴P (﹣2,3),∴当△CEF 与△COD 相似时,P 点的坐标为(﹣1,4)或(﹣2,3).【点评】本题考查了二次函数综合题,解(1)的关键是利用旋转的性质得出OC ,OD 的长,又利用了待定系数法;解(2)的关键是利用相似三角形的性质得出MP =3ME .。
(湖北武汉专用)2020年中考数学模拟试卷02(含解析)
2020年中考数学模拟试卷第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.-5的相反数是( ).(A )5 (B )-5 (C )51(D )51-【答案】A【解析】根据相反数的定义,只有符号不同的两个数是互为相反数作答,-5的相反数是5.本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0. 2.下列运算正确的是( ). (A )632a a a =⋅ (B )()532a a = (C )a a a 523=+ (D )33a a a =÷【答案】C【解析】A :23235a a a a +==g ,故本选项错误;B :23236()a a a ´==,故本选项错误;C :325a a a +=,正确;D :33-12=a aa a ?,故本选项错误.3.如图1,若DE 是ABC ∆的中位线,ABC ∆的周长为1,则ADE ∆的周长为( ).(A )1 (B )2 (C )21 (D )41【答案】C图1【解析】∵DE 是△ABC 的中位线,△ABC 的周长为1,∴DE=12BC ,AD=12AB ,AE=12AC∴△ADE 的周长为12.故选C .4.下列几何体中,正视图、左视图、俯视图均完全相同的是( ).(A ) (B ) (C ) (D ) 【答案】D【解析】A :圆柱的三视图分别为长方形,长方形,圆,不符合题意;B :圆锥的三视图分别为三角形,三角形,圆及圆心,不符合题意;C :棱柱的三视图分别为长方形,长方形,三角形,不符合题意;D :球的三视图均为圆,符合题意.故选D . 5.下列命题中正确的是( ).(A )4的平方根是2 (B )16的负的平方根是-4(C )任何数的平方根都是正数 (D )任何数的算术平方根都是正数. 【答案】B【解析】A :4的平方根是±2,故本选项错误;B :16的负的平方根是-4,正确;C :负数没有平方根,0的平方根是0,正数的平方根有两个,互为相反数,故本选项错误;D :负数没有算术平方根,0的算术平方根是0,只有正数的算术平方根是正数,故本选项错误,故选B .6.下列函数21-=x y 的自变量x 的取值范围是( ).(A )x ≠2 (B )x ≥2 (C )x >2 (D )x <2 【答案】C【解析】根据分式有意义的条件可得,20x ->,∴2x >,故选C .7.如果分式12a -的值为负数,则a 的正整数...解为( ). (A )a <1 (B )3 (C )0 (D )1 【答案】D 【解析】∵102a <-,∴20a -<,即2a <;又∵a 为正整数,∴a 只能取1,故选D . 8.关于反比例函数xy 2-=的图象,下列命题中•••确正不的是( ).(A )点(2,-1)在图象上 (B )图象在第二、第四象限 (C )图象关于原点成中心对称 (D )y 随x 的增大而增大 【答案】D【解析】A :将点(2,-1)代入2y x=-,左边=-1,右边=-1,左边=右边,故本选项正确;B :∵k =-2<0,∴函数图象位于第二、第四象限,故本选项正确;C :根据反比例函数的对称性,图象关于原点成中心对称,故本选项正确;D :应为“在每一个象限内y 随x 的增大而增大”,故本选项错误;故选D .9.一个三角形两边的长分别为6和8,第三边的边长是方程()()0610=--x x 的一个实数根,则这个三角形的面积是( ).(A )24 (B )24或58 (C )48 (D )58 【答案】B【解析】方程(x -10)(x -6)=0的一个实数根是10或6,(1)∵62+82=102,根据勾股定理的逆定理,故此三角形为直角三角形;故面积为12×6×8=24,故三角形的面积是24.(2)已知AB=AC=6,BC=8,根据勾股定理:∴AD =2264=25-,∴面积为:1825=852创.故选B .10.如图2,将Rt △ABC 沿着射线BC 的方向平移得到Rt △DEF ,如果AB =8,BE =5,DG =3,则CE 等于( ).(A )256(B )253(C )252(D )不能确定【答案】B【解析】∵Rt △ABC 沿着射线BC 的方向平移得到Rt △DEF ,AB=8,DG=3,∴DE=8,∠A=∠CGE ,∠B=∠DEC ,∴GE=5,△ABC ∽△GEC ,∵BE=5,∴AB :GE=BC :EC ,∴EC=253.故选B . 第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)11.计算:=-⨯+-31831. 【答案】3【解析】11113883333-+?=+?GBFCDE A图212. 如图3,A 、B 、C 是⊙O 上的点,点A 和点O 在直线BC 的同侧,且BOC BAC ∠=∠则,40ο= .【答案】80°【解析】根据“同弧所对的圆周角等于圆心角的一半”,可得:∵∠BAC=40°,∴∠BOC=2∠BAC=2×40°=80°.13.若分式1212+--x x x 的值为零,则x 的值为 .【答案】-1【解析】根据分式为零的条件可得,221021(1)0x x x x ì?=ïíï-+=-?ïî,∴x 的值为-1 14.已知一次函数)0(≠+=k b kx y 的图象经过点(0,1),且不经过第四象限,请你写出一个符合上述条件的函数关系式 . 【答案】y =2x+1;(答案不唯一)【解析】一次函数不经过第四象限只要满足k >0,b >0即可,又过点(0,1),由题意可得,k >0,b =1,符合上述条件的函数式,例如:y =2x+1(答案不唯一). 15. 如图4,在梯形ABCD 中,∠DCB =90°,AB ∥CD ,AB =25,BC =24.将该梯形折叠,点A 恰好与点D 重合,BE 为折痕,那么梯形ABCD 的面积为 . 【答案】384【解析】利用折叠前后相等线段得,DB =AB =25;由勾股定理可得,2222=25247CD DB BC -=-=,由梯形面积公式可得,()(725)24=38422DC AB BC S ++==g g16.如图,已知A 1,A 2,A 3,…A n 是x 轴上的点,且OA 1=A 1A 2=A 2A 3=…=A n ﹣1A n =1,分别过图3图4点A1,A2,A3,…A n作x轴的垂线交反比例函数y=(x>0)的图象于点B1,B2,B3,…B n,过点B2作B2P1⊥A1B1于点P1,过点B3作B3P2⊥A2B2于点P2…,记△B1P1B2的面积为S1,△B2P2B3的面积为S2…,△B n P n B n+1的面积为S n,则S1+S2+S3+…+S n=.【答案】【解析】∵OA1=A1A2=A2A3=…=An﹣1An=1,∴设B1(1,y1),B2(2,y2),B3(3,y3),…Bn(n,yn),∵B1,B2,B3…Bn在反比例函数y=(x>0)的图象上,∴y1=1,y2=,y3=…yn =,∴S1=×1×(y1﹣y2)=×1×(1﹣)=(1﹣);S2=×1×(y2﹣y3)=×(﹣);S3=×1×(y3﹣y4)=×(﹣);…Sn=(﹣),∴S1+S2+S3+…+Sn=(1﹣+﹣+﹣+…+﹣)=.故答案为:.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分8分)解方程组:235 321 x yx y-=-⎧⎨+=-⎩【解析】235 321 x yx y-=-⎧⎨+=-⎩①②依题意①×2得4x-6y=-10③②×3得9x+6y=-3④③+④得:13x=-13,解得x=-1,把x=-1代入①,解得y=1,∴原方程组的解为11 xy=-⎧⎨=⎩18.(本小题满分8分)如图,已知A、B、C、D四点顺次在同一条直线上,AE∥FD,AE=FD,AB=CD,求证:∠ACE=∠DBF.【解析】∵AE∥DF,∴∠A=∠D.∵AB=CD,∴AB+BC=CD+BC.即AC=BD.在△AEC和△DFB中,AE DF A D AC BD =⎧⎪∠=∠⎨⎪=⎩, ∴△AEC≌△DFB(SAS ), ∴∠ACE=∠DBF.19.(本小题满分8分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了 名学生; (2)将条形统计图1补充完整;(3)图2中“小说类”所在扇形的圆心角为 度;(4)若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数. 【解析】(1)∵喜欢文史类的人数为76人,占总人数的38%, ∴此次调查的总人数为:76÷38%=200人, 故答案为200;(2)∵喜欢生活类书籍的人数占总人数的15%,∴喜欢生活类书籍的人数为:200×15%=30人,∴喜欢小说类书籍的人数为:200﹣24﹣76﹣30=70人,如图所示:(3)∵喜欢社科类书籍的人数为:24人,∴喜欢社科类书籍的人数占了总人数的百分比为:24100×100%=12%,∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%,∴小说类所在圆心角为:360°×35%=126°;(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,∴该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数:2000×12%=240人.20.(本小题满分8分)武商量贩销售A,B两种商品,售出4件B种商品所得利润为400元;售出3件A种商品和5件B种商品所得利润为1100元.(1) 求每件A种商品和每件B种商品售出后所得利润分别为多少元;(2) 由于需求量大,A,B两种商品很快售完,武商量贩决定再一次购进A,B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么武商量贩至少需购进多少件A种商品?【解析】(1)设每件A种商品售出后所得利润为x元,每件B种商品售出后所得利润为y元.由题意,得4400351100y x y =⎧⎨+=⎩解得:200100x y =⎧⎨=⎩.答:每件A 种商品售出后所得利润为200元,每件B 种商品售出后所得利润为100元. (2)设购进A 种商品a 件,则购进B 种商品(34-a )件.由题意,得 200a+100(34-a )≥4000, 解得:a≥6答:威丽商场至少需购进6件A 种商品.21.(本小题满分8分)如图,△ABC 内接于⊙O ,BC 为直径,∠BAC 的平分线与BC 和⊙O 分别相交于D 和E ,P 为CB 延长线上一点,PB =5,PA =10,且∠DAP =∠ADP . (1)求证:PA 与⊙O 相切; (2)求sin ∠BAP 的值; (3)求AD •AE 的值.【解析】(1)证明:连接OA ,如图1所示: ∵AE 平分∠BAC , ∴∠BAD =∠CAD ,∵∠DAP =∠BAD +∠PAB ,∠ADP =∠CAD +∠C ,∠DAP =∠ADP ,∴∠PAB =∠C ,∵OA =OC ,∴∠OAC =∠C =∠PAB ,∵BC 为直径,∴∠BAC =90°,即∠OAC +∠OAB =90°,∴∠PAB +∠OAB =90°,即∠OAP =90°,∴AP ⊥OA ,∴PA 与⊙O 相切;(2)解:∵∠P =∠P ,∠PAB =∠C ,∴△PAB ∽△PCA , ∴1,2AB PB AC PA == ∵∠CAB =90°,∴AB BC ==∴sin∠BAP =sin∠C ; (3)解:连接CE ,如图2所示:∵PA 与⊙O 相切,∴PA 2=PB ×PC ,即102=5×PC ,∴PC =20,∴BC =PC ﹣PB =15,∵AB BC =∴AB BC ==2AC AB == ∵AE 是∠BAC 的角平分线,∴∠BAD =∠CAE ,∵∠E =∠ABD ,∴△ACE ∽△ADB , ∴AE AC AB AD=∴90AD AE AB AC ⋅=⋅==.22.(本小题满分10分)矩形AOBC 中,OB =8,OA =4.分别以OB ,OA 所在直线为x 轴,y 轴,建立如图1所示的平面直角坐标系.F 是BC 边上一个动点(不与B ,C 重合),过点F 的反比例函数y =k x(k >0)的图象与边AC 交于点E .(1)当点F运动到边BC的中点时,求点E的坐标;(2)连接EF、AB,求证:EF∥AB;(3)如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式.【解析】(1)∵四边形OACB是矩形,OB=8,OA=4,∴C(8,4),∵点F是BC中点,∴F(8,2),∵点F在y=kx上,∴k=16,反比例函数解析式为y=16 x∵点E在反比例函数图像上,且E点的纵坐标为4,∴4=16 x∴x=4∴E(4,4).(2)连接AB,设点F(8,a),∴k=8a,∴E(2a,4),∴CF=4﹣a,EC=8﹣2a,在Rt△ECF中,tan∠EFC=8-24EC aFC a=-=2,在Rt△ACB中,tan∠ABC=ACBC=2,∴tan∠EFC=tan∠ABC,∴∠EFC=∠ABC,∴EF∥AB.(3)如图,设将△CEF沿EF折叠后,点C恰好落在OB上的G点处,∴∠EGF=∠C=90°,EC=EG,CF=GF,∴∠MGE+∠FGB=90°,过点E作EM⊥OB,∴∠MGE+∠MEG=90°,∴∠MEG=∠FGB,∴Rt△MEG∽Rt△BGF,∴EM EG GB GF=,∵点E (4k ,4),F (8,8k ), ∴EC =AC ﹣AE =8﹣4k ,CF =BC ﹣BF =4﹣8k , ∴EG =EC =8﹣4k ,GF =CF =4﹣8k , ∵EM =4, ∴84448kkGB -=-, ∴GB =2,在Rt△GBF 中,GF 2=GB 2+BF 2, 即:(4﹣8k )2=(2)2+(8k )2, ∴k =12,∴反比例函数表达式为y =12x. 23.(本小题满分10分)如图(1),AB⊥BC,CD⊥BC,点E 在线段BC 上,AE⊥ED,求证:(1)AB CE BE CD=. (2)在△ABC 中,记tanB =m ,点E 在边AB 上,点D 在直线BC 上.①如图(2),m =2,点D 在线段BC 上且AD⊥EC,垂足为F ,若AD =2EC ,求CD BE;②如图(3),m点D在线段BC的延长线上,ED交AC于点H,∠CHD=60°,ED=2AC,若CD=,BC=,直接写出△BED的面积.【解析】(1)∵AB⊥BC,CD⊥BC,AE⊥ED,∴∠B=∠C=∠AED=90°,∴∠A+∠AEB=∠AEB+∠DEC=90°,∴∠A=∠DEC,∴△ABE∽△ECD,∴AB CE BE CD=;(2)如图,过点A作AM⊥BC于点M,过点E作EH⊥BC于点H,∵tanB=m=2=EH AM BH BM=,∴设EH=2x,BH=x,AM=2BM,=∵AF⊥EC,AM⊥CD,∴∠ADC+∠DCE=90°,∠ADC+∠DAM=90°,∴∠DAM=∠DCE,且∠AMD=∠EHC=90°,∴△EHC∽△DMA,且AD =2EC , ∴2AD DM AM EC EH HC===, ∴DM=2EH =4x ,AM =2HC ,∵AM=2HC ,AM =2BM ,∴HC=BM ,∴HC﹣HM =BM ﹣HM ,∴BH=MC =x ,∴DC=DM+MC =5x ,∴CD BE == (3)如图,作∠BCF=∠B,交AB 于点F ,过点D 作GD⊥BD 交BA 的延长线于点G ,过点F 作FM⊥BC 于点M ,∵tanB=m =3, ∴∠B=30°,∵∠BCF=∠B=30°,∴BF=FC ,且FM⊥BC,BC =∴BM=MC =∴FM=2,BF =FC =4,∵CD=,BC =∴BD=.又∵∠BCF=∠B=30°,GD⊥BD,∴∠G=60°,∠AFC=60°,GD =7,BG =2DG =14,∵∠BCA=∠BDE+∠CHD=∠BDE+60°=∠BCF+∠ACF=30°+∠ACF,∴∠ACF=30°+∠BDE,且∠AEH=∠B+∠BDE=30°+∠BDE,∴∠ACF=∠AEH,且∠G=∠AFC=60°,∴△GED∽△FCA, ∴DE GD EG AC AF FC==,且DE =2AC , ∴GD=2AF ,EG =2FC =8, ∴AF=72, ∴BE=BG ﹣EG =14﹣8=6,∵S △BGD =12,∴S △BED 668=+24.(本小题满分12分)已知开口向下的抛物线y =ax 2﹣2ax +3与x 轴的交点为A 、B 两点(点A在点B的左边),与y轴的交点为C,OC=3OA(1)请直接写出该抛物线解析式;(2)如图,D为抛物线的顶点,连接BD、BC,P为对称轴右侧抛物线上一点.若∠ABD=∠BCP,求点P的坐标(3)在(2)的条件下,M、N是抛物线上的动点.若∠MPN=90°,直线MN必过一定点,请求出该定点的坐标.【解析】(1)当x=0时,y=ax2﹣2ax+3=3,∴C(0,3),OC=3OA=3,∴OA=1,A(﹣1,0),把点A(﹣1,0)代入抛物线解析式得:a+2a+3=0,解得:a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;(2)如图1,若点P在抛物线对称轴右侧且在x轴上方,过点P 作PE∥y 轴交BC 于点E ,PF⊥BC 于点F ,过点D 作DH⊥x 轴于点H , ∴∠CFP=∠BHD=90°,∵当y =﹣x 2+2x+3=0时,解得:x 1=﹣1,x 2=3,∴A(﹣1,0),B (3,0),∵y=﹣x 2+2x+3=﹣(x ﹣1)2+4,∴顶点D (1,4),∴DH=4,BH =3﹣1=2,==,∴Rt△BDH 中,sin∠ABD=5DH BD ==, ∵C(0,3)PC设直线BC 解析式为y =kx+b , ∴3003k b b +=⎧⎨+=⎩,解得:13k b =-⎧⎨=⎩, ∴直线BC 解析式为y =﹣x+3,设P (p ,﹣p 2+2p+3)(1<p <3),则E (p ,﹣p+3),∴PE=﹣p 2+2p+3﹣(﹣p+3)=﹣p 2+3p , ∵S △BCP =12PE•OB=12BC•PF,∴PF=22PE OB BC ⋅==,∵∠ABD=∠BCP,∴Rt△CPF 中,sin∠BCP=PE PC ,PC , ∴PF 2=45PC 2, 解得:p 1=﹣1(舍去),p 2=53, ∴﹣p 2+2p+3=329, ∴点P 坐标为(53,329) 如图2,若点P 在x 轴下方,∵tan∠ABD=DH BH=2>tan45°, ∴∠ABD>45°,∵∠BCP<∠BOC 即∠BCP<45°,∴∠ABD 与∠BCP 不可能相等.综上所述,点P 坐标为(53,329); (3)如图3,过P 作PH∥y 轴,分别过点M 、N 作MG⊥PH 于G ,NH⊥PH 于H .设直线MN 的解析式为y =kx+n ,M (x 1,y 1)、N (x 2,y 3),令kx+n =﹣x 2+2x+3,即=x 2+(k ﹣2)x+n ﹣3=0,∴x 1+x 2=2﹣k ,x 1x 2=n ﹣3,∴y 1+y 2=k (x 1+x 2)+2n =k (2﹣k )+2n ,y 1y 2=(kx 1+n )(kx 2+n )=k 2x 1x 2+nk (x 1+x 2)+n 2=﹣3k 2+2nk+n 2,∵∠G=∠MPN=∠H,∴△MPG∽△PNH, ∴MG GP PH HN= , ∵P 坐标为(53,329), MG =53﹣x 1,PH =y 1﹣329,HN =253x -,GP =2329y -, ∴12115323932593x y y x --=--, 整理,得12121212255321024()()93981x x x x y y y y -++=++-, ∴222255321024(2)3(22)3293981k n y k k n k nk n --+-=-++---,解得 k1=﹣3n+233,k2=332515n-+,∴直线MN;y=(﹣3n+233)x+n=(﹣3x+1)n+233,过定点(13,239);或y=(332515n-+)x+n=(513x-+)n+3215,过定点(53,329)即P点,舍去.∴直线MN过定点(13,239).。
湖北省武汉市东湖高新区2020年中考数学模拟试卷(含解析)
2020年湖北省武汉市东湖高新区中考数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.(3分)由五个相同的立方体搭成的几何体如图所示,则它的左视图是()A.B.C.D.3.(3分)下列几何体中,主视图与俯视图不相同的是()A.B.C.D.4.(3分)二次函数y=x2+4x﹣3的对称轴为()A.x=3 B.x=﹣3 C.x=﹣2 D.x=75.(3分)如图,点A、B、C都在⊙O上,若∠AOB=72°,则∠ACB的度数为()A.18°B.30°C.36°D.72°6.(3分)下列说法正确的是()A.“打开电视机,正在播放《新闻联播》”是必然事件B.天气预报“明天降水概率50%”,是指明天有一半的时间会下雨C.数据6,6,7,7,8的中位数与众数均为7D.甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.3,S乙2=0.4,则甲的成绩更稳定7.(3分)已知x=2是一元二次方程x2+x+m=0的一个根,则方程的另一个根是()A.﹣3 B.﹣6 C.0 D.﹣18.(3分)如图,四边形ABCD为平行四边形,E、F为CD边的两个三等分点,连接AF、BE 交于点G,则S△EFG:S△ABG=()A.1:3 B.3:1 C.1:9 D.9:19.(3分)如图,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,则k的值为()A.1 B.2 C.3 D.410.(3分)关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,则m的最大整数解是()A.2 B.3 C.4 D.5二.填空题(共6小题,满分18分,每小题3分)11.计算﹣9的结果是.12.若m+n=1,mn=2,则的值为.13.为了弘扬中华传统文化,营造书香校园文化氛围,2017年12月11日,兴义市新电学校举行中华传统文化知识大赛活动该学校从三名男生和两名女生中选出两名同学担任本次活动的主持人,则选出的恰为一男一女的概率是14.将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠ABE=20°,则∠DBC 为度.15.如图,在菱形ABCD中,∠BAD=120°,CE⊥AD,且CE=BC,连接BE交对角线AC于点F,则∠EFC=°.16.已知二次函数y=x2﹣4x+k的图象的顶点在x轴下方,则实数k的取值范围是.三.解答题(共8小题,满分72分)17.解方程组:.18.如图,点D是AB上一点,E是AC的中点,连接DE并延长到F,使得DE=EF,连接CF.求证:FC∥AB.19.某校八(1)班同学为了解2018年姜堰某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理,请解答以下问题:月均用水量x(t)频数(户)频率0<x≤5 6 0.125<x≤10 12 0.2410<x≤15 m0.3215<x≤20 10 n20<x≤25 4 0.0825<x≤30 2 0.04(1)本次调查采用的调杳方式是(填“普査”或“抽样调查”),样本容量是;(2)补全频数分布直方图:(3)若将月均用水量的频数绘成扇形统计图,则月均用水量“15<x≤20”的圆心角度数是;(4)若该小区有5000户家庭,求该小区月均用水量超过20t的家庭大约有多少户?20.一个进行数值转换的运行程序如图所示,从“输入实数x”到“结果是否大于0”称为“一次操作”(1)判断:(正确的打“√”,错误的打“×”)①当输入x=3后,程序操作仅进行一次就停止.②当输入x为负数时,无论x取何负数,输出的结果总比输入数大.(2)探究:是否存在正整数x,使程序能进行两次操作,并且输出结果小于12?若存在,请求出所所有符合条件的x的值;若不存在,请说明理由.21.如图,以AB为直径作半圆O,点C是半圆上一点,∠ABC的平分线交⊙O于E,D为BE 延长线上一点,且∠DAE=∠FAE.(1)求证:AD为⊙O切线;(2)若sin∠BAC=,求tan∠AFO的值.22.矩形AOBC中,OB=8,OA=4.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=(k>0)的图象与边AC交于点E.(1)当点F运动到边BC的中点时,求点E的坐标;(2)连接EF、AB,求证:EF∥AB;(3)如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式.23.△ABC中,BC=12,高AD=8,矩形EFGH的一边GH在BC上,顶点E、F分别在AB、AC 上,AD与EF交于点M.(1)求证:;(2)设EF=x,EH=y,写出y与x之间的函数表达式;(3)设矩形EFGH的面积为S,求S与x之间的函数表达式,并写出S的最大值.24.如图,在平面直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求以C、E、F为顶点三角形与△COD相似时点P的坐标.2020年湖北省武汉市东湖高新区中考数学模拟试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、既不是轴对称图形也不是中心对称图形,故此选项错误;D、既是轴对称图形,也是中心对称图形,故此选项正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.2.(3分)由五个相同的立方体搭成的几何体如图所示,则它的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是三个小正方形,第二层左边一个小正方形,故选:D.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.3.(3分)下列几何体中,主视图与俯视图不相同的是()A.B.C.D.【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析.【解答】解:四棱锥的主视图与俯视图不相同.故选:C.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.(3分)二次函数y=x2+4x﹣3的对称轴为()A.x=3 B.x=﹣3 C.x=﹣2 D.x=7【分析】把二次函数化成顶点式即可求得答案.【解答】解:∵二次函数y=x2+4x﹣3,∴y=(x+2)2﹣7,∴二次函数y=x2+4x﹣3的图象的对称轴为:x=﹣2,故选:C.【点评】本题考查了二次函数的性质.抛物线的顶点式y=a(x﹣h)2+k,顶点坐标为(h,k),对称轴为直线x=h.5.(3分)如图,点A、B、C都在⊙O上,若∠AOB=72°,则∠ACB的度数为()A.18°B.30°C.36°D.72°【分析】根据圆周角定理,由∠AOB=72°,即可推出结果.【解答】解:∵∠AOB=72°,∴∠ACB=36°.故选:C.【点评】本题主要考查圆周角定理,关键在于运用数形结合的思想进行认真分析.6.(3分)下列说法正确的是()A.“打开电视机,正在播放《新闻联播》”是必然事件B.天气预报“明天降水概率50%”,是指明天有一半的时间会下雨C.数据6,6,7,7,8的中位数与众数均为7D.甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.3,S乙2=0.4,则甲的成绩更稳定【分析】根据必然事件的概念、可能性的意义、众数和中位数及方差的定义逐一判断即可得.【解答】解:A.“打开电视机,正在播放《新闻联播》”是随机事件,此选项错误;B.天气预报“明天降水概率50%”,是指明天有一半的可能性会下雨,此选项错误;C.数据6,6,7,7,8的中位数是7,众数是6和7,此选项错误;D.甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.3,S乙2=0.4,由甲的方差小值甲的成绩更稳定,此选项正确;故选:D.【点评】本题主要考查概率的意义,解题的关键是掌握必然事件的概念、可能性的意义、众数和中位数及方差的定义与意义.7.(3分)已知x=2是一元二次方程x2+x+m=0的一个根,则方程的另一个根是()A.﹣3 B.﹣6 C.0 D.﹣1【分析】设方程的另一根为a,由根与系数的关系可得到a的方程,可求得m的值,即可求得方程的另一根.【解答】解:设方程的另一根为a,∵x=2是一元二次方程x2+x+m=0的一个根,∴6+m=0,解得m=﹣6,则2a=﹣6,解得a=﹣3.故选:A.【点评】本题主要考查一元二次方程根与系数的关系,一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=﹣,x1•x2=.8.(3分)如图,四边形ABCD为平行四边形,E、F为CD边的两个三等分点,连接AF、BE 交于点G,则S△EFG:S△ABG=()A.1:3 B.3:1 C.1:9 D.9:1【分析】利用相似三角形的性质面积比等于相似比的平方即可解决问题;【解答】解:∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∵DE=EF=FC,∴EF:AB=1:3,∴△EFG∽△BAG,∴=()2=,故选:C.【点评】本题考查平行四边形的性质、相似三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9.(3分)如图,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,则k的值为()A.1 B.2 C.3 D.4【分析】根据题意可以设出点A的坐标,从而以得到点C和点B的坐标,再根据△AOB 的面积为1,即可求得k的值.【解答】解:设点A的坐标为(a,0),∵过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,∴点C(﹣a,),∴点B的坐标为(0,),∴=1,解得,k=4,故选:D.【点评】本题考查反比例函数系数k的几何意义、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.10.(3分)关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,则m的最大整数解是()A.2 B.3 C.4 D.5【分析】根据方程有实数根得出△≥0且m﹣5≠0,求出不等式的解集即可.【解答】解:∵关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,∴△=22﹣4(m﹣5)×2≥0且m﹣5≠0,解得:m≤5.5且m≠5,m的最大整数解为4,故选:C.【点评】本题考查了根的判别式和解一元一次不等式,能得出关于m的不等式是解此题的关键.二.填空题(共6小题,满分18分,每小题3分)11.【分析】直接化简二次根式,进而合并求出答案.【解答】解:原式=2﹣9×=2﹣3=﹣.故答案为:﹣.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.12.【分析】原式通分并利用同分母分式的加法法则计算,将m+n与mn的值代入计算即可求出值.【解答】解:∵m+n=1,mn=2,∴原式==.故答案为:【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.13.【分析】画出树状图,再根据概率公式列式进行计算即可得解.【解答】解:画树状图如下:共有20种机会均等的结果,其中一男一女占12种,则恰好抽中一男一女的概率是=,故答案为:.【点评】本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.14.【分析】根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,再根据平角的度数是180°,∠ABE=20°,继而即可求出答案.【解答】解:根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠ABE+∠DBC=90°,又∵∠ABE=20°,∴∠DBC=70°.故答案为:70.【点评】此题考查了角的计算,根据翻折变换的性质,得出三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠A′BE,∠DBC=∠DBC′是解题的关键.15.【分析】由菱形及菱形一个内角为120°,易得△ABC与△ACD为等边三角形.CE⊥AD 可由三线合一得CE平分∠ACD,即求得∠ACE的度数.再由CE=BC等腰三角形把∠E度数求出,用三角形内角和即能去∠EFC.【解答】解:∵菱形ABCD中,∠BAD=120°∴AB=BC=CD=AD,∠BCD=120°,∠ACB=∠ACD=∠BCD=60°,∴△ACD是等边三角形∵CE⊥AD∴∠ACE=∠ACD=30°∴∠BCE=∠ACB+∠ACE=90°∵CE=BC∴∠E=∠CBE=45°∴∠EFC=180°﹣∠E﹣∠ACE=180°﹣45°﹣30°=105°故答案为:105°【点评】本题考查了菱形的性质,等腰三角形及三线合一,三角形内角和.按照题目给的条件逐步综合信息即能求出答案.16.【分析】先根据函数解析式得出抛物线的开口向上,根据顶点在x轴的下方得出△>0,求出即可.【解答】解:∵二次函数y=x2﹣4x+k中a=1>0,图象的开口向上,又∵二次函数y=x2﹣4x+k的图象的顶点在x轴下方,∴△=(﹣4)2﹣4×1×k>0,解得:k<4,故答案为:k<4.【点评】本题考查了二次函数的图象与系数的关系和抛物线与x轴的交点,能根据题意得出(﹣4)2﹣4×1×k>0是解此题的关键.三.解答题(共8小题,满分72分)17.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②×3得:10x=50,解得:x=5,把x=5代入②得:y=3,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.【分析】利用已知条件容易证明△ADE≌△CFE,得出角相等,然后利用平行线的判定可以证明FC∥AB.【解答】证明:∵E是AC的中点,∴AE=CE,又EF=DE,∠AED=∠FEC,在△ADE与△CFE中,,∴△ADE≌△CFE(SAS).∴∠EAD=∠ECF.∴FC∥AB.【点评】此题主要考查了全等三角形的性质与判定,平行线的判定定理.通过全等得角相等,然后得到两线平行时一种常用的方法,应注意掌握运用.19.【分析】(1)由抽样调查的定义及第1组的频数与频率可得答案;(2)根据频数=总数×频率可得m的值,据此即可补全直方图;(3)先求得n的值,再用360°乘以n可得答案;(4)用总户数乘以最后两组的频率之和可得答案.【解答】解:(1)本次调查采用的调杳方式是抽样调查,样本容量为6÷0.12=50,故答案为:抽样调查,50;(2)m=50×0.32=16,补全直方图如下:(3)∵n=10÷50=0.2,∴月均用水量“15<x≤20”的圆心角度数是360°×0.2=72°,故答案为:72°;(4)该小区月均用水量超过20t的家庭大约有5000×(0.08+0.04)=600(户).【点评】本题考查频数(率)分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了用样本估计总体.20.【分析】(1)直接根据运算程序进而判断得出答案;(2)直接根据运算程序得出关于x的不等式进而求出答案.【解答】解:(1)①当输入x=3后,程序操作进行一次后得到3×(﹣2)+5=﹣1,故不可能就停止,故此说法错误;故答案为:×;②当输入x为负数时,无论x取何负数,输出的结果总比输入数大,正确;故答案为:√;(2)由题意可得:﹣2x+5≤0,且0<﹣2(﹣2x+5)+5<12,解得:≤x<,∵x为正整数,∴符合题意的x为:3,4.【点评】此题主要考查了一元一次不等式的应用,正确得出不等关系是解题关键.21.【分析】(1)先利用角平分线定义、圆周角定理证明∠4=∠2,再利用AB为直径得到∠2+∠BAE=90°,则∠4+∠BAE=90°,然后根据切线的判定方法得到AD为⊙O切线;(2)先利用圆周角定理得到∠ACB=90°,则sin∠BAC==,设BC=3k,AC=4k,所以AB=5k.连接OE交OE于点G,如图,利用垂径定理得OE⊥AC,所以OE∥BC,AG=CG=2k,则OG=k,EG=k,再证明△EFG∽△BFC,利用相似比得到=,于是可计算出FG=CG=k,然后根据正切的定义求解.【解答】(1)证明:∵BE平分∠ABC,∴∠1=∠2,∵∠1=∠3,∠3=∠4,∴∠4=∠2,∵AB为直径,∴∠AEB=90°,∵∠2+∠BAE=90°∴∠4+∠BAE=90°,即∠BAD=90°,∴AD⊥AB,∴AD为⊙O切线;(2)解:∵AB为直径,∴∠ACB=90°,在Rt△ABC中,∵sin∠BAC==,∴设BC=3k,AC=4k,则AB=5k.连接OE交OE于点G,如图,∵∠1=∠2,∴=,∴OE⊥AC,∴OE∥BC,AG=CG=2k,∴OG=BC=k,∴EG=OE﹣OG=k,∵EG∥CB,∴△EFG∽△BFC,∴===,∴FG=CG=k,在Rt△OGF中,tan∠GFO===3,即tan∠AFO=3.【点评】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了圆周角定理、垂径定理和解直角三角形.22.【分析】(1)首先确定点B坐标,再根据中点的定义求出点E坐标即可;(2)连接AB,分别求出∠EFC,∠ABC的正切值即可解决问题;(3)先作出辅助线判断出Rt△MED∽Rt△BDF,再确定出点E,F坐标进而EG=8﹣,GF=4﹣,求出BD,最后用勾股定理建立方程求出k即可得出结论;【解答】解:(1)∵四边形OACB是矩形,OB=8,OA=4,∴C(8,4),∵AE=EC,∴E(4,4),∵点E在y=上,∴E(4,4).(2)连接AB,设点F(8,a),∴k=8a,∴E(2a,4),∴CF=4﹣a,EC=8﹣2a,在Rt△ECF中,tan∠EFC===2,在Rt△ACB中,tan∠ABC==2,∴tan∠EFC=tan∠ABC,∴∠EFC=∠ABC,∴EF∥AB.(3)如图,设将△CEF沿EF折叠后,点C恰好落在OB上的G点处,∴∠EGF=∠C=90°,EC=EG,CF=GF,∴∠MGE+∠FGB=90°,过点E作EM⊥OB,∴∠MGE+∠MEG=90°,∴∠MEG=∠FGB,∴Rt△MEG∽Rt△BGF,∴=,∵点E(,4),F(8,),∴EC=AC﹣AE=8﹣,CF=BC﹣BF=4﹣,∴EG=EC=8﹣,GF=CF=4﹣,∵EM=4,∴=,∴GB=2,在Rt△GBF中,GF2=GB2+BF2,即:(4﹣)2=(2)2+()2,∴k=12,∴反比例函数表达式为y=.【点评】此题是反比例函数综合题,主要考查了根据条件求反比例函数解析式及其应用,利用图形性质表示出相关点的坐标,根据点与函数的关系找出关系式,涉及内容有锐角三角函数,三角形相似的性质和判定,勾股定理的应用,注意点(m,n)在函数y=的图象上,则mn=k的利用是解本题的关键.23.【分析】(1)先判断出AM是△AEF的高,再判断出△AEF∽△ABC,即可得出结论;(2)先判断出四边形EMDG是矩形,得出DM=EH,进而表示出AM=8﹣y,借助(1)的结论即可得出结论;(3)由矩形的面积公式得出函数关系式,即可得出结论.【解答】解:(1)∵四边形EFGH是矩形,∴EF∥BC,∵AD是△ABC的高,∴AD⊥BC,∴AM⊥EF,∵EF∥BC,∴△AEF∽△ABC,∴(相似三角形的对应边上高的比等于相似比);(2)∵四边形EFGH是矩形,∴∠FEH=∠EHG=90°,∵AD⊥BC,∴∠HDM=90°=∠FEH=∠EHG,∴四边形EMDH是矩形,∴DM=EH,∵EF=x,EH=y,AD=8,∴AM=AD﹣DM=AD﹣EH=8﹣y,由(1)知,,∴,∴y=8﹣x(0<x<12);(3)由(2)知,y=8﹣x,∴S=S矩形EFGH=xy=x(8﹣x)=﹣(x﹣6)2+24,∵a=﹣<0,∴当x=6时,S max=24.【点评】此题是相似形综合题,主要考查了矩形的性质,相似三角形的判定和性质,矩形的面积公式,掌握相似三角形的性质是解本题的关键.24.【分析】(1)根据正切函数,可得OB,根据旋转的性质,可得△DOC≌△AOB,根据待定系数法,可得函数解析式;(2)①根据相似三角形的判定,可得答案,②根据相似三角形的性质,可得PM与ME的关系,根据解方程,可得t的值,根据自变量与函数值的对应关系,可得答案.【解答】解:(1)在Rt△AOB中,OA=1,tan∠BAO==3,∴OB=3OA=3∵△DOC是由△AOB绕点O逆时针旋转90°而得到的,∴△DOC≌△AOB,∴OC=OB=3,OD=OA=1.∴A,B,C的坐标分别为(1,0),(0,3),(﹣3,0),代入解析式为,解得,抛物线的解析式为y=﹣x2﹣2x+3;(2)∵抛物线的解析式为y=﹣x2﹣2x+3,∴对称轴为l=﹣=﹣1,∴E点坐标为(﹣1,0),如图,①当∠CEF=90°时,△CEF∽△COD,此时点P在对称轴上,即点P为抛物线的顶点,P(﹣1,4);②当∠CFE=90°时,△CFE∽△COD,过点P作PM⊥x轴于M点,△EFC∽△EMP,∴===∴MP=3ME,∵点P的横坐标为t,∴P(t,﹣t2﹣2t+3),∵P在第二象限,∴PM=﹣t2﹣2t+3,ME=﹣1﹣t,∴﹣t2﹣2t+3=3(﹣1﹣t),解得t1=﹣2,t2=3,(与P在二象限,横坐标小于0矛盾,舍去),当t=﹣2时,y=﹣(﹣2)2﹣2×(﹣2)+3=3∴P(﹣2,3),∴当△CEF与△COD相似时,P点的坐标为(﹣1,4)或(﹣2,3).【点评】本题考查了二次函数综合题,解(1)的关键是利用旋转的性质得出OC,OD的长,又利用了待定系数法;解(2)的关键是利用相似三角形的性质得出MP=3ME.。
2020年湖北省中考数学一模试卷(含答案解析)
2020年湖北省中考数学一模试卷一、选择题(本大题共9小题,共27.0分)1.在−6,0,2.5,|−3|这四个数中,最大的数是().A. −6B. 0C. 2.5D. |−3|2.如图是由四个相同的小正方体组成的立体图形,它的俯视图为()A.B.C.D.3.我国自主研发的“天宫二号”对接成功,标志着我国航天事业又上了一个新台阶,“天宫二号”火箭的飞行速度约为每秒8千米,也就是28800千米/时,“28800”用科学记数法表示为()A. 2.88×102B. 28.8×103C. 2.88×104D. 0.288×1054.如图,在△ABC中,∠C=90°,点D在AC上,DE//AB,若∠CDE=165°,则∠B的度数为()A. 15°B. 55°C. 65°D. 75°5.下列说法中,正确的是()A. 对载人航天器“神舟十号”的零部件的检查适合采用抽样调查的方式B. 某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的地区降雨C. 第一枚硬币,正面朝上的概率为12D. 若甲组数据的方差S甲2=0.1,乙组数据的方差S乙2=0.01,则甲组数据比乙组数据稳定6.下列计算中,正确的是()A. 2−1=−2B. a+a=a2C. √9=±√3D. (a3)2=a67.关于函数y=−x−2的图象,有如下说法:①图象过点(0,−2);②图象与x轴的交点是(−2,0);③由图象可知y随x的增大而增大;④图象不经过第一象限;其中正确说法有()A. 5个B. 4个C. 3个D. 2个8.若一个圆锥的底面半径为2,母线长为6,则该圆锥侧面展开图的圆心角是()A. 90°B. 100°C. 120°D. 60°9.如图,在△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,CE⊥CD,且CE=CD,连接BD、DE、BE,则下列结论:①∠ECA=165°,②BE=BC;③AD=BE;④CD=BD.其中正确的是()A. ①②③B. ①②④C. ①③④D.①②③④二、填空题(本大题共6小题,共18.0分)10.正n边形的一个内角为135°,则n=__________________.11.某校进行篮球联赛,每场比赛都要分出胜负,每胜1场得2分,负1场得1分.如果某队在10场比赛中得到16分,那么这个队胜负场数可以是______.(写出一种情况即可)12.如图,一艘轮船自西向东航行,航行到A处测得小岛C位于北偏东60°方向上,继续向东航行20海里到达点B处,测得小岛C在轮船的北偏东15°方向上,此时轮船与小岛C的距离为______海里.13.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之和为偶数的概率是______.14. 某商店购进一批单价为8元的商品,如果按每件10元出售,那么每天可销售100件.经调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件,为使每天所获销售利润最大,销售单价应定为______元.15. 正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图的方式放置.点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,则点B 6的坐标是______.三、解答题(本大题共8小题,共72.0分)16. 解不等式组{x−23+1<0x−12≥2x−16,并把它的解集在数轴上表示出来:17. 在平行四边形ABCD 中,点E 在AD 上,DE =CD ,请仅用无刻度的直尺,按要求作图(保留作图痕迹,不写作法).(1)在图①中,画出∠C的平分线;(2)在图②中,画出∠A的平分线.18.2020年2月,贵州省积极响应国家“停课不停学”的号召,推出了“空中黔课”.为了解某中学初三学生每天听空中黔课的时间,随机调查了该校部分初三学生.根据调查结果,绘制出了如图统计图表(不完整),请根据相关信息,解答下列问题:部分初三学生每天听空中黔课时间的人数统计表时间/ℎ 1.52 2.53 3.54人数/人26610m4(1)本次共调查的学生人数为______,在表格中,m=______;(2)统计的这组数据中,每天听空中黔课时间的中位数是______,众数是______;(3)请就疫情期间如何学习的问题写出一条你的看法.19.若抛物线y=ax2+k的图象经过点A(0,−2),B(1,−1),(1)试确定这个二次函数的解析式;(2)若点C(−3,m)也在该函数的图像上,则m的值是__________;(3)如何将该抛物线平移过点D(1,5)?请计算说明.20.如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,交AC于点E,过点D作DF⊥AC于点F,交AB的延长线于点G.(1)求证:FG是⊙O的切线;(2)若AB=10,BC=12,求△DFC的面积;21.如图,反比例函数y=kx 的图像与一次函数y=14x的图像交于点A、B,点B的横坐标是4.点P是第一象限内反比例函数图像上的动点,且在直线AB的上方.⑴若点P的坐标是(1,4),直接写出k的值和△PAB的面积;⑴设直线PA、PB与x轴分别交于点M、N,求证:△PMN是等腰三角形;⑴设点Q是反比例函数图像上位于P、B之间的动点(与点P、B不重合),连接AQ、BQ,比较∠PAQ与∠PBQ的大小,并说明理由.22.如图1,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD折叠,点C落在点C′的位置,BC′交AD于点G.(1)求证:BG=DG;(2)求C′G的长;(3)如图2,再折叠一次,使点D与A重合,折痕EN交AD于M,求EM的长.23.某天早晨,张强从家跑步去体育场锻炼,同时妈妈从体育场晨练结束回家,途中两人相遇,张强跑到体育场后发现要下雨,立即按原路返回,遇到妈妈后两人一起回到家(张强和妈妈始终在同一条笔直的公路上行走)。
湖北武汉2020中考数学综合模拟测试卷(解析版)
【文库独家】一、选择题(共10 小题,每题 3 分,共 30 分)1.实数2的值在()A.0和 1之间B.1和 2之间C.2和 3之间D.3和4之间【答案】 B.【分析】试题剖析:由于1<2< 4,可得1<2< 4 ,即 1< 2<2 . 故答案选 B.考点:无理数的估量 .2.若代数式在 1 实数范围内存心义,则实数x 的取值范围是()x 3A . x< 3B . x> 3 C. x≠ 3 D .x= 3 【答案】 C.【分析】试题剖析:要使1 错误!未找到引用源。
存心义,则 x-3≠0,即 x≠3,故答案选 C. x 3考点:分式存心义的条件 .3.以下计算中正确的选项是()A . a·a2= a2B . 2a· a= 2a2 C. (2a2)2=2a4 D . 6a8÷ 3a2= 2a4 【答案】 B.考点:幂的运算.4.不透明的袋子中装有性状、大小、质地完好同样的 6 个球,此中 4 个黑球、从袋子中一次摸出 3 个球,以下事件是不行能事件的是()A .摸出的是 3 个白球B.摸出的是 3 个黑球C.摸出的是 2 个白球、 1 个黑球D.摸出的是 2 个黑球、 1 个白球2 个白球,【答案】 A.【分析】试题剖析:已知袋子中有 4 个黑球, 2 个白球,可知摸出的黑球个数不可以大于 4 个,摸出白球的个数不可以大于 2 个, A 选项摸出的白球的个数是 3 个,超出 2 个,是不行能事件。
故答案选 A考点:不行能事件的概率 .5.运用乘法公式计算( x+3)2的结果是()A . x2+ 9B . x2-6x+ 9 C. x2+ 6x+ 9 D .x2+3x+ 9【答案】 C.【分析】试题剖析:运用完好平方公式可得(x + 3) 2= x2+2×3x+ 32= x2+ 6x+ 9.故答案选 C考点:完好平方公式 .6.已知点A(a,1)与点A′(5,b)对于坐标原点对称,则实数a、b 的值是()A . a=5, b= 1 B. a=- 5, b= 1C. a= 5, b=- 1 D. a=- 5, b=- 1【答案】 D.考点:对于原点对称的点的坐标.7.如图是由一个圆柱体和一个长方体构成的几何体,其左视图是()【答案】 A.【分析】试题剖析:从左面看,上边看到的是长方形,下边看到的也是长方形,且两个长方形同样大.故答案选 A考点:简单几何体的三视图.8.某车间20 名工人日加工部件数以下表所示:日加工部件数 4 5 6 7 8 人数 2 6 5 4 3这些工人日加工部件数的众数、中位数、均匀数分别是()A.5、6、5B.5、5、6C.6、5、 6D.5、6、6 【答案】 D.【分析】考点:众数;加权均匀数;中位数.9.如图,在等腰Rt△ABC中,AC=BC=2 2,点PC 的中点.当点P 沿半圆从点 A 运动至点 B 时,点P 在以斜边AB 为直径的半圆上,M 运动的路径长是()M 为A .2πB .πC.2 2 D .2 【答案】 B.【分析】试题剖析:如图,取AB的中点 E,取 CE的中点 F,连结 PE, CE, MF,则 FM=1PE=1,故2M的轨迹为以 F 为圆心, 1 为半径的半圆弧,轨迹长为1. 故答案选 B.2 12考点:点的轨迹;等腰直角三角形.10.平面直角坐标系中,已知A(2,2)、B(4,0).若在座标轴上取点C,使△ ABC 为等腰三角形,则知足条件的点 C 的个数是()A . 5B . 6 C. 7 D .8【答案】 A.考点:等腰三角形的判断;坐标与图形性质.二、填空题(本大题共 6 个小题,每题 3 分,共 18 分)11.计算5+(-3)的结果为_______.【答案】 2.【分析】试题剖析:依占有理数的加法法例可得原式= 2.考点:有理数的加法.12.某市2016年初中毕业生人数约为63 000,数 63 000 用科学记数法表示为___________.【答案】 6.3 × 104.【分析】试题剖析:科学计数法的表示形式为N=a× 10n的形式,此中 a 为整数且1≤│a│< 10, n 为 N 的整数位数减 1.由此可得 63 000=6.3 × 104.考点:科学记数法.13.一个质地均匀的小正方体, 6 个面分别标有数字1、1、2、 4、5、5.若随机扔掷一次小正方体,则向上一面的数字是 5 的概率为 _______.【答案】1.3【分析】试题剖析:已知一个质地均匀的小正方体有 6 个面,此中标有数字 5 的有 2 个,因此随机投掷一次小正方体,则向上一面数字是 5 的概率为21 .6 3考点:概率公式.14.如图,在□ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点 F.若∠ B= 52°,∠ DAE= 20°,则∠ FED ′的大小为 _______.【答案】 36° .考点:平行四边形的性质;折叠的性质.15.将函数y=2x+b(b为常数)的图象位于x 轴下方的部分沿x 轴翻折至其上方后,所得的折线是函数y= |2x+ b|( b 为常数)的图象.若该图象在直线y= 2 下方的点的横坐标x 满足 0< x< 3,则 b 的取值范围为 _________.【答案】 -4 ≤ b≤ -2.【分析】< - b< 30 2-- 知足:-试题剖析:以下图,依据题意:列出不等式x=0 代入 y= 2x b 2 ,解得b代入 y=2x+b 知足: 2x=3 6+b- 4≤b ≤ -2.考点:一次函数图形与几何变换 .16.如图,在四边形 ABCD 中,∠ ABC = 90°,AB = 3,BC = 4,CD = 10,DA = 5 5 ,则 BD的长为 _______.【答案】 2 41 .考点:相像三角形判断及性质;勾股定理.三、解答题(共8 题,共 72 分)17.(此题8分)解方程:5x+2= 3(x+ 2) .【答案】 x=2.【分析】试题剖析:依据一元一次方程的解法解方程即可.试题分析:去括号得5x+ 2=3x+ 6,移项归并得2x= 4,∴x=2.考点:一元一次方程的解法.18.(此题8 分)如图,点 B、 E、 C、F 在同一条直线上,AB= DE,AC= DF , BE= CF ,求证: AB∥ DE .【答案】详看法析.【分析】考点:全等三角形的判断与性质.19.(此题8分)某学校为认识学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜欢的状况,随机检查了若干名学生,依据检查数据进行整理,绘制了以下的不完好统计图:人数20181816娱乐戏曲6% 新闻1412 8%10体育8 动画64 30%42新闻体育动画娱乐戏曲节目种类请你依据以上的信息,回答以下问题:(1)本次共检查了 _____名学生,此中最喜欢戏曲的有 _____人;在扇形统计图中,最喜欢体育的对应扇形的圆心角大小是 ______;(2)依据以上统计剖析,预计该校2000 名学生中最喜欢新闻的人数.【答案】 (1)50 , 3,72°; (2)160人.【分析】试题分析:( 1)本次共检查学生:4÷ 8%= 50(人),最喜欢戏曲的人数为:50×6%= 3(人),∵“娱乐”类人数占被检查人数的百分比为:18 100% 36% ,50∴“体育”类人数占被检查人数的百分比为:1- 8%- 30%- 36%- 6%= 20%,在扇形统计图中,最喜欢体育的对应扇形圆心角大小事360°× 20%= 72°;(2) 2000× 8%= 160(人).考点:条形统计图;用样本预计整体;扇形统计图.20.(此题8 分)已知反比率函数y 4 .x(1) 若该反比率函数的图象与直线y= kx+ 4( k≠ 0)只有一个公共点,求k 的值;(2) 如图,反比率函数y 4 ( 1≤x≤ 4)的图象记为曲线C1,将C1向左平移 2 个单位长度,x得曲线C2,请在图中画出C2,并直接写出C1平移至C2地方扫过的面积.【答案】 (1) k=-1;(2)面积为 6.试题分析:( 1)联立y 4 2- 4= 0,又∵ y4 的图像与直线x y= kx +4 只有得 kx + 4xy kx 4 x一个公共点,∴42- 4?k?(— 4)= 0,∴ k=- 1.(2)如图:C1平移至 C2地方扫过的面积为6.考点:反比率函数与一次函数的交点问题;平移的性质.21.(此题8分)如图,点 C 在以 AB 为直径的⊙ O 上, AD 与过点 C 的切线垂直,垂足为点 D,AD 交⊙O 于点 E.(1)求证: AC 均分∠ DAB ;(2)连结 BE 交 AC 于点 F,若 cos∠CAD =4,求AF的值.5FC【答案】 (1)详看法析;(2)7. 9试题分析:( 1)证明:连结OC,则 OC⊥ CD,又 AD⊥ CD,∴AD∥ OC,∴∠ CAD=∠ OCA,又 OA= OC,∴∠ OCA=∠ OAC,∴∠ CAD=∠ CAO,∴AC均分∠ DAB.(2)解:连结BE 交 OC于点 H,易证 OC⊥ BE,可知∠ OCA=∠ CAD,4∴COS∠ HCF=,设HC=4,FC=5,则FH=3.又△ AEF∽△ CHF,设 EF= 3x,则 AF=5x, AE=4x,∴ OH= 2x∴BH= HE=3x+ 3OB = OC=2x+ 4在△ OBH中,( 2x )2+( 3x + 3)2=( 2x+4)272化简得: 9x +2x - 7=0,解得: x=(另一负值舍去).∴AF 5 x7 . FC59考点:圆的综合题.22.(此题10分)某企业计划从甲、乙两种产品中选择一种生产并销售,每年产销x 件.已知产销两种产品的相关信息以下表:产品每件售价(万元)每件成本(万元)每年其余花费(万元)每年最大产销量(件)甲 6 a 20 200乙20 10 40+ 0.05x2 80此中 a 为常数,且 3≤ a≤ 5.(1)若产销甲、乙两种产品的年收益分别为y1万元、 y2万元,直接写出y1、 y2与 x 的函数关系式;(2)分别求出产销两种产品的最大年收益;(3)为获取最大年收益,该企业应当选择产销哪一种产品?请说明原因.【答案】( 1)y1=(6-a)x-20(0<x≤ 200),y2=-0.05x 2+10x-40(0<x≤ 80);(2)产销甲种产品的最大年收益为(1180-200a) 万元,产销乙种产品的最大年收益为440 万元;( 3)当 3 ≤a< 3.7 时,选择甲产品;当a=3.7 时,选择甲乙产品;当 3.7 < a≤ 5 时,选择乙产品.(2)甲产品:∵ 3≤a≤5,∴ 6-a > 0,∴ y1随 x 的增大而增大.∴当 x= 200 时, y1max= 1180- 200a (3≤a≤5)乙产品: y2=-0.05x 2+10x-40 ( 0< x≤ 80)∴当 0< x≤ 80 时, y2随 x 的增大而增大.当 x= 80 时, y2max=440(万元).∴产销甲种产品的最大年收益为 (1180-200a) 万元,产销乙种产品的最大年收益为440 万元;(3) 1180- 200> 440,解得 3≤ a< 3.7 时,此时选择甲产品;1180- 200= 440,解得 a=3.7 时,此时选择甲乙产品;1180- 200< 440,解得 3.7 <a≤ 5 时,此时选择乙产品.∴当 3≤ a< 3.7 时,生产甲产品的收益高;当 a=3.7 时,生产甲乙两种产品的收益同样;当 3.7 < a≤ 5 时,上产乙产品的收益高.考点:二次函数的应用 ; 一次函数的应用 .23.(此题10分)在△ABC中,P为边AB上一点.(1)如图 1,若∠ ACP=∠ B,求证: AC2= AP·AB ;(2)若 M 为 CP 的中点, AC=2,①如图 2,若∠ PBM=∠ ACP, AB= 3,求 BP 的长;②如图 3,若∠ ABC=45°,∠ A=∠ BMP= 60°,直接写出BP 的长.【答案】( 1)详看法析;( 2)① BP= 5 ;②7 1 .【分析】试题分析:( 1)证明:∵∠ACP=∠ B,∠ BAC=∠ CAP,∴△ ACP∽△ ABC,∴AC: AB=AP: AC,2∴AC= AP· AB;(2)①如图,作 CQ∥ BM交 AB延伸线于 Q,设 BP= x,则 PQ= 2x ∵∠ PBM=∠ ACP,∠ PAC=∠ CAQ,∴△ APC∽△ ACQ,2 2由 AC= AP· AQ得: 2 =( 3- x)( 3+ x),∴ x= 5即 BP=5;考点:三角形综合题.24.(此题12分)抛物线y=ax2+ c 与 x 轴交于 A、B 两点,极点为C,点 P 为抛物线上,且位于 x 轴下方.(1)如图 1,若 P(1,- 3)、 B(4,0),① 求该抛物线的分析式;②若 D 是抛物线上一点,知足∠DPO =∠ POB,求点 D 的坐标;(2)如图 2,已知直线 PA、PB 与 y 轴分别交于 E、 F 两点.当点 P 运动时,OEOF 是OC否为定值?假如,试求出该定值;若不是,请说明原因.y yA O Bx A O BxEPCCF【答案】( 1)① y = 1x 2-16;②点 D 的坐标为 (-1 ,-3) 或(11,27) ;( 2)是定值,等于554162.试题分析:( 1)①将 P(1 ,- 3) 、 B(4 , 0) 代入 y = ax 2+ c 得16a c 0,解得 a 151 x 216 .,抛物线的分析式为: y a c 0c165 55②如图:由∠ DPO =∠ POB 得 DP ∥ OB ,D 与 P 对于 y 轴对称, P(1 ,- 3) 得 D(-1 , -3) ;如图, D 在 P 右边,即图中 D 2,则∠ D 2PO =∠ POB ,延伸 PD 2 交 x 轴于 Q ,则 QO = QP ,222,解得: q = 5,∴ Q ( 5, 0),则直线315 设 Q ( q ,0),则( q - 1) + 3 = qPD 为 yx,244y3 x151111 27再联立44得: x =1 或,∴ D 2()116 4 ,16y x 2455∴点 D 的坐标为 (-1 , -3) 或(11, 27 )4 16考点:二次函数的综合题.。
湖北省武汉市东湖高新区2020年数学中考模拟试卷(4月)及参考答案
(2) 如图2,E为正方形ABCD内一点,∠DEB=135°,在DE上取一点G,使得BE=EG,延长BE交AG于点F,求A
F:FG的值.
(3) 矩形ABCD中,AB=6,AD=8,P、E分别是AC、BC上的点,且四边形PEFD为矩形,若△PCD是等腰三角
形时,直接写出CF的长.
24. 如图,在平面直角坐标系中,抛物线
A. B. C. D.
8. 已知函数
,下列说法:
①函数图象分布在第一、三象限;②在每个象限内,y随x的增大而减小;③若
则
.其中说法正确的个数是( )
两点在该图象上,且
A.0B.1C.2D.3
9. 如图,在平面直角坐标系中,点
、点
在半径为 的 上, 为 上一动点,D为x轴上一定点
,
且
当点P从A点逆时针运动到B点时,C点的运动路径长是( )
A.
B.
C.
D.
6. 某家具生产厂生产某种配套桌椅(一张桌子,两把椅子),已知每块板材可制作桌子1张或椅子4把,现计划用120块这 种板材生产一批桌椅(不考虑板材的损耗,恰好配套),设用 块板材做椅子,用y块板材做桌子,则下列方程组正确的是( )
A.
B.
C.
D.
7. 动物学家通过大量的调查估计:某种动物活到20岁的概率为0.8,活到25岁的概率为0.5,活到30岁的概率为0.3,现 在有一只20岁的动物,它活到30岁的概率是( )
14. 等腰
被某一条直线分成两个等腰三角形,并且其中一个等腰三角形与原三角形相似,则等腰
的顶角
的度数是________.
15. 如图,二次函数y=ax2+bx+c(a≠0)的图象过点(﹣2,0),对称轴为直x=1线,下列结论中:①abc>0;②若
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖北省武汉市东湖高新区中考数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.我市2018年的最高气温为39℃,最低气温为零下7℃,则计算2018年温差列式正确的()A.(+39)﹣(﹣7)B.(+39)+(+7)C.(+39)+(﹣7)D.(+39)﹣(+7)2.无论a取何值时,下列分式一定有意义的是()A.B.C.D.3.下列运算正确的是()A.﹣a2b+2a2b=a2b B.2a﹣a=2C.3a2+2a2=5a4D.2a+b=2ab4.在一个不透明的布袋中装有40个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.30左右,则布袋中黄球可能有()A.12个B.14个C.18个D.28个5.如(x+a)与(x+3)的乘积中不含x的一次项,则a的值为()A.3B.﹣3C.1D.﹣16.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)7.由一些大小相同的小正方体搭成的几何体的左视图和俯视图,如图所示,则搭成该几何体的小正方体的个数最多是()A.7B.8C.9D.108.某校八年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛.各参赛选手成绩的数据分析如下表所示,则以下判断错误的是()班级平均数中位数众数方差八(1)班94939412八(2)班9595.5938.4A.八(2)班的总分高于八(1)班B.八(2)班的成绩比八(1)班稳定C.八(2)班的成绩集中在中上游D.两个班的最高分在八(2)班9.如图,在平面直角坐标系中,已知⊙A经过点E、B、O.C且点O为坐标原点,点C在y轴上,点E在x轴上,A(﹣3,2),则cos∠OBC的值为()A.B.C.D.10.如图,AD和AC分别是⊙O的直径和弦,且∠CAD=30°,OB⊥AD,交AC于点B,若OB=5,则BC的长是()A.5B.5C.5﹣10D.10﹣5二.填空题(共6小题,满分18分,每小题3分)11.计算﹣9的结果是.12.若m+n=1,mn=2,则的值为.13.为了弘扬中华传统文化,营造书香校园文化氛围,2017年12月11日,兴义市新电学校举行中华传统文化知识大赛活动该学校从三名男生和两名女生中选出两名同学担任本次活动的主持人,则选出的恰为一男一女的概率是14.将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠ABE=20°,则∠DBC为度.15.如图,在菱形ABCD中,∠BAD=120°,CE⊥AD,且CE=BC,连接BE交对角线AC于点F,则∠EFC=°.16.已知二次函数y=x2﹣4x+k的图象的顶点在x轴下方,则实数k的取值范围是.三.解答题(共8小题,满分72分)17.解方程组:.18.如图,点D是AB上一点,E是AC的中点,连接DE并延长到F,使得DE=EF,连接CF.求证:FC∥AB.19.某校八(1)班同学为了解2018年姜堰某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理,请解答以下问题:月均用水量x(t)频数(户)频率0<x≤560.125<x≤10120.2410<x≤15m0.3215<x≤2010n20<x≤2540.0825<x≤3020.04(1)本次调查采用的调杳方式是(填“普査”或“抽样调查”),样本容量是;(2)补全频数分布直方图:(3)若将月均用水量的频数绘成扇形统计图,则月均用水量“15<x≤20”的圆心角度数是;(4)若该小区有5000户家庭,求该小区月均用水量超过20t的家庭大约有多少户?20.一个进行数值转换的运行程序如图所示,从“输入实数x”到“结果是否大于0”称为“一次操作”(1)判断:(正确的打“√”,错误的打“×”)①当输入x=3后,程序操作仅进行一次就停止.②当输入x为负数时,无论x取何负数,输出的结果总比输入数大.(2)探究:是否存在正整数x,使程序能进行两次操作,并且输出结果小于12?若存在,请求出所所有符合条件的x的值;若不存在,请说明理由.21.如图,以AB为直径作半圆O,点C是半圆上一点,∠ABC的平分线交⊙O于E,D为BE延长线上一点,且∠DAE=∠FAE.(1)求证:AD为⊙O切线;(2)若sin∠BAC=,求tan∠AFO的值.22.矩形AOBC中,OB=8,OA=4.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=(k>0)的图象与边AC 交于点E.(1)当点F运动到边BC的中点时,求点E的坐标;(2)连接EF、AB,求证:EF∥AB;(3)如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式.23.△ABC中,BC=12,高AD=8,矩形EFGH的一边GH在BC上,顶点E、F分别在AB、AC上,AD 与EF交于点M.(1)求证:;(2)设EF=x,EH=y,写出y与x之间的函数表达式;(3)设矩形EFGH的面积为S,求S与x之间的函数表达式,并写出S的最大值.24.如图,在平面直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求以C、E、F为顶点三角形与△COD相似时点P的坐标.湖北省武汉市东湖高新区中考数学模拟试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据题意列出算式即可.【解答】解:根据题意得:(+39)﹣(﹣7),故选:A.【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.2.【分析】由分母是否恒不等于0,依次对各选项进行判断.【解答】解:当a=0时,a2=0,故A、B中分式无意义;当a=﹣1时,a+1=0,故C中分式无意义;无论a取何值时,a2+1≠0,故选:D.【点评】解此类问题,只要判断是否存在a使分式中分母等于0即可.3.【分析】根据合并同类项的法则,合并时系数相加减,字母与字母的指数不变.【解答】解:A、正确;B、2a﹣a=a;C、3a2+2a2=5a2;D、不能进一步计算.故选:A.【点评】此题考查了同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.还考查了合并同类项的法则,注意准确应用.4.【分析】利用频率估计概率得到摸到黄球的概率为0.3,然后根据概率公式计算即可.【解答】解:设袋子中黄球有x个,根据题意,得:=0.30,解得:x=12,即布袋中黄球可能有12个,故选:A.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.5.【分析】利用多项式乘以多项式法则计算,根据结果中不含x的一次项求出a的值即可.【解答】解:原式=x2+(a+3)x+3a,由结果不含x的一次项,得到a+3=0,解得:a=﹣3,故选:B.【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.6.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数解答.【解答】解:点M(1,2)关于y轴对称点的坐标为(﹣1,2).故选:A.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.7.【分析】易得这个几何体共有2层,由俯视图可得第一层小正方体的个数,由左视图可得第二层小正方体的最多个数,相加即可.【解答】解:由俯视图易得最底层有6个小正方体,第二层最多有3个小正方体,那么搭成这个几何体的小正方体最多为3+6=9个.故选:C.【点评】考查学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.8.【分析】直接利用表格中数据,结合方差的定义以及算术平均数、中位数、众数得出答案.【解答】解:A、∵95>94,∴八(2)班的总分高于八(1)班,不符合题意;B、∵8.4<12,∴八(2)班的成绩比八(1)班稳定,不符合题意;C、∵93<94,∴八(2)班的成绩集中在中上游,不符合题意;D、无法确定两个班的最高分在哪个班,符合题意.故选:D.【点评】此题主要考查了方差的定义以及算术平均数、中位数、众数,利用表格获取正确的信息是解题关键.9.【分析】连接EC,由∠COE=90°,根据圆周角定理可得:EC是⊙A的直径,求出OE和OC,根据勾股定理求出EC,解直角三角形求出即可.【解答】解:过A作AM⊥x轴于M,AN⊥y轴于N,连接EC,∵∠COE=90°,∴EC是⊙A的直径,即EC过O,∵A(﹣3,2),∴OM=3,ON=2,∵AM⊥x轴,x轴⊥y轴,∴AM∥OC,同理AN∥OE,∴N为OC中点,M为OE中点,∴OE=2AN=6,OC=2AM=4,由勾股定理得:EC==2,∵∠OBC=∠OEC,∴cos∠OBC=cos∠OEC===,故选:B.【点评】此题考查了圆周角定理,勾股定理,坐标与图形性质,以及锐角三角函数定义,熟练掌握定理是解本题的关键.10.【分析】在Rt△AOB中,已知了OB的长和∠A的度数,根据直角三角形的性质可求得OA的长,也就得到了直径AD的值,连接CD,同理可在Rt△ACD中求出AC的长,由BC=AC﹣AB即可得解.【解答】解:连接CD;Rt△AOB中,∠A=30°,OB=5,则AB=10,OA=5;在Rt△ACD中,∠A=30°,AD=2OA=10,∴AC=cos30°×10=×10=15,∴BC=AC﹣AB=15﹣10=5,故选:A.【点评】本题主要考查了直角三角形的性质和圆周角定理的应用,难度不大.二.填空题(共6小题,满分18分,每小题3分)11.【分析】直接化简二次根式,进而合并求出答案.【解答】解:原式=2﹣9×=2﹣3=﹣.故答案为:﹣.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.12.【分析】原式通分并利用同分母分式的加法法则计算,将m+n与mn的值代入计算即可求出值.【解答】解:∵m+n=1,mn=2,∴原式==.故答案为:【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.13.【分析】画出树状图,再根据概率公式列式进行计算即可得解.【解答】解:画树状图如下:共有20种机会均等的结果,其中一男一女占12种,则恰好抽中一男一女的概率是=,故答案为:.【点评】本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.14.【分析】根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,再根据平角的度数是180°,∠ABE=20°,继而即可求出答案.【解答】解:根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠ABE+∠DBC=90°,又∵∠ABE=20°,∴∠DBC=70°.故答案为:70.【点评】此题考查了角的计算,根据翻折变换的性质,得出三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠A′BE,∠DBC=∠DBC′是解题的关键.15.【分析】由菱形及菱形一个内角为120°,易得△ABC与△ACD为等边三角形.CE⊥AD可由三线合一得CE平分∠ACD,即求得∠ACE的度数.再由CE=BC等腰三角形把∠E度数求出,用三角形内角和即能去∠EFC.【解答】解:∵菱形ABCD中,∠BAD=120°∴AB=BC=CD=AD,∠BCD=120°,∠ACB=∠ACD=∠BCD=60°,∴△ACD是等边三角形∵CE⊥AD∴∠ACE=∠ACD=30°∴∠BCE=∠ACB+∠ACE=90°∵CE=BC∴∠E=∠CBE=45°∴∠EFC=180°﹣∠E﹣∠ACE=180°﹣45°﹣30°=105°故答案为:105°【点评】本题考查了菱形的性质,等腰三角形及三线合一,三角形内角和.按照题目给的条件逐步综合信息即能求出答案.16.【分析】先根据函数解析式得出抛物线的开口向上,根据顶点在x轴的下方得出△>0,求出即可.【解答】解:∵二次函数y=x2﹣4x+k中a=1>0,图象的开口向上,又∵二次函数y=x2﹣4x+k的图象的顶点在x轴下方,∴△=(﹣4)2﹣4×1×k>0,解得:k<4,故答案为:k<4.【点评】本题考查了二次函数的图象与系数的关系和抛物线与x轴的交点,能根据题意得出(﹣4)2﹣4×1×k>0是解此题的关键.三.解答题(共8小题,满分72分)17.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②×3得:10x=50,解得:x=5,把x=5代入②得:y=3,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.【分析】利用已知条件容易证明△ADE≌△CFE,得出角相等,然后利用平行线的判定可以证明FC∥AB.【解答】证明:∵E是AC的中点,∴AE=CE,又EF=DE,∠AED=∠FEC,在△ADE与△CFE中,,∴△ADE≌△CFE(SAS).∴∠EAD=∠ECF.∴FC∥AB.【点评】此题主要考查了全等三角形的性质与判定,平行线的判定定理.通过全等得角相等,然后得到两线平行时一种常用的方法,应注意掌握运用.19.【分析】(1)由抽样调查的定义及第1组的频数与频率可得答案;(2)根据频数=总数×频率可得m的值,据此即可补全直方图;(3)先求得n的值,再用360°乘以n可得答案;(4)用总户数乘以最后两组的频率之和可得答案.【解答】解:(1)本次调查采用的调杳方式是抽样调查,样本容量为6÷0.12=50,故答案为:抽样调查,50;(2)m=50×0.32=16,补全直方图如下:(3)∵n=10÷50=0.2,∴月均用水量“15<x≤20”的圆心角度数是360°×0.2=72°,故答案为:72°;(4)该小区月均用水量超过20t的家庭大约有5000×(0.08+0.04)=600(户).【点评】本题考查频数(率)分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了用样本估计总体.20.【分析】(1)直接根据运算程序进而判断得出答案;(2)直接根据运算程序得出关于x的不等式进而求出答案.【解答】解:(1)①当输入x=3后,程序操作进行一次后得到3×(﹣2)+5=﹣1,故不可能就停止,故此说法错误;故答案为:×;②当输入x为负数时,无论x取何负数,输出的结果总比输入数大,正确;故答案为:√;(2)由题意可得:﹣2x+5≤0,且0<﹣2(﹣2x+5)+5<12,解得:≤x<,∵x为正整数,∴符合题意的x为:3,4.【点评】此题主要考查了一元一次不等式的应用,正确得出不等关系是解题关键.21.【分析】(1)先利用角平分线定义、圆周角定理证明∠4=∠2,再利用AB为直径得到∠2+∠BAE=90°,则∠4+∠BAE=90°,然后根据切线的判定方法得到AD为⊙O切线;(2)先利用圆周角定理得到∠ACB=90°,则sin∠BAC==,设BC=3k,AC=4k,所以AB=5k.连接OE交OE于点G,如图,利用垂径定理得OE⊥AC,所以OE∥BC,AG=CG=2k,则OG=k,EG =k,再证明△EFG∽△BFC,利用相似比得到=,于是可计算出FG=CG=k,然后根据正切的定义求解.【解答】(1)证明:∵BE平分∠ABC,∴∠1=∠2,∵∠1=∠3,∠3=∠4,∴∠4=∠2,∵AB为直径,∴∠AEB=90°,∵∠2+∠BAE=90°∴∠4+∠BAE=90°,即∠BAD=90°,∴AD⊥AB,∴AD为⊙O切线;(2)解:∵AB为直径,∴∠ACB=90°,在Rt△ABC中,∵sin∠BAC==,∴设BC=3k,AC=4k,则AB=5k.连接OE交OE于点G,如图,∵∠1=∠2,∴=,∴OE⊥AC,∴OE∥BC,AG=CG=2k,∴OG=BC=k,∴EG=OE﹣OG=k,∵EG∥CB,∴△EFG∽△BFC,∴===,∴FG=CG=k,在Rt△OGF中,tan∠GFO===3,即tan∠AFO=3.【点评】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了圆周角定理、垂径定理和解直角三角形.22.【分析】(1)首先确定点B坐标,再根据中点的定义求出点E坐标即可;(2)连接AB,分别求出∠EFC,∠ABC的正切值即可解决问题;(3)先作出辅助线判断出Rt△MED∽Rt△BDF,再确定出点E,F坐标进而EG=8﹣,GF=4﹣,求出BD,最后用勾股定理建立方程求出k即可得出结论;【解答】解:(1)∵四边形OACB是矩形,OB=8,OA=4,∴C(8,4),∵AE=EC,∴E(4,4),∵点E在y=上,∴E(4,4).(2)连接AB,设点F(8,a),∴k=8a,∴E(2a,4),∴CF=4﹣a,EC=8﹣2a,在Rt△ECF中,tan∠EFC===2,在Rt△ACB中,tan∠ABC==2,∴tan∠EFC=tan∠ABC,∴∠EFC=∠ABC,∴EF∥AB.(3)如图,设将△CEF沿EF折叠后,点C恰好落在OB上的G点处,∴∠EGF=∠C=90°,EC=EG,CF=GF,∴∠MGE+∠FGB=90°,过点E作EM⊥OB,∴∠MGE+∠MEG=90°,∴∠MEG=∠FGB,∴Rt△MEG∽Rt△BGF,∴=,∵点E(,4),F(8,),∴EC=AC﹣AE=8﹣,CF=BC﹣BF=4﹣,∴EG=EC=8﹣,GF=CF=4﹣,∵EM=4,∴=,∴GB=2,在Rt△GBF中,GF2=GB2+BF2,即:(4﹣)2=(2)2+()2,∴k=12,∴反比例函数表达式为y=.【点评】此题是反比例函数综合题,主要考查了根据条件求反比例函数解析式及其应用,利用图形性质表示出相关点的坐标,根据点与函数的关系找出关系式,涉及内容有锐角三角函数,三角形相似的性质和判定,勾股定理的应用,注意点(m,n)在函数y=的图象上,则mn=k的利用是解本题的关键.23.【分析】(1)先判断出AM是△AEF的高,再判断出△AEF∽△ABC,即可得出结论;(2)先判断出四边形EMDG是矩形,得出DM=EH,进而表示出AM=8﹣y,借助(1)的结论即可得出结论;(3)由矩形的面积公式得出函数关系式,即可得出结论.【解答】解:(1)∵四边形EFGH是矩形,∴EF∥BC,∵AD是△ABC的高,∴AD⊥BC,∴AM⊥EF,∵EF∥BC,∴△AEF∽△ABC,∴(相似三角形的对应边上高的比等于相似比);(2)∵四边形EFGH是矩形,∴∠FEH=∠EHG=90°,∵AD⊥BC,∴∠HDM=90°=∠FEH=∠EHG,∴四边形EMDH是矩形,∴DM=EH,∵EF=x,EH=y,AD=8,∴AM=AD﹣DM=AD﹣EH=8﹣y,由(1)知,,∴,∴y=8﹣x(0<x<12);(3)由(2)知,y=8﹣x,=xy=x(8﹣x)=﹣(x﹣6)2+24,∴S=S矩形EFGH∵a=﹣<0,∴当x=6时,S max=24.【点评】此题是相似形综合题,主要考查了矩形的性质,相似三角形的判定和性质,矩形的面积公式,掌握相似三角形的性质是解本题的关键.24.【分析】(1)根据正切函数,可得OB,根据旋转的性质,可得△DOC≌△AOB,根据待定系数法,可得函数解析式;(2)①根据相似三角形的判定,可得答案,②根据相似三角形的性质,可得PM与ME的关系,根据解方程,可得t的值,根据自变量与函数值的对应关系,可得答案.【解答】解:(1)在Rt△AOB中,OA=1,tan∠BAO==3,∴OB=3OA=3∵△DOC是由△AOB绕点O逆时针旋转90°而得到的,∴△DOC≌△AOB,∴OC=OB=3,OD=OA=1.∴A,B,C的坐标分别为(1,0),(0,3),(﹣3,0),代入解析式为,解得,抛物线的解析式为y=﹣x2﹣2x+3;(2)∵抛物线的解析式为y=﹣x2﹣2x+3,∴对称轴为l=﹣=﹣1,∴E点坐标为(﹣1,0),如图,①当∠CEF=90°时,△CEF∽△COD,此时点P在对称轴上,即点P为抛物线的顶点,P(﹣1,4);②当∠CFE=90°时,△CFE∽△COD,过点P作PM⊥x轴于M点,△EFC∽△EMP,∴===∴MP=3ME,∵点P的横坐标为t,∴P(t,﹣t2﹣2t+3),∵P在第二象限,∴PM=﹣t2﹣2t+3,ME=﹣1﹣t,∴﹣t2﹣2t+3=3(﹣1﹣t),解得t1=﹣2,t2=3,(与P在二象限,横坐标小于0矛盾,舍去),当t=﹣2时,y=﹣(﹣2)2﹣2×(﹣2)+3=3∴P(﹣2,3),∴当△CEF与△COD相似时,P点的坐标为(﹣1,4)或(﹣2,3).【点评】本题考查了二次函数综合题,解(1)的关键是利用旋转的性质得出OC,OD的长,又利用了待定系数法;解(2)的关键是利用相似三角形的性质得出MP=3ME.。